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ABSTRACT OF THE THESIS

Comapring Adversarial Unsupervised Domain Adaptation to Zero-Shot Classification in

Contrastive Language-Image Pre-Training Embedding Space

by

Kaustubh Deshpande

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2023

Professor Yingnian Wu, Chair

This paper explores how Unsupervised Domain Adaptation (UDA) measures up to zero-

shot classification using contrastive language-image pre-training (CLIP) models. We

begin by introducing the concept of domain adaptation and its necessity in various real-

world applications. Next, we introduce the ideas behind CLIP models followed by an

introduction to the UDA method called Adversarial Discriminative Domain Adaptation

(ADDA). Then, we conduct an experimental evaluation of this method by applying it to

embeddings obtained from two different CLIP models, ViT-B-32 and ViT-g/14. Finally,

we compare the performance of ADDA versus zero-shot classification (ZSC) using the

same two CLIP models and provide insights into the implications of the results.
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CHAPTER 1

Introduction

In recent years, deep learning models have shown remarkable performance in various

computer vision tasks such as image classification, object detection, and semantic seg-

mentation. However, the performance of these models often degrades when they are

applied to new or unseen domains, which differ in some way from the training data dis-

tribution. This problem, known as domain shift, is a significant challenge in real-world

applications where the training and test data may come from different sources.

To address this challenge, domain adaptation techniques have been proposed to trans-

fer knowledge from a source domain with labeled data to a target domain with unlabeled

data. These techniques aim to mitigate the domain shift problem and improve the model’s

performance on the target domain. One common approach is domain alignment which

aims to align the feature distributions of the source and target domains, such that the

learned features are domain-invariant and generalize well on the target domain [1].

Recently, Contrastive Language-Image Pre-training (CLIP) models have been intro-

duced, which jointly learn visual and textual representations in a self-supervised manner

and have achieved state-of-the-art performance on a wide range of natural language un-

derstanding and image classification tasks [2]. These models can generate embeddings,

which are mathematical representations of data that capture the underlying structure

and relationships. These embeddings encompass both visual and textual semantics and

are highly informative. They can be leveraged for a range of downstream tasks, including

domain alignment, due to the richness of information they contain.

Motivated by this, our study aims to align domains directly in the CLIP embedding

space using the Adversarial Discriminative Domain Adaptation (ADDA) methodology [3],

which has shown promising results in aligning two domains for both classification and

segmentation. First, we demonstrate the existence of a domain shift in our data set,
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thus justifying the need for domain adaptation. Next, we perform our experimental

evaluation of ADDA. Lastly, we perform zero-shot classification as a benchmark for our

ADDA approach.

The remainder of the paper is organized as follows. In Section 2, a comprehensive

background is provided on Domain Shift, Domain Alignment and CLIP. Section 3 out-

lines the main methodology employed in this study. The network architectures utilized

for our experiments are introduced in Section 4. Detailed descriptions of the conducted

experiments and their results are presented in Section 5. Section 6 delves into the discus-

sion of the results and potential avenues for future research. Finally, Section 7 concludes

the paper.
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CHAPTER 2

Background

2.1 Domain Shift, Domain Adaptation and Domain Alignment

While working in the field of machine learning and pattern recognition, researchers often

encounter the challenge of domain shift, which refers to the change or shift in statistical

properties, data distribution, or feature representation between different domains. This

shift can manifest as variations in lighting conditions, object appearances, data collection

settings, or other factors, leading to differences in the characteristics of the data.

Referring to Figure 2.1, when a model trained on a source domain is applied to a

target domain with significant domain shift, it can result in poor performance due to the

presence of a domain gap. This gap represents the mismatch or differences between the

source and target domains in terms of statistical characteristics and feature distributions.

This discrepancy poses a challenge for models as the knowledge learned from the source

domain may not be directly applicable to the target domain.

To address domain shift, researchers have developed various domain adaptation tech-

niques. One such technique is domain alignment. This procedure aims to reduce the

distributional differences and align the data or model representations between the source

and target domains. It involves transforming the data from both domains to a common

space where they share similar feature distributions. By aligning the domains, models

are enabled to effectively leverage the shared information across domains and overcome

the challenges posed by domain shift and discrepancy.

Referring to Figure 2.1 [4], after successfully aligning the domains, a cross-domain

classifier can be trained to leverage the aligned representations. This cross-domain clas-

sifier effectively bridges the domain gap and enables accurate classification in the aligned

domain space. As a result, The cross-domain classifier exhibits an improved performance
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on the target domain in comparison the original source domain classifier [4].

