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Purpose: To design and validate a fully automated computer system 
for the detection and anatomic localization of traumatic 
thoracic and lumbar vertebral body fractures at computed 
tomography (CT).

Materials and 
Methods:

This retrospective study was HIPAA compliant. Institu-
tional review board approval was obtained, and informed 
consent was waived. CT examinations in 104 patients 
(mean age, 34.4 years; range, 14–88 years; 32 women, 72 
men), consisting of 94 examinations with positive findings 
for fractures (59 with vertebral body fractures) and 10 
control examinations (without vertebral fractures), were 
performed. There were 141 thoracic and lumbar vertebral 
body fractures in the case set. The locations of fractures 
were marked and classified by a radiologist according to 
Denis column involvement. The CT data set was divided 
into training and testing subsets (37 and 67 subsets, re-
spectively) for analysis by means of prototype software 
for fully automated spinal segmentation and fracture de-
tection. Free-response receiver operating characteristic 
analysis was performed.

Results: Training set sensitivity for detection and localization of 
fractures within each vertebra was 0.82 (28 of 34 findings; 
95% confidence interval [CI]: 0.68, 0.90), with a false-
positive rate of 2.5 findings per patient. The sensitivity for 
fracture localization to the correct vertebra was 0.88 (23 
of 26 findings; 95% CI: 0.72, 0.96), with a false-positive 
rate of 1.3. Testing set sensitivity for the detection and 
localization of fractures within each vertebra was 0.81 (87 
of 107 findings; 95% CI: 0.75, 0.87), with a false-positive 
rate of 2.7. The sensitivity for fracture localization to the 
correct vertebra was 0.92 (55 of 60 findings; 95% CI: 
0.79, 0.94), with a false-positive rate of 1.6. The most 
common cause of false-positive findings was nutrient fo-
ramina (106 of 272 findings [39%]).

Conclusion: The fully automated computer system detects and ana-
tomically localizes vertebral body fractures in the thoracic 
and lumbar spine on CT images with a high sensitivity and 
a low false-positive rate.

q RSNA, 2015
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injury diagnosis and classification and 
is the focus of this article.

Previously, we devised a decision 
support system for fracture detection on 
CT images (25). In that initial step, the 
system was designed to detect fracture 
lines on the vertebral body cortex. 
The system presented here has since 
been extended to generate quantitative 
fracture metrics, including the location 
and extent of the fracture, that serve as 
constituents for fracture classification. 
As a sample classification task of clini-
cal interest, the system was designed for 
Denis column fracture involvement of 
the affected vertebral bodies (7).

The purpose of our study was to 
design and validate a fully automated 
computer system for the detection and 
anatomic localization of vertebral body 
fractures of the thoracic and lumbar 
spine through quantitative analysis of 
CT images.

Materials and Methods

Study Subjects
Our study received institutional review 
board approval and was compliant with 

load-bearing component, the vertebral 
body (19).

Prior work in the assessment of 
vertebral bodies for anterior height 
loss to detect fractures on lateral radio-
graphs, oriented toward osteoporotic 
compression fractures, has reached 
clinical application (20,21). Addition-
ally, research has been conducted for 
computerized assessment of compres-
sion fractures through the detection 
of vertebral body height loss on mid-
line sagittal sections of lumbar com-
puted tomographic (CT) images and on 
three-dimensional volumetric renderings 
(22,23). However, simple height mea-
surement is not sufficient for fracture 
categorization in a number of spine 
trauma injury classification systems in 
clinical use. Relatedly, computational 
assessment of known spine fractures 
has been performed for preoperative 
planning, inferring vertebral height 
loss, canal narrowing, and shear injury 
by determining the central axis of each 
vertebral body and anterior-posterior 
canal diameter (24). Segmentation 
and analysis of the complex three-di-
mensional structure of the spine on CT 
images, with direct quantitative assess-
ment of bone discontinuities that con-
stitute osseous fracture lines, is a novel 
topic of clinical importance for spine 
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Advances in Knowledge

nn A fully automated computer 
system has been developed for 
the detection and anatomic local-
ization of vertebral body 
fractures of the thoracic and 
lumbar spine on CT images.

nn Our fully automated system dem-
onstrates 92% sensitivity for 
fracture detection and localiza-
tion of the correct vertebra, with 
a false-positive occurrence rate 
of 1.6 per patient.

