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ABSTRACT 
 

 

Photo Magnetic Imaging (PMI) is a novel laser-based optical imaging technique. PMI is 

used to identify diseased tissue based on its endogenous tissue contrast or using disease-

targeting exogenous optical contrast agents. It was first developed at the Center for Onco 

Functional Imaging at the University of California, Irvine. Optical imaging techniques 

generally suffer from poor spatial resolution due to the high scattering of optical photons 

in tissue. PMI attempts to provide quantitatively accurate optical images with high spatial 

resolution. In this study, phantoms mimicking optical properties of tissue are utilized to 

explore the use of Machine learning techniques and Finite Element Methods to drive an 

AI-based reconstruction of PMI images. Our proposed methodology consists of hybrid 

deep learning and a machine learning pipeline that first identifies the inclusions in the 

phantoms representing cancerous lesions and finally delineates their boundaries. Our 

method was tested on a variety of inclusions’ sizes, locations, and absorption coefficients 

and demonstrated high precision (above 95%) and Intersection Over Union Accuracies 

(above 85%) for the realizable test cases. 
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A. INTRODUCTION 

 

In recent years, Machine Learning (ML) and Artificial Intelligence (AI) have witnessed a 

remarkable interest in industrial and research applications. With the advancements in 

computational power combined with autonomous capabilities, AI has emerged as a 

powerful tool to aid complex problem-solving in research. Medical Imaging has seen 

significant advancements in recent years. ML algorithms have proven effective in 

enhancing the accuracy and efficiency of diagnosis, treatment, and monitoring of diseases 

and reducing the risk of misdiagnosis. These advancements possess tremendous 

implications for patient care and research. This thesis will explore one such application of 

Machine Learning for a medical imaging technique called ‘Photo Magnetic Imaging’ 

(PMI). This technique was developed by researchers at the Center for Functional Onco-

Imaging at the University of California, Irvine. 

 

PMI is a novel non-invasive functional imaging technique that involves using near-infrared 

(NIR) lasers and Magnetic Resonance Imaging (MRI) to detect abnormalities in soft 

tissues. It is particularly effective for detecting the presence of tumors not detectible by 

other imaging modalities. Utilizing the high sensitivity of optical imaging and high 

resolution of MRI, PMI provides quantitatively accurate images with high spatial 

resolution. In PMI, Magnetic Resonance Thermometry (MRT) images are acquired 

dynamically while the tissue is lightly heated with laser light (~2 ºC). Due to their higher 

hemoglobin concentration, cancerous lesions absorb the NIR photons more than healthy 

tissue, and hence warm up slightly higher compared to the surrounding normal tissue. The 

delineation of these cancerous regions is achieved using a dedicated PMI image 

reconstruction algorithm using mathematical models of photon migration and heat 

diffusion in tissue. It involves a minimization process, which is carried out to minimize the 

difference between the predicted temperature maps and the measured MRT maps. 

 

In this thesis, we introduce a machine learning methodology that helps to assist the faster 

convergence of this minimization problem. It predicts a binary mask underlying the 

diffused heat signature of the cancerous lesion in the MRT maps. Our Machine Learning 

pipeline is a two-stage detection network called the Region of Interest Localizer and 

Precision Improver. The first stage of this pipeline employs a convolutional neural network 

to pick out the regions in the MRT maps which contain cancerous lesions. The second stage 

is a statistical regression model that creates the binary mask for the cancerous regions and 

therefore points to the sources of the heat signature corresponding to these lesions in the 

phantom. 
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Our methodology employs a Finite Element Method mesh to discretize the thermal images 

produced by the MRI to localize the sources of cancerous heat signatures. This 

methodology is designed to be versatile. The transferability of the method enables easy 

localization of heat signatures in thermal images of all types. It can find its applications in 

building diagnostics [1], firefighting [2], surveillance and security applications [3], and 

many more. 
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B. BACKGROUND 

I. Medical Imaging  

Medical Imaging has been one of the cornerstones of advancements in modern medicine. 

It has been the most integral and influential of technological advancements for the 

detection, diagnosis, monitoring, and treatment of medical conditions. The wide array of 

techniques in medical imaging has paved the way toward an enhanced understanding of 

the human body for medical professionals.  

 

There are two main categories of medical imaging techniques, namely, invasive and non-

invasive [4]. Invasive techniques involve the insertion of an instrument into the human 

body for capturing detailed internal information of the human body by the means of images 

or signals These techniques are mainly targeted toward diagnosing and treating specific 

diseases and possess a higher risk of complications than their non-invasive counterparts. 

Examples of invasive procedures include Angiography, Endoscopy, etc. Non-Invasive 

medical imaging techniques [5] retrieve detailed, real-time functional and structural 

information about the internal organs of the human body without making any incisions. 

They have enabled medical professionals to retrieve high-resolution information about the 

internal structures of patients. Some examples of non-invasive medical imaging techniques 

include- X-Ray Imaging, CT scan, Magnetic Resonance Imaging, Positron Emission 

Tomography, Photo Acoustic Imaging, etc. Non-Invasive medical imaging can be further 

classified into two types, i.e., Anatomical or Functional [6]. Conventional anatomical 

imaging modalities such as computed tomography (CT) and magnetic resonance imaging 

(MRI) provide detailed information about the structural details of tissues under study but 

they provide little insight into tumor physiology. Functional Imaging techniques such as 

fMRI, PET, and Optical Imaging Techniques excel at providing the tissue or in the case of 

a cancerous lesion, the tumor’s biological functions and the surrounding 

microenvironment. They usually provide high sensitivity and specificity but are limited by 

their poor spatial resolution and inability to provide anatomical detail. Continued advances 

in instrumentation and imaging agents development will improve our ability to 

noninvasively characterize disease processes.  
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II. Diffuse Optical Imaging Techniques 

Diffuse Optical Imaging is a technique that employs light to retrieve functional information 

of the tissue under study. Optical imaging techniques have seen a rise in recent years due 

to their promise of providing an increased functional contrast allowing the investigation of 

key biological parameters of the tissue and diagnosing any unhabitual physiological 

anomalies. Typically, near-infrared (NIR) light, in the range of 600-1000 nm is used to 

illuminate the tissues due to its low attenuation that allows deep penetration [7]. 

1. Fluorescence Tomography 

 

Fluorescence imaging is based on the detection of fluorescence light emitted by dyes or 

proteins when excited by a specific wavelength of light [8-12]. Fluorescence tomography 

(FT) uses the principles of fluorescence imaging to create three-dimensional (3D) images 

of the distribution of these dyes or proteins within the imaged biological samples. FT 

utilizes multiple measurements from different sides of the sample to reconstruct the 3D 

images, rather than a single two-dimensional (2D) projection image [13-46]. 

When using exogenous contrast agents, the fluorescent dye is first injected into the sample. 

After the accumulation of a portion of the dye in specific tissue areas, the sample is then 

excited by a light source, typically a laser, which causes the fluorescent dye to emit 

fluorescent light. The emitted light is then collected by detectors placed around the sample 

at different angles. The tomographic data is then used to reconstruct a 3D image of the 

distribution of the dye within the sample using dedicated image reconstruction algorithms. 

FT has several advantages such as its ability for the non-invasive visualization of 

fluorescent-labeled biomolecules, which can provide new insights into the functional 

physiology of various organs and tissues. Additionally, FT can provide functional 

information in real-time, making it a powerful tool for both research and clinical 

applications [34, 35, 47-54]. It has been used to study a wide range of biological processes 

and diseases such as cancer [42]. It has also been used to study the distribution of drugs 

and other therapeutic agents in the body, which can help to optimize treatment regimens.  

FT is still a relatively new technology and remaining some challenges need to be overcome 

before its widespread in the clinic. Indeed, its widespread has been hampered by its low 

spatial resolution and the availability of only few FDA-approved fluorescent dyes. 

 

2. Diffuse Optical Tomography 

 

Diffuse Optical Tomography (DOT) utilizes NIR light to probe tissues and retrieve 

functional information [55, 56]. NIR light travels several centimeters through the tissue 
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under study, experiencing absorption and scattering, thus exponentially attenuating its 

intensity as a function of its distance from the source [57]. The attenuated light is then 

measured by detectors positioned around the boundary of the tissue [58-62]. If the light 

sources and detectors are placed on the same side of the boundary, the DOT is said to be 

in reflectance mode; if placed on the opposite sides of the tissue, it is in transmission mode. 

DOT provides 3D distribution of the optical properties of the tissue using the measured 

optical signals. An image reconstruction algorithm iteratively minimizes the difference 

between the data measured directly from the tissue at the detector and the synthetic ones 

generated using mathematical models of the propagation of light in tissue [63-66]. 

Generally, this modeling is performed using the diffusion equation [67-70]. 

