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ABSTRACT OF THE DISSERTATION

Vanishing of Certain Axially-Symmetric Periodic D-solutions to the Stationary
Navier-Stokes Equations

by

Bryan Carrillo

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2019

Dr. Qi S. Zhang, Chairperson

One open question in the study of the steady incompressible three-dimensional

Navier-Stokes equations is if the only solution with finite Dirichlet integral and vanishing

condition at infinity is the trivial solution. Several partial results have been proven by

requiring certain integral or decay conditions on the solution. We will explore a certain

class of solutions, called axially-symmetric D-solutions, and discuss some results about these

solutions. In this thesis, we will prove that certain axially-symmetric periodic D-solutions

are identicially zero.

vii



Contents

1 Introduction 1

2 Axially-Symmetric Navier-Stokes Equation 8
2.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Green’s Function 14
3.1 The Green function on R2 × [−π, π] for functions whose integral on [−π, π]

is zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Estimates for the Green’s Function and its Gradient on R2 × [−π, π] . . . . 25

4 Decay and Vanishing of the Velocity 38
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Brezis-Gallouet Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 First Decay of the Velocitiy and Vorticity . . . . . . . . . . . . . . . . . . . 41

4.3.1 First Decay of wθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1.1 Scaled Computations . . . . . . . . . . . . . . . . . . . . . 42
4.3.1.2 Un-Scaled Computations . . . . . . . . . . . . . . . . . . . 48

4.3.2 First Decay of u and (wr, wz) . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Almost 1− 2α Decay by Iteration. . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Decay and Vanishing of the Velocity . . . . . . . . . . . . . . . . . . . . . . 60

5 Future Work 74

Bibliography 75

viii



Chapter 1

Introduction

The Navier-Stokes equations (NSE) are a set of equations that describe the

movement of viscous fluids. The equations are important to real world applications because

they may be used to model a variety of phenomena, including blood flow, water flow in

a pipe, weather and more by considering the NSE under suitable boundary and initial

conditions and by coupling them with other Partial Differential Equations. Due to the

plethora of real-world applications, it is important to further study these equations. There is

also significant interest in these equations from a purely mathematical viewpoint. Topics of

interest include existence and uniqueness theorems for the solutions, regularity (smoothness)

of solutions, growth or decay rate of the solutions, and more. We focus on studying globally

bounded solutions.
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In Cartesian coordinates, the time-dependent, incompressible Navier-Stokes

equations are 
∂tu−∆u+ (u · ∇)u+∇p = f,

div(u) = 0,

(1.0.1)

where u is a vector-valued function, p is a scaled-valued function, f is a vector-valued

function. In applications, u is the unknown velocity of the fluid, p is the unknown pressure

of the fluid, and f is the given external force applied to the fluid. The first equation is

the momentum equation while the second equation is the incompressible condition. In this

dissertation, we are interested in the homogeneous problem, that is when f ≡ 0.

We say that a function u in L∞ ((−∞, 0)× Rn) is a bounded, ancient weak

solution of (1.0.1) if for all smooth compactly supported functions φ we have

∫ 0

−∞

∫
Rn
u · ∇φdxdt = 0, (1.0.2)

and for all smooth compactly supported divergence-free vector fields ϕ we have that

∫ 0

−∞

∫
Rn
u · (∂tϕ+ ∆ϕ)dxdt = −

∫ 0

−∞

∫
Rn

(u⊗ u : ∇ϕ) dxdt. (1.0.3)

where a⊗ b = (aibj) and A : B = AijBij . We remark that to obtain the weak formulation,

we simply multiple the equations by test functions, integrate, then do integration by parts

to move all the derivatives to the test function.

We are interested in studying the problem in R3. Are there bounded, ancient

weak solutions to the above problem? If we take b = b(t) = (et, et, et) and define p(t, x) =

−∂tb · x = −etx1 − etx2 − etx3, then b is an L∞(−∞, 0) function and u(t, x) = b(t) is a

bounded, ancient weak solution.
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Indeed we have we have that

∂tu−∆u+ (u · ∇)u+∇p = ∂tb+∇p

= b− b

= 0

(1.0.4)

which implies (1.0.3). We also have∫ 0

−∞

∫
R3

u · ∇φdxdt =

∫ 0

−∞

∫
R3

b · ∇φdxdt

=

∫ 0

−∞
b ·
(∫

R3

∇φdx
)
dt

=

∫ 0

−∞
b · (0, 0, 0)dt

= 0

(1.0.5)

due to the compact support of the test function φ. Hence u = b(t) is a bounded, ancient

weak solution.

One natural question to ask is whether any ancient bounded weak solution is of

this form. This is an open-ended question in full three dimensional space, although much

work has been done.

For example, Koch, Nadirashvili, Seregin, and Sverak proved in [KNSS] that if

u = (ur, uθ, uz) is a bounded axi-symmetric weak solution of (1.0.1) with no swirl, meaning

uθ = 0, then u ≡ 0. Another result in [KNSS] is that if u is a bounded axi-symmetric weak

solution of (1.0.1) in (−∞, 0)× R3 and there is a positive constant C such that

|u(t, x)| ≤ C√
x2

1 + x2
2

, (1.0.6)

then u ≡ 0. Similarly, in [LZ2], Lei and Zhang proved that if r|uθ| is bounded and the

stream function is a BMO function then u ≡ 0. Although the axi-symmetric condition
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simplifies the problem because there are only two partial derivatives in space to consider

rather than three partial derivatives, the problem is still open in the three-dimensional

axially symmetric case. It is still not known whether all axially symmetric solutions satisfy

the above bounds or if all solutions satisfy the swirl-free condition.

Another direction others have taken with this problem is considering time-independent

or stationary, incompressible Navier-Stokes equations. This means that the solution

does not dependent on time so there is no partial derivative in time. Lerary studied the

equations and constructed solutions with an extra property in [Le]. The solutions Lerary

constructed satisfy: 

−∆u+ (u · ∇)u+∇p = 0,

div(u) = 0,

lim
|x|→∞

u = 0,∫
R3

|∇u|2dx < +∞.

(1.0.7)

Solutions that satisfy the above conditions are called D-solutions. The D-solutions are

called so because the Dirichlet integral, that is the L2 norm of gradient of the the velocity,

is finite. Just like in the time-dependent case, we wish to classify solutions to (1.0.7).

Certainly the pair u ≡ 0 and p = C, where C is any constant, will satisfy (1.0.7). Just

like in the time-dependent case we ask the question: is the only smooth solution to (1.0.7)

the trivial solution u ≡ 0? This problem, even if we only assume that the solution is

axially-symmetric, remains open in in R3.

We will note briefly some partial results to the problem in R3; such results are

known as Liouville Theorems. If one assumes that u belongs to certain Lp spaces or
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specific partial derivatives of u belong in Lp spaces, then one can conclude that u ≡ 0. For

example, Theorem X.9.5 in [Ga] states that if u is a homogeneous D-solution in the domain

D = R3 and u is an L9/2(R3) function, then u = 0. This result was improved by a log factor

in Chae and Wolf [CW]. In the paper [Ch], Chae proved that if ∆u isa L6/5(R3) function,

then u = 0.

The problem can also be tackled by assuming that u satisfies decay estimates.

One can take a stationary solution and regard it as an ancient solution and use the result

in [KNSS] to conclude that u = 0 if (1.0.6) holds. In [KTW], Kozono, Terasawa, and

Wakasugi showed that if the vorticity w = curl(u) decays faster than C/|x|5/3 at infinity,

then homogeneous D-solutions in R3 is 0. In [ZH], it is shown that if u decays like C/|x|2/3−ε

for any ε > 0 small, then u is 0.

In this dissertation we will prove a Liouville Theorem in not the full space R3, but

in R2 × [−π, π].

Theorem 1 Let u be a smooth axially symmetric solution to the problem

−∆u+ (u · ∇)u+∇p = 0, in R2 × [−π, π],

div(u) = 0,

u(x1, x2, z) = u(x1, x2, z + 2π),

lim
|x|→∞

u = 0,

(1.0.8)

such that the Dirichlet integral satisfies the condition: for 0 ≤ α < 1/5, we have that for all

R ≥ 1, ∫ π

−π

∫
|x′|≤R

|∇u(x)|2dx < Rα <∞. (1.0.9)

Suppose also

∫ π

−π
uθ(·, z)dz =

∫ π

−π
uz(·, z)dz = 0. Then u = 0.
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We note that this is a generalization of the result in [CPZ] because the L2 norm on the

whole space R2× [−π, π] of the gradient of u is finite, while here we allow for some growth.

To prove u is zero on the entire domain, we use the Green’s function G on R2 ×

[−π, π] for functions whose integral on [−π, π] is zero. By making use of the divergence free

condition, we can show that ur satisfies this requirement. However, we must impose this

condition on uθ and uz. Unlike the Green’s function on the whole space R3, the Green’s

function on R2 × [−π, π] has exponential decay near infinity. This advantage in decay is

what allows us to show the u is identically zero.

We first use the integral representations of ur and uz in terms of G and wθ. This

gives us an estimate on ur, uz in terms of wθ. Then by using the Brezis-Gallouet inequality

and scaling technique, we can obtain a bound on wr and wz by the L∞ norm of ur and

uz. Then by a different calculation, one can bound uθ by the L∞ norm of wr. Finally, we

obtain an estimate on wθ by using the decay of u. This improves the decay of wθ which

allows us to improve the decay of ur and uz. We repeat this process a finite number of

times to obtain that the decay of u and w is r−1+2α+δ, where δ > 0 is small.

To obtain the complete decay of r−1, we differentiation (1.0.7) to obtain equa-

tions for ∇w. By using the estimates obtained before, we show that ∇w decays roughly

like r−3/2+(5/2)α+δ. Using the representations for ur and uz, making a calculation for uθ,

and choosing δ small enough, we can show the decay rate of u is r−1. By the results in

[CSTY] and [KNSS], we can conclude u is identically zero. We will prove this result in this

dissertation.

In Chapter 2, we will discuss and give a derivation of the axially-symmetric Navier-
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Stokes equations. We will also derive the vorticity equations, which are a key part of the

proof. In Chapter 3, we will derive the Green’s function in R2 × [−π, π] and prove key

estimates for the Green’s function. Compared to the Green’s function in R3, this Green’s

function exhibits exponential decay that is crucial to the proof. In Chapter 4, we will prove

the main theorem as we outlined above. Finally in Chapter 5 we will discuss future work.
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Chapter 2

Axially-Symmetric Navier-Stokes

Equation

2.1 Cartesian Coordinates

A vector field v : R3 → R3 can be rewritten in Cartesian coordinates as

v(x) = v1(x)e1 + v2(x)e2 + v3(x)e3 (2.1.1)

where x = (x1, x2, x3) is a point in R3, e1, e2, e3 are the standard basis in R3, and v1, v2, v3

are the component functions. Given a scale-valued function f and vector field F = (F 1, F 2, F 3),

we have that the gradient, divergence, curl and Laplacian in Cartesian coordinates are given

by

∇f = (∂x1f)e1 + (∂x2f)e2 + (∂x3f)e3, (2.1.2)

divF = ∂x1F
1 + ∂x2F

2 + ∂x3F
3, (2.1.3)

curlF = (∂x2F
3 − ∂x3F 2)e1 − (∂x1F

3 − ∂x3F 1)e2 + (∂x1F
2 − ∂x2F 1)e3, (2.1.4)

8



and

∆f = ∂2
x1f + ∂2

x2f + ∂2
x3f. (2.1.5)

Since we are working with a vector field, we will also need the vector laplacian:

∆F = ∆F 1e1 + ∆F 2e2 + ∆F 3e3. (2.1.6)

Essentially we take the Laplacian on each component function.

We note that the Navier-Stokes Equations are actually a system of equations.

Component-wise we see that (1.0.7) can be rewritten as

∆ui −
3∑
j=1

uj∂ju
i + ∂ip = 0. (2.1.7)

In addition to the velocity, we will also need to work with another quantity called

the vorticity. The vector field w = curl(u) is called the vorticity. By taking the curl of

(1.0.7) we have a new set of equations the vorticity satisfies. By direct calculation we have

−curl(∆u) + curl[(u · ∇)u] + curl(∇p) = 0

−∆w + curl[(u · ∇)u] = 0,

(2.1.8)

where we used the fact that the curl of the gradient is zero. To simplify the equation further,

we first rewrite the term (u · ∇)u by noting that

(u · ∇)u =
1

2
∇(u · u)− u× w. (2.1.9)

This follows by using the following vector identity by letting A = B = u:

∇(A ·B) = (A · ∇)B + (B · ∇)A+A× (curl(B)) +B × (curl(A)).

9



Hence we have

curl[(u · ∇)u] =
1

2
curl(∇(u · u))− curl(u× w)

= curl(w × u)

= w(div(u))− u(div(w)) + (u · ∇)w − (w · ∇)u

= (u · ∇)w − (w · ∇)u,

(2.1.10)

where we used the divergence-free condition of u (and consequently w) and the

vector identity

curl(A×B) = A(div(B))−B(div(A)) + (B · ∇)A− (A · ∇)B. (2.1.11)

Therefore, the vorticity equation for the stationary Navier-Stokes equation is

−∆w + (u · ∇)w − (w · ∇)u = 0. (2.1.12)

Although the vorticity equation involves even more partial derivatives of the velocity, the

equations no longer involve the pressure.

2.2 Cylindrical Coordinates

Because our solutions are axially-symmetric along the z-axis, it will be useful to convert all

the equations into cylindrical coordinates. We can do a change of variables to cylindrical

coordinates (r, θ, z) in the following way:

r =
√
x2

1 + x2
2, θ = arctan

(
x2

x1

)
, z = x3, (2.2.1)

10



or equivalently

x1 = r cos(θ), x2 = r sin(θ), z = x3. (2.2.2)

Here r ≥ 0, 0 ≤ θ < 2π, and z is any real number. If x1 = 0, then θ will be either 0, π2 , or

3π
2 depending on what x2 is.