Implications for Patient Care

nn Although not yet at the point of 
clinical application, our computer 
system automatically detects ver-
tebral body fractures in the tho-
racic and lumbar spine as an ini-
tial step toward a fracture 
detection system that will assess 
both the vertebral body and pos-
terior elements.

nn Our system detects the level of the 
fractured vertebra and the precise 
location of the fracture within the 
vertebra and may assist the radi-
ologist in fracture classification 
according to orthopedic trauma 
surgery classification systems.

nn The system has the potential to 
decrease interobserver variability 
in fracture detection and help 
standardize fracture reporting.

Traumatic spine injuries are com-
mon, with an estimated 140 000–
160 000 vertebral fractures per 

year in the United States. An estimated 
19%–50% of thoracic and lumbar spine 
fractures are associated with neurologic 
deficits (1,2). Rapid diagnoses with ac-
curate and detailed characterization of 
the injury are increasingly important to 
guide patient treatment decisions (3,4). 
Efforts by the trauma surgery commu-
nity to create standards for patient care 
and improve treatment outcomes have 
resulted in the development of a number 
of spine injury classification systems 
(5–12). These classification systems 
are based on detailed morphologic data 
from patients’ imaging studies; they af-
fect treatment decisions for intervention 
versus conservative treatment and guide 
decision making for surgical approach 
and optimal fixation interval (4,13–15). 
Classification of spine fracture patterns 
into these sometimes complex schemes 
can be a time-consuming task, resulting 
in additional work for the radiologist 
in this era of commensurately increas-
ing workloads and study complexity 
(16,17). An example of a complex injury 
classification schema is the Magerl-AO 
(Arbeitsgemeinschaft für Osteosynthe-
sefragen) system, with 53 potential cat-
egories for assignment of the detected 
vertebral fracture pattern (18).

No universally accepted classification 
system has been devised to date, and 
classification protocols continue to de-
velop. Although varying in detail, these 
systems typically allow classification of 
fractures on the basis of spinal stability 
considerations, with focus on the main 
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mean age of the patients was 34.4 years 
with a range of 14–88 years, consisting 
of 32 female patients and 72 male pa-
tients. The mean age of female patients 
was 43 years (range, 17–88 years), and 
the mean age of the male patients was 
39 years (range, 14–84 years). There 
was no significant difference in age be-
tween men and women (P = .39 with 
the t test). The dates of performance of 
the examinations selected ranged from 
2009 to 2011.

Image Acquisition
A total of 101 patients selected for the 
study were scanned with spine CT pro-
tocols, and three patients were scanned 
with body CT protocols. Section thick-
ness and in-plane resolution parame-
ters are included in Table 1. Ninety-five 
of the 104 patients incidentally received 
intravenous contrast material as part of 
their examination protocol.

Lesion Identification
Digital Imaging and Communications in 
Medicine images for each CT examination 
were downloaded in a noncompressed 

search. Examinations dictated as be-
ing positive for acute fractures of the 
thoracic or lumbar vertebrae were set 
aside for picture archiving and com-
munication system, or PACS, review. 
These cases were reviewed on an AGFA 
Impax PACS system (AGFA, Mortsel, 
Belgium), with exclusion criteria for 
case selection applied during the PACS 
evaluation. The study set was com-
posed of 94 consecutive nonexcluded 
examinations that demonstrated one 
or more vertebral fractures (major 
spinal injuries) for use as the case set 
and 10 examinations without vertebral 
fractures as the control set (7). Of 
the 94 patients with fractures, 59 pa-
tients had one or more vertebral body 
fractures, including 41 patients with 
one vertebral body fracture, 11 patients 
with two vertebral body fractures, five 
patients with three vertebral body 
fractures, and two patients with four 
vertebral body fractures, for a total 
of 86 vertebral body fractures of the 
thoracic and lumbar spine in the case 
set. Thirty-five patients had isolated 
fractures of posterior elements. The 

the Health Insurance Portability and 
Accountability Act. Since our study was 
performed as a retrospective analysis 
of previously obtained imaging studies, 
informed consent was waived.