 

The introduction of multiwavelength DOT enabled the recovery of further functional 

information from tissues such as total hemoglobin concentration and oxygen saturation by 

recovering the tissue chromophore concentrations [71-76]. The tissue absorbs light 

differently at different wavelengths. This characteristic is modeled using the absorption 

spectrum of the tissue. Therefore, photons of a specific energy or wavelength shall be 

absorbed by the tissue more than others. When NIR light is shone on the tissue, its 

chromophores such as hemoglobin, water, and lipids differently absorb it. Assessing the 

concentration of these endogenous chromophores is essential to understand and tracking 

different biological processes of the tissue. Their concentrations change in response to 

different abnormalities in the tissue and thus can be used as biomarkers. Their different 

absorption is usually described by their absorption spectra as shown in Fig.1 

 
Figure 1: The normalized absorption spectrum in the near-infrared spectral window are shown for water, 

lipid, oxy- and deoxyhemoglobin (Hb) [77-79]. As sensitivity to each chromophore concentration varies 

throughout the spectrum. The black arrows show representative wavelengths chosen to optimally recover 

the chromophores concentration in bio-tissue (760, 780, 830, 940 and 980 nm). 

 

The absorption coefficient of a medium at wavelength λ can be calculated as the sum of 

the absorption coefficients of its chromophores. The chromophores’ concentration C can 
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be recovered using the total absorption coefficient μa(λ) and the extinction coefficient ε(λ) 

at that wavelength using the modified Beer-Lambert’s law [57, 79-81]: 

 

𝜇𝑎(𝜆) = log∑ 𝜀𝑖(𝜆). 𝐶𝑖
𝑁𝑐
𝑖=1                                                      (1) 

 

Where Nc is the number of chromophores considered in the experiment. 

 

DOT has several advantages since it is non-invasive and does not use ionizing radiation, 

which makes it a much safer imaging technique that can be used frequently in vivo. For 

example, it has been widely used as a low-cost clinical research tool of special importance 

in breast cancer [25, 79, 82-86].  

 

However, the widespread of DOT in the clinic has been delayed due to its limited spatial-

resolution (~7 mm). This is mainly due to the important scattering of light photons in the 

medium during their propagation. This makes the DOT inverse problem, ill-posed and 

highly undetermined [87-89]. Considerable efforts have been made to overcome these 

limitations. One of which is the combination of DOT with high-resolution anatomical 

imaging modalities to improve its spatial-resolution [28, 64, 68, 69, 90-96]. Unfortunately, 

this approach remained limited to using the structural information to constrain the image 

reconstruction algorithm of DOT. As an effort to overcome these limitations, the Center 

for Functional Onco-Imaging at the University of California, Irvine has introduced a novel 

diffuse optical technique termed Photo Magnetic Imaging (PMI) [97-99]. 

 

III. Photo Magnetic Imaging (PMI) 

 

The PMI technique was developed to overcome the ill-posed nature of DOT. PMI 

combines optical and magnetic resonance imaging (MRI) to provide high-resolution 

optical absorption maps. It leverages the high sensitivity of optical imaging and the high 

resolution of MRI. Nevertheless, PMI is not based on the standard combination of these 

two modalities but proposes a novel scheme to employ them synergically. In PMI, the 

tissue under study is illuminated by NIR lasers to induce a temperature increase while being 

monitored by magnetic resonance thermometry (MRT), Fig 2. 



14 

 

 
Figure 2: The PMI instrumentation: a) photography, b) schematic showing the laser beam irradiating a 

circular phantom (green). 

 

The internal increase in temperature is proportional to both the absorption coefficient of 

the medium as well as the intensity of the incident laser beam. Indeed, when the laser beam 

illuminates the tissue under study, photons are locally absorbed by the medium. This 

energy absorbed from the photons is converted into bio-heat by the tissue. Figure 3 shows 

the cross-section of representative MRT temperature maps obtained on: a) a homogenous 

cylindrical phantom, b) a heterogeneous phantom bearing an inclusion with double the 

optical absorption of the phantom. 

 

 
Figure 3: The cross-section of representative MRT temperature maps obtained on: a) homogenous 

cylindrical phantom (μa), b) heterogeneous phantom bearing an inclusion with double the optical absorption 

of the phantom (2μa). 

 

As can be seen in figure 3. b, the additional increase in temperature at the inclusion location 

is only due to its higher absorption since all experimental parameters were kept the same 

for results in figure 3. a and 3. b. 

a) b)

Laser
2μa

Laser

a) b)
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IV. PMI Forward Problem 

1. Propagation of light in the tissue 

 

The propagation of light in the biological tissue can be modeled by the Boltzmann transport 

equation, also known as the radiative transfer equation (RTE) [100]. Resolving RTE to 

model light propagation is very time-consuming. Thus, this modeling is often performed 

using its approximated version called the diffusion equation (DE). The use of the diffusion 

equation is valid when scattering is dominant in the medium and requires the source-

detector separation to be larger than the scattering mean free path [28]. The diffusion 

equation is given by [66, 87, 88, 101]: 

 

𝑆(𝒓) =  −∇. [𝐷(𝒓)∇ϕ(𝒓)] + 𝜇𝑎(𝒓)ϕ(𝒓)                                     (2) 

 

Where 𝑆(𝒓) is the isotropic light source, ϕ(𝒓) is the direction-independent photon 

density, 𝐷(𝒓) is the diffusion coefficient and 𝜇𝑎 is the absorption coefficient. The diffusion 

coefficient 𝐷(𝒓) as a result of both absorption and scattering is the reciprocal of the 

weighted sums of the absorption (𝜇𝑎) and reduced scattering coefficient (𝜇𝑠
′) given as 

 

𝐷(𝒓) =  
1

3(𝜇𝑎(𝒓)+ 𝜇𝑠
′(𝒓))

                                                        (3) 

 

The Robin Boundary Condition which relates the photon flux and photon density to obtain 

the photon density at the surface of the tissue is used: 

 

−𝐷(𝒓)∇ϕ(𝒓). 𝒏 =  
ϕ(𝒓)

2𝐴
                                                      (4) 

 

Where 𝒏 is the vector normal to the surface, 𝐴 is the index mismatch parameter caused due 

to internal boundaries with different refractive indices and is related to the internal 

reflection coefficient 𝑅 and refractive index η by: 

 

 𝐴 =  
1+𝑅

1−𝑅
 ; and 𝑅 =  −1.4399𝜂−2

 +  0.7099𝜂−1
 +  0.6681 +  0.0636η            (5)  
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2. Propagation of heat in the tissue 

 

We can model the temperature increase in the medium as a function of space and time 

using the photon density obtained from the diffusion equation using the Pennes bioheat 

equation [102-104]. 

 

𝑄𝑠 = 𝜌𝑐
𝜕𝑇(𝑟,𝑡)

𝜕𝑡
− ∇[𝑘∇𝑇(𝑟, 𝑡)]                                             (6) 

 

Here 𝑄𝑠 is the NIR laser-induced heating source, 𝜌 is the density, 𝑐 is the specific heat, 𝑇 

is the temperature of the tissue at position r and time t. 𝑘 is the thermal conductivity of the 

tissue. 

 

3. PMI forward Problem 

 

The resolution of the PMI forward problem consists in simulating the temperature increase 

and propagation within a medium illuminated with a laser knowing its power and the 

medium optical properties. It is generally obtained using Finite Element Method (FEM) to 

provide a numerical solution for the combined diffusion (Eq.2) and heat equations (Eq.6). 

FEM is based on the discretization of the medium, using a FEM mesh. This mesh is 

composed of non-overlapping triangles in 2D and tetrahedral elements for 3D. The 

intersection points of these triangular elements are called mesh nodes. 
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Figure 4: The FEM mesh having 852 nodes, that is used to solve the PMI forward problem.  

 

4. PMI Inverse Problem 

The resolution of the PMI inverse problem allows to recover the absorption values at each 

node of the FEM mesh using the internal MRT temperature measurements. These 

absorption maps are recovered by iteratively minimizing the least square error between the 

measured temperature map and the simulated map obtained by assuming an absorption 

value 𝜇𝑎 given as [105-116]: 

 

Ω(𝜇𝑎) = argmin
𝜇𝑎

∑ (Γ𝑛 − 𝑇𝑛(𝜇𝑎))2𝑁
𝑛=1                                      (7) 

 

Where N is the number of the FEM nodes, Γ𝑛 is the measured temperature map and 𝑇𝑛 is 

the simulated temperature map.  

 

The absorption coefficient μa is iteratively updated by minimizing Eq.7 using the 

Levenberg–Marquardt algorithm as follows [105]: 

 

𝛥𝜇𝑎 = (𝐽𝑇𝐽 + 𝛼𝐼)−1𝐽𝑇(Γ𝑖
𝑚 − 𝑇𝑖)

2                                       (8) 
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Where Δμa is the update at each iteration i of the minimization process, α is the 

regularization parameter. The 𝜇𝑎 that produces the smallest error between the simulated 

and measured temperature maps is chosen to be the final PMI absorption coefficient map. 