Hence a vector field can be represented in the following way:

v(x) = vr(x)er + vθ(x)eθ + vz(x)eθ (2.2.3)

where

er =
(x1

r
,
x2

r
, 0
)

= (cos(θ), sin(θ), 0), (2.2.4)

eθ =
(
−x2

r
,
x1

r
, 0
)

= (− sin(θ), cos(θ), 0), (2.2.5)

and

ez = (0, 0, 1). (2.2.6)

Given a scale-valued function f and vector field F = (F r, F θ, F z), we have that

the gradient, divergence, curl, Laplacian, and vector Laplacian in cylindrical coordinates

are given by

∇f = (∂rf)er +
1

r
(∂θf)eθ + (∂zf)ez, (2.2.7)

divF = ∂rF
r +

1

r
F r +

1

r
∂θF

θ + ∂zF
z, (2.2.8)

curlF =

(
1

r
∂θF

z − ∂zF θ
)
er − (∂rF

z − ∂zF r) eθ +

(
∂rF

θ +
1

r
F θ − ∂θF

r

r

)
ez, (2.2.9)

∆f = ∂2
rf +

1

r
∂rf +

1

r2
∂2
θf + ∂2

zf, (2.2.10)

and

∆F =

(
∆F r − F r

r2
− 2

r2
∂θF

θ

)
er +

(
∆F θ − F θ

r2
+

2

r2
∂θF

r

)
eθ + ∆F zez. (2.2.11)
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Compared to Cartesian coordinates, these differential operators are more complex.

The reason is because, unlike in Cartesian coordinates, the basis vectors in cylindrical

depend on the other variables. In Cartesian coordinates, ∂xiej=0 for any i and j. In

contrast, in cylindrical coordinates we have that ∂θer = eθ and ∂θeθ = −er. As a result, the

partial derivative hits the basis vectors and produces extra terms. Because the solutions we

work with are axially-symmetric, the partial derivatives with respect to θ are zero.

Since we know what the Laplacian, divergence, and gradient are in cylindrical

coordinates, we only need to determine how to write the inertia term (u ·∇)u in cylindrical

coordinates. By noting that

(u · ∇) =

(
ur∂r +

uθ

r
∂θ + uz∂z

)
(2.2.12)

we have that

(u · ∇)u = (u · ∇)(urer + uθeθ + uzez)

= [(u · ∇)ur] er +
[
(u · ∇)uθ

]
eθ + [(u · ∇)uz] ez

[(u · ∇)er]u
r + [(u · ∇)eθ]u

θ + [(u · ∇)ez]u
z

= [(u · ∇)ur] er +
[
(u · ∇)uθ

]
eθ + [(u · ∇)uz] ez +

uruθ

r
eθ −

(uθ)2

r
er.

(2.2.13)

Similarly, we have for the terms (u · ∇)w and (w · ∇)u that

(u · ∇)w = [(u · ∇)wr] er +
[
(u · ∇)wθ

]
eθ + [(u · ∇)wz] ez +

wruθ

r
eθ −

wθuθ

r
er. (2.2.14)

and

(w · ∇)u = [(w · ∇)ur] er +
[
(w · ∇)uθ

]
eθ + [(w · ∇)uz] ez +

urwθ

r
eθ −

wθuθ

r
er. (2.2.15)
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Hence we have the axially symmetric Navier-Stokes equations:

(ur∂r + uz∂z)u
r − (uθ)2

r
+ ∂rp =

(
∂2
r +

1

r
∂r + ∂2

z −
1

r2

)
ur

(ur∂r + uz∂z)u
θ +

uruθ

r
=

(
∂2
r +

1

r
∂r + ∂2

z −
1

r2

)
uθ

(ur∂r + uz∂z)u
z + ∂zp =

(
∂2
r +

1

r
∂r + ∂2

z

)
uz

∂ru
r +

ur

r
+ ∂zu

z = 0.

(2.2.16)

The vorticity equations are as follows:

(ur∂r + uz∂z)w
r − (wr∂r + wz∂z)u

r =

(
∂2
r +

1

r
∂r + ∂2

z −
1

r2

)
wr

(ur∂r + uz∂z)w
θ − ur

r
wθ − 1

r
∂z(u

θ)2 =

(
∂2
r +

1

r
∂r + ∂2

z −
1

r2

)
wθ

(ur∂r + uz∂z)w
z − (wr∂r + wz∂z)u

r =

(
∂2
r +

1

r
∂r + ∂2

z

)
wz

(2.2.17)

where

wr = −∂zuθ, wθ = ∂zu
r − ∂ruz, wz =

1

r
∂r(ru

θ). (2.2.18)
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Chapter 3

Green’s Function

Finding solutions to general partial differential equations (PDEs) is an important,

but difficult task. Even if one focuses on linear PDEs, there is no general theory that will

work for all linear PDEs, regardless if the PDE is homogeneous or inhomogenous. However,

in certain cases one may construct a solution to an inhomogeneous PDE using a special kind

of solution to the homogeneous problem. Given a linear differential operator L = L(x), a

Green’s function G = G(x) satisfies the following for any point x:

LG(x) = δ(x),

where δ is the Dirac delta function. In particular, if we consider L = ∆ = ∂2
x1 + ∂2

x1 + ∂2
x3 ,

that is Laplace’s equation in R3

∆G = δ(x),

then it is well-known that the Green’s function is G(x) =
1

4π|x|
.
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Now suppose we wish to solve Poisson’s equation, the inhomogenous Laplace’s

equation, in R3. That is, given a function f : R3 → R, find a function u : R3 → R that

satisfies the PDE

∆u(x) = f(x).

If the given function f is sufficiently well-behaved, we have that u(x) =

∫
R3

f(x)G(x− y)dy

will be a solution to Poisson’s equation. Therefore to find a solution to Poisson’s equation in

a specific domain, we use the Green’s function for the corresponding Laplace’s equation and

preform a convolution. However, if we consider Poisson’s equation or Laplace’s equation

on a different domain, then the Green’s function will change. For a general domain, it is

difficult to find explicit formulas for Green’s functions directly. An alternative to finding

Green’s functions for Laplace’s equation is constructing them by using a solution to the

heat equation.

The heat equation in (0,∞)× Rn is

∂tΓ−∆Γ = 0,

where Γ = Γ(t, x) is unknown. For dimension n ≥ 1 we have that the fundamental

solution of the heat equation is

Γn(t, x) =


1

(4πt)n/2
e−
|x|2
4t t > 0, x ∈ Rn

0 t < 0, x ∈ Rn

The reason the fundamental solution to the heat equation is important in finding

solutions to Poisson’s equation is that Green’s function for Laplace’s equation are related
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in the following way: for n = 3, we have that∫ ∞
0

Γ3(t, x)dt =

∫ ∞
0

1

(4πt)3/2
e−
|x|2
4t dt

=

∫ ∞
0

1

(4πt)3/2
e
−
(
|x|√
4t

)2

dt

=
1

2π3/2|x|

∫ ∞
0

e−u
2
du

=
1

4π|x|

= G(x).

where we made the substitution u(x) = |x|√
4t
. In fact, one can show that for n ≥ 3,

Gn(x) =

∫ ∞
0

Γn(t, x)dt

where Gn(x) = 1
n(n−2)α(n)

1
|x|n−2 represents the Green’s function for Laplace’s equation in

Rn, α(n) is the measure of the unit ball in Rn, and Γn represents the fundamental solution

to the heat equation in Rn. It is important to note that this is not the case for n = 2, that

is to say that

G2(x) = − 1

2π
log |x| 6=

∫ ∞
0

1

4πt
e−
|x|2
4t dt =

∫ ∞
0

Γ2(t, x)dt,

where G2 is the Green’s function for Laplace’s equation in R2. In fact, the integration of

the two-dimensional fundamental solution to the heat equation over time is infinite, despite

the fact that there is a Green’s function for Laplace’s equation in dimension two. However,

this idea of integrating the fundamental solution will be useful for our goal of studying the

stationary Navier-Stokes equation in R2 × [−π, π].
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3.1 The Green function on R2 × [−π, π] for functions whose

integral on [−π, π] is zero

To find the Green’s function on R2×[−π, π], we need to find the fundamental solution to the

heat equation in (0,∞)×
(
R2 × [−π, π]

)
. We might guess that the fundamental solution will

be the product of the fundamental solution in R2 and the fundamental solution in [−π, π].

Indeed this will solve the heat equation on (0,∞) ×
(
R2 × [−π, π]

)
, but when we try to

integrate the fundamental solution over time, we will have a divergent integral just like we

did for the two-dimensional heat equation. We can overcome this by “subtracting” off the

problematic term to avoid having a divergent integral. However, the price we pay is that

we must restrict the class of functions the Green’s function will act on.

We will use the following notation for this chapter and beyond. Given x =

(x1, x2, x3) ∈ R3, we write x = (x′, x3) or x = (x′, z), and for y = (y1, y2, y3) ∈ R3, we

write y = (y′, y3). In this next lemma, we construct the Green’s function we will use. We

will sometimes write S1 to represent [−π, π].

Lemma 2 Let Γ̃1 and Γ2 be the standard heat kernel on S1 and R2 respectively.

(a). Let Γ(t;x3, y3) = (Γ̃1 − 1
2π )(t;x3, y3)Γ2(t;x′, y′). The function Γ(t;x3, y3)

satisfies the heat equation on R2 × S1:
∆xΓ− ∂tΓ = 0

Γ|t=0 = δ(x, y)

(3.1.1)

The last equation means that for any bounded, smooth test function ϕ with

∫ π

−π
ϕ(y′, y3)dy3 =

0, we have lim
t→0+

〈Γ, ϕ〉 = ϕ.

17



(b). Let G(x, y) =
∫∞

0 Γ(t;x, y)dt. Suppose that f is a smooth and compactly

supported function in R2 × S1 such that

∫
S1

f(x′, x3)dx3 = 0 for all x′ ∈ R2. Then

−∆(G ∗ f) = f,

where ∗ stands for the usual convolution.

(c). Let u and f be smooth, bounded functions on R2 × S1 such that

−∆u = f.

Suppose

∫
S1

f(x′, x3)dx3 = 0 for all x′ ∈ R2 and f is compactly supported. Then for some

constant C,

u(x) =

∫
R2×S1

G(x, y)f(y)dy + C.

Thus G is the Green’s function for those f .

Proof. Define Γ̃1(t;x3, y3) := 1
2π

(
1 + 2

∞∑
m=1

e−m
2t cos(m(x3 − y3))

)
, where x3 and

y3 are in [−π, π]. First for t 6= 0 we have that 0 < e−t < 1 and

∣∣∣∣∣
∞∑
m=1

e−m
2t cos(m(x3 − y3))

∣∣∣∣∣ ≤
∞∑
m=1

e−m
2t ≤

∞∑
m=1

(
e−t
)m

<∞. (3.1.2)

This shows that Γ̃ is well-defined for t 6= 0 and in fact the series converges uniformly

by the Weierstrass criterion. Moreover, we can preform term by term differentiation on Γ̃

in the variables t, x and y because the respective series converge uniformly and we can

interchange summation and differentiation. Hence ∂tΓ̃, ∆x3Γ̃ are well-defined. We will

need to use the fact later that

∫ π

−π
Γ̃1(t;x3, 0)dx3 =

∫ π

−π
Γ̃1(t; 0, y3)dy3 = 1. (3.1.3)
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This is because for m 6= 0, e−m
2t
∫ π
−π cos(my3)dy3 = 0. Therefore, the only non-zero term

in the sum is the m = 0 term which equals 1. Finally, we wish to note that Γ̃ may also be

rewritten out as

Γ̃1(t;x3, y3) =
1

2π

∞∑
m=−∞

e−m
2teim(x3−y3). (3.1.4)

We will interchange between these forms as needed. We claim that Γ̃1(t;x3, y3) is the heat

kernel on S1, which means that 
∆x3Γ̃1 − ∂tΓ̃1 = 0,

Γ̃1|t=0 = δ(x3 − y3).

Direct computation shows that Γ̃1 satisfies the equation, so we only check that Γ̃1|t=0 =

δ(x3 − y3). This means we must show that for any test function ϕ(y3) in C∞0 (R),

lim
t→0+

〈Γ̃1(t;x3, y3), ϕ(y3)〉 − ϕ(x3) (3.1.5)

= lim
t→0+

∫ π

−π

(
1 + 2

∞∑
m=1

e−m
2t cos(m(x3 − y3))

)
ϕ(y3)dy3 − ϕ(y3) (3.1.6)

= 0. (3.1.7)

First we note that

∞∑
m=1

∫ π

−π

∣∣∣e−m2t cos(m(x3 − y3))
∣∣∣ dy3 =

∞∑
m=1

4e−m
2t ≤

∞∑
m=1

4
(
e−t
)m

<∞. (3.1.8)

Hence by Lebesgue theory we are allowed to interchange integration and summation. So
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we have that

〈Γ̃1(t;x3, y3), ϕ(y3)〉 − ϕ(x3) (3.1.9)

=

∫ π

−π
Γ̃1(t; 0, y3)ϕ(x3 − y3)dy3 − ϕ(x3)

∫ π

−π
Γ̃1(t; 0, y3)dy3 (3.1.10)

=

∫ π

−π
Γ̃1(t;x3, y3) (ϕ(y3)− ϕ(x3)) dy3 (3.1.11)

=
∞∑

m=−∞
e−m

2t

∫ π

−π
e−im(x3−y3) (ϕ(y3)− ϕ(x3)) dy3 (3.1.12)

= lim
N→∞

∑
|m|≤N

e−m
2t

∫ π

−π
e−im(x3−y3) (ϕ(y3)− ϕ(x3)) dy3. (3.1.13)

Next we have

lim
t→0+

〈Γ̃1(t;x3, y3), ϕ(y3)〉 − ϕ(x3) (3.1.14)

= lim
t→0+

lim
N→∞

∑
|m|≤N

e−m
2t

∫ π

−π
e−im(x3−y3) (ϕ(y3)− ϕ(x3)) dy3 (3.1.15)

= lim
N→∞

lim
t→0+

∑
|m|≤N

e−m
2t

∫ π

−π
e−im(x3−y3) (ϕ(y3)− ϕ(x3)) dy3 (3.1.16)

= lim
N→∞

∑
|m|≤N

∫ π

−π
e−im(x3−y3) (ϕ(y3)− ϕ(x3)) dy3, (3.1.17)

= lim
N→∞

∫ π

−π

∑
|m|≤N

e−im(x3−y3) (ϕ(y3)− ϕ(x3)) dy3, (3.1.18)

where we used the Moore-Osgood theorem to interchange the two limits. To proceed further,

we note that ∑
|m|≤N

e−im(x3−y3) =
sin ((N + 1/2)(x3 − y3))

sin
(x3−y3

2

) . (3.1.19)

We thus have

lim
t→0+

〈Γ̃1(t;x3, y3), ϕ(y3)〉 − ϕ(x3) (3.1.20)

= lim
N→∞

∫ π

−π

sin ((N + 1/2)(x3 − y3))

sin
(x3−y3

2

) (ϕ(y3)− ϕ(x3)) dy3 (3.1.21)

= lim
N→∞

∫ π

−π

(
ϕ(y3)− ϕ(x3)

sin
(x3−y3

2

) )
sin ((N + 1/2)(x3 − y3)) dy3. (3.1.22)
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Because

lim
x3→y3

ϕ(y3)− ϕ(x3)

sin
(x3−y3

2

) = 2ϕ′(y3), (3.1.23)

we have that ϕ(y3)−ϕ(x3)

sin
(
x3−y3

2

) is integrable on [−π, π]. Therefore, by the Riemann-Lebesgue

Lemma, we obtain

lim
t→0
〈Γ̃1(t;x3, y3), ϕ(y3)〉 − ϕ(x3) (3.1.24)

= lim
N→∞

∫ π

−π

(
ϕ(y3)− ϕ(x3)

sin
(x3−y3

2

) )
sin ((N + 1/2)(x3 − y3)) dy3. (3.1.25)

= 0, (3.1.26)

as desired. This shows that Γ̃1(t;x3, y3) is the heat kernel on [−π, π].