The radiology information system 
application “Radiology Report Search” 
(RadNet, Cerner Millennium, North 
Kansas City, Mo) was used to con-
duct a review of a medical imaging da-
tabase at a level 1 trauma center for 
potential spine fracture cases. Radi-
ology information system parameters 
specified the date of service range for 
the search, the imaging modality as 
“computed tomography,” and free-text 
search keywords of “CT+spine+fracture 
+contrast+(thoracic lumbar)” in the 
dictated reports. A total of 3528 re-
ports were returned from this search. 
A Standards for Reporting of Diagnos-
tic Accuracy chart of the methods used 
is provided in Figure 1.

One author (J.E.B.), a fellowship-
trained board-certified musculoskeletal 
radiologist with 7 years of experience, 
reviewed filtered reports returned 
from the radiology information system 

Figure 1

Figure 1:  Standards for Reporting of Diagnostic Accuracy chart illustrates case accumulation, exclusion, and parti-
tioning. PACS = picture archiving and communication system, RIS = radiology information system.
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Table 1

Image Acquisition Data

Section Thickness* In-plane Resolution  
(mm/pixel)

Mean Dose-Length  
Product (mGy · cm) Mean Collimation (mm)Protocol 1 mm 2 mm 5 mm

Spine 0.26–0.44
  Combined thoracic and  

  lumbar spine
2 86 … 1548.7 (924.0–3631.6) 0.61 (0.6–1.2)

  Thoracic spine 1 4 … 1630.0 (727.0–3876.0) 0.64 (0.6–0.8)
  Lumbar spine 1 7 … 1187.9 (824.0–1612.0) 0.67 (0.6–1.2)
Body 0.56–0.87
  Chest, abdomen, and pelvis … 1 … 1552.0 0.6
  Abdomen and pelvis … 1 1 1209.5 (1092.0–1327.0) 0.9 (0.6–1.2)

Note.—The CT scanner used was the Siemens Sensation 64, Erlangen, Germany. Numbers in parentheses are ranges.

* Data are the number of patients with the specified section thickness.

Figure 2

Figure 2:  Axial CT section of the spine in a 28-year-old man with an L1 
vertebral body fracture has the anterior and middle Denis columns projected 
onto it.

format. One author (J.E.B.) reviewed 
the images and manually marked the 
approximate centroid of each fracture 
locus (defined here as a localized 
grouping of fracture lines detected as 
contiguous) on the images. A total of 
141 thoracic and lumbar vertebral body 
fractures were marked. Denis column 
classification of vertebral body fractures 
as anterior column, middle column, or 
both columns was performed. Here, we 
define the anterior column as the an-
terior two-thirds of the vertebral body 
(as seen on a sagittal midline image or 
axial image) and the middle column as 
the posterior one-third of the vertebral 
body (Fig 2) (5,26,27). The CT exam-
inations were then partitioned into 
training and testing sets. The manually 
annotated fractures were used as the 
reference standard.

Quantitative Image Analysis Methods
A simplified illustration of the methods 
is provided in Figure E1 and Appendix 
E1 (online). Spine segmentation was 
performed with vertebral body parti-
tioning (28). Fracture detection in this 
preliminary work is limited to the ver-
tebral body to simplify the topological 
analysis and to focus on structurally 
important Denis anterior and middle 
column injuries. A software algorithm 
was designed for fracture line detection 
on the vertebral body cortex (25). This 
algorithm separates the cortex from 

the medullary space by using deform-
able dual-surface models to detect, fit, 
and extract the interior (endosteal) 
and exterior (periosteal) surfaces, 
forming a “cortical shell.” This shell is 
mapped into a two-dimensional plane 
and fracture lines detected with pattern 
recognition techniques in which multi-
scale adaptive filtering is used. Fracture 

detections are then re-embedded into 
three-dimensional space, and three-
dimensional quantitative fracture fea-
tures are computed.