J is the sensitivity matrix or the Jacobian Matrix. J is a matrix describing the influence of 

the variation of the absorption coefficient at given nodes on the induced temperature 

variations at all nodes [18]:  

 

𝐽 =  

[
 
 
 

𝜕𝑇1

𝜕𝜇𝑎1
⋯

𝜕𝑇1

𝜕𝜇𝑎𝑁

⋮ ⋱ ⋮
𝜕𝑇𝑁

𝜕𝜇𝑎1
⋯

𝜕𝑇𝑁

𝜕𝜇𝑎𝑁]
 
 
 

                                                   (9) 

 

 

The minimization process described by Eq.8 results in images with poor spatial resolution 

and quantitative accuracy. Several research groups attempted to enhance the spatial 

resolution of diffuse optical imaging. One solution consisted in combining optical imaging 

with structural imaging, which has higher spatial resolution [8, 9, 15, 16, 63, 90-94, 117-

121]. Therefore, the update to the optical absorption unknown 𝜇𝑎 is achieved with: 

𝛥𝜇𝑎 = (𝐽𝑇𝐽 + 𝛼𝐿𝑇𝐿)−1𝐽𝑇[𝑇𝑚 − 𝑇(𝜇𝑎)]                                           (10) 

Where 𝐿 is a penalty matrix built using the binary mask retrieved from the anatomical 

structural information. The penalty matrix L can be obtained as follows [23, 95, 122]:  

𝐿𝑖𝑗 = {

0 i and j not in the same region

−
1

𝑁𝑟
i and j in the same region

1 𝑖 = 𝑗

                                   (11) 

Where 𝑁𝑟 represents the number of nodes included in each region r. Unfortunately, this 

approach was also demonstrated to be limited due to the mismatch between the functional 

and structural information within the body. At the Center for Functional Onco-Imaging at 

UCI, our team introduced two novel methodologies that bring functional and anatomical 

imaging techniques to work synergically. These novel imaging modalities termed 

Temperature Modulated Fluorescence Tomography (TMFT) [14, 17-21, 23, 27, 123-126] 

and PMI [103-116] utilize both imaging modalities to induce or measure changes caused 

by the propagation of light within the medium. In PMI, which is the technique of interest 

in this work, information about the presence of higher absorbing regions can be directly 

extracted from the MRT-measured temperature maps before any reconstruction process. 

Unlike standard a priori anatomical information, these regions directly match the regions 
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of interest to be later reconstructed by the PMI algorithm. However, due to temperature 

diffusion, the observed regions are diffused and are typically larger than the region to be 

reconstructed. 
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C. Background: Image Processing and Machine   

 Learning 

I. Gray Level transformations in an Image 

Spatial image enhancement is a process where a function 𝑡 is applied to a neighborhood 

𝑛(𝑥, 𝑦) around every pixel 𝑝(𝑥, 𝑦) of an image 𝑓(𝑥, 𝑦) to obtain a transformed image 

g(𝑥, 𝑦) given by the following equation: 

 

𝑔(𝑥, 𝑦) = 𝑡(𝑛(𝑥, 𝑦))                                                 (12) 

 

𝑛 is usually a square or a rectangular region centered around the pixel 𝑝(𝑥, 𝑦). When the 

neighborhood size 𝑁 = 1, this transformation is called the gray level transformation. If ‘r’ 

is the gray level at the location (𝑥, 𝑦) of the input image, the corresponding transformed 

gray level at (𝑥, 𝑦) in the output is given as s, which is given by the following equation: 

 

𝑠 = 𝑇(𝑟)                                                           (13) 

1. Gray Level Thresholding 

 

The transformation function used in thresholding of images is a step function, given as 

follows: 

 

𝑔(𝑥, 𝑦) = {
𝐴 ;  𝑓(𝑥, 𝑦) ≥ 𝑇

𝐵;  𝑓(𝑥, 𝑦) < 𝑇
                                              (14) 

 

Where 𝑔(𝑥, 𝑦) is the transformed image, 𝑓(𝑥, 𝑦) is the input image and 𝑇 is the threshold 

gray value. A and B are the new values of the pixel intensity at a given location (x,y) in the 

image after the thresholding operation. 
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Figure 5: Step function used for thresholding transfer function at gray level 120. 

 

 

Thresholding is a common technique used to segment images, i.e., separation of objects of 

interest and background for feature extraction from images. 

2. Image Transformation functions 

The following figure depicts the different image transformation functions that are 

commonly used in image processing.  

 

 
Figure 6: Common gray level transformation functions [127]. 
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3. Hough Space and Hough Transform 

  

The Hough transform as it is in use today was first proposed by R. Duda and P. Hart [128], 

then was popularized in the computer vision community by D. H. Ballard [129]. The Hough 

Transform algorithm is a feature extraction technique, which is used to detect and extract 

objects of interest from an image once the class of shapes to be extracted is specified. The 

most common objects of interest extracted using the Hough transform are lines, curves, 

and by extension circles, ellipses, etc.  

A usually imperfect object is determined as a region of interest in the image by a 

mechanism of voting in a special parametric space known as the “Hough Space”. The 

parametric equations of a circle of Radius R and center (a, b) is given as follows: 

 

 

 

{
(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑅2

𝑥 = 𝑎 + 𝑅 × cos 𝜃
𝑦 = 𝑏 + 𝑅 × sin 𝜃

                                           (15) 

 

Where 𝜃 is the sweeping angle made by the points (𝑥, 𝑦), which are on the boundaries of 

the circle. 

 

Then, the task is to find image points that fall on the boundaries of the circles described by 

the coordinates (a,b,R) for each circle. These points are obtained by taking the gradient of 

the input image to retain only those pixels which correspond to the boundaries of the circles 

in the image. We limit our search space by constraining the radius of the circle. If we 

assume that the radius R of the circle is known, our search space is limited to the pair (a,b).  

The circles shown in the below image are of the chosen radius but are centered at different 

positions in space. We now search in the (a,b) space for parameters that satisfy the 

following condition: 

 

{
𝑎 = 𝑥 −  𝑅 × cos 𝜃
𝑏 = 𝑦 −  𝑅 × sin 𝜃

                                                 (16) 
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Figure 7:  The position of (𝑥, 𝑦) for a fixed radius R = 5 units for three different centers 

 

 

The locus of the points (a,b) in the parameter space is a circle of the fixed radius R centered 

at (x,y). A hough accumulator array is an array described by (a,b,R).  

For each image point (i,j) that may lie on a circle, we increment all cells for which 

according to  

 

(𝑖 − 𝑎)2 + (𝑗 − 𝑏)2 = 𝑅2 (17) 

 

It could be the center of the circle. Then we search for a local maximum on the hough 

accumulator array. 

 

a) 

 

 

b) 

 

 

Figure 8: The locus of points (a,b) for a fixed radius R. Their points of maximum intersection correspond to 

the centers of the circle in the x-y space. 

 

If the radius of the circles in the image is not known beforehand, then the locus of the points 

in the (a,b) space shall fall on the surface of a cone. Each point (x,y) will produce a cone 
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as described by the 3D parametric space (a,b,R) and the local maxima of the intersection 

of these cones shall correspond to our potential circles in the input image. 

  

 
Figure 9: Locus of points (a,b) for a variable radius R [130] 

II. Machine Learning and Deep Learning  

 

Linear Regression is a statistical machine learning (ML) methodology that fits a line, also 

known as the ‘best-fit line’ through data points [131, 132]. The equation for the best-fit 

model in the case of a single input single output model is given as: 

 

𝑦 = 𝑚𝑥 + 𝑐                                                        (18) 

 

Where y is the output of the regression model or the response of the ML model, x is the 

input data or the input signal, m is the slope, and c is the bias of the line, given in the figure 

below. 

 

 
Figure 10: Plot of a straight line with slope = 1 and intercept =0 
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For multi-output prediction [133], where we have P outputs for a given input, the output 

vector y is a P x 1 vector. If x is an M x 1 dimensional vector, the weight vector connecting 

the output to the input is a matrix of shape M x P, as shown in Figure 11.  

 

Finding the output of the regression model consists in updating the weights of the model 

such that the squared error between the calculated or predicted response and desired 

response is minimized, also called the least square minimization. The performance of a 

regression model is determined by its R2 score given as: 

 

𝑅2 = 1 − 
𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠
                                        (19) 

 

 
Figure 11: Representation of a Multi Output Linear Regression Model 

1. Loss or Cost Functions 

 

Cost functions or Loss functions determine the performance of a model in ML. Through 

Cost Functions, we can provide a mathematical representation of the objectives of the 

learning task. Below is a list of some of the cost functions used for the task of classification 

[134]. 