Figure 2.1: Domain Shift and Domain Adaptation

2.2 Contrastive Language-Image Pre-training (CLIP)

CLIP is a cutting-edge multimodal model that has garnered significant attention in the

fields of computer vision and natural language processing. It is designed to jointly under-

stand images and textual descriptions, enabling it to establish meaningful associations

between visual and semantic representations.

Referring to Figure 2.2 [2], the training of CLIP involves a contrastive learning frame-

work, which leverages large-scale image-text pairs. During training, the model learns to

encode both images and text into meaningful representations. The key idea is to push the
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embeddings of images and text belonging to the same class closer together in the joint

embedding space, while simultaneously pushing embeddings from different classes further

apart [5]. This process encourages the model to capture the shared semantics between

the visual and textual modalities and learn a rich understanding of their associations.

By incorporating the contrastive learning objective, CLIP acquires a powerful ability

to generalize across domains. It can perform tasks such as image classification, object

detection, and even zero-shot learning, where it can classify images from unseen categories

without specific training. Zero-shot learning is expanded on in detail later in this paper.

On the downside, training and utilizing CLIP models can be computationally ex-

pensive and require substantial computational resources. Additionally, fine-tuning CLIP

for specific tasks may necessitate a considerable amount of labeled data. Furthermore,

CLIP’s performance may be challenged in tasks that heavily rely on fine-grained visual

details or involve complex visual reasoning.

Despite these limitations, CLIP represents a significant advancement in multimodal

learning. Its ability to understand and leverage both images and text opens up exciting

possibilities for various applications, including computer vision, natural language under-

standing, and interdisciplinary tasks involving image-text interactions. The contrastive

training approach employed by CLIP enhances its capability to capture the underly-

ing associations between images and textual descriptions, making it a powerful tool in

multimodal research and practical applications [5].
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Figure 2.2: Contrastive Language-Image Pre-Training (CLIP)
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CHAPTER 3

Methodology

In this section, we introduce the main methods used for our experiments. These are

namely Adversarial Discriminative Domain Adaptation (ADDA) and Zero-shot Classifi-

cation (ZSC). The architectures for networks are not emphasized here.

3.1 ADDA

ADDA is a popular methodology in the field of domain adaptation, specifically addressing

the challenge of adapting a model from a source domain to a target domain with a

significant domain shift. ADDA aims to reduce the discrepancy between the source and

target domains by leveraging adversarial training [6].

Referring to Figure 3.1 [7], ADDA methodology consists of training three neural

networks in parallel: a feature extractor (F ), a domain discriminator (D) and a classifier

(C). The feature extractor is responsible for extracting high-level representations from

the data, while the domain classifier aims to distinguish between the source and target

domains based on these representations. The goal is to learn domain-invariant features

that are informative for the target domain despite the domain shift [6].

During training, ADDA employs an adversarial learning scheme [6]. The feature ex-

tractor and domain classifier are trained in an adversarial manner, with the discriminator

trained to differentiate between the source embeddings and the target embeddings by min-

imizing binary cross-entropy loss: DADV . Simultaneously, the feature extractor is trained

to minimize the binary cross-entropy loss on the discriminator’s predictions of whether a

target embedding, which should belong to the target domain, is misclassified as belong-

ing to the source domain after passing through the extractor: FADV . Minimizing this

loss encourages the extractor to align the domains [6]. Lastly, the feature extractor and
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classifier are also jointly trained to minimize the cross-entropy loss on the classification

task: CTask. Minimizing this loss ensures that during training the extractor [6].

Here, FADV and DADV are computed as Binary Cross Entropy loss (BCE)

BCE = − 1

n

n∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (3.1)

Where n is the batch size, yi is the ground truth domain label for the i-th sample,

and ŷi is the discriminator’s predicted probability for the i-th sample. The value for yi

is as follows,

yi =


0, For FADV

0, For DADV if Samplei ∈ Domainsource

1, For DADV if Samplei ∈ Domaintarget



CTask is computed as Cross Entropy Loss (CE)

CE = −
n∑

i=1

yi log(ŷi) (3.2)

Where yi is the ground truth class label and ŷ is the predicted class label, and n is

the batch size.
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Figure 3.1: Adversarial Discriminative Domain Adaptation (ADDA)

3.2 Zero-Shot Classification

Zero-shot classification (ZSC) has emerged as a powerful approach in multimodal learn-

ing. It utilizes CLIP (Contrastive Language-Image Pretraining) models to recognize and

classify images from unseen categories without specific training on those categories [2].