A committee of support vector 
machines (SVMs) was used as the 
system classifier to categorize detec-
tions as positive (fracture) or negative 
(no fracture) and then compare this 
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into independent training (37 studies) 
and testing (67 studies) sets (Table 2).

Training set sensitivity for locali-
zation of fractures within each verte-
bra was 0.82 relative to the reference 
standard (28 of 34; 95% confidence 
interval [CI]: 0.68, 0.90) at an FPR of 
2.5 per patient (Table 3). Training set 
sensitivity for fracture localization on 
the correct vertebral level (T1–L5) was 
0.88 (23 of 26; 95% CI: 0.72, 0.96) at 
an FPR of 1.3 per patient. Testing set 
sensitivity for localization of fractures 
within each vertebra was 0.81 (87 of 
107; 95% CI: 0.75, 0.87) with an FPR 
of 2.7. Test set sensitivity for fracture 
localization on the correct vertebral 
level was 0.92 (55 of 60; 95% CI: 0.79, 
0.94) with an FPR of 1.6. FROC curves 
are shown in Figure 3. The testing and 
training sets did not demonstrate a sta-
tistically significant difference in sensi-
tivity, with a bivariate x2 test statistic of 
0.074 (P = .79).

Test set sensitivity for male patients 
was 0.82 (62 of 76) with an FPR of 2.8 
and that for female patients was 0.81 
(25 of 31) with an FPR of 2.1. Results 
of the t test showed that there was not 
a statistically significant difference be-
tween male and female cohorts (P = .99 
for sensitivity and P = .25 for FPR).

Examples of TP, FP, and false- 
negative detections are illustrated in 

A thousand bootstrap replications were 
performed to obtain the confidence in-
tervals by using bootstrap percentile 
intervals based on resampling. Boot-
strap resampling was conducted at the 
patient level to take into account the 
clustering of lesions.

The operating point value in the 
FROC analysis was chosen to target a 
sensitivity for computer-aided fracture 
detection in the training set of 80% or 
higher, balancing this with the mainte-
nance of a clinically reasonable false-
positive rate (FPR). The testing set 
sensitivity was then calculated by using 
the same operating point (0.52 in SVM 
value). A bivariate x2 test was used for 
analysis of the statistical significance of 
sensitivity value differences between 
the testing and training sets. For all 
analyses, a P value less than .05 was 
considered to indicate a statistically sig-
nificant difference.

Results

The locations of a total of 141 reference 
standard fracture loci were marked elec-
tronically by a radiologist (J.E.B.) in the 
patient study set of 104 cases, for a per-
patient mean 6 standard deviation of 1.4 
vertebral body fracture loci 6 1.8 and a 
range of 0–4 vertebral body fractures per 
patient. The patient study set was divided 

SVM categorization with the reference 
standard data to determine whether 
there is a true-positive (TP) or false-
positive (FP) result (29–33). Training 
of the SVM committee was performed 
by using quantitative features extracted 
from detections in the training case 
data set of CT studies. This training was 
based on classifier correlation of auto-
mated detection candidates obtained 
from computer system analysis of the 
training data set with the reference 
standard data set of fractures manually 
marked by an expert radiologist on the 
same training set.

Ten-fold cross-validation of the clas-
sifier system was performed by using 
the training data with free-response re-
ceiver operating characteristic (FROC) 
analysis, resulting in a trained SVM 
committee. The final set of computer 
system detections was obtained by 
means of analysis of the testing case set 
by the trained SVM committee classi-
fier. The per-case analysis time for the 
system was less than 2 minutes on a 
high-end office desktop computer (Dell 
Precision T7600 with dual 2.30-GHz 
central processing unit, 16.0-GB mem-
ory, and 64-bit Windows 7 operating 
system; Dell, Round Rock, Tex).