 

Entropy of a Random Variable 

 

Entropy is a measure of randomness in the values taken by the variable in an experiment. 

The larger the value of the entropy, the more randomness in the variable. It also measures 

the number of bits required to represent a random variable. The entropy of a random 

variable X is given as: 

 

𝐻(𝑋) =  ∑ 𝑝(𝑥) ∙ log (𝑝(𝑥))𝑥                                         (20) 

 



26 

 

Where 𝑥 is a sample value taken by the variable X and p(x) is the probability of the 

occurrence of 𝑥. 

Cross Entropy 

 

Cross Entropy measures the difference between probability distributions. It also represents 

the number of bits required to project the variable from one distribution to another:  

 

𝐻(𝑦, ŷ) =  −∑ 𝑦𝑖 ∙ log (ŷ𝑖)𝑖                                               (21) 

 

where y is the probability of a sample from distribution 1 and ŷ is the probability of a 

sample from distribution 2. 

The Cross-Entropy metric is used as a loss function in classification tasks as it calculates 

the difference between the measured and the true probability distributions [135]. A learning 

model generally aims to minimize the difference between these probability distributions.  

 

Binary Cross Entropy 

 

Since cross-entropy is a distribution-based loss function, it is derived from the distribution 

of the outputs or ‘labels’. In binary classification, the outputs take only two values, 0 or 1, 

and the loss function is derived assuming a Bernoulli distribution of the outputs, i.e., the 

probability of the variable assuming the value of ‘0’ is exactly equal to ‘1’. Therefore, the 

equation of Cross Entropy becomes: 

 

𝐿𝐶𝐸(𝑦, ŷ) =  −(𝑦 ∙ log ŷ + (1 − 𝑦) (log 1 − ŷ))                         (22) 

 

Where 𝑦 is the true output and ŷ is the output predicted for a given input by the ML model.   

 

Weighted Cross Entropy (WCE) 

 

The WCE loss function is used when the output distribution to be approximated is skewed, 

and when the probabilities of the occurrence of each of the outcomes by the random 

variable are unequal, as shown in Figure 12. In Eq. 23, the parameter 𝛽 makes the learning 

model more attuned to false positives if it assumes a value less than 1, and to false negatives 

if it takes a value greater than1.  

 



27 

 

 
Figure 12: Representative probability distribution of an outcome for an imbalanced binary classification 

task. 

 

𝐿𝑊𝐶𝐸(𝑦, ŷ) =  −(𝛽 ∙ 𝑦 ∙ log ŷ + (1 − 𝑦) (log 1 − ŷ))                           (23) 

 

Balanced Cross Entropy (BCE) 

 

Balanced Cross Entropy is also used as a loss function that is more suited for imbalanced 

datasets. Weights are assigned to both the positive and negative classes such that the sum 

of the weights add to one, given as: 

 

𝐿𝐵𝐶𝐸(𝑦, ŷ) =  −(𝛽 ∙ 𝑦 ∙ log ŷ + (1 − 𝛽)(1 − 𝑦) (log 1 − ŷ))                      (24) 

Focal Loss 

 

The expression for Focal loss is given as: 

 

𝐿𝐹𝐿(𝑝𝑡) =  −𝜁𝑡(1 − 𝑝𝑡)
𝛾 log 𝑝𝑡                                           (25) 

 

Where 𝑝𝑡 is the estimated probability distribution of the output variable. The factors 𝛾 and 

𝜁 work together to down weight the contribution of easy-to-classify examples. The value 

of 𝛾 controls the shape of the curve and reduces the loss for well-classified examples with 

high ground truth probability shown in Fig 13. But the function produces a high loss for 

poorly classified examples, in turn forcing the gradient descent to reduce the high loss 

produced for these classes of examples.  
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Figure 13: Comparison of Focal loss with Cross Entropy loss by varying 𝛾 [136]. 

 

Multilayer Perceptron Networks or Neural Networks 

Single-layer perceptron model 

In the domain of deep learning, the most rudimentary and fundamental model is the 

Perceptron model, first proposed by F. Rosenblatt [131, 137]. The following figure 

showcases a single-layer perceptron model.  

 

 
Figure 14: Single-Layer Perceptron Model. 

 

 

The data vector 𝑋 is fed into the network using the input layer, which contains the same 

number of neurons as the length of a data point in the input vector space. Each neuron or 

‘node’ of the input layer is connected to every node of the intermediate or the hidden layer, 
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so called because the computations remain hidden inside the structure of the model. The 

input layer is connected to the neurons of the hidden layer through linear combinations. If 

the datapoint 𝑥𝑖 in the 𝑖𝑡ℎ neuron of the input layer is connected to the output neuron by a 

weight 𝑤𝑖, the output of perceptron network is given as: 

 

𝑦 =  𝑓(∑ 𝑥𝑖 ∙ 𝑤𝑖)𝑖                                                    (26) 

 

 Or  

 

𝑦 =  𝑓(𝑤𝑇𝑥)                                                      (27) 

 

Where f is the activation function applied to the linear combination output to introduce 

non-linearity into the network. In the Rosenblatt perceptron model, the activation function 

is the threshold or step function given by: 

𝑦 =  {
0 ; 𝑖𝑓 𝑤𝑇 ∙ 𝑥 ≤ 𝜅 

1 ; 𝑖𝑓 𝑤𝑇 ∙ 𝑥 > 𝜅 
                                               (28) 

 

Where 𝜅 is the threshold chosen for the network.  

Learning Rule of a Perceptron 

 

The output of the perceptron is calculated and compared with the true output associated 

with the input data. An error is calculated and this error in the model prediction is used to 

update the free parameters or the tunable parameters of the model, i.e., the weights and 

biases of the network. Error in the prediction by the network is given by: 

 

𝑒𝑟𝑟𝑜𝑟 = 𝑒(𝑦, ŷ) = 𝑦 − ŷ                                            (29) 

 

And the weight update rule is given by: 

 

𝑤(𝑡 + 1) = 𝑤(𝑡) +  𝜂(𝑒(𝑦, ŷ))                                     (30) 

 

Where η is the learning rate of the model, which determines the effect of the error on the 

weights of the perceptron model.  

 

 

 

 



30 

 

Multi Perceptron Networks or Neural Networks 

 

 
Figure 15: Multilayer perceptron network model. 

 

Neural networks are essentially multilayer perceptron models, where the activation 

functions are chosen according to the function being approximated by the learning model. 

The forward propagation of the input 𝑋 predicts the output 𝑌. The output Z of the hidden 

layer is given as: 

 

𝑍 = 𝜎(𝑾ℎ
𝑇 ∙ 𝑿)                                                      (31) 

 

Where 𝜎 is the activation function applied to the output of the hidden layer and the 

subsequent output vector 𝑌 is: 

 

𝑌 = 𝜎2(𝑊ℎ
𝑇 ∙ 𝑍)                                                      (32) 

 

Where 𝜎2 is the activation function applied to the linear combination output of the stage 

prior to the output stage. 

The learning step for a neural network is given by gradient descent minimization and 

backpropagation of the error computed at the output, to update the weights of the network 

at each layer in the network, according to the chain rule of differentiation. This process 

results in a weight update rule which is as follows [141]: 

 

𝑊𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ×𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟   

𝑖𝑛𝑝𝑢𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑢𝑟𝑜𝑛
      (33) 

 

 

 

 

 



31 

 

Convolutional Neural Network (CNN) 

 

The convolution operation used in Image Processing is typically the cross-correlation of 

two images. Cross-correlation is a mathematical operation that measures the similarity of 

two signals as a function of the shift of one signal in relation to the other:  

 

𝑓 ∗ 𝑔 = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞
                                             (34) 

 

The convolution output 𝐺[𝑥, 𝑦] of the image 𝐹[𝑥, 𝑦] and the kernel ℎ[𝑥, 𝑦],  is given by the 

discrete cross-correlation of two 2D signals:  

 

𝐺[𝑖, 𝑗] =  ∑ ∑ ℎ[𝑢, 𝑣]𝐹𝑘
𝑣= −𝑘

𝑘
𝑢=−𝑘 [𝑢 + 𝑖, 𝑣 + 𝑗]                             (35) 

 

CNNs are particularly performant for the task of pattern recognition in images, videos, and 

text [138, 139]. These networks are also the backbone of many sophisticated neural 

network architectures used for the tasks of object detection [140], image segmentation 

[141], sequence prediction [142], and image generation [143].  

 

Convolutional Neural Networks are an extension of fully connected neural networks. They 

consist of additional feature extraction layers. The feature extraction layer is comprised of 

a convolutional layer followed by pooling layers. The convolutional layer convolves 

multiple filters with the image to extract features of interest called ‘feature maps’, rendered 

useful for the function to be learned by the learning model. An activation function is applied 

to the outputs of the convolutional operation to introduce non-linearity into the model.  