Now we define Γ1(t;x3, y3) = Γ̃1(t;x3, y3)− 1
2π . Then Γ1(t;x3, y3) still satisfies the

heat equation and is a heat kernel for the test function ϕ(y3) with
∫ π
−π ϕ(y3)dy3 = 0 because

lim
t→0
〈Γ1(t;x3, y3), ϕ(y3)〉 − ϕ(x3) (3.1.27)

= lim
t→0
〈Γ̃1(t;x3, y3), ϕ(y3)〉 − 1

2π

∫ π

−π
ϕ(y3)dy3 − ϕ(x3) (3.1.28)

= lim
t→0

(
〈Γ̃1(t;x3, y3), ϕ(y3)〉 − ϕ(x3)

)
− 1

2π

∫ π

−π
ϕ(y3)dy3 (3.1.29)

= 0. (3.1.30)

We can now construct the heat kernel on R2×[−π, π] for bounded smooth functions

ϕ such that ∫ π

−π
ϕ(y′, y3)dy3 = 0. (3.1.31)

Let Γ2(t;x′, y′) = 1
4πte

− |x
′−y′|2
4t be the heat kernel on R2. Define

Γ(t;x, y) = Γ2(t;x′, y′)Γ1(t;x3, y3).
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Then we claim that Γ(t;x, y) is the heat kernel that satisfies
∆xΓ− ∂tΓ = 0

Γ|t=0 = δ(x, y)

(3.1.32)

for bounded, smooth test functions satisfying (3.1.31). The second equation, as before,

means that lim
t→0+

〈Γ, ϕ〉 −ϕ = 0. First we show that Γ satisfies the heat equation. By direct

computation we have

∆xΓ− ∂tΓ (3.1.33)

= Γ1∆x′Γ2 + Γ2∆x3Γ1 − Γ1∂tΓ2 − Γ2∂tΓ1 (3.1.34)

= Γ1 (∆x′Γ2 − ∂tΓ2) + Γ2 (∆x3Γ1 − ∂tΓ1) (3.1.35)

= 0.

Next for any bounded, smooth test function ϕ(y) satisfying (3.1.31), we have

lim
t→0

∫
R2×S1

Γ(t;x, y)ϕ(y)dy

= lim
t→0

∫
R2

Γ2(t;x′, y′)

∫
S1

Γ1(t;x3, y3)ϕ(y′, y3)dy3dy
′

= lim
t→0

∫
R2

Γ2(t;x′, y′)

∫
S1

Γ̃1(t;x3, y3)ϕ(y′, y3)dy3dy
′

= lim
t→0

∫
R2

Γ2(t;x′, y′)

∫
S1

Γ̃1(t;x3, y3)
[
ϕ(y′, y3) + ϕ(y′, x3)− ϕ(y′, x3)

]
dy3dy

′

= lim
t→0

∫
R2

Γ2(t;x′, y′)ϕ(y′, x3)

∫
S1

Γ̃(t;x3, y3)dy3dy
′ + lim

t→0

∫
R2

Γ2(t;x′, y′)

[
− ϕ(y′, x3)

+

∫
S1

Γ̃1(t;x3, y3)ϕ(y′, y3)dy3

]
dy′

= lim
t→0

∫
R2

Γ2(t;x′, y′)ϕ(y′, x3)dy′ + lim
t→0

∫
R2

Γ2(t;x′, y′)

[
− ϕ(y′, x3)

+

∫
S1

Γ̃1(t;x3, y3)ϕ(y′, y3)dy3

]
dy′

= ϕ(x′, x3) + 0

= ϕ(x).
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We flesh out some of the details of the above computation. First, we claim that

the term ∫
R2

Γ2(t;x′, y′)

[
−ϕ(y′, x3) +

∫
S1

Γ̃1(t;x3, y3)ϕ(y′, y3)dy3

]
dy′

goes to zero as t→ 0+. This is because since lim
t→0

∫
S1

Γ1(t;x3, y3)ϕ(y′, y3)dy3 = ϕ(y′, x3) for

all y′, then for some δ > 0 we have that if 0 < t < δ, then∣∣∣∣∫
S1

Γ1(t;x3, y3)ϕ(y′, y3)dy3 − ϕ(y′, x3)

∣∣∣∣ < ε.

We thus have∣∣∣∣∫
R2

Γ2(t;x′, y′)

[
−ϕ(y′, x3) +

∫
S1

Γ̃1(t;x3, y3)ϕ(y′, y3)dy3

]
dy′
∣∣∣∣ < ∫

R2

Γ2(t;x′, y′)εdy′ = ε.

We have thus proven (a), which is that Γ is the heat kernel on R2 × [−π, π] for

functions whose integrals on S1 are zero. Now we are ready to define the Green’s function

on R2 × [−π, π]:

G(x, y) =

∫ ∞
0

Γ(t;x, y)dt.

The integral is finite except when x = y. This follows from the exponential decay property

of Γ. We can also show that the partial derivatives are defined and we are allowed to

interchange differentiation and integration. We will justify all the details in the next lemma.

Let f be a smooth, compactly supported function on R2 × S1, whose integral on

S1 is 0. Then since Γ satisfies the heat equation on R2 × S1, we have that

−
∫
R2×S1

∆xG(x, y)f(y)dy =

∫
R2×S1

[∫ ∞
0
−∆xΓ(t;x, y)dt

]
f(y)dy

= −
∫
R2×S1

[∫ ∞
0

∂tΓ(t;x, y)dt

]
f(y)dy

=

∫
R2×S1

lim
t→0+

Γ(t;x, y)f(y)dy

= f(x).

(3.1.36)
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Hence G(x, y) satisfies the Poisson’s equation for any smooth, compactly supported

function on R2 × S1 which proves (b). Now let u be any bounded, smooth solution of

−∆u = f.

First, we note that
∫
G(x, y)f(y)dy is in fact a bounded solution. This follows because in

Lemma 3, we will show that

|G(x, y)| ≤ C 1

|x− y|
e−c0|x

′−y′|.

If f(y) is supported in some ball B(x0, R), we have that for |x− x0| > 2R and |y− x0| ≤ R

that 1
|x−y| ≤

2
|x−x0| . Hence

∣∣∣∣∫ G(x, y)f(y)dy

∣∣∣∣ ≤ C ∫
B(x0,R)

C
1

|x− y|
e−c0|x

′−y′||f(y)|dy

≤ C‖f‖L∞
∫
B(x0,R)

1

|x− x0|
dy

≤ C 1

|x− x0|

(3.1.37)

which implies that G(x, y) is bounded as |x| becomes unbounded.

We thus have that u−
∫
G(x, y)f(y)dy is bounded and

∆[u(x)−
∫
G(x, y)f(y)dy] = 0.

Hence, u −
∫
G(x, y)f(y)dy is a bounded, harmonic function so by the classical Liouville

theorem we have that

u =

∫
G(x, y)f(y)dy + C.

This shows that G is the Green function on R2× [−π, π] of those functions with its integral

on S1 is zero which proves (c).
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3.2 Estimates for the Green’s Function and its Gradient on

R2 × [−π, π]

In the next lemma we prove that that the Green’s function is well-defined and in fact satisfies

the following estimates.

Lemma 3 Let G(x, y) be the Green function on R2 × S1 defined above. Then we have the

following estimates for some constants c0, C1, C2 > 0:

∣∣G(x, y)
∣∣ ≤ C1

1

|x− y|
e−c0|x

′−y′| (3.2.1)

∣∣∇G(x, y)
∣∣ ≤ C2

1

|x− y|2
e−c0|x

′−y′| (3.2.2)

with x′ = (x1, x2) and y′ = (y1, y2).

Proof. We will first prove that

∣∣G(x, y)
∣∣ ≤ Ce− |x′−y′|4 (3.2.3)

and ∣∣∇G(x, y)
∣∣ ≤ Ce− |x′−y′|4 (3.2.4)

for the case when |x′ − y′| > 1. We have

G(x, y) =

∫ ∞
0

(4πt)−1e−
|x′−y′|2

4t
1

π

∞∑
m=1

e−m
2t cos(m(x3 − y3))dt

=
1

4π2

∞∑
m=1

∫ ∞
0

t−1e−
|x′−y′|2

4t e−m
2tdt cos(m(x3 − y3))

=
1

4π2

∞∑
m=1

Im cos(m(x3 − y3)).

(3.2.5)
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We will first estimate Im. By making a change of variables, we see that

Im =

∫ ∞
0

t−1e−
(m|x′−y′|)2

4t e−tdt

=
(∫ m|x′−y′|

2

0
+

∫ ∞
m|x′−y′|

2

)
t−1e−

(m|x′−y′|)2
4t e−tdt

= 2

∫ ∞
m|x′−y′|

2

t−1e−
(m|x′−y′|)2

4t e−tdt

≤ C
∫ ∞
m|x′−y′|

2

t−1e−tdt

(3.2.6)

This follows by first making the change of variables u = −m2t so that the −m2

coefficient transfers from e−m
2t to e−

|x′−y′|2
4t . Then we split the integral from 0 to m|x′−y′|/2

and m|x′−y′|/2 to∞. We make use of the symmetry of the integrand t−1e−
(m|x′−y′|)2

4t e−t by

making a substitution u = (m|x′−y′|)2
4t to in fact get that the two integrals are equal. Finally,

for any m ≥ 1, e−
(m|x′−y′|)2

4t ≤ 1. So all we need to do is estimate the integral

∫ ∞
m|x′−y′|

2

t−1e−tdt = E1

(
m|x′ − y′|

2

)
,

where E1(z) is the exponential integral. To get the final estimate, we first note that

E1(x) < e−x ln

(
1 +

1

x

)
for x > 0. See [DLMF] for reference. Hence

Im ≤ C ln

(
2

m|x′ − y′|
+ 1

)
e−

m|x′−y′|
2 .

From (3.2.5) and (3.2.6), we have

∣∣G(x, y)
∣∣ ≤ C ∞∑

m=1

ln

(
2

m|x′ − y′|
+ 1

)
e−

m|x′−y′|
2

≤ C ln

(
2

|x′ − y′|
+ 1

)
e−
|x′−y′|

4

≤ Ce−
|x′−y′|

4 .

(3.2.7)
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This bound is found by first noting that ln
(

2
m|x′−y′| + 1

)
≤ ln

(
2

|x′−y′| + 1
)
≤ ln(3)

for m ≥ 1 and |x′ − y′| > 1. So it remains to bound

∞∑
m=1

e−
m|x′−y′|

2 =
∞∑
m=1

e−
m|x′−y′|

4

(
e−
|x′−y′|

4

)m
≤ e−

|x′−y′|
4

∞∑
m=1

(
e−
|x′−y′|

4

)m
.

However, e−
|x′−y′|

4 < 1, so we have a geometric series whose sum equals 1

1−e−
|x′−y′|

4

< 1
1−e−1/4 .

This proves (3.2.3).

We now prove (3.2.4). We have

∣∣∂x3G(x, y)
∣∣ =

∣∣∣ 1

4π2

∞∑
m=1

m

∫ ∞
0

t−1e−
|x′−y′|2

4t e−m
2tdt sin(m(x3 − y3))

∣∣∣
≤ C

∞∑
m=1

∫ ∞
0

t−
3
2 e−

|x′−y′|2
4t e−

m2t
2 dt

≤ C
∞∑
m=1

m

∫ ∞
0

t−
3
2 e−

(m|x′−y′|)2
4t e−

t
2dt

(3.2.8)

We now explain the above calculations. We first make the change of variables

u = m2t again. Then we note that t−1e−t ≤ t−3/2e−
t
2 , for t > 0. Equivalently, we break up

e−m
2t as e−

m2t
2 e−

m2t
2 and then we use that

me−
m2t
2 ≤ sup

m∈[1,∞)
me−

m2t
2 =

1√
t
e−

1
2 .

Hence we obtain

me−
m2t
2 t−1e−

|x′−y′|2
4t e−

m2t
2 ≤ t−3/2e−

m2t
2 e−

|x′−y′|2
4t ,

from which we make the change of variables u = m2t to obtain the m variable.

Next we estimate the integral

m

∫ ∞
0

t−
3
2 e−

(m|x′−y′|)2
4t e−

t
2dt.
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We first multiply by e−
√
2m|x′−y′|

2 e
√
2m|x′−y′|

2 . Then by completing the square, we have that

m

∫ ∞
0

t−
3
2 e−

(m|x′−y′|)2
4t e−

t
2dt = me−

√
2m|x′−y′|

2

∫ ∞
0

t−
3
2 e−

(m|x′−y′|)2
4t

+
√
2m|x′−y′|

2
− t

2dt

= me−
√
2m|x′−y′|

2

∫ ∞
0

t−
3
2 e−

1
4t

((m|x′−y′|)2−2
√

2m|x′−y′|t+2t2)dt

= me−
√
2m|x′−y′|

2

∫ ∞
0

t−
3
2 e−

1
4t

(m|x′−y′|−
√

2t)2dt

= me−
√
2m|x′−y′|

2

∫ ∞
0

t−
3
2 e
−
(
m|x′−y′|−

√
2t

2
√
t

)2

dt.