The origins of false-negative findings 
(fracture misses) and FP fracture line 
detections were decided in a consensus 
review by two board-certified fellowship-
trained radiologists (J.E.B. and R.M.S., 
a fellowship-trained board-certified body 
imaging radiologist with 19 years of ex-
perience). Fracture line detections ob-
tained from quantitative imaging system 
analysis of the studies that were initially 
marked as FP by the system but that 
were subsequently found to be TP le-
sions that had not been marked in the 
reference standard set were excluded 
from the FP statistical analysis.

Statistical Analysis
FROC curve analysis of the computer 
system data set classifications was used 
for assessment of system performance. 
The FROC curve was generated by 
varying a threshold on SVM probabil-
ity (signed distance to the SVM hyper-
plane) to determine whether a detected 
finding is a fracture or a nonfracture. 

Table 2

Reference Standard Data Set with Subgroup Data Breakdown

Data Set No. of Patients

No. of Fracture Loci No. of Fractured Vertebrae

Thoracic Lumbar All Thoracic Lumbar All

Training set 37 20 14 34 16 10 26
Testing set 67 54 53 107 31 29 60
All 104 74 67 141 47 39 86

Table 3

Detection Statistics

Data Set No. of Patients TP Loci FP Loci TP Vertebrae FP Vertebrae

Training set 37 28 of 34 (82.3) 91 23 of 26 (88.5) 48
Testing set 67 87 of 107 (81.3) 181 55 of 60 (91.7) 106

Note.—Numbers in parentheses are percentages.
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examination of the anterior, posterior, 
and lateral cortex, the central element 
of this fracture detection algorithm. 
Additional motivation for this frame-
work lies in the increased fracture con-
spicuity in the relatively homogeneous 
vertebral cortex compared with typical 
semiuniform heterogeneity of marrow 
space, presumptively increasing the 
sensitivity for fracture detection. Fi-
nally, by separating the cortex from the 
underlying medullary space and map-
ping the cortex into a plane, a three-
dimensional detection problem is con-
verted into a simpler two-dimensional 
problem. This two-dimensional surface 
is then remapped onto the vertebra for 
three-dimensional fracture localization.

The system has potential for ap-
plication to osteoporotic compression 
fracture cases in detecting vertebral 
body wall cortical breaks. However, 
owing to the altered material charac-
teristics of the osteopenic bone, there 

(online). The confusion matrix is shown 
in Table 4. The system correctly clas-
sified Denis column involvement in 68 
of 86 (79%) of the fractured vertebrae. 
The calculated k coefficient was 0.574 
(95% CI: 0.399, 0.749), consistent with 
moderate agreement.

Discussion

We have developed and validated a 
computer system to detect traumatic 
vertebral body fractures, provide the 
appropriate enumerated level of the in-
jured vertebra, and spatially localize the 
fracture within the injured vertebra. A 
sample classification task involving 
quantitative features was performed.

Fractures through vertebrae have 
numerous potential trajectories and 
comminution patterns. In the develop-
ment of the theoretical model that forms 
the functional basis of this algorithm, 
we hypothesized that a simple fracture 
(a surface or two-manifold fracture in 
three-dimensional space) that transects 
a cylinder of brittle material subjected 
to high-energy trauma should almost 
necessarily involve the side of the cyl-
inder, regardless of fracture geometry. 
Taking the vertebral body in the first 
approximation as an essential rigid cyl-
inder thus creates a unifying model to 
detect most fracture types by means of 