As mentioned previously, CLIP models are designed to jointly understand images and

textual descriptions, allowing them to learn meaningful associations between visual and

semantic representations. ZSC refers to the ability of CLIP models to used this learned

associated to recognize and classify images from unseen categories without specific train-

ing on those categories [2].

Referring to Figure 3.2 [2], we perform ZSC by preparing text inputs in the format

”a photo of a class” for each class present in our dataset. These textual descriptions are

then encoded into text embeddings using a selected CLIP model. Simultaneously, we

obtain image embeddings for each image in our dataset using the same CLIP model.

To determine the class prediction for a given image embedding, we compute the cosine

similarity between the image embedding and each class-specific text embedding [2]. The
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cosine similarity provides a measure of the alignment or resemblance between the image

and the textual description associated with each class. We identify the class with the

highest cosine similarity score as our ”zero-shot prediction” for that particular image

embedding.

Subsequently, we compare the zero-shot predictions with the ground truth labels

assigned to the images in our dataset. By calculating the ZSC accuracy, we evaluate how

effectively the chose CLIP model can classify images in our dataset with no direct prior

training.

Mathematically, cosine similarity for two vectors is defined as:

cosine similarity =
A ·B
|A||B|

=

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(3.3)

Here, A and B are the two vectors that we want to compute the cosine similarity

between, n is the number of dimensions in the vectors, · denotes the dot product between

the vectors, and | · | denotes the Euclidean norm.

Figure 3.2: Zero Shot Classification
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CHAPTER 4

Network Architectures

This section provides a comprehensive overview of the architectures employed in the

ADDA setup, focusing on the neural networks and their constituent elements. It delves

into the intricate details of the network architecture, including activation functions,

dropout rates, batch normalization, and other relevant components. By presenting these

details, this section offers insight into the design choices made for the neural networks in

the ADDA framework, shedding light on the factors that contribute to its effectiveness

in accomplishing domain adaptation.

4.1 Feature Extractor (F )

The feature extractor in our ADDA setup is a Neural Network responsible for extracting

task-specific features from the CLIP embeddings. F is initially trained on the source

domain data and learns to extract features that are relevant to the specific task at hand,

which for our study is classification. Throughout the rest of the training process, F

learns to map target embeddings to the source domain where class decision boundaries

are preserved. This makes it easier for a downstream classifier to successfully classify

target domain samples without having been trained on any labelled target domain data.

For our study, the architecture of F is as follows,

11



Figure 4.1: Feature Extractor Architecture

Referring to the Figure 4.1 , F consists of four fully connected layers with batch

normalization to and Mish activation functions. The input and the output layers are

tensors with a specified number of features. While, the hidden two layers have 768

output features. The final output from F is passed as input to C and D for predicting

class labels and domain labels respectively.

4.1.1 Mish

Mish activation function [8] is used to introduce non-linearity into the feature extractor

architecture and is defined as:

f(x) = x tanh(ln(1 + exp(x)))

12



4.1.2 Batch Normalization

Batch normalization [9] is used to normalize the activations of the previous layer. Batch

normalization reduces the effect of internal covariate shift, speeds up training, regularizes

the network and prevents overfitting.

BatchNorm1D is defined in Pytorch as:

BN(xi) = γ
xi − µB

σ2
B + ϵ

+ β

Where µB and σB are the mean and standard deviation of the mini-batch B, respec-

tively. γ and β are learned scaling and shifting parameters, respectively. ϵ is a small

constant added for numerical stability [10].

4.2 Domain Discriminator (D)

The Domain Discriminator in our ADDA set up is a neural network responsible for

classifying whether a given output from F is from the source or target domain. The

domain discriminator is trained using binary cross entropy loss, and its output is used to

inform the F on how to produce features that are indistinguishable between the source

and target domains. By doing so, F learns domain-invariant features and ensures that

any downstream model, such as a classifier, generalizes well to the target domain.

13



Figure 4.2: Discriminator Architecture

Referring to the Figure 3.2 , D consists of three fully connected layers with 128, 64,

and 1 output units respectively, and batch normalization applied after each hidden layer.

The LeakyReLU activation function, with a negative slope of 0.2, is used to introduce non-

linearity into the network. Dropout with a rate of 0.5 is applied after each hidden layer

to prevent overfitting and capture the help capture the essential discriminative patterns

in the input data [6] [11]. The final output layer uses the sigmoid activation function,

which maps the output to a probability between 0 and 1, indicating the likelihood that

the input sample belongs to the target domain. The sigmoid function is commonly used

in binary classification problems to convert the network’s output into a probability score.