 

The pooling layer takes the output of the convolutional operation and selects the strongest 

or the average of all the features computed by the filters. This pooling layer intends to 

reduce the dimensions of the feature maps. Finally, the output of the convolutional layer is 

flattened to form a long one-dimensional vector and passed to a fully connected neural 

network or ‘dense layer’ to predict an output based on the feature points extracted by the 

convolutional layers. The weights of the dense layer and the filters for convolution are the 

tunable parameters learned by the model during backpropagation and optimized using 

gradient descent [144].  
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D. Methodology  

 

I. PMI Data Generation 

PMI uses MRT to measure the internally induced temperature increase of the tissue during 

its irradiation with a NIR laser. MRT provides either 2D or 3D temperature maps. Here, 

PMI is performed in 2D. Thus, axial MRT slices are used to retrieve the optical properties 

of the tissue with high resolution and quantitative accuracy. The current PMI setup allows 

to illuminate the tissue/small animal from four sides, Fig 16. This enables a more 

significant temperature increase of the tissue compared to the single illumination scheme 

presented in section B [105]. Achieving higher heating of the tissue allows us to measure 

MRT maps with better signal-to-noise-ratio, which in turn results in the recovery of higher 

quality absorption maps. 

 
Figure 16: Schematic representation of the PMI instrumentation setup. 
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Figure 17: T2-weighted axial slice of a female rat showing the liver bearing: a) single, and b) double tumor 

as shown by the red arrows 

 

AI approaches require a significant amount of data to perform correctly. In this work, we 

will generate the necessary data using simulation. Indeed, temperature maps can be 

obtained by solving the PMI forward problem considering a given geometry having 

specific optical and thermal properties. Here, the simulated temperature maps are generated 

using a mice-sized 25 mm diameter cylindrical agar phantom.  

The absorption coefficient of the phantom’s background is set to model mice muscle tissue, 

using black India ink to be equal to 0.01 mm-1. The reduced scattering coefficient of the 

entire phantom is set to be equal to 0.86 mm-1 by adjusting the amount of the used 

intralipids [105]. To mimic the presence of orthotopic tumors, which generally have higher 

absorption, we inserted inclusions having different sizes and higher absorption coefficients 

into the phantom. A representative simulated temperature map is presented in Fig 18.  

 

 
Figure 18: Simulated temperature map obtained by solving the PMI forward problem on a 

homogeneous phantom (μa=0.01 mm-1, μs’=0.86 mm-1), that is heated using four illumination ports. 
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As can be seen in Fig 18, a significant temperature increase occurs right below the four 

illumination sites. Then, temperature exponentially decays with depth [102, 114, 115]. 

When the imaged medium is homogenous, the internal temperature consists of the sum of 

these four decaying exponential heating functions only. As aforementioned, to mimic the 

presence of tumors, inclusions with different absorptions are used. In the simulation, the 

FEM nodes belonging to the used inclusion are selected and their absorption is set to higher 

values than the background one. Fig 19 depicts examples of different representative 

inclusions used in our study. 

 

The first row shows a schematic of the cancerous lesions inserted at multiple locations in 

the phantom. Rows 1-3 show the case using a single node, a single inclusion, and double 

inclusions with varying radii, respectively. After heating the phantom from its four sides 

for 8 seconds, the temperature maps obtained are shown in the second row of Fig 19. As 

for the homogenous phantom in Fig 19, these maps contain the higher temperature increase 

below the four laser illumination sites. However, additional blobs expressing higher 

temperature increase are observed deep inside the medium at the location of the inserted 

inclusions. These higher temperature result from the higher optical absorption of the FEM 

nodes belonging to that inclusion. These nodes are called ‘hot nodes’ in the following 

sections. To better visualize these hot regions, we subtract the temperature map obtained 

using the homogeneous phantom in the absence of these inclusions. This resulting 

difference between the simulated data and the homogenous map is shown in the third row 

of Fig 19.   
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Figure 19: Representative phantoms used to generate the training data. Schematic showing the inclusions 

containing a) a single node, single inclusion, and c) multiple inclusions. Cμ represent the contrast in 

absorption. d-f) Temperature maps obtained after 8 seconds of heating. g-i) Temperature maps showing the 

hot blobs at the hot nodes’ location after subtraction of the homogeneous temperature map 

 

. 

 

A dataset of 3927 temperature maps was compiled and carefully studied. These 

temperature maps were converted to 8-bit maps, thus compelling them to lay within the 

representational range for an ‘unsigned int8’ image array. 

 

In Multiwavelength PMI (MW-PMI), the tissue is heated by laser sources of different 

wavelengths, to obtain the concentrations of different molecules that are characteristic of 

cancer in the region. These are molecules such as Water, Lipid, Oxygenated Hemoglobin 
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Deoxygenated Hemoglobin, etc. We can obtain the concentrations of these molecules from 

the absorption index of the temperature map. To simulate MRT maps corresponding to 

Multi-Wavelength PMI, we simply variate the absorption indices for the same inclusion. 

The forward model is run as usual to obtain the MW-PMI maps as shown below. Here we 

have used a contrast factor Cµ as the ratio of absorption between the background of the 

phantom and the inclusion in the MRT. Fig 20 b) is an example of a multiple inclusion and 

multiple absorption temperature map.  

 

 

  
Figure 20:  MRT map of a phantom with two inclusions having a) the same contrast factor Cµ= 1.75. b) 

different contrast factors. 

 

 

In this thesis, we developed an AI-based algorithm that allows us to detect the hot nodes 

directly from these difference temperature maps and helps us overcome the limitation 

caused by temperature diffusion. The recovered information will serve to implement the 

penalty matrix L used in Eq. 11. The penalty matrix obtained using our new AI-based 

algorithm will be utilized to guide and constrain the PMI reconstruction algorithm as shown 

in Eq. 10 to retrieve higher quality images than the ones obtained by the standard algorithm 

Eq. 8. 

 

 

II. Direct Detection Using Machine Learning 

 

The problem statement has its roots in pattern recognition. Therefore, it can be framed as 

a classic ML-based classification problem as follows: 

 

a) b) 
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“Given a set of possible outcomes (the total number of nodes N in the FEM mesh), we must 

classify the data (heat signature from the hot nodes of the MRT map) to fall within a subset 

of these outcomes. Where all the true outcomes (hot nodes) are labeled 1 and the rest are 

labeled 0 (the hot-encoded vector)”. 

 

 

A convolutional neural network (CNN) was therefore decided to be the choice of a machine 

learning model to be used, typically for its pattern recognition abilities. The output of the 

forward model gives us a temperature map on a circular phantom as shown in Fig 20. The 

requirement of any basic image processing algorithm is for the input data to be a matrix. 

Therefore, the heat map is converted into a minimum enclosing square matrix of size 

256x256. We also convert the temperature-driven heat map into a usable 8-bit RGB image. 

Many processes such as feature extraction, also become less computationally expensive if 

the data is in a grayscale format. 

 

Therefore, a training pair given to the CNN consisted of a grayscaled temperature map at 

the input side and a hot-encoded labeled vector of length N x 1. We have used two different 

FEM meshes in this thesis to inspect the robustness of our methodology. We obtained 

moderate training accuracy but a very low testing accuracy, as the model proceeded to 

output zero vectors for any image presented to it. Therefore, it was quickly recognized that 

this classification problem contained two important and hard-to-resolve complications: 

Class Imbalance and Multiclass Classification. 

 

1. Understanding the class imbalance and multilabel classification 

Class imbalance  

 

As seen from the image and the sample mesh diagram in Fig 21 containing the hot nodes, 

at a given time, there are disproportionately large numbers of nodes that don't belong to the 

inclusion and are thus labeled zero. We can also view it from an alternate perspective. 

Assuming a balanced dataset, where each node of the mesh participates roughly equal 

amounts to the whole dataset, each node across the dataset becomes ‘hot’ only 5% of the 

time. The model simply does not have enough hot examples of each node to learn from and 

is hence forced to overfit to all those examples where the node is not contributive or is in 

an ‘OFF’ state.  
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Figure 21: a) temperature map obtained after subtraction of homogeneous map from the simulated MRT 

containing cancerous inclusions, b) the grayscaled MRT map of size 256 x 256, c) FEM mesh showing the 

hot nodes belonging to the inclusions. 

Multilabel classification 

 

In a multiclass classification problem, the output takes more than 2 label values or classes 

across the dataset. The input in a multiclass classification belongs to only one class out of 

all possible output classes. Multilabel classification belongs to one of the more challenging 

classification subtypes where the input falls under multiple classes of outputs at a given 

time. The possible combinations of classes under which a typical input can fall become 

huge as the number of classes increase. Since our classification problem has 𝑁 possible 

outputs, 𝑁 being a large value eventually drives this classification problem into almost an 

unsolvable state. 