Figures 4–8. Additional examples of 
each type of detection are found in Fig-
ures E2–E6 (online). There were 272 FP 
findings, with 106 (39%) due to nutrient 
foramina, 54 (20%) due to costoverte-
bral junctions, 52 (19%) due to degen-
erative osteophytes, 38 (14%) due to in-
tervertebral disk spaces, and three (1%) 
due to other causes. Nineteen (7%) 
of initially marked FP detections were 
found to be true detections on review, 
overlooked on creation of the reference 
data set. There were 26 false-negative 
findings, with 14 of 26 (54%) due to 
fracture lines paralleling and in close 
proximity to a vertebral body end plate, 
three of 26 (12%) due to degenerative 
joint disease, three due to FP manual in-
terpretation in the reference testing set 
seen as negative at retrospective repeat 
review, two due to proximity and exten-
sion into foramen, two due to proximity 
to the costovertebral junction, one due 
to low spatial resolution owing to a large 
field of view, and one due to proximity to 
adjacent vertebral burst fracture.

The Denis column classification of 
fracture pattern involvement (anterior, 
middle, or anterior and middle) was de-
termined by our system and validated 
against radiologist assessment. Exam-
ples of column classifications by the ra-
diologist and the computer system are 
shown in Figure 9 and Figures E7–E9 

Figure 3

Figure 3:  Graph demonstrates FROC analysis of computer localization of fractured vertebral bodies. The 
training set FROC curve of SVM performance for localization of fractures within each vertebra demonstrates 
88% sensitivity (95% CI: 72%, 96%) at an FPR of 1.3 lesions per patient. The testing set FROC curve of SVM 
performance demonstrates 92% sensitivity (95% CI: 79%, 94%) at an FPR of 1.6 lesions per patient.

Figure 4

Figure 4:  Axial CT section demonstrates a TP 
detection in a 52-year-old man with a Denis two-
column fracture of an L4 vertebral body. Fracture of 
the posterior spinous process is also noted; however, 
this region is not yet included in the fracture search 
area of the algorithm. Thus, this is an overall Denis 
three-column fracture of the vertebral body and 
posterior elements. The computer algorithm marked 
the automated detection in green on the image.
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Our system generates quantita-
tive fracture pattern data for injury 
classification and has the potential 

level, with improvement anticipated 
in future versions. Sensitivity varia-
tion between testing and training sets 
was not statistically significant, sug-
gesting data set independence and 
generalizability.

is potential for oversight of isolated end 
plate fractures not in the design param-
eters of this system.

The system performed with 92% 
sensitivity for fracture detection and 
localization on the correct vertebral 

Figure 5

Figure 5:  Axial CT section demonstrates a TP detection in a 32-year-
old man with a Denis two-column fracture involving the left-sided 
superior end plate of an L1 vertebral body. The computer algorithm 
marked the automated detection in green on the image.

Figure 6

Figure 6:  Axial CT section demonstrates an FP detection in a 
57-year-old man with nutrient foramen of the L2 vertebra. The com-
puter algorithm marked the automated detection with a white pixel. An 
arrow has been placed for clarification.

Figure 7

Figure 7:  Axial CT section demonstrates an FP 
detection in a 62-year-old woman with costover-
tebral junction of the T10 vertebra. The computer 
algorithm marked the automated detection with 
a white pixel. An arrow has been placed for 
clarification.

Figure 8

Figure 8:  Axial CT section demonstrates a false-
negative detection in a 14-year-old adolescent girl 
with a nondisplaced, transversely oriented fracture 
of the T5 vertebra. The point of cortical extension 
of the fracture near the costovertebral junction has 
been marked with a red pixel. An arrow has been 
placed for clarification.

Figure 9

Figure 9:  Axial CT section in a 22-year-old man 
demonstrates a Denis column classification of 
fracture involvement. In this misclassification exam-
ple, the radiologist classification was anterior and 
middle column involvement, and computer system 
classification was isolated anterior column fractures 
in the L5 vertebra. The arrow denotes the left lateral 
wall extension of the fracture.
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fracture patterns by means of quanti-
tative image analysis will allow simul-
taneous class assignment in multiple 
classification systems now in use, al-
lowing the interpreting radiologist to 
provide timely assignment to any of a 
number of classification schema pre-
ferred by the treating trauma surgeon 
at the time of injury.