4.2.1 Leaky ReLU

The Leaky ReLU activation function [12] with a slope of 0.2 is defined as:

14



LeakyReLU(x) =

 x, if x > 0

0.2x, otherwise


4.2.2 Sigmoid

The sigmoid activation function [13] is defined as:

σ(x) =
1

1 + e−x

4.3 Classifier (C)

The Classifier in our ADDA set up is a neural network responsible for performing the

classification task on the input data, given the domain-invariant learned features from F .

For our study, the architecture of C is as follows,

Figure 4.3: Classifier Architecture

Referring to the Figure 3.3 , C consists of three fully connected layers with 128, 64,

and 12 output units respectively, and the Mish activation function applied after each

hidden layer. The Mish activation function is a non-linear activation function that has

15



been shown to improve the performance of deep neural networks. The final output layer

maps the output to a 12-dimensional vector, which represents the probabilities of the

input sample belonging to each of the 12 classes in our dataset. This is achieved using

the softmax activation function, which ensures that the output probabilities sum to 1.

4.3.1 Softmax

The softmax activation function is defined as:

softmax(xi) =
exi∑
j e

xj

Where xi is the ith element of the input vector x, and the sum in the denominator is

taken over all elements of x.

16



CHAPTER 5

Experiments

In this section, we delve into the practical implementation and evaluation of our proposed

methodologies. For all experiments, we utilize embeddings from two distinct models,

namely ViT-B-32 [5] and ViT-g/14 [2], with output embedding sizes of 512 and 1280,

respectively.

We begin by providing an overview of the dataset employed in our study, highlighting

its characteristics and composition. Subsequently, we present evidence of domain shift by

evaluating the performance of a source-only model on the target domain. This analysis

serves to highlight the challenges posed by domain shift and substantiates the need for

domain adaptation techniques.

Finally, we present the results of our experiments, which demonstrate the effectiveness

of ADDA in mitigating the impact of domain shift and achieving improved classification

accuracy across both domains. Additionally, we compare these results with the zero-

shot classification (ZSC) approach using the mentioned CLIP models. By examining the

outcomes, we gain valuable insights into the capabilities and advantages of ADDA for

domain adaptation and its performance relative to ZSC.

5.1 Dataset

For our experiment, we are working with the VisDA-2017 image classification data set,

which poses a 12-class domain adaptation challenge. Referring to Figure 5.1 [14], the

source domain is composed of 152,397 synthetic images, where 3D CAD models are

rendered from various conditions . On the other hand, the target domain consists of

55,388 real images sourced from the MS-COCO data set. Lastly, the test set for the

target domain consists of 72,372 real images [14]. The test set is a new real-image test

17



domain, different from the validation domain and without labels. By using different target

domains for validation and testing, we can assess how well the proposed models perform as

a domain adaptation tool in novel, real-world scenarios. This approach closely resembles

actual deployment situations where the target domain is unknown during training, and

it discourages algorithms that are designed to only work for specific target domains.

Figure 5.1: VisDA-2017 Dataset

5.2 Domain Shift

As mentioned previously, domain shift is a common issue that arises in computer vision

tasks. Prior to tackling domain shift with ADDA we must first confirm its existence in

our dataset. We do this by assessing how a model trained/validated on source domain

performs on the target domain.

18



(a) Source Domain Validation Accuracy (b) Target Domain Test Accuracy

Figure 5.2: Domain Shift - ViT-B-32

(a) Source Domain Validation Accuracy (b) Target Domain Test Accuracy

Figure 5.3: Domain Shift - ViT-g/14

Referring to Figure 4.2 and 4.3, classifiers trained on embeddings from both CLIP

ViT-B-32 and CLIP ViT-g/14 models exhibited significant drops in performance when

tested on the target domain compared to the source domain. While achieving an accuracy

of 99% on the source domain, their performance on the target domain test set was only

61% and 82%, respectively. The superior performance of the ViT-g/14 embeddings on

the target domain compared to ViT-B-32 can be attributed to its larger size and richer

information content in the embeddings. These results confirm the presence of a domain

19



shift and encourage us to proceed with domain adaptation.

5.3 Result

Having confirmed domain shift using source only performance accuracy on the target

domain test set, we proceeded with training the ADDA pipeline using embeddings from

ViT-B-32 and ViT-g/14. We also computed zero-shot accuracy for both the CLIP models

to compare against our domain adaptation performance.