 

Resolution for Multilabel classification 

 

a) 

 
 

c) 
 

 

b) 
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It was then resolved to tune the model for multilabel classification using one of the loss 

functions described in the above section. In particular, weighted loss functions were used 

in Eq (22), weighing the ‘hot nodes’ by a large factor of 100. We also attempted to use the 

focal loss given by Eq (24) for training, which focuses on learning the hard-to-learn and 

sparsely present labels.  γ = 11 was used for the focal loss since the distribution of each 

label in the data is very low. The model no longer outputted zero vectors but also couldn’t 

manage to capture the data presented to it. We obtained, albeit nonzero, but very low 

training accuracies. It was finally decided to decompose the problem into a simpler and 

more traditional classification problem. It was also decided that the multilabel 

classification problem will be developed in the future.  

 

III. Region of Interest Localizer and Precision Improver  

 

 
Figure 22: The CNN architecture for ROI identification in a grayscaled MRT map. 

 

 

In this method, we first sought to reduce the total number of possible classes or possible 

sets of contributory nodes from the complete set of 𝑁, to a localized subset. To obtain this 

localized subset, the following method was executed.  

 

Firstly, the image was split into overlapping square regions and each of these overlapping 

regions constituted a sub-image. This image splitting was done using kernels of 3 different 

sizes and shall be called a ‘division kernel’ in this thesis. Each sub-image or region was 

then assigned a label ‘1’ if the region contained hot nodes, and ‘0’ if it didn't contain any 

hot nodes. A CNN model was used for this task of binary classification of sub-images 

where a training pair for this task consisted of a sub-image and its corresponding label.  

Fig 23.  shows a typical MRT map containing two inclusions of different sizes and different 

absorption coefficients, making one highly heated and the other, dimly heated. We 

understand the importance of division kernel size selection for our task. Here the division 

kernel is clearly able to capture all of the lower temperature inclusion but only a part of the 

highly heated inclusion.  
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Figure 23: Multi-inclusion MRT with inclusions of different absorption coefficients. Division Kernel size 

used for region splitting here is 7x7.  
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Figure 24: Representative region splitting or division kernels used for ROI prediction, a) Schematic of the 

used phantom, grayscal temperature map showing division kernels corresponding to: b) 7x7, c) 15x15 and 

d) 31x31. 

 

This region splitting and classification method neither invoked the class imbalance 

problem, since the black background can be simply excluded from the training data; nor 

did it encounter the multi-label classification problem- since this task is comprised of two 

classes, ‘foreground’, the regions containing the hot nodes, and ‘background’ being the 

region without any hot nodes. 

The machine learning models for each of the region split were trained for a high enough 

accuracy, where accuracy is declared to be sufficiently ‘high’ for a value greater than 0.9 

on both the testing and training datasets. The testing dataset is composed of images never 

a) 

 

b) 

 

 

c) 

 

d) 
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seen before by the machine learning model. These images are passed through the region of 

interest localizers to obtain non-zero regions of the image, representing the highest 

probability of containing an inclusion. The task consists in resolving the regions in 

temperature maps containing the inclusion of a subset of ‘hot nodes’. For each of the sub-

images 𝑆𝑖 containing the inclusion, we obtain a set of nodes 𝑛𝑖  laying inside the boundaries 

of the region. We obtain a set of most probable hot nodes 𝐻 by conducting an intersection 

over union for the node sets of activated regions. 

 

Howevr, this technique poses a major disadvantage in that it weighs all the nodes laying in 

an ROI equally. This appears to be incorrect for the cases where a sub-image contains only 

a small portion of the inclusion, shown in Fig 24.c. This in turn results in a large number 

of false positives in the estimated output. To resolve this problem, larger divisions of the 

image, namely 15 𝑥 15 and 31 𝑥 31 were constructed but the problem of false positives 

persisted due to the equal weighting of the nodes in the ROI. 

 

IV. Precision Improvement 

 

After determining a region of interest (ROI), we have to select a subset of probable hot 

nodes ℎ𝑖 from the set of all the nodes in the region 𝑛𝑖 before carrying out the intersection 

over union over all ℎ𝑖. This was achieved by using a statistical machine learning model of 

Regression (15). For a K x K division of the input image, a total of K2 Regression Models 

was used for this task of precision improvement.  

 

The  𝑖𝑡ℎ sub-image contains a total of 𝑛𝑖 possible nodes, comprising the 𝑛𝑖 𝑥 1 vector. A 

value of ‘1’ is assigned to each hot node in the region, and the rest are given the value of 

‘0’.  If the ith sub-image is an ROI, then the image along with the hot nodes contained 

within the ith region make up for the training pair of the 𝑅𝑖
𝑡ℎ learning model. 

 

A training pair for this learning task is composed of a positive sub-image and the hot 

encoded vector of nodes in the region, then passed to the linear regression model. The 

linear regression models are trained on the least square minimization technique. The 

objective of this model is to maximize the 𝑅2 coefficient and reduce the Minimum Mean 

Square Error values across all training examples. The regression model is said to be 

optimally trained if the 𝑅2 values for each of the 𝐾2 models are greater than 0.8 since this 

score would point towards a high level of correlation between the labeled outputs and their 

corresponding sub-images. 
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V. The Testing procedure  

 

Once the scores of the Regression models reached the desired value, we proceeded to test 

the ROI and Precision pipeline by propagating a temperature map through it. The 

temperature map was first grayscaled, divided into 𝐾2 subdivisions, and passed through 

the ROI network 𝐶𝑘. For each of the 𝐾2 divisions, an output label was predicted.  

 

The ROI sub-images with positive output labels were pooled and passed to their respective 

Rith regression model. A hot vector ℎ𝑖 is predicted for each of the ROI sub-images and an 

intersection over the union of all those vectors is computed using the linear regression 

models. The regression model predicts ni outputs for each ith region. If the value outputted 

by the regression model is greater than 0.5, then the output is set to ‘1’, or to ‘0’ otherwise. 

From this hot vector, we obtain a final set of non-zero outputs as the set of hot nodes 

resulting in the cancerous inclusion. This method exhibited high accuracies for the mesh 

containing 852 nodes. 

VI. Challenges 

 

When the number of nodes of the FEM mesh was increased to 4000 nodes, using a 7𝑥7 

division for temperature maps resulted in an average of 81.63 nodes per region. This results 

in the problem of class imbalance and sparsity in outputs as discussed earlier in this section. 

Therefore, we have carried region splitting for temperature maps containing 4000 nodes 

using a 15x15 division kernel. This gives us an average of 17.17 nodes per region to predict 

for, which we then attempt using classical regression-based multilabel predictions as 

described above. The methodology showed an average Intersection Over Union (IOU) 

accuracy of 56% and an accuracy of 82.57% on the intersection with the ground truth. This 

dip in accuracy has been observed due to the reduction in region size due to an increase in 

region splitting of the image. We hence need to develop more sophisticated learning 

models to conduct the multilabel classification for a such fine mesh (4000 nodes). 

 

The ROI-Precision method was trained to work for inclusions of a single absorption level. 

Therefore, it was imperative to make the above pipeline work for temperature maps across 

the absorption levels as shown in Fig. 20. This method also failed to predict contributory 

nodes accurately when the temperature map consisted of multiple inclusions with varying 
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absorption indices. Hence, it was necessary to add a preprocessing step before the 

temperature maps were fed into the ROI-Precision pipeline.  

 

VII. Preprocessing for Multi-Absorption Data 

 

 
Figure 25: The final methodology developed for hot nodes detection from all MRT maps. 

 

 

To resolve the problem of the ROI-Precision pipeline adequate for images containing 

inclusions with different absorption coefficients than the one used to train our pipeline, – 

i.e, the temperature maps with a contrast factor of value of 1.75, each image was 

normalized using its maximum. The pipeline was retrained to adapt and fit these 

normalized pixel values and the accuracies of the resulting CNN and statistical models 

remained largely unchanged. It is to be noted that all the inclusions in a typical temperature 

map had the same absorption coefficient. 

 

The temperature maps obtained from the PMI forward model when the contrast factor or 

the absorption coefficients are changed are temperature maps whose inclusions can have 

varying gray level ranges. For a high absorption index region, the inclusion will exhibit a 

higher increase in temperature and therefore a higher gray level. Hence, this stage seeks to 

process the inclusions so that they fall within the same gray-level range.  