There were several limitations in 
the fracture detection system design. 
First, the fracture search was limited 
to the bodies of the vertebrae. This 
approach was chosen to simplify a 
large complex problem by division 
into smaller, more manageable, mod-
ular pieces, with algorithmic design to 
detect fractures of the geometrically 
simpler vertebral bodies, thereby re-
ducing algorithm complexity. Clinical 
utility was also considered in this de-
sign phase. In the Denis three-column 
model of the spine, injury of the poste-
rior aspect of the vertebral body (the 
Denis “middle column”) is an essential 
element in the determination of spi-
nal instability. Thus, limitation of the 
fracture search region to the vertebral 
body may maintain clinical relevance 
by means of detection of middle col-
umn fractures (5). Second, the algo-
rithm created and tested in our study 
is specific for detection of fracture 
discontinuities on vertebral body cor-
tices. This anatomic simplification was 
believed to be justified on the basis 
of the assumption that this work is 
intended to demonstrate the unifying 
characteristic shared by essentially all 
vertebral body fracture geometries—
involvement of the sides of the verte-
bral body. An exception would include 
focal vertebral body end plate fractures 
without sidewall involvement, as in an 
end plate–only fracture, a presumed 
unusual occurrence in patients with 
nonosteopenic trauma. Third, the FPR 
is relatively high. Two of the three most 
common causes (nutrient foramen and 
costovertebral junctions) may be de-
creased by a more sophisticated seg-
mentation algorithm design, and the 
third (irregular end plate osteophytes) 
may be decreased by the addition of 
an algorithm, now in development, 
to detect degenerative change of the 

fracture locus classification as anterior 
column by the system and combined 
anterior and middle column by the 
radiologist. This variant classification 
may arise from subjective localization 
of Denis column boundaries by the ra-
diologist during the qualitative visual 
review process, particularly in cases 
with fractures that terminate near the 
column boundaries, compared with the 
quantitative and explicit column divi-
sion by the system (see the limitations 
paragraph). Another possible cause 
of these variant classifications may be 
fracture proximity to the vertebral end 
plate, as the algorithm detects and seg-
ments the sides of the vertebral body 
but not the end plate. The sides of the 
vertebral body smoothly curve into the 
end plate; thus, the algorithm likely los-
es some accuracy near this transition.

Although the software application was 
tested for Denis column classification, 
there are numerous classification systems 
in clinical use with substantial vari-
ability in relevant imaging features. 
For example, the Thoracolumbar In-
jury Classification and Severity Score 
system imaging features include verte-
bral height loss, translation, and canal 
diameter (37). The McCormack Load 
Sharing classification is used to assess 
sagittal plane deformity, fracture frag-
ment distraction, and extent of verte-
bral body involvement (6). We plan to 
integrate our previously validated soft-
ware for vertebral body height loss into 
the next phase of system development 
(23), thus combining direct detection 
and characterization of fracture lines 
with detection and measurement of 
global geometric deformity. This mul-
tiscale ability to detect and classify 

Table 4

Denis Column Classification of Fracture Pattern

Computer Classification
Classified as Anterior  
by the Radiologist

Classified as Middle  
by the Radiologist

Classified as Anterior and  
Middle by the Radiologist

Anterior 20 0 14
Middle 1 2 0
Anterior and middle 3 0 46

Note.—Data are the number of fractures.

to decrease interobserver variability 
of fracture classification. The speed 
of algorithm analysis and detailed 
quantitative anatomic information ex-
tracted from each injury site portend 
a future ability to provide timely, re-
peatable, and detailed assessment of 
spine fracture patterns to fit the varied 
schema of multiple evolving trauma sur-
gery classification systems. Quantitative 
features generated may also aid in com-
parative effectiveness research needed 
to guide the development of new clinical 
treatment paradigms based on patient 
outcomes and evidence-based medicine 
studies (34).