= me−
√
2m|x′−y′|

2
2
√
π

m|x′ − y′|

= e−
√
2m|x′−y′|

2
2
√
π

|x′ − y′|
.

We will show that ∫ ∞
0

t−3/2e
−
(
m|x′−y′|−

√
2t

2
√
t

)2

dt =
2
√
π

m|x′ − y′|
. (3.2.9)

We first make the substitution u(t) = 1√
t

to get −2t3/2du = dt, then we obtain

∫ ∞
0

t−3/2e
−
(
m|x′−y′|−

√
2t

2
√
t

)2

dt = 2

∫ ∞
0

e
−
(
m|x′−y′|u−

√
2u−1

2

)2

du.

We make one final substitution: θ(u) = m|x′ − y′|u to obtain

2

∫ ∞
0

e
−
(
m|x′−y′|u−

√
2u−1

2

)2

du =
2

m|x′ − y′|

∫ ∞
0

e
−
(
θ−
√
2m|x′−y′|θ−1

2

)2

dθ.

Now we define

F (w) =

∫ ∞
0

e
−
(
θ−
√

2wθ−1

2

)2

dθ.

We claim that F (w) =
√
π for any choice of w ≥ 0. To show this, we note that

∂wF (w) =

√
2

2

∫ ∞
0

e
−
(
θ−
√

2wθ−1

2

)2 (
θ −
√

2wθ−1
)
θ−1dθ.
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The integrand has a singularity at θ = 0, however,

lim
θ→0

e
−
(
θ−
√

2wθ−1

2

)2 (
θ −
√

2wθ−1
)
θ−1 = 0,

so there is no issue in the integral being infinite. We split the integral into two pieces:

∂wF (w) =

√
2

2

[∫ 4√2
√
w

0
+

∫ ∞
4√2
√
w
e
−
(
θ−
√
2wθ−1

2

)2 (
θ −
√

2wθ−1
)
θ−1dθ

]
.

By making the change of variables u(θ) =
√

2wθ−1 so that du = −
√

2wθ−2dθ we get

∫ 4√2
√
w

0
e
−
(
θ−
√
2wθ−1

2

)2 (
θ −
√

2wθ−1
)
θ−1dθ

= −
∫ 4√2

√
w

∞
e
−
(√

2wu−1−u
2

)2 (√
2wu−1 − u

)
u−1du.

However, we note that by symmetry:

−
∫ 4√2

√
w

∞
e
−
(√

2wu−1−u
2

)2 (√
2wu−1 − u

)
u−1du

= −
∫ ∞

4√2
√
w
e
−
(
u−
√
2wu−1

2

)2 (
u−
√

2wu−1
)
u−1du.

This means that in fact

∫ 4√2
√
w

0
e
−
(√

2wu−1−u
2

)2 (√
2wu−1 − u

)
u−1du

= −
∫ ∞

4√2
√
w
e
−
(
u−
√
2wu−1

2

)2 (
u−
√

2wu−1
)
u−1du.

This implies that

∂wF (w) = 0,

which means that F (w) is independent of choice of w.
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We shall compute F (0):

∫ ∞
0

e−( θ2)
2

dθ = 2

∫ ∞
0

e−(ξ)2dξ

= 2

√
π

2

=
√
π.

Hence we have proved (3.2.9). We now use (3.2.9) and insert it into (3.2.8) to obtain

∣∣∂x3G(x, y)
∣∣ ≤ C ∞∑

m=1

e−
√
2m|x′−y′|

2

|x′ − y′|

≤ C
∞∑
m=1

e−
m|x′−y′|

2

|x′ − y′|

≤ C 1

|x′ − y′|
e−
|x′−y′|

4

≤ Ce−
|x′−y′|

4 .

(3.2.10)

We used the geometric series trick from before and note that 1 < |x′−y′|. We have finished

the estimate for ∂x3G(x, y). The estimate of ∂y3G(x, y) is the same as (3.2.10).

We now estimate ∂x′,y′G(x, y). From (3.2.5), we have

∣∣∂x′,y′G(x, y)
∣∣ ≤ C ∞∑

m=1

∫ ∞
0

t−1 |x′ − y′|
t

e−
|x′−y′|2

4t e−m
2tdt

≤ C|x′ − y′|
∞∑
m=1

m2

∫ ∞
0

t−2e−
(m|x′−y′|)2

4t e−tdt,

(3.2.11)

where we again make the substitution u = m2t from which we get a m2 in the integral.

Next, we split the resulting integral into two parts and integrate separately:

∣∣∂x′,y′G(x, y)
∣∣ ≤ C|x′ − y′| ∞∑

m=1

m2
(∫ ∞

m|x′−y′|
2

+

∫ m|x′−y′|
2

0

)
t−2e−

(m|x′−y′|)2
4t e−tdt. (3.2.12)
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For the first integral, we have that

m2|x′ − y′|
∫ ∞
m|x′−y′|

2

t−2e−
(m|x′−y′|)2

4t e−tdt ≤ m2|x′ − y′| 4

m2|x′ − y′|2

∫ ∞
m|x′−y′|

2

e−tdt

=
4

|x′ − y′|
e−

m|x′−y′|
2 .

Here we used the fact that e−
(m|x′−y′|)2

4t ≤ 1 and also t−2 ≤ 4
(m|x′−y′|)2 on the interval

[m|x
′−y′|
2 ,∞).

For the second integral we make a change of variables u = (m|x′−y′|)2
4t so that

du = − (m|x′−y′|)2
4t2

dt and we obtain:

m2|x′ − y′|
∫ m|x′−y′|

2

0
t−2e−

(m|x′−y′|)2
4t e−tdt =

4m2|x′ − y′|
(m|x′ − y′|)2

∫ ∞
m|x′−y′|

2

e−
(m|x′−y′|)2

4u e−udu.

≤ 4

|x′ − y′|

∫ ∞
m|x′−y′|

2

e−udu

=
4

|x′ − y′|
e−

m|x′−y′|
2 .

Now using our estimates for the two integrals and using the geometric trick again

we have that ∣∣∂x′,y′G(x, y)
∣∣ ≤ C 1

|x′ − y′|
e−
|x′−y′|

4 . (3.2.13)

This proves (3.2.4).

Now we consider the case when |x′ − y′| ≤ 1. First there exists positive constants

c1, c2 such that

|Γ(t;x, y)| ≤ Ct−3/2e−c1
|x−y|2

t e−c2t, (3.2.14)

and
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|∇Γ(t;x, y)| ≤ Ct−2e−c1
|x−y|2

t e−c2t. (3.2.15)

This follows by noting that |x′ − y′| ≤ 1,

|Γ2(t;x, y)| = Ct−1e−
|x′−y′|2

4t ,

|∇Γ2(t;x, y)| = Ct−2|x′ − y′|e
−|x′−y′|2

4t ≤ Ct−2e
−|x′−y′|2

4t ,

and by using global estimates for Γ1 and it’s partial derivatives. See Lemma 4.2 in [TZ] for

details of the estimate on Γ1.

We now integrate (3.2.14) to obtain

|G(x, y)| ≤ C
∫ ∞

0
t−3/2e−c1

|x−y|2
t e−c2tdt

= Ce−2
√
c1c2|x−y|

∫ ∞
0

t−3/2e−c1
|x−y|2

t
+2
√
c1c2|x−y|−c2tdt

= Ce−2
√
c1c2|x−y|

∫ ∞
0

t−3/2e−
c1|x−y|

2−2
√
c1c2|x−y|t+c2t

2

t dt

= Ce−2
√
c1c2|x−y|

∫ ∞
0

t−3/2e
−
(√

c1|x−y|−
√
c2t√

t

)2

dt

= Ce−2
√
c1c2|x−y|

∫ ∞
0

e−(
√
c1|x−y|u−

√
c2u−1)

2

du

= C
1

√
c1|x− y|

e−2
√
c1c2|x−y|

∫ ∞
0

e−(θ−
√
c1c2|x−y|θ−1)dθ

= C
1

√
c1|x− y|

e−2
√
c1c2|x−y|,

(3.2.16)

where a similar computation like (3.2.9) can be used to show that

∫ ∞
0

e−(θ−
√
c1c2|x−y|θ−1)dθ =

√
π

2
.

A similar computation like (3.2.11) gives us that we can find a constant c3 so that

|∇G(x, y)| ≤ C 1

|x− y|2
e−c3|x−y|. (3.2.17)
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Hence using the fact that |x3−y3| ≤ 2π and by combining (3.2.3), (3.2.4),(3.2.16), (3.2.17),

we choose a small enough c0 so that (3.2.1) and (3.2.2) hold for all |x− y| 6= 0.

Although the above estimates will suffice for general purposes, we need sharper es-

timates. In particular, we will be working later with hallowed cylinders. We note that upon

integrating the Green’s function along the θ variable, we can get the following estimates:

Lemma 4 Denote x = (r cos θ, r sin θ, z) and y = (ρ cosφ, ρ sinφ, `). For |ρ− r| ≤ 1
4r,∫ 2π

0
|G(x, y)|dφ ≤ Ce−c0|ρ−r| 1

r
ln

(
2 +

r

|ρ− r|

)
(3.2.18)

∫ 2π

0
|∇G(x, y)|dφ ≤ C 1

ρ (|ρ− r|+ |z − `|)
e−c0|ρ−r|. (3.2.19)

For 1
8r ≤ |ρ− r| ≤

1
4r, with 1 ≤ r, we have

∫ 2π

0
(|G(x, y)|+ |∇G(x, y)|) dφ ≤ Ce−c0|ρ−r|. (3.2.20)

Proof. From Lemma 3, we see that∫ 2π

0
|G(x, y)|dφ ≤ C

∫ 2π

0

1

|x− y|
e−c0|x

′−y′|dφ.

≤ Ce−c0|ρ−r|
∫ 2π

0

1

|x′ − y′|
dφ.

(3.2.21)

and ∫ 2π

0
|∇Γ(x, y)|dφ ≤ C

∫ 2π

0

1

|x− y|2
e−c0|x

′−y′|dφ.

≤ Ce−c0|ρ−r|
∫ 2π

0

1

|x− y|2
dφ.

(3.2.22)

Recall that x′ = (r cos θ, r sin θ), y′ = (ρ cosφ, sinφ),

|x′ − y′| =
√
ρ2 + r2 − 2ρr cos(θ − φ), (3.2.23)

and

|x− y| =
√
ρ2 + r2 − 2ρr cos(θ − φ) + |z − `|2. (3.2.24)
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Without loss of generality, we will set θ = 0 because the integrals are independent of choice

of θ. So we work with

|x′ − y′| =
√
ρ2 + r2 − 2ρr cos(φ) =

√
(ρ− r)2 + 4ρr sin2

(
φ

2

)
, (3.2.25)

and

|x− y| =

√
(ρ− r)2 + 4ρr sin2

(
φ

2

)
+ |z − `|2, (3.2.26)

where we used the half-angle formula 2 sin2
(
θ
2

)
= 1− cos(θ).

We will show that

∫ 2π

0

1

|x′ − y′|
dφ ≤ C 1

r
ln

(
2 +

r

|ρ− r|

)
, (3.2.27)

and ∫ 2π

0

1

|x− y|2
dφ ≤ C 1

ρ(|ρ− r|+ |z − `|)
. (3.2.28)

We see that ∫ 2π

0

1

|x′ − y′|
dφ = 4

∫ π/2

0

1√
(ρ− r)2 + 4ρr sin2(φ)

dφ

= 4

∫ π/2

0

1√
4ρr

(
|ρ−r|2

4ρr + sin2(φ)
)dφ

=
2
√
ρr

∫ π/2

0

1√
|ρ−r|2

4ρr + sin2(φ)
dφ

=
2
√
ρr

∫ π/2

0

1√
k2 + sin2(φ)

dφ,

=
2
√
ρr

(∫ π/4

0
+

∫ π/2

π/4

)
1√

k2 + sin2(φ)
dφ,

(3.2.29)

where k2 = |ρ−r|2
4ρr . To estimate the first integral we note that on [0, π4 ], Cx ≤ sin(x) ≤ x

where 0 < C < 2
√

2
π and 1

2(k +
√
Cφ)2 ≤ k2 + Cφ2 ≤ (k +

√
Cφ)2.
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Hence we have∫ π/4

0

1√
k2 + sin2(φ)

dφ ≤
∫ π/4

0

1√
k2 + Cφ2

dφ

≤
∫ π/4

0

1

k +
√
Cφ

dφ

=
1

k

∫ π/4

0

1

1 +
√
C φ
k

dφ

=

∫ π
4k

0

1

1 +
√
Cφ

dφ

≤ C ln
(

1 +
√
C
π

4k

)
≤ C ln

(
2 +

r

|ρ− r|

)

(3.2.30)

We used the fact that since |ρ− r| ≤ 1
4r, we have that 3

4r ≤ ρ ≤
5
4r so ρ is comparable to r

and this implies that k2 = |ρ−r|2
4ρr ≤ C .

We also have for second integral that on [π4 ,
π
2 ],
√

2
2 ≤ sin(x) ≤ 1, so∫ π/2

π/4

1√
k2 + sin2(φ)

dφ ≤
∫ π/2

π/4

1√
k2 + 1/2

dφ

≤
∫ π/2

π/4

1√
1/2

dφ

= C.

(3.2.31)

Hence by (3.2.30), (3.2.31), and using the fact that ρ is comparable to r, we obtain from

(3.2.29) the inequality (3.2.27).