 

1. Image Processing-based Global Pixel Transformations 

 

The task for the preprocessing stage was designed as follows: to increase the pixel intensity 

values for the inclusion of the lower absorption coefficient (dimmer inclusion) to possess 

the same peak brightness as the inclusion with a higher absorption coefficient (brighter 

inclusion). This task was first carried out on a global scale for the image since a local 

preprocessing technique designed to work separately on the pixels of the bright inclusion 

and the dimmer inclusion would fail in the case of interacting inclusions.Separability of 
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the entire inclusions becomes imperative for the reasonable working of the local 

preprocessing methods such as contour detection and normalization over the pixels in the 

contour to name a few. Neighborhood-level preprocessing of the image was not adopted to 

remove the dependency and accuracy of transformations on the neighborhood size. Global 

level gray level transformations were applied to the image with the constraint that: dim 

pixels of the inclusion should become brighter while retaining much of their gaussian 

nature, whereas the bright pixels of the brighter inclusion should remain unchanged. To 

satisfy these constraints to the maximum possible extent using gray level transformations, 

the following gray level transformation functions on a typical input image 𝐹(𝑥, 𝑦) were 

designed, and the gray level transformed images are denoted by 𝐺(𝑥, 𝑦). 

 

The resulting images were normalized to be passed through the preprocessing pipeline 

described above to obtain the set of hot nodes for these MRT images where inclusions with 

different absorption coefficients are used. 

 

 
Figure 26: Gray level transformation functions used for image transformation and inclusion normalizing. 

 

2. Drawbacks 

 

A significant drawback in transformations given in Fig 26. is that the entire dim inclusion 

might lose its gaussian nature as the choice of the function used approaches step-like-

behavior. It greatly increases the brightness of the dimmer inclusion but largely maintains 

its peak brightness. Therefore, the task of normalization of the temperature over its own 

maximum brightness value did not yield values similar to the values of the MRT for 

inclusions with equal absorption values. 
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Hence it was of great importance to retrieve both inclusions separately and normalize them 

with their respective maximum values to be processed by the ROI-Precision pipeline. 

 

3. Minimum Enclosing Circle detection and Normalization 

 
Figure 27: Minimum enclosing circle detection of inclusions in the MRT maps. 

 

 

 

To detect the inclusions, the temperature maps are thresholded for all values greater than 

the tail values of the lowest detectable inclusion. All the features of interest in the image 

are assigned a gray level of the highest possible gray level considering an unsigned 8-bit 

integer gray value for each pixel, i.e., 255. The rest are set to 0. We obtain the gradient of 

the thresholded temperature maps and edge points for objects of interest using the Canny 

Edge Algorithm [145]. These edge points are used as feature points for the Hough Circle 

detection algorithm [130] described in the section ??, which allows to obtain the minimum 

enclosing circles around the inclusions. We have chosen circles as the resolving shape to 

resolve even the interacting inclusions into separable inclusions, which is not possible to 

do using algorithms such as contour detection. These circles are drawn on a copy of the 

original temperature maps. All the pixels inside the circle are normalized with the 

maximum gray value inside the circular region to be processed by the ROI-precision 

pipeline for the hot node prediction. 
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E. Results and Discussion  

 

In this section, we shall first discuss the accuracy scores of the Machine Learning models 

trained on our dataset produced using the FEM mesh with 852 nodes. The method of the 

batch training is often used in ML model training. The complete dataset is divided into 

training and validation sets. A validation set is a set of data on which the model never 

trained and is used mainly for evaluating the performance of the model during training. 

These sets are each further decomposed into batches of images. The model learns its 

parameters by forward propagating through a typical ‘training batch’ and updates its 

weights by computing the loss on a batch of the validation data. The model is trained in 

this manner iteratively and each iteration of training and validation or testing is called an 

‘epoch’. The objective of the learning model is to maximize its validation accuracy at the 

end of the training process. 

. 

 

 
Figure 28: Shows the different region splitting sizes used in our Roi detection network 

 

 

 

 

 

 

 

 

 

 



48 

 

 

Division kernel size Accuracy plots 

7x7 

 

15x15 

 

31x31 

 
Table 1: The training and validation accuracies for the CNN ROI prediction model for 7x7, 15x15, and  

31x31 division kernels. 
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I. Representational Diagrams for Results 

Single Inclusion 

 

 
Figure 29: a) MRT map of a single cancerous inclusion of diameter 4 mm and absorption coefficient 

0.0165 mm-1, b) the grayscaled temperature map, c) Results obtained from the ROI Precision pipeline 

 

The above figure is a represenational diagram of the results of a single inclusion 

temperature map obtained using the ROI-Precision methodology on the schematic of the 

mesh. Fig 29 a and b are the images of the temperature maps outpuuted by the forward 

model and the grayscaling operation respectively. 29 c shows the nodes predicted by the 

method on the schematic of the FEM mesh. It has an overlay of the ground truth predicted 

nodes, circled in blue, giving us an estimate of the Intersection Over Union Accuracies 

discussed in this thesis. 

 

 

 

a) 
 

 

c) 
 

 

b) 
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Multiple Inclusions 

 

 
Figure 30: a) the difference temperature map containing two inclusions of different radii 1.75 mm and 1.35 

mm and absorption coefficients of 0.017 mm-1 and 0.0145 mm-1, respectively. b) grayscaled temperature 

map, c) results obtained using ROI Precision pipeline with Hough Transform.  

 

The above figure is a represenational diagram of the results obtained on a multi-absorption 

and multi inclusion temperature map using the ROI-Precision methodology on the 

schematic of the mesh. Fig 29 a and b are the images of the temperature maps outpuuted 

by the forward model and the grayscaling operation respectively. 29 c shows the nodes 

predicted by the method on the schematic of the FEM mesh. It has an overlay of the ground 

truth predicted nodes, circled in blue, giving us an estimate of the Intersection Over Union 

Accuracies discussed in this thesis. 

 

 

 

 

a) 

 
 

c) 
 

 

b) 
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II. Results obtained using the ROI Network 

The following table shows the results obtained for apriori reconstruction using the ROI 

detection as described in the methodology. The accuracy of the network in capturing the 

highly absorbing nodes of a given inclusion is measured by taking the Intersection Over 

Union (IOU) score between the predicted labels and the ground truth.  

 

Input Image Ground Truth 

IOU 
Score 

(Division 
Kernel 

size       
7 x 7) 

IOU 
Score 

(Division 
Kernel 

size     
15 x 15) 

IOU 
Score 

(Division 
Kernel 

size     
31 x 31) 

 

 

 

 
 

9.032 % 45.35% 70.70% 

 

 

 

 
 

7% 16.15% 31.75% 

 

Table 2: The Intersection Over Union Scores or Overlap scores obtained by using the ROI detection and 

equal weighing of nodes for the 3 different kernel sizes.  

 

Discussion 

 

We can see from the above-shown prediction results that even the smallest meaningful 

division (“meaningful” only if the size of the kernel is greater than or equal to the size of a 

mesh triangle) at its height produces an IOU accuracy of 70.7%. Therefore, this method is 

neither accurate, consistent nor reliable in predicting the apriori information from the 

temperature maps. We can also note that there is a large difference in IOU scores for single 
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inclusions and multiple inclusions. But it is highly accurate in detecting ROIs  as shown in 

Table 1. 

 

III. Results Obtained using ROI - Precision pipeline 

 

We shall now discuss the results obtained by our ROI - Precision on two broad sets of 

temperature maps.  The following subsections discuss the performance of our methodology 

on temperature maps containing: a) inclusions of the same absorption coefficients, and b) 

inclusions of different absorption coefficients. We shall assess the overall performance of 

the methodology for inclusions as a function of their size, the separation distance between 

inclusions in the case of double inclusions, and finally as a function of the absorption 

coefficient of the inclusion. 

 

1. Predictions for a single absorption index 

Effect of Size 

 

Temperature map 

(μa=0.0165 mm-1) 
Ground truth 

Diameter of 

inclusion 
IOU score 

Accuracy with 

the ground truth 

 

 
 

1 mm 50% 

100% 

TP: 3 

FP: 3 

TN: 846 

FN:0 

  

3 mm 100% 

100% 

TP: 15 

FP: 0 

TN: 837 

FN: 0 
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5 mm 

 

 

85.29% 

 

100% 

TP: 29 

FP: 5 

TN: 818 

FN: 0 

 
 

 

7 mm 
80% 

 

94.11% 

TP: 32 

FP:8 

TN: 810 

FP: 2 

Table 3: ‘Hot node’ prediction accuracy as a function of its size keeping the absorption coefficient constant. 

The absorption coefficient chosen for this task is 0.0165 mm-1. FP: False Positives, TP: True Positives, TN: 

True negatives, FN: False Negatives. 

  

Discussion 

 

The above results in Table 3 present the accuracy of the ROI Precision pipeline without 

the preprocessing using Hough Transformations on temperature maps containing a single 

inclusion. We measure the accuracy in hot node prediction from the MRT as a function of 

the size of inclusion. The model tends to overpredict for small-size inclusions, resulting in 

a low IOU. A low IOU score for small inclusions is mainly due to the small number of hot 

nodes activated for these regions. It is also to be noted that the model is very precise in its 

detection of small inclusions, almost averaging a 100% True Positive accuracy. 