CLIP ViT-B-32 CLIP ViT-g/14

Source only 61.2 82.1

ADDA 73.5 91.2

ADDA + D multi-step 78.6 89.8

ADDA + weighted FADV 81.2 91.2

ADDA + D multi-step + weighted FADV 81.1 91.2

Zero-shot 86.6 93.5

Table 5.1: Results on Target Domain Test Set

Table 5.1 shows the results of different methods on the target domain test set. In the

previous section we computed source only accuracy, which achieved an accuracy of 61.2%

and 82.1% on CLIP ViT-B-32 and CLIP ViT-g/14, respectively.

While applying ADDA improved the accuracy to 73.5% and 91.2%, we noticed that

the FADV loss was dropping too quickly, specifically when working with the smaller em-

beddings from CLIP ViT-B-32. We hypothesized that the root cause was a relatively weak

discriminator that was unable to effectively distinguish between the source domain data

and the target domain data. Consequently, allowing the feature extractor to easily fool

the discriminator by overfitting on the source domain data or on non-domain-invariant

features, instead of learning domain-invariant features that could generalize to the target

domain. As a result, although the loss for the feature extractor decreased quickly, the

20



model’s performance on the target domain did not improve as well as it could have and

may have even degraded if we trained the pipeline for longer.

To address this issue, we attempted multi-step adversarial training [15], updating the

discriminator twice for each update of the feature extractor during the first 10 epochs

only. This method, ADDA + D multi-step in table 4.2, further improved accuracy for

ViT-B-32 to 78.6% but slightly decreased accuracy for ViT-g/14 to 89.8%.

We also tried to weight down the FADV loss to prevent the feature extractor from

overfitting on the source domain data. This method, ADDA + weighted FADV in table

4.2, achieved the best ADDA based performance for both Vit-32 and ViT-g/14 with

accuracies of 81.2% and 91.2% respectively. We also tried both methods in parallel

however that did not alter the performance much.

Finally, we evaluated the zero-shot approach, which achieved the highest accuracy of

86.6% and 93.5% for CLIP ViT-B-32 and CLIP ViT-g/14, respectively. These results

demonstrate the effectiveness of ADDA in addressing the domain shift challenge but also

highlight the power of CLIP models as they were able to outperform all ADDA methods

with just zero shot predictions.

5.4 UMAP Visualizations

UMAP (Uniform Manifold Approximation and Projection) [16] is a powerful dimension-

ality reduction technique that enables the visualization of high-dimensional data in a

lower-dimensional space. For qualitative analysis, we utilized UMAP to visualize the fea-

ture extractor output for both domains before and after domain adaptation. To ensure

fair comparisons, we maintained consistent hyperparameters when generating all UMAP

visualizations.
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(a) Source Domain Features (b) Target Domain Features

Figure 5.4: Unaligned Features - ViT-g/14

(a) Source Domain Features (b) Target Domain Features

Figure 5.5: Aligned Features - ViT-g/14

Referring to Figure 5.4, the UMAP visualization of the source domain prior to align-

ment reveals a noticeable degree of separation. This initial separation can be attributed to

the fact that the feature extractor and classifier are jointly pre-trained with a supervised

loss, enabling them to effectively extract and capture discriminative patterns associated
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with the class labels. In contrast, the UMAP visualization of the target domain features

initially lack clear separation due to the absence of labeled target domain data.

After applying ADDA, Figure 5.5 illustrates a noticeable improvement in the sepa-

ration of both the source and target domain features in the UMAP visualizations. This

enhancement in separation is consistent with our quantitative results, which demonstrate

improved classification accuracy in the aligned domain space. Thus, ADDA success-

fully aligns the distributions of the source and target domains, enabling a cross-domain

classifier to generalize effectively to the target domain samples.

Overall, the UMAP visualizations serve as visual evidence of the effectiveness of

ADDA in mitigating the effects of domain shift and aligning the source and target do-

mains. They provide a qualitative assessment of the success of the alignment process and

reinforce the findings from our quantitative analysis.
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CHAPTER 6

Discussion

The result section demonstrated the effectiveness of domain adaptation techniques for

aligning feature representations between source and target domains. We observed a

significant improvement in classification accuracy when applying unsupervised domain

adaptation compared to using the source-only model, with the best-performing method

achieving an accuracy of 81.2% and 91.2% for CLIP ViT-B-32 and CLIP ViT-g/14,

respectively. Our UMAP visualizations also confirmed that applying resulted in improved

separation for features in both domains.