Now we work on (3.2.28). Similar to the above computations for (3.2.27), we see

that
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∫ 2π

0

1

|x− y|2
dφ‘ = C

∫ π/2

0

1

(ρ− r)2 + |z − `|+ 4ρr sin2(φ)
dφ

≤ C

ρ2

∫ π/2

0

1
|ρ−r|2+|z−`|2

4ρr + 4ρr sin2(φ)

≤ C

ρ2

∫ π/2

0

1

κ2 + sin2(φ)
dφ

≤ C

ρ2

(∫ π/4

0

1

κ2 + sin2(φ)
dφ+

∫ π/2

π/4

1

κ2 + sin2(φ)
dφ

)

≤ C

ρ2

(
1

κ

∫ π/4k

0

1

1 + φ2
dφ+

∫ π/2

π/4

1

κ2 + 1/2
dφ

)

≤ C

ρ2

(
1

κ

∫ ∞
0

1

1 + φ2
dφ+

∫ π/2

π/4

1

κ2 + 1/2
dφ

)

≤ C

ρ2

(
1

κ

)
≤ C

ρ(|ρ− r|+ |z − `|)
.

(3.2.32)

Finally, substituting (3.2.27) and (3.2.28) into (3.2.21) and (3.2.22) gives us the result. To

get (3.2.20), we note that since 1 ≤ r and 1
8r ≤ |ρ− r| ≤

1
4r, we have 1

r < 1 and 1
|ρ−r| ≤

8
r

respectively. Hence from (3.2.18) and (3.2.19),∫ 2π

0
|G(x, y)|dφ ≤ Ce−c0|ρ−r| 1

r
ln

(
2 +

r

|ρ− r|

)
≤ Ce−c0|ρ−r| ln

(
2 +

8r

r

)
≤ Ce−c0|ρ−r| ln(10)

≤ Ce−c0|ρ−r|

(3.2.33)

and ∫ 2π

0
|∇G(x, y)|dφ ≤ C 1

ρ (|ρ− r|+ |z − `|)
e−c0|ρ−r|

≤ C 1

r(|ρ− r|)
e−c0|ρ−r|

≤ Ce−c0|ρ−r|.

(3.2.34)
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Together these two estimates will give us the result (3.2.20).

We remark that compared to the Green’s function in full three-dimensions, this

Green’s function has faster decay because of the exponential term. This will make a critical

difference in proving our main result because it will allow for better estimates of the velocity.
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Chapter 4

Decay and Vanishing of the

Velocity

4.1 Problem Statement

Theorem 5 Let u be a smooth axially symmetric solution to the problem

−∆u+ (u · ∇)u+∇p = 0, in R2 × [−π, π],

div(u) = 0,

u(x1, x2, z) = u(x1, x2, z + 2π),

lim
|x|→∞

u = 0,

(4.1.1)

such that the Dirichlet integral satisfies the condition: for 0 ≤ α < 1/5, we have that for all

R ≥ 1, ∫ π

−π

∫
|x′|≤R

|∇u(x)|2dx < Rα <∞. (4.1.2)

Suppose also

∫ π

−π
uθ(·, z)dz =

∫ π

−π
uz(·, z)dz = 0. Then u = 0.
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Notice that in the theorem there is no requirement that

∫ π

−π
urdz = 0. This is because one

can actually prove this holds without any additional assumptions. First note that by the

incompressible condition we have that

∂ru
r +

ur

r
+ ∂zu

z = 0, (4.1.3)

which can be rewritten as

1

r
∂r(ru

r) + ∂zu
z = 0. (4.1.4)

We can integrate this equation from −π to π along the z variable to obtain

1

r

∫ π

−π
∂r(ru

r)dz +

∫ π

−π
∂zu

zdz = 0. (4.1.5)

However, since u is periodic on [−π, π] we have that

∫ π

−π
∂zu

zdz = uz
∣∣∣π
−π

= 0, (4.1.6)

which gives us that ∫ π

−π
∂r(ru

r)dz = 0. (4.1.7)

Therefore, by fundamental theorem of calculus and the above, we have

∫ π

−π
ur(r, z)dz =

1

r

∫ r

0
∂r̃

(∫ π

−π
r̃ur(r̃, z)dz

)
dr̃ =

1

r

∫ r

0

∫ π

−π
∂r̃ (r̃ur(r̃, z)) dzdr̃ = 0.

(4.1.8)

By differentiation we also have that

∫ π

−π
∂ru

rdz = ∂r

(∫ π

−π
urdz

)
= 0.
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4.2 Brezis-Gallouet Inequality

To prove Theorem 5, we will need to get some bounds. One inequality that we need is the

Brezis−Gallouet inequality found in [BG]:

Lemma 6 Let f ∈ H2(O) where O ⊂ R2. Then there exists a constant CO, depending only

on O, such that

‖f‖L∞(O) ≤ CO‖f‖H1(O) log1/2

(
e+
‖∆f‖L2(O)

‖f‖H1(O)

)
. (4.2.1)

We note that the original Brezis−Gallouet inequality is written as:

‖f‖L∞(O) ≤ CO‖f‖H1(O) log1/2

(
e+
‖f‖H2(O)

‖f‖H1(O)

)
.

However, by going through the proof in [BG], we see that the norm ‖f‖H2(O) in the log

term can be replaced by ‖∆f‖L2(O) + ‖f‖L2(O). Moreover,

‖∆f‖L2(O) + ‖f‖L2(O)

‖f‖H1(O)
=
‖∆f‖L2(O)

‖f‖H1(O)
+
‖f‖L2(O)

‖f‖H1(O)
≤
‖∆f‖L2(O)

‖f‖H1(O)
+
‖f‖L2(O)

‖f‖L2(O)
≤
‖∆f‖L2(O)

‖f‖H1(O)
+e.

Hence (4.2.1) is valid. However, for our purposes we will need the following modified B-Z

inequality:

‖f‖L∞(O) ≤ CO
(
‖f‖H1(O) + 1

)
log1/2

(
e+ ‖∆f‖L2(O)

)
(4.2.2)

which follows from the following inequality

C‖f‖H1(O) log1/2

(
e+
‖∆f‖L2(O)

‖f‖H1(O)

)
≤ C

(
‖f‖H1(O) + 1

)
log1/2

(
e+ ‖∆f‖L2(O)

)
.
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The inequality holds because if ‖f‖H1(O) ≥ 1, then
‖∆f‖L2(O)

‖f‖H1(O)
≤ |∆f‖L2(O). If ‖f‖H1(O) < 1,

then consider the function f defined on [0, 1] by

f(x) =


0 x = 0

x
x+1

log1/2(e+A
x

)

log1/2(e+A)
0 < x ≤ 1.

As x→ 0+, we see that f → 0. Hence f attains a maximum on [0, 1]. So f(x) ≤ C for some

C. If we set A = ‖∆f‖L2(O) and regard x as x = ‖f‖H1(O), then

f(x) ≤ C

‖f‖H1(O)

‖f‖H1(O) + 1

log1/2

(
e+

‖∆f‖L2(O)

‖f‖H1(O)

)
log1/2

(
e+ ‖∆f‖L2(O)

) ≤ C
‖f‖H1(O) log1/2

(
e+
‖∆f‖L2(O)

‖f‖H1(O)

)
≤ C

(
‖f‖H1(O) + 1

)
log1/2

(
e+ ‖∆f‖L2(O)

)
.

(4.2.3)

Hence we obtain (4.2.2).

4.3 First Decay of the Velocitiy and Vorticity

We note that in this thesis C stands for a positive constant that may change from line to

line. If C depends on any significant parameter or variable, we will use subscripts to denote

such a dependence.

4.3.1 First Decay of wθ

The first goal is to obtain some decay on wθ. Pick x0 ∈ R3 and we assume that, without

loss of generality, in cylindrical coordinates x0 = (r0, 0, 0). Also choose x0 so that |x′0| = λ

is large. The following arguments will work on any point where λ is large. Now scale the
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velocity and vorticity with respect to the scaling x̃ = x
λ :

ũ(x̃) = λu(λx̃) = λu(x), (4.3.1)

w̃(x̃) = λ2w(λx̃) = λ2w(x). (4.3.2)

We note that these are the standard scaling that the velocity and the vorticity of the NSE

satisfy.

4.3.1.1 Scaled Computations

In the calculations that follow, we will be working with the scaled functions ũ and w̃ and the

scaled variable x̃. To simplify notation, we will not use the “∼ ” throughout the following

calculations. We note that the scaled velocity and vorticity still satisfy the NSE and vorticty

equations.

Define the domains

D1 =

{
(r, θ, z) :

1

2
< r <

3

2
, 0 ≤ θ ≤ 2π,−π

λ
≤ z ≤ π

λ

}
(4.3.3)

and

D2 =

{
(r, θ, z) :

3

4
< r <

5

4
, 0 ≤ θ ≤ 2π,−π

λ
≤ z ≤ π

λ

}
. (4.3.4)

Note that D2 ⊆ D1. Let ψ(y) be a cut-off function depending only on r such that sup(ψ) ⊆

D1, ψ = 1 on D2, and ∇ψ is bounded. The first step is to get estimates on ‖∇w‖2L2(D)2
. We

will do this by testing the vorticity equations with respect to ψ2wr, ψ2wθ, ψ2wz to obtain

the following:

−
∫
D1

ψ2wr
(

∆− 1

r2

)
wrdy = −

∫
D1

[
(ur∂r + uz∂z)w

rψ2wr + (wr∂r + wz∂z)u
rψ2wr

]
dy,

(4.3.5)
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−
∫
D1

ψ2wθ
(

∆− 1

r2

)
wθdy = −

∫
D1

[
(ur∂r + uz∂z)w

θψ2wθ +
ur

r
(ψwθ)2 + 2

uθwr

r
ψ2wθ

]
dy,

(4.3.6)

−
∫
D1

ψ2wz∆wzdy = −
∫
D1

[
(ur∂r + uz∂z)w

zψ2wz + (wr∂r + wz∂z)u
zψ2wz

]
dy. (4.3.7)

For equations (4.3.5) through (4.3.7), we will do integration by parts, use the incompressible

condition, and use the following identity:

−
∫

∆fψ2fdy =

∫
|∇(fψ)|2 − f2|∇ψ|2dy. (4.3.8)

We first work with (4.3.5):∫
D1

(
|∇(wrψ)|2 +

(wrψ)2

r2

)
dy

=

∫
D1

(
(wr)2|∇ψ|2 − 1

2
ψ2(ur∂r + uz∂z)(w

r)2 + (wrψ)2∂ru
r + wrwzψ2∂zu

r
)
dy

=

∫
D1

(
(wr)2|∇ψ|2 +

1

2
(wr)2(ur∂r + uz∂z)ψ

2 − ur∂r(wrψ)2 − (wrψ)2u
r

r

− ur∂z(wrψwzψ)
)
dy

=

∫
D1

(
(wr)2|∇ψ|2 +

1

2
(wr)2(ur∂r + uz∂z)ψ

2 − 2urwrψ∂r(w
rψ)− (wrψ)2u

r

r

− ur∂z(wrψwzψ)
)
dy.

(4.3.9)

We now estimate each integral:

∫
D1

(wr)2|∇ψ|2dy ≤ ‖∇ψ‖2L∞(D1)‖w
r‖2L2(D1), (4.3.10)

∫
D1

(wr)2(ur∂r + uz∂z)ψ
2dy ≤

∫
D1

(wr)2

(
|(ur)2

2
+
|∂r(ψ2)|2

2
+

(uz)2

2
+
|∂z(ψ2)|2

2

)
dy

≤ C(‖∇ψ2‖2L∞(D1) + ‖(ur, uz)‖2L∞(D1))‖w
r‖2L2(D1)

≤ C(1 + ‖(ur, uz)‖2L∞(D1))‖w
r‖2L2(D1),

(4.3.11)
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−2

∫
D1

urwrψ∂r(w
rψ)dy ≤ 2

∫
D1

4(urwrψ)2 +
|∂r(wrψ)|2

16
dy

≤ 8‖ur‖2L∞(D1)‖ψ‖
2
L∞(D1)‖w

r‖2L2(D1) +
1

8
‖∇(wrψ)‖2L2(D1),

(4.3.12)∫
D1

(wrψ)2u
r

r
dy =

∫
D1

(wrψ)2

(
(ur)2

2
+

1

2r2

)
dy

≤ C‖ψ‖2L∞(D1)‖u
r‖2L∞(D1)‖w

r‖2L2(D1) + C‖wr‖2L2(D1)‖ψ‖
2
L∞(D1)‖r

−1‖2L2(D1)

≤ C(1 + ‖ur‖2L∞(D1))‖w
r‖2L2(D1),

(4.3.13)∫
D1

ur∂z(w
rψwzψ)dy =

∫
D1

ur(∂z(w
rψ)wzψ + ∂z(w

zψ)wrψ)dy

≤
∫
D1

2(urwzψ)2 +
(∂z(w

rψ))2

8
+ 2(urwrψ)2 +

(∂z(w
zψ))2

8
dy

≤ C‖ur‖2L∞(D1)‖ψ‖
2
L∞(D1)‖(w

r, wz)‖2L2(D1)

+
1

8

(
‖∇(wrψ)‖2L2(D1) + ‖∇(wzψ)‖2L2(D1)

)
.

(4.3.14)

In the above calculations we used the epsilon Young Inequality: for a, b ≥ 0 and ε > 0 we

have ab ≤ a2

2ε + εb2

2 .

By the above estimates and (4.3.9) we have

‖∇(wrψ)‖2L2(D1) ≤ C
(

1 + ‖(ur, uz)‖2L∞(D1)

)
‖(wr, wz)‖2L2(D1)

+
1

4

(
‖∇(wrψ)‖2L2(D1) + ‖∇(wzψ)‖2L2(D1)

)
.

(4.3.15)

This takes care of the estimates for ∇wr.
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Next we work with (4.3.7):∫
D1

|∇(wzψ)|2dy

=

∫
D1

(
(wz)2|∇ψ|2 − 1

2
ψ2(ur∂r + uz∂z)(w

z)2 + wrwzψ2∂ru
z + (wzψ)2∂zu

z

)
dy

=

∫
D1

(
(wz)2|∇ψ|2 +

1

2
(wz)2(ur∂r + uz∂z)ψ

2 − uz∂r(wrwzψ2)− uz

r
wrwzψ2

− 2uzwzψ∂z(w
zψ)

)
dy.