 

We can also observe from the above table that the IOU score is near perfect and almost 

stable for inclusions smaller than 5 mm but greater than 3 mm. The IOU score starts 

dropping as the size of the inclusion increases. This is mainly because large inclusions 

activate a large number of ROIs, resulting in an increased possibility of misprediction by 

the Regression model on each of the ROIs selected by the ROI network.  
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2. Effect of absorption for Multi-Absorption Inclusions 

 

 
Figure 31: The absorption sensitivity curve a) IOU score as a function of absorption and b) Ground Truth 

Accuracy as a function of the absorption of Inclusion 

 

 

 

Figure 31 shows the IOU scores obtained using a single inclusion phantom. The IOU scores 

were obtained by gradually variating the absorption coefficient of the inclusion between 

0.001 mm-1 and 0.014 mm-1, which corresponds to an absorption contrast of 1.1 and 1.4, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IoU Score as a function of Absorption True Positive Score as a function of Absorption 

a) 

 
 

b) 
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Table 4: ‘Hot node’ prediction accuracy as a function of the absorption coefficient of the inclusions. FP: 

False Positives, TP: True Positives, TN: True negatives, FN: False Negatives. 

Phantom Temperature map 

Absorption 

coefficient 

(mm-1) 

Accuracy with 

Ground Truth 

and Confusion 

Matrix 

IOU 

accuracy 

(%) 

 

 

0.011 

 

 

 

 

 

 

100% 

73.913 

 

TP:  17 

FP:  6 

TN:  829 

FN:  0 

 

0.0138 

92.15% 

98.89 

TP:  17 

FP:  0 

TN:  835 

FN:  0 

 

0.0165 

100% 

100 

TP:  17 

FP:  0 

TN:  835 

FN: 0 

 

0.0193 

100 % 

94.44 

TP:  17 

FP:  1 

TN:  834 

FN:  0 
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Discussion 

 

The above table describes the accuracies as a function of the absorption coefficient taken 

of the inclusion. We can see that considering only absorption as a factor, keeping the size 

and number of inclusions constant, the model tends to overpredict for inclusions of smaller 

absorption coefficients, resulting in a low IOU score while maintaining a high intersection 

with the ground truth. 

 

Fig 31. is a sensitivity curve, which measures the IOU score and True positive score of the 

method as a function of absorption coefficient of the inclusion. From the curve, it can be 

seen that the model’s performance is limited by the absorption coefficient and yields a 

reasonably high IOU score ( > 85%) for an absorption coefficient greater than 0.012mm-1. 

The model’s true positive score remains fairly constant and achieves high values of 

accuracy for all absorption coefficient values.  

3. Effect of Size 

 

We measure the performance of this methodology on MRT maps with inclusions of 

different sizes using the Mean IOU score and Mean. To ensure independence from 

absorption, we will test each size with different absorption coefficient values: 0.0120 mm-

1, 0.0138 mm-1, 0.0165 mm-1, and 0.019 mm-1. 

 

 

Temperature map Ground Truth  
Diameter of 

inclusion 

Mean IOU 

score in 

percentage 

Mean Accuracy 

with the ground 

truth 

  

Single node 50% 100% 

  

3 mm 100% 100% 
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5 mm 92.2% 100% 

 

 

7 mm 89% 97% 

Table 5: ‘Hot node’ prediction accuracy as a function of inclusion size. Each size was tested with variable 

absorption coefficient values.  

 

Discussion 

Table 5 displays the mean accuracies of the methodology as a function of the size of the 

inclusions. We can infer from these results that the accuracies are not dependent on the 

position within the phantom. Much similar to our previous results, we obtain low Mean 

IoU for very small inclusions of the order of a single node and dropping accuracies for very 

large inclusions of a diameter larger than 6 mm in diameter. The largest inclusion size in 

our dataset is 7 mm, which correspond to an acceptable maximum tumor size in preclinical 

studies.  
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4. Effect of distance between inclusions with different contrasts 

 

Similarly, we measure the performance of this methodology on MRT maps with two 

inclusions having the same diameter (2.5 mm) using the Mean IOU score and Mean. To 

ensure independence from absorption, we will test each distance separation with different 

absorption coefficient values: 0.0120 mm-1, 0.0138 mm-1, 0.0165 mm-1, and 0.019 mm-1. 

 

Temperature maps 

and corresponding 

phantoms 

Distance 

between 

inclusions of 

diameter 2.5 

mm 

Mean IOU score in 

percentage over all 

absorptions 

Mean Accuracy 

with the ground 

truth over all 

absorptions 

 

0 mm 92.78% 
100% 

 

 

 

 20 mm 50.89% 100.00% 
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 35 mm 62.55% 92% 

 

 

 65 mm 92.5% 100% 

 

 
85 mm 82.15% 100% 

 

Table 6: Accuracies of the methodology as a function of the distance between the inclusions keeping the 

diameter of inclusions 2.5 and varying the absorption coefficients. 
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Discussion 

 

The above-shown results were obtained by variating the separation distance between two 

inclusions while variating their absorption coefficients and keeping their diameter constant. 

The chosen constant diameter for this testing was 2.5 mm. We can thus infer that as the 

inclusions get closer, the mean intersection over union accuracy decreases rapidly and 

exhibits a rather sharp decline for inclusions that are placed close but are separable. This is 

due to overprediction by the algorithm after amplifying low-absorption coefficients 

inclusions. Interacting inclusions display the same mean accuracy as that of a single 

inclusion. 

 

5. Effect of distance for inclusions with the same absorption 

coefficient  

 

 

 
Figure 32: Surface plot showing accuracy as a function of absorption indices or coefficients in the multi-

inclusion MRT map and the separation distance between them. The diameter of inclusions was set to 3 mm. 

 

Discussion 

The Fig 32. shows us the variation of absorption as a function of the absorption coefficient 

of the inclusions and the distance between them. Note that the IOU score values typically 

stay low for low absorption coefficients and for a non-zero small separation distance 

between the two inclusions as we have seen so far. 
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F.  Conclusion and Future Work 

 

In our research, we have developed a robust pipeline based on machine learning and deep 

learning techniques in the field of medical imaging. Our research was the first of its kind 

to be performed at the Center for Functional Onco-Imaging at the University of California, 

Irvine on Photo Magnetic Imaging Research. It introduced Machine Learning and Deep 

Learning techniques into the medical imaging research lab. It was also the first study of its 

kind to use machine learning techniques for apriori reconstruction of inclusions of varying 

absorptions. We tested our method for the detection of cancerous regions of various sizes, 

orientations, and absorption coefficients. We evaluated the accuracy of our model 

prediction as a function of these parameters as well. Our present model is shown to be 

highly effective for inclusions of sizes greater than 2 mm but less than 7 mm. A sensitivity 

curve was plotted and studied. It pointed to the usable absorption values of the inclusion 

for which our method could recover most of the highly absorbing nodes. The model as 

inferred from the sensitivity curve gives accurate predictions for absorption coefficient 

values greater than 0.012 mm-1. Furthermore, we discussed the performance of our 

processing pipeline as a function of a combination of factors such as absorption coefficent 

and distance separating multiple inclusions in the MRT map. Our methodology also 

showed high accuracies for temperature maps containing inclusions of high contrast with 

respect to each other. In addition, our method is really fast since the average time required 

for the recovery of the hot nodes and building the apriori information from a typical MRT 

was about 2.75 seconds. 

 

As our methodology shows high apriori prediction accuracies, it holds great promise for 

improving the quality and efficiency of the PMI reconstruction algorithm. The machine 

learning-based approach opens new avenues for research in the laboratory to overcome any 

of the limitations and challenges faced by traditional image processing methods in PMI 

reconstruction. With continued research and development in machine learning, PMI 

reconstruction has the potential to revolutionize the diagnosis of a wide range of medical 

conditions.  

 

To advance the use of machine learning in AI-informed PMI image reconstruction, there 

are several avenues of research to be explored. When translating our methodology to 

capture the ‘hot nodes’ on a high-resolution mesh (such as a mesh with 4000 nodes), we 

observe a rise in the number of regression models being trained in the precision 

improvement stage from 49 to 225. This stage is computationally expensive and time-

consuming. Our future research aims to combine the region of interest prediction network 

and the regression pipeline into a single highly powerful neural network. This neural 
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network should be capable of multilabel classification and custom loss functions designed 

specifically to achieve the objectives of this task.  

The future of AI in PMI reconstruction looks very encouraging for students and scholars 

alike, integrating two of the most rapidly advancing areas of research, Machine Learning 

and Biomedical Imaging. 
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