The more defining result from our experiments, however, was the performance of the

zero-shot approach, achieving the highest accuracy of 86.6% and 93.5% for CLIP ViT-

B-32 and CLIP ViT-g/14, respectively. These numbers demonstrate the power of CLIP

models and their ability to generalize to new and unseen domains without the need for

domain-specific training data.

While these results suggest that zero-shot techniques could prove a viable replace-

ment for unsupervised domain adaptation, there are several limitations that should be

acknowledged. Firstly, the focus of the research is limited to a single task of classification,

which may not capture the full extent of the UDA approach’s capabilities across different

tasks. Secondly, the investigation is conducted on a single dataset, potentially restricting

the generalizability of the findings to other datasets with varying characteristics. Lastly,

the study only explores two CLIP models, which might not represent the entire spectrum

of CLIP model performance and could overlook other models that could potentially yield

better results.

To gain a more comprehensive understanding of the UDA approach and its applicabil-

ity, future research should aim to address these limitations by encompassing a wider range

of tasks, datasets, and CLIP models. For alternative datasets, we recommend exploring
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more niche or domain-specific datasets. Such data is more likely to be encountered in a

production setting and is more difficult to zero shot on compared to commonplace objects

such as trains, cars and bicycles which were a part of the VisDA-2017 data set used in

this study.

As for testing other downstream tasks, we aim to explore instance segmentation,

semantic segmentation [17], or multi-label classification. By expanding the scope of

research beyond classification, we can gain a more comprehensive understanding of the

capabilities and limitations of unsupervised domain adaptation and zero-shot techniques.
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CHAPTER 7

Conclusion

This paper accomplishes two main objectives. Firstly, it implements an unsupervised

domain adaptation (UDA) method named ADDA at the CLIP embedding level with-

out relying on image-level augmentation. Secondly, it evaluates the performance of this

approach by comparing it to zero-shot classification. Unsupervised domain adaptation

is a popular approach for addressing significant domain shift commonly encountered in

real-world scenarios. This approach aligns with existing methods in the field, employ-

ing conventional statistical techniques and neural network architectures. Notably, this

approach shares similarities with the works of Shrivastava et al. (2017) [18] and Lee et

al. (2019) [6], who explored Simulated+Unsupervised (S+U) learning using Generative

Adversarial Networks (GANs) and adversarial dropout to enhance adaptation through

learning discriminative features, respectively. Other notable methods in domain adap-

tation include training cyclic GANs [19] or Wasserstein GANs (WGANS), which aim to

learn two-way mapping between domains and utilize Wasserstein loss, respectively [20].

While GANs have been widely explored, they are usually not the preferred choice in

production settings due to challenges such as mode collapse and instability [21].

In this paper, we first introduced the challenge of domain shift accompanied by a

detailed background of domain adaptation techniques, specifically, domain alignment to

overcome this challenge. Next, we provided a theoretical introduction to CLIP models

and their increasing popularity in the field of computer vision and natural language

processing. This was followed by a detailed account of adversarial discriminative domain

adaptation methodology. Which aims to align the embeddings from CLIP models in both

the source and target domains into a shared space. By achieving alignment, we enabled

the training of a cross-domain classifier that can generalize well to the target domain

samples.
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Our results demonstrated the effectiveness of these techniques for aligning feature rep-

resentations between source and target domains, resulting in significant improvements in

classification accuracy. We also compared the performance of UDA to the zero-shot (ZSC)

approach and found that the latter achieved the highest accuracy. This result specifi-

cally stood out from our experimental evaluation and further highlighted the strength

of CLIP models and their ability to generalize to new domains without the need for

domain-specific training data.

While our study focused on classification tasks, further research can explore the per-

formance of both techniques on other downstream tasks such as instance segmentation,

semantic segmentation, or multi-label classification. Additionally, testing on more niche

or domain-specific datasets is needed to obtain a fair comparison of UDA vs ZSC

In summary, this study presents promising results for UDA directly at a CLIP em-

bedding level and highlights the potential of zero-shot approaches as a viable alternative.

These findings contribute to the ongoing research on domain adaptation and zero-shot

learning and can inform future developments in this field.
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CHAPTER 8

Appendix

8.1 A Code Repository

Code used in this research project is available on GitHub in the repository ADDA vs ZSC

by Kaustubh Deshpande. The repository contains the implementation of the algorithms

and methods used for data analysis and model training. It can be accessed at: https:

//github.com/kaus0399/ADDA_vs_ZSC.
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