(4.3.16)

We again estimate each integral:

∫
D1

(wz)2|∇ψ|2dy ≤ ‖∇ψ‖2L∞(D1)‖w
z‖2L2(D1), (4.3.17)

∫
D1

(wz)2(ur∂r + uz∂z)ψ
2dy ≤

∫
D1

(wz)2

(
|(ur)2

2
+
|∂r(ψ2)|2

2
+

(uz)2

2
+
|∂z(ψ2)|2

2

)
dy

≤ C(1 + ‖(ur, uz)‖2L∞(D1)‖w
z‖2L2(D1),

(4.3.18)∫
D1

uz∂r(w
rψwzψ)dy =

∫
D1

uz(∂r(w
rψ)wzψ + ∂r(w

zψ)wrψ)dy

≤
∫
D1

2(uzwzψ)2 +
(∂r(w

rψ))2

8
+ 2(uzwrψ)2 +

(∂r(w
zψ))2

8
dy

≤ C‖uz‖2L∞(D1)‖ψ‖
2
L∞(D1)‖(w

r, wz)‖2L2(D1)

+
1

8

(
‖∇(wrψ)‖2L2(D1) + ‖∇(wzψ)‖2L2(D1)

)
,

(4.3.19)∫
D1

uz

r
wrwzψ2dy =

∫
D1

(
(wrψ)2

2
+

(wzψ)2

2

)(
(uz)2

2
+

1

2r2

)
dy

≤ C(1 + ‖uz‖2L∞(D1))‖(w
r, wz)‖2L2(D1),

(4.3.20)

−2

∫
D1

uzwzψ∂z(w
zψ)dy ≤ 2

∫
D1

4(uzwzψ)2 +
|∂z(wzψ)|2

16
dy

≤ 8‖uz‖2L∞(D1)‖ψ‖
2
L∞(D1)‖w

z‖2L2(D1) +
1

8
‖∇(wzψ)‖2L2(D1).

(4.3.21)
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As before we used epsilon Young Inequality. By the above estimates and (4.3.16) we have

‖∇(wzψ)‖2L2(D1) ≤ C
(

1 + ‖(ur, uz)‖2L∞(D1)

)
‖(wr, wz)‖2L2(D1)

+
1

4

(
‖∇(wrψ)‖2L2(D1) + ‖∇(wzψ)‖2L2(D1)

)
.

(4.3.22)

Now we combine (4.3.15) and (4.3.22) together, group the ‖∇(wrψ)‖2L2(D1)+|∇(wzψ)‖2L2(D1)

term to the left-hand side of the inequality, then use the fact that ψ = 1 on D2 to obtain

‖(∇wr,∇wz)‖2L2(D2) ≤ C
(

1 + ‖(ur, uz)‖2L∞(D1)

)
‖(wr, wz)‖2L2(D1).

(4.3.23)

Finally we work with (4.3.6):∫
D1

(
|∇(wθψ)|2 +

(wθ)2ψ2

r2

)
dy

=

∫
D1

(
(wθ)2|∇ψ|2 − 1

2
ψ2(ur∂r + uz∂z)(w

θ)2 − ur

r
(wθψ)2 − 2

uθ

r
wrwθψ2

)
dy

=

∫
D1

(
(wθ)2|∇ψ|2 +

1

2
(wθ)2(ur∂r + uz∂z)ψ

2 − ur

r
(wθψ)2 − 2

uθ

r
wrwθψ2

)
dy.

(4.3.24)

And as before we estimate each integral:

∫
D1

(wθ)2|∇ψ|2dy ≤ ‖∇ψ‖2L∞(D1)‖w
θ‖2L2(D1),

∫
D1

(wθ)2(ur∂r + uz∂z)ψ
2dy ≤ ‖∇ψ2‖L∞(D1)‖(ur, uz)‖L∞(D1)‖wθ‖2L2(D1),∫

D1

ur

r
(wθψ)2dy ≤ ‖r−1‖L∞(D1)‖ψ‖2L∞(D1)‖u

r‖L∞(D1)‖wθ‖2L2(D1)

≤ C‖ψ‖2L∞(D1)‖u
r‖L∞(D1)‖wθ‖2L2(D1),∫

D1

uθ

r
wrwθψ2dy ≤ ‖r−1‖L∞(D1)‖ψ‖2L∞(D1)‖u

θ‖L∞(D1)

∫
D1

(wr)2

2
+

(wθ)2

2
dy

≤ C‖ψ‖2L∞(D1)‖u
θ‖L∞(D1)‖(wr, wθ)‖2L2(D1).

By the above estimates and (4.3.24) we have

‖∇wθ‖2L2(D2) ≤ C
(

1 + ‖(ur, uθ, uz)‖L∞(D1)

)
‖(wr, wθ)‖2L2(D1).

(4.3.25)
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Define the two-dimensional domains

D̄1 =

{
(r, z) :

1

2
< r <

3

2
, −π

λ
≤ z ≤ π

λ

}
(4.3.26)

and

D̄2 =

{
(r, z) :

3

4
< r <

5

4
,−π

λ
≤ z ≤ π

λ

}
. (4.3.27)

Note that since r is bounded in D̄1, D̄2,D1, and D2, we have that

‖f‖2L2(D̄) =

∫
D̄
|f |2drdz ≤ C

∫
D̄
|f |2rdrdz ≤ 2πC

∫
D
|f |2rdrdθdz = C‖f‖2L2(D), (4.3.28)

‖∇2f‖2L2(D̄) =

∫
D̄
|∇2f |2drdz ≤ C

∫
D̄
|∇2f |2rdrdz ≤ 2πC

∫
D
|∇f |2rdrdθdz = C‖∇f‖2L2(D),

(4.3.29)

‖∆2f‖2L2(D̄) =

∫
D̄
|∆2f |2drdz ≤ C

∫
D̄
|∆2f |2rdrdz ≤ 2πC

∫
D
|∆f |2rdrdθdz = C‖∆f‖2L2(D),

(4.3.30)

and

‖f‖L∞(D̄) = ‖f‖L∞(D) (4.3.31)

for any axially symmetric function f . Then by applying the B-Z inequality and (4.3.25),

we have

‖wθ‖L∞(D2) = ‖wθ‖L∞(D̄2)

≤ Cλ1/2
(
1 + ‖wθ‖H1(D̄2)

)
log1/2

(
e+ ‖∆2w

θ‖L2(D̄2)

)
= Cλ1/2

(
1 + ‖wθ‖L2(D̄2) + ‖∇2w

θ‖L2(D̄2)

)
log1/2

(
e+ ‖∆2w

θ‖L2(D̄2)

)
≤ Cλ1/2

(
1 + ‖wθ‖L2(D2) + ‖∇wθ‖L2(D2)

)
log1/2

(
e+ C‖∆wθ‖L2(D2)

)
≤ Cλ1/2

(
1 + (1 + ‖(ur, uθ, uz)‖1/2L∞(D1))‖(w

r, wθ)‖L2(D1)

)
× log1/2

(
e+ C‖∆wθ‖L2(D1)

)
.

(4.3.32)
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Similarly, we apply the B-Z inequality and (4.3.23), to obtain

‖(wr, wz)‖L∞(D2) = ‖(wr, wz)‖L∞(D̄2)

≤ Cλ1/2
(
1 + ‖(wr, wz)‖H1(D̄2)

)
log1/2

(
e+ ‖∆(wr, wz)‖L2(D̄2)

)
≤ Cλ1/2

(
1 + (1 + ‖(ur, uz)‖L∞(D1))‖(wr, wz)‖L2(D1)

)
× log1/2

(
e+ C‖∆(wr, wz)‖L2(D1)

)
.

(4.3.33)

4.3.1.2 Un-Scaled Computations

Recall that all the calculations above took place in terms of the scaled functions ũ, w̃ and

scaled variable x̃. Therefore, we will scale back to the domains:

D1,λ =

{
(r, θ, z) :

1

2
λ < r <

3

2
λ, 0 ≤ θ ≤ 2π, −π ≤ z ≤ π

}
(4.3.34)

and

D2,λ =

{
(r, θ, z) :

3

4
λ < r <

5

4
λ, 0 ≤ θ ≤ 2π, −π ≤ z ≤ π

}
. (4.3.35)

Based on the scaling we will have

‖ũ‖L∞(D·) = λ‖u‖L∞(D·,λ), (4.3.36)

‖w̃‖L∞(D·) = λ2‖w‖L∞(D·,λ), (4.3.37)

‖w̃‖L2(D·) =

(∫
D·
|λ2w(λx̃)|2dx̃

)1/2

=

(∫
D·,λ

λ4|w(x)| 1

λ3
dx

)1/2

= λ1/2‖w‖L2(D·,λ),

(4.3.38)

‖∇w̃‖L2(D·) =

(∫
D·
|λ3∇w(λx̃)|2dx̃

)1/2

=

(∫
D·,λ

λ6|∇w(x)| 1

λ3
dx

)1/2

= λ3/2‖∇w‖L2(D·,λ),

(4.3.39)
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and

‖∆w̃‖L2(D·) =

(∫
D·
|λ4∆w(λx̃)|2dx̃

)1/2

=

(∫
D·,λ

λ8|∆w(x)| 1

λ3
dx

)1/2

= λ5/2‖∆w‖L2(D·,λ).

(4.3.40)

Hence scaling back (4.3.23),(4.3.25), (4.3.32) and (4.3.33), we will obtain

λ3/2‖(∇wr,∇wz)‖L2(D2,λ) ≤ C
(

1 + λ‖(ur, uz)‖L∞(D1,λ)

)
λ1/2‖(wr, wz)‖L2(D1,λ)

≤ Cλ3/2‖(ur, uz)‖L∞(D1,λ)‖(wr, wz)‖L2(D1,λ),

(4.3.41)

λ3/2‖∇wθ‖L2(D2,λ) ≤ C
(

1 + λ1/2‖(ur, uz)‖1/2L∞(D1,λ)

)
λ1/2‖(wr, wθ)‖L2(D1,λ)

≤ Cλ‖(ur, uz)‖L∞(D1,λ)‖(wr, wθ)‖L2(D1,λ),

(4.3.42)

λ2‖wθ‖L∞(D2,λ) ≤ Cλ1/2
(
1 + (1 + λ1/2‖(ur, uθ, uz)‖1/2L∞(D1,λ))λ

1/2‖(wr, wθ)‖L2(D1,λ)

)
× log1/2

(
e+ Cλ5/2‖∆wθ‖L2(D1,λ)

)
≤ Cλ1/2

(
λ1/2‖(ur, uθ, uz)‖1/2L∞(D1,λ)λ

1/2‖(wr, wθ)‖L2(D1,λ)

)
× log1/2

(
Cλ‖∆wθ‖L2(D1,λ)

)
,

(4.3.43)

and

λ2‖(wr, wz)‖L∞(D2,λ) ≤ Cλ1/2
(
1 + (1 + λ‖(ur, uz)‖L∞(D1,λ))λ

1/2‖(wr, wθ)‖L2(D1,λ)

)
× log1/2

(
e+ Cλ5/2‖∆(wr, wz)‖L2(D1,λ)

)
≤ Cλ1/2

(
λ‖(ur, uz)‖L∞(D1,λ)λ

1/2‖(wr, wθ)‖L2(D1,λ)

)
× log1/2

(
Cλ‖∆(wr, wz)‖L2(D1,λ)

)
.

(4.3.44)
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Since u is smooth, bounded, and has bounded higher-order derivatives, we have that

‖∆(wr, wθ, wz)‖L2(D1,λ) is finite and so we have

‖(∇wr,∇wz)‖L2(D2,λ) ≤ C‖(ur, uz)‖L∞(D1,λ)‖(wr, wz)‖L2(D1,λ), (4.3.45)

‖∇wθ‖L2(D2,λ) ≤ Cλ−1/2‖(ur, uz)‖L∞(D1,λ)‖(wr, wθ)‖L2(D1,λ), (4.3.46)

‖wθ‖L∞(D2,λ) ≤ Cλ−1/2‖(ur, uθ, uz)‖1/2L∞(D1,λ)‖(w
r, wθ)‖L2(D1,λ) log1/2(λ). (4.3.47)

and

‖(wr, wz)‖L∞(D2,λ) ≤ C‖(ur, uz)‖L∞(D1,λ)‖(wr, wθ)‖L2(D1,λ) log1/2(λ). (4.3.48)

Now using the fact that ‖(ur, uθ, uz)‖L∞(R2×[−π,π]) is finite and (4.1.2), we have our first

decay of wθ:

‖wθ‖L∞(D2,λ) ≤ Cλ
−1+α

2 log1/2(λ). (4.3.49)

We recall that although the above computations were done for points that are of the form

x = (r0, 0, 0) where |x′| = λ is large, all the computations can be generalized to any point

x in R3 such that |x′| = λ is large.

4.3.2 First Decay of u and (wr, wz)

Define

D3,λ =

{
(r, θ, z) :

7

8
λ < r <

9

8
λ, 0 ≤ θ ≤ 2π, −π ≤ z ≤ π

}
. (4.3.50)

Note that D3,λ ⊆ D2,λ. Let x = (r cos θ, r sin θ, z), where |x′| = r is large. This will be our λ

from now on. Since we’ll be working with the Green’s function, we let y = (ρ cosφ, ρ, sinφ, `)

be the variable we integrate with respect with in the representation formula. Let ψ(x′)
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be a cutoff function that is independent of z such that sup(ψ) ⊆ D2,r, ψ = 1 on D3,r,

|ψ| ≤ C, |∇ψ| ≤ C
r , and |∇2ψ| ≤ C

r2
.

Note that for any smooth, divergence free vector field f , we have

−∆(fψ) = ψ∇× (∇× f)− 2(∇ψ · ∇)f − f∆ψ. (4.3.51)

In particular, for b = urer + uzez, we have ∇× b = wθeθ and so we obtain

−∆(bψ) = ψ∇× (wθeθ)− 2(∇ψ · ∇)b− b∆ψ. (4.3.52)

The terms on the left-hand side of the equation all have mean zero on [−π, π] because of

our assumption that
∫ π
−π u

θdz =
∫ π
−π u

zdz = 0. Therefore, by the representation formula

for Poisson’s equation, we have using the Green’s function on R2 × S1 that

(bψ)(x) =

∫
S1

∫
R2

G(x, y)ψ∇× (wθeθ)dy − 2

∫
S1

∫
R2

G(x, y)(∇ψ · ∇)bdy

−
∫
S1

∫
R2

G(x, y)(∆ψ)bdy.