We used three-dimensional quan-
titative features to localize regions 
of fracture involvement within each 
vertebra. Isolated Denis anterior col-
umn fractures (eg, compression-type 
fractures) are differentiated from 
combined anterior and middle column 
fractures (burst type) by the system. 
Motivation for this task arises from the 
three-column description of Denis, in 
which spinal instability is determined 
when any two of the three Denis spinal 
columns are disrupted (18,19). Addi-
tional motivation for this sample task 
arises from clinical practice, where the 
Denis three-column model is the most 
commonly used classification system 
(35). The Denis classification system 
has been previously reported to dem-
onstrate fair to good interobserver reli-
ability (36). Denis column classification 
agreement of 79% was obtained by the 
computer system relative to radiologist 
classification, with a k score consistent 
with moderate agreement. Confusion 
matrix analysis suggests that the pre-
dominant factor lowering the k score is 
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analysis and reconstruction of CT transverse 
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2013;4(1):3–9.

	 5.	 Kepler CK, Felte RF, Rihn JA. Current 
concepts: classification of thoracolumbar 
fractures. Semin Spine Surg 2012;24(4):210–
215.

	 6.	 Sethi MK, Schoenfeld AJ, Bono CM, Harris 
MB. The evolution of thoracolumbar injury 
classification systems. Spine J 2009;9(9):780–
788.

	 7.	 Denis F. The three column spine and its 
significance in the classification of acute 
thoracolumbar spinal injuries. Spine 1983; 
8(8):817–831.

	 8.	 McAfee PC, Yuan HA, Fredrickson BE, Lu-
bicky JP. The value of computed tomogra-
phy in thoracolumbar fractures. An analysis 
of one hundred consecutive cases and a 
new classification. J Bone Joint Surg Am 
1983;65(4):461–473.

	 9.	 Magerl F, Aebi M, Gertzbein SD, Harms J, 
Nazarian S. A comprehensive classification 
of thoracic and lumbar injuries. Eur Spine J 
1994;3(4):184–201.

	10.	 McCormack T, Karaikovic E, Gaines RW. 
The load sharing classification of spine 
fractures. Spine 1994;19(15):1741–1744.

	11.	 Vaccaro AR, Lehman RA Jr, Hurlbert RJ, 
et al. A new classification of thoracolumbar 
injuries: the importance of injury morphol-
ogy, the integrity of the posterior ligamen-
tous complex, and neurologic status. Spine 
2005;30(20):2325–2333.

	12.	 Joaquim AF, Patel AA. Relationships be-
tween the Arbeitsgemeinschaft für Osteo-
synthesefragen Spine System and the Tho-
racolumbar Injury Classification System: an 
analysis of the literature. J Spinal Cord Med 
2013;36(6):586–590.

	13.	 Parker JW, Lane JR, Karaikovic EE, Gaines 
RW. Successful short-segment instrumen-
tation and fusion for thoracolumbar spine 
fractures: a consecutive 4½-year series. 
Spine 2000;25(9):1157–1170.
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Surgical decision making for unstable thora-
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Group. J Spinal Disord Tech 2006;19(1):1–10.
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agement of low lumbar burst fractures. Se-
min Spine Surg 2010;22(1):33–37.

vertebrae. Elimination of these three 
causes of FP findings would eliminate 
78% of FP detections. Fourth, image 
assessment by the radiologist on the 
picture archiving and communication 
system for Denis column classification 
of the fractures was performed to em-
ulate the typical method of clinical 
practice study review, without column 
boundaries electronically delineated 
on the images. The qualitative nature, 
fine-scale variability, and subjectivity 
of this manual classification process 
may have resulted in misclassification 
of fractures that terminated near the 
column boundary, and system perfor-
mance relative to absolute quantitative 
standards may be somewhat higher 
than reported here. Fifth, images were 
reconstructed with a soft-tissue ker-
nel to decrease image noise effects on 
software performance.

In conclusion, we designed and val-
idated a fully automated quantitative 
image analysis system that can directly 
detect fractures of the anterior, poste-
rior, and lateral cortex of thoracic and 
lumbar vertebral bodies on CT images, 
discern the level of fractured verte-
brae, and localize fractures within the 
vertebral body.
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