(4.3.53)

Component-wise we see that on D3,r

ur(x) =

∫
S1

∫
R2

G(x, y)ψ∇× (wθeθ) · erdy − 2

∫
S1

∫
R2

G(x, y)(∇ψ · ∇)b · erdy

−
∫
S1

∫
R2

G(x, y)(∆ψ)b · erdy

=

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)ψ∂`w
φ cos(φ− θ)ρdρdφd`

− 2

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)∂ρψ∂ρu
ρ cos(φ− θ)ρdρdφd`

−
∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)

(
∂2
ρψ +

1

ρ
∂ρψ

)
uρ cos(φ− θ)ρdρdφd`.

(4.3.54)

All calculations are justified because
∫ π
−π ∂`w

φd` = wφ
∣∣π
−π = 0,

∫ π
−π ∂ρu

ρd` = 0 and
∫ π
−π u

ρ =

0.
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To simplify notation, we will assume θ = 0. This is because our solution is axially-

symmetric and all the evaluations of the integrals are independent of θ. Since ψ is indepen-

dent of `, we can do an integration by parts with respect to ` to obtain

ur(x) =

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)ψ∂`w
φ cosφρdρdφd`

− 2

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)∂ρψ∂ρu
ρ cosφρdρdφd`

−
∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)

(
∂2
ρψ +

1

ρ
∂ρψ

)
uρ cosφρdρdφd`

= −
∫ π

−π

∫ ∞
0

(∫ 2π

0
∂`G(x, y) cos(φ− θ)dφ

)
ψwφρdρd`

− 2

∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y) cosφdφ

)
∂ρψ∂ρu

ρρdρd`

−
∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y) cosφdφ

)(
∂2
ρψ +

1

ρ
∂ρψ

)
uρρdρd`

= I1 + I2 + I3.

(4.3.55)

We will now estimate each integral. We first start with

I1 =

∫ π

−π

∫ ∞
0

(∫ 2π

0
∂`G(x, y) cos(φ)dφ

)
ψwφρdρd`. (4.3.56)

Because of the cutoff function φ, this integral is actually on the region [3/4r, 5/4r]× [0, 2π]×

[−π, π] = D2,r. Because we are working in the region |ρ− r| ≤ 1
4r, we can use the following

estimate (3.2.19) for the Green’s function from on R2 × [−π, π]:

∫ 2π

0
∂`G(x, y)dφ ≤ C e−c0|ρ−r|

ρ(|ρ− r|+ |z − `|)
.

52



Then, using this estimate, the Tonelli theorem to switch the integration order, we have

|I1| ≤ ‖wφ‖L∞(D2,r)‖ψ‖L∞
∫ π

−π

∫
|ρ−r|≤ 1

4
r

e−c0|ρ−r|

ρ(|ρ− r|+ |z − `|)
ρdρd`

≤ C|wφ‖L∞(D2,r)

∫
|ρ−r|≤ 1

4
r

∫ π

−π

1

|ρ− r|+ |z − `|
d`e−c0|ρ−r|dρ

= C‖wφ‖L∞(D2,r)

∫
|ρ−r|≤ 1

4
r

∫ π

−π

1

|ρ− r|

 1

1 + |z−`|
|ρ−r|

 d`e−c0|ρ−r|dρ

≤ C‖wφ‖L∞(D2,r)

∫
|ρ−r|≤ 1

4
r

ln

(
1 +

2π

|ρ− r|
+

π2

|ρ− r|2

)
e−c0|ρ−r|dρ

= C‖wφ‖L∞(D2,r)J.

(4.3.57)

We claim that

J =

∫
|ρ−r|≤ 1

4
r

ln

(
1 +

2π

|ρ− r|
+

π2

|ρ− r|2

)
e−c0|ρ−r|dρ

=

∫ 5
4
r

3
4
r

ln

(
1 +

2π

|ρ− r|
+

π2

|ρ− r|2

)
e−c0|ρ−r|dρ

(4.3.58)

can be controlled by an absolute constant independent of r.

By a change of variables we have

∫ r

3
4
r

ln

(
1 +

2π

|ρ− r|
+

π2

|ρ− r|2

)
e−c0|ρ−r| dρ =

∫ r

3
4
r

ln

(
1 +

2π

r − ρ
+

π2

|r − ρ|2

)
e−c0(r−ρ) dρ

=

∫ 1
4
r

0
ln

(
1 +

2π

u
+
π2

u2

)
e−c0u du,

and

∫ 5
4
r

r
ln

(
1 +

2π

|ρ− r|
+

π2

|ρ− r|2

)
e−c0|ρ−r|dρ =

∫ 5
4
r

r
ln

(
1 +

2π

ρ− r
+

π2

|ρ− r|2

)
e−c0(ρ−r)dρ

=

∫ 1
4
r

0
ln

(
1 +

2π

u
+
π2

u2

)
e−c0udu,

so

J = 2

∫ 1
4
r

0
ln

(
1 +

2π

u
+
π2

u2

)
e−c0udu ≤ 2

∫ ∞
0

ln

(
1 +

2π

u
+
π2

u2

)
e−c0udu. (4.3.59)
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If u ∈ (0, 1] then ln

(
1 +

2π

u
+
π2

u2

)
e−c0u ≤ ln

(
1 +

C

u2

)
so

∫ 1

ε
ln

(
1 +

2π

u
+
π2

u2

)
e−c0udu ≤

∫ 1

ε
ln

(
1 +

C

u2

)
du

= ln

(
1 +

C

u2

)
u+

2√
C

arctan

(
u√
C

)∣∣∣∣1
ε

= ln (1 + C) +
2√
C

arctan

(
1√
C

)
− ln

(
1 +

C

ε

)
ε.

Therefore,

lim
ε→0+

∫ 1

ε
ln

(
1 +

C

u2

)
du = ln(1 + C) +

2√
C

arctan

(
1√
C

)
, (4.3.60)

so by the monotone convergence theorem for sequences

∫ 1

0
ln

(
1 +

2π

u
+
π2

u2

)
e−c0u du ≤ ln(1 + C) +

2√
C

arctan

(
1√
C

)
. (4.3.61)

If u ∈ [1,∞), then ln

(
1 +

2π

u
+
π2

u2

)
e−c0u ≤ ln

(
1 +

C

u

)
e−c0u, so

∫ ∞
1

ln

(
1 +

2π

u
+
π2

u2

)
e−c0udu ≤

∫ ∞
1

ln

(
1 +

C

u

)
e−c0udu

≤
∞∑
N=1

ln

(
1 +

C

N

)
e−c0N

<∞,

(4.3.62)

where the sum is finite by the ratio test. Hence J ≤ C and we therefore have

|I1| ≤ C‖wφ‖L∞(D2,r)
(4.3.63)

For I2 =

∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y) cos(φ)dφ

)
∂ρψ∂ρu

ρρdρd`, we use the fact that

|ψ| ≤ C
r , that the integration takes place on the region 1

8r ≤ |p− r| ≤
1
4r or (D̄3,r)

c ∩ D̄2,r
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and the estimate (3.2.20) to obtain

|I2| ≤
∫ π

−π

∫
1
8
r≤|ρ−r|≤ 1

4
r
e−c0|p−r||∂ρψ||∂ρuρ|ρdρd`

≤ C‖uρ‖L∞((D̄3,r)c∩D̄2,r)

∫ π

−π

∫
1
8
r≤|ρ−r|≤ 1

4
r
e−c0|ρ−r|dρd`

= C

∫
1
8
r≤|ρ−r|≤ 1

4
r
e−c0|ρ−r|dρ.

≤ Ce−
c0
8
r

≤ Ce−
c0
8
r.

(4.3.64)

Note that the integration along 1
8r ≤ |p − r| ≤

1
4r can be split into two intervals:

[3
4r,

7
8r] if r < ρ and [9

8r,
5
4r] if ρ < r. In either case, both integrals can be bounded by

e−
c0
8
r

c0
.

For I3 =

∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y) cos(φ)dφ

)(
∂2
ρψ +

1

ρ
∂ρψ

)
uρρdρd`, we have that

the integration is on 1
8r ≤ |p − r| ≤ 1

4r, so we can use the estimate (3.2.20). Also, by

properties of the cutoff function, we have |∂ρψ| ≤ C
r , |∂

2
ρψ| ≤ C

r2
and thus for large r

|I3| ≤
∫ π

−π

∫
1
8
r≤|ρ−r|≤ 1

4
r
e−c0|p−r||

(
∂2
ρψ +

1

ρ
∂ρψ

)
uρρdρd`

≤ C sup
1
8
r≤|ρ−r|≤ 1

4
r×[−π,π]

|∂ρuρ|
∫

1
8
r≤|ρ−r|≤ 1

4
r
e−c0|p−r|

(
1

r2
+

1

r

)
ρdρ

≤ C
∫

1
8
r≤|ρ−r|≤ 1

4
r
e−c0|p−r|dρ

≤ Ce−
c0
8
r.

(4.3.65)

Hence by (4.3.63) - (4.3.65), and using (4.3.49) we have for r sufficiently large,

‖ur‖L∞(D3,r) ≤ Cr
−1+α

2 log1/2 r. (4.3.66)
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Now we return to (4.3.53) and look at the representation for uz on D3,r:

uz =

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)ψ∂ρ(ρw
φ)dρdφd`− 2

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)∂ρψ∂ρu
zρdρdφd`

−
∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)(∂2
ρψ +

1

ρ
∂ρψ)uzρdρdφd`.

As mentioned before, because of the assumption that integration on [−π, π] of uz

is zero, we have that
∫ π
−π w

θdz =
∫ π
−π ∂zu

r − ∂ruzdz = 0 so the representation is justified.

By performing an integration by parts and using the axially symmetric condition we have

that

uz =

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)ψ∂ρ(ρw
φ)dρdφd`− 2

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)∂ρψ∂ρu
zρdρdφd`

−
∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)(∂2
ρψ +

1

ρ
∂ρψ)uzρdρdφd`

= −
∫ π

−π

∫ ∞
0

(∫ 2π

0
∂ρG(x, y)dφ

)
ψwφρdρd`−

∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y)dφ

)
∂ρψw

φρdρd`

− 2

∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y)dφ

)
∂ρψ∂ρu

zρdρd`

−
∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y)dφ

)
(∂2
ρψ +

1

ρ
∂ρψ)uzρdρd`

= J1 + J2 + J3 + J4.

We now estimate each integral. For J1 =

∫ π

−π

∫ ∞
0

(∫ 2π

0
∂ρG(x, y) dφ

)
ψwφρdρd`

we do an estimate similar to the estimate we did for I1 to get

|J1| ≤ C‖ψ‖L∞‖wφ‖L∞(D2,r)

≤ C‖wφ‖L∞(D2,λ).

(4.3.67)

For J2 =

∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y)dφ

)
∂ρψw

φρdρd` we do an estimate similar to the estimate

we did for I2 to get

|J2| ≤ C‖∂ρψ‖L∞‖wφ‖L∞(D2,r)e
− c0

8
r

≤ ‖wφ‖L∞(D2,r)e
− c0

8
r.

(4.3.68)
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For J3 =

∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y)dφ

)
∂ρψ∂ρu

`ρdρd` we do an estimate similar to the estimate

we did for I2 to get

|J3| ≤ C‖∂ρu`‖L∞(D2,r)e
− c0

8
r. (4.3.69)

For J4 =

∫ π

−π

∫ ∞
0

(∫ 2π

0
G(x, y)dφ

)(
∂2
ρψ +

1

ρ
∂ρψ

)
u`ρdρd` we do the same kind of esti-

mate as in I3 to get

|J4| ≤ C‖∂ρψ‖L∞‖u`‖L∞(D2,r)e
− c0

8
r. (4.3.70)

By combining (4.3.67) - (4.3.70) and (4.3.49), we have for r sufficiently large,

‖uz‖L∞(D3,r) ≤ Cr
−1+α

2 log1/2 r. (4.3.71)

Define

D4,λ =

{
(r, θ, z) :

15

16
λ < r <

17

16
λ, 0 ≤ θ ≤ 2π, −π ≤ z ≤ π

}
. (4.3.72)

Note that D4,λ ⊆ D3,λ.

By following the same calculation that yielded (4.3.48) on the domains D3,λ and

D4,λ instead of the domains D1,λ and D2,λ, we can obtain similar estimates on the domains

D3,λ and D4,λ . If we use the decay of ur and uz, then we can substitute (4.3.66) and

(4.3.71) and use the D-condition (4.1.2) to obtain the following decay for wr and wz:

‖(wr, wz)‖L∞(D4,r) ≤ C‖(u
r, uz)‖L∞(D3,r)‖(w

r, wθ)‖L2(D3,r) log1/2(r).

≤ Cr
−1+α

2 r
α
2 log1/2 r

= Cr
−1+2α

2 log1/2 r.

(4.3.73)

Now since we have
∫ π
−π u

θdz = 0, we have by the mean value theorem that for any

r, we can find a z0 such that uθ(r, z0) = 0. And since ∂zu
θ = −wr we have
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|uθ(r, z)| =
∣∣∣∣∫ z

z0

∂`u
θd`

∣∣∣∣
≤ C|∂zuθ|

≤ C‖wr‖L∞(D2,r)

≤ Cr
−1+2α

2 log1/2 r.

(4.3.74)

Therefore,

‖(ur, uθ, uz)‖L∞(D4,r) ≤ Cr
−1+2α

2 log1/2 r. (4.3.75)

4.4 Almost 1− 2α Decay by Iteration.

We will repeat the previous process in smaller and smaller domains to improve the decay

of u and w.

Let

Sn =
{

(ρ, z) : |ρ− r| ≤ r

2n+2
,−π ≤ z ≤ π

}
.

Note that S0,S1, and S2 correspond to D2,r,D3,r, and D4,r respectively.

We will iterate in the following way:

1. Use the decay on wθ to improve the decay of ur, uz by means of the Green’s function.

2. Use the decay of ur, uz to improve the decay of wr, wz by means of B-Z inequality.

3. Use the decay of wr, wz to improve the decay of uθ by means of the mean zero

condition.

4. Use the improved decay of ur, uθ, uz to improve the decay of wθ.

5. Repeat.
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We need to pay close attention when we do the iteration because every time we use (4.1.2),

we obtain a rα/2 term. In particular, this occurs whenever we use the B-Z inequality (4.2.2)

because we need to use the condition (4.1.2) to bound the L2 norm of the vorticities.

Specifically, we have the following relationships:

‖(ur, uz)‖L∞(Sn+1) ≤ Cn‖wθ‖L∞(Sn), (4.4.1)

‖(wr, wz)‖L∞(Sn+2) ≤ Cn+1‖(ur, uz)‖L∞(Sn+1)‖(wr, wθ)‖L2(Sn+1) log1/2 r, (4.4.2)

‖uθ‖L∞(Sn+2) ≤ Cn+2‖(wr, wθ)‖L∞(Sn+2), (4.4.3)

‖wθ‖L∞(Sn+3) ≤ Cn+3r
−1/2‖(ur, uθ, uz)‖1/2L∞(Sn+2)‖(w

r, wθ)‖L2(Sn+2) log1/2 r, (4.4.4)

where lim
n→∞

Cn =∞.

We begin the process by remembering that ‖wθ‖L∞(S0) ≤ C0r
−1+α

2 log1/2 r. After

iterating n times we get

‖wθ‖L∞(S3n) ≤ Anr

−
n∑
i=0

2i +

(
2n +

n∑
i=1

2i

)
α

2n+1 (log r)

2n +
n∑
i=1

2i

2n + 1

(4.4.5)

‖(ur, uz)‖L∞(S3n+1) ≤ Bnr

−
n∑
i=0

2i +

(
2n +

n∑
i=1

2i

)
α

2n+1 (log r)

2n +

n∑
i=1

2i

2n+1 ,

(4.4.6)

‖(wr, wz)‖L∞(S3n+2) ≤ Dnr

−
n∑
i=0

2i +

(
2n +

n∑
i=1

2i

)
α

2n+1 (log r)

2n +
n∑
i=1

2i

2n+1 · rα/2(log r)1/2

= Dnr

−
n∑
i=0

2i +
n+1∑
i=1

2iα

2n+1 (log r)

n+1∑
i=1

2i

2n+1 ,

(4.4.7)
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‖uθ‖L∞(S3n+2) ≤ Dnr

−
n∑
i=0

2i +
n+1∑
i=1

2iα

2n+1 (log r)

n+1∑
i=1

2i

2n+1 ,

(4.4.8)

‖(ur, uθ, uz)‖L∞(S3n+2) ≤ 2πDnr

−
n∑
i=0

2i +
n+1∑
i=1

2iα

2n+1 (log r)

n+1∑
i=1

2i

2n+1 ,

(4.4.9)

where lim
n→∞

An = lim
n→∞

Bn = lim
n→∞

Dn =∞. Now in the limit we have

lim
n→∞

−
n∑
i=0

2i +

n+1∑
i=1

2iα

2n+1
= lim

n→∞

−2n+1 + 1 + 2n+2α− 2α

2n+1

= −1 + 2α+ lim
n→∞

1− 2α

2n+1

= −1 + 2α.

(4.4.10)

Define

Ωδ =

{
(ρ, z) : |ρ− r| ≤ δ3

4
r, −π ≤ z ≤ π

}
.

Then for large r, we can get

‖(ur, uθ, uz)‖L∞(Ωδ) ≤ Cδr
−1+2α+δ (4.4.11)

and

‖(wr, wθ, wz)‖L∞(Ωδ) ≤ Cδr
−1+2α+δ (4.4.12)

where δ > 0 and lim
δ→0

Cδ =∞.

4.5 Decay and Vanishing of the Velocity

We first start with obtaining first order decay of |∇w|. Both r and δ we will be chosen later

where r will be sufficiently larger and δ will be sufficiently small. For the next step, we
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also need to iterate the inequalities (4.3.45) and (4.3.46). We can do this after we update

ur, uθ, uz on S3n+2 to obtain

‖(∇wr,∇wz)‖L2(S3n+3) ≤ C‖(ur, uz)‖L∞(S3n+2)‖(wr, wz)‖L∞(S3n+2)

≤ Cr

−
n∑
i=0

2i +
n+1∑
i=1

2iα

2n+1 (log r)

n+1∑
i=1

2i

2n+1 r
α
2

≤ Cr

−
n∑
i=0

2i +

(
2n +

n+1∑
i=1

2i

)
α

2n+1 (log r)

n+1∑
i=1

2i

2n+1 ,

(4.5.1)

and

‖∇wθ‖L2(S3n+3) ≤ Cr−1/2‖(ur, uz)‖L∞(S3n+2)‖(wr, wθ)‖L2(S3n+2)

≤ Cr

−2n −
n∑
i=0

2i +

(
2n +

n+1∑
i=1

2i

)
α

2n+1 (log r)

n+1∑
i=1

2i

2n+1 r
α
2 .

(4.5.2)

Note that in the limit

lim
n→∞

−2n −
n∑
i=0

2i +

(
2n +

n+1∑
i=1

2i

)
α

2n+1
= lim

n→∞

−2n − 2n+1 + 1 +
(
2n + 2n+2 − 2

)
α

2n+1

= −3

2
+

5

2
α.

(4.5.3)

and

lim
n→∞

−
n∑
i=0

2i +

(
2n +

n+1∑
i=1

2i

)
α

2n+1
= lim

n→∞

−2n+1 + 1 +
(
2n + 2n+2 − 2

)
α

2n+1

= −1 +
5

2
α.

(4.5.4)
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Hence for a suitable δ we have

‖∇(wr, wθ, wz)‖L2(Ωδ/2) ≤ Cδr−1+ 5
2
α+δ. (4.5.5)

For the following calculations, we will switch to Euclidean coordinates so we will

write

w = w1e1 + w2e2 + w3e3 = wrer + wθeθ + wzez. (4.5.6)

Fix a point x = (r cos(θ), r sin(θ), z) where r is large. Denote

BR = {y ∈ R3 : |x− y| ≤ R}. (4.5.7)

We considerH the hallowed out cylinder at height z, with inner radius

(
1− δ3

4

)
r,

and outer radius

(
1 +

δ3

4

)
r, generated by rotating the rectangle Ωδ/2 around the curve

{
(y1, y2, y3) :

√
y2

1 + y2
2 = r, y3 = z

}
. (4.5.8)

By dividing the circumference of this curve by the diameter of the ball with radius 1, we

can fill up the hallowed out cylinder with 2πr
2 (rounding up to the nearest integer) many

disjoint balls of radius 1 centered at x whose union is contained in the hallowed out cylinder.

Essentially, these collections of balls will fit inside a torus at height z and radius r which

will fit inside H as long as we choose δ so that 1 ≤ δ3

4 r. One possible choice is δ satisfying(
4
r

)1/3 ≤ δ. This will also ensure so that the estimates we have for u,w, and ∇w on Ωδ/2

will also hold on B1.

Call the collection of balls B. So we have

∑
B∈B

∫
B
|∇w|2dx ≤

∫
H
|∇w|2dx. (4.5.9)
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However, since our functions are axially symmetric, we have that for any ball B in the

collection B,
∫
B |∇w|

2dx =
∫
B1
|∇w|2dx and

∫
H |∇w|

2dx = 2π
∫

Ωδ/2
|∇w2|dx.

Hence

∫
B1

|∇w|2dx ≤ C

r

∫
Ωδ/2

|∇w|2dx. (4.5.10)

Identical calculation shows

∫
B1

|∇u|2dx ≤ C

r

∫
Ωδ/2

|∇u|2dx, (4.5.11)

as well.

By using (4.5.5) and the D-condition, we have

∫
B1

|∇w|2dx ≤ C

r

∫
Ωδ/2

|∇w|2dx ≤ Cδr−3+5α+2δ (4.5.12)

and ∫
B1

|∇u|2dx ≤ C

r

∫
Ωδ/2

|∇u|2dx ≤ Cδr−1+α. (4.5.13)

The next goal is to get decay estimates on ∇w. In Euclidean coordinates, the

vorticity w satisfies

−∆w = −(u · ∇)w + (w · ∇)u. (4.5.14)

We will let ∂w represent the partial derivative of w in the x1, x2 or x3 variable.

Using (4.5.14) we have

−∆(∂w) = −(∂u · ∇)w − (u · ∇)∂w + (w · ∇)∂u+ (∂w · ∇)u. (4.5.15)

Define a cut-off function φ that is supported in B1 and equal to 1 in B1/2. Then
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by the (4.5.15) we have

−∆(φ∂w) = −φ∆(∂w)− 2(∇φ · ∇)∂w − ∂w∆φ

= −φ(∂u · ∇)w − φ(u · ∇)∂w + φ(w · ∇)∂u

+ φ(∂w · ∇)u− 2(∇φ · ∇)∂w − ∂w∆φ.

(4.5.16)

By the use of the Green’s function in three-dimensions G(x, y) = 1
4π|x−y| , we have that

∂w(x) = −
∫
B1

G(x, y)φ(∂u · ∇)wdy −
∫
B1

G(x, y)φ(u · ∇)∂wdy +

∫
B1

G(x, y)φ(w · ∇)∂udy

+

∫
B1

G(x, y)φ(∂w · ∇)udy −
∫
B1

G(x, y)2(∇φ · ∇)∂wdy −
∫
B1

G(x, y)∂w∆φdy.

=

6∑
n=1

In.

(4.5.17)

We now estimate each integral. Note that for any fixed x, we have

‖G(x)‖2L2(B1) =
1

16π2

∫
B1

1

|x− y|2
dy

=
1

16π2

∫ 1

0

∫
∂Br

1

r2
dSdr

=
1

16π2

∫ 1

0

1

r2
4πr2dr

=
1

4π
,

(4.5.18)

‖G(x)‖L1(B1) =
1

16π2

∫
B1

1

|x− y|
dy

=
1

16π2

∫ 1

0

∫
∂Br

1

r
dSdr

=
1

16π2

∫ 1

0

1

r
4πr2dr

=
1

8π
,

(4.5.19)
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‖∇G(x)‖L1(B1) ≤
1

16π2

∫
B1

1

|x− y|2
dy

=
1

16π2

∫ 1

0

∫
∂Br

1

r2
dSdr

=
1

16π2

∫ 1

0

1

r2
4πr2dr

=
1

4π
,

(4.5.20)

and

‖∇G(x)‖L2(B1\B1/2) ≤
1

16π2

∫
(B1\B1/2)

1

|x− y|4
dy

=
1

16π2

∫ 1

1/2

∫
∂Br

1

r4
dSdr

=
1

16π2

∫ 1

1/2

1

r4
4πr2dr

=
1

4π
.

(4.5.21)

Thus, we have

|I1| ≤ ‖φ‖L∞(B1)‖∂u‖L∞(B1)‖G‖L2(B1)‖∇w‖L2(B1)

≤ C‖∇w‖L2(B1)

≤ Cδr−3/2+5/2α+δ,

(4.5.22)

where we also use the general boundeness of ∂u and the estimate of w in (4.5.12). Similarly,

we have

|I4| ≤ ‖φ‖L∞(B1)‖(∇u)T ‖L∞(B1)‖G‖L2(B1)‖∂w‖L2(B1)

≤ C‖∂w‖L2(B1)

≤ Cδr−3/2+5/2α+δ,

(4.5.23)
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and

|I6| ≤ ‖∆φ‖L∞(B1)‖G‖L2(B1)‖∂w‖L2(B1)

≤ C‖∂w‖L2(B1)

≤ Cδr−3/2+5/2α+δ.

(4.5.24)

Next by an integration by parts we have

|I2| ≤
∣∣∣∣∫
B1

∂w · (uG∇φ+Gφ∇u+ φ(u · ∇)G)dy

∣∣∣∣
≤ ‖∇φ‖L∞‖u‖L∞(B1)‖∂w‖L2(B1)‖G‖L2(B1) + ‖φ‖L∞‖∇u‖L∞(B1)‖∂w‖L2(B1)‖G‖L2(B1)

+ ‖φ‖L∞(B1)‖u‖L∞(B1)‖∂w‖L∞(B1)‖∇G‖L1(B1)

≤ C‖∂w‖L2(B1) + C‖∇u‖L∞(B1)‖∂w‖L2(B1) + C‖u‖L∞(B1)‖∂w‖L∞(B1)

≤ Cδr−3/2+5/2α+δ + Cδr
−3/2+5/2α+δ + C‖u‖L∞(B1)

≤ Cδr−3/2+5/2α+δ + Cδr
−1+2α+δ

≤ Cδr−1+2α+δ,

(4.5.25)

where we used the general boundedness of ∂w and the the decay of u we obtained in (4.4.11).

Next we have

|I3| ≤
∣∣∣∣∫
B1

∂u · (wφ∇G+Gw∇φ+Gφ∇w)dy

∣∣∣∣
≤ ‖φ‖L∞‖∂u‖L∞(B1)‖w‖L∞(B1)‖∇G‖L1(B1) + ‖∇φ‖L∞‖∂u‖L∞(B1)‖w‖L∞(B1)‖G‖L1(B1)

+ ‖φ‖L∞(B1)‖∂u‖L∞(B1)‖∇w‖L2(B1)‖G‖L2(B1)

≤ C‖∂u‖L∞(B1)‖w‖L∞(B1) + C‖∂u‖L∞(B1)‖w‖L∞(B1) + C‖∇w‖L2(B1)

≤ Cδr−1+2α+δ + Cδr
−1+2α+δ + Cδr

−3/2+5/2α+δ

≤ Cδr−1+2α+δ,

(4.5.26)
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where we used the general boundedness of ∂u, the L2(B1) estimate of ∇w in (4.5.12) and

the decay of w obtained in (4.4.12). Finally, by an integration by parts we have

|I5| ≤
∣∣∣∣∫
B1

(∂w)T · (∇G · ∇φ+G∆φ)dy

∣∣∣∣
≤ ‖∇φ‖L∞(B1)‖∇w‖L2(B1)‖∇G‖L2(B1\B1/2) + ‖∆φ‖L∞(B1)‖∇w‖L2(B1)‖G‖L2(B1\B1/2)

≤ Cδr−3/2+5/2α+δ.

(4.5.27)

Hence by the previous calculations we have that for large r

|∇w| ≤ Cδr−1+2α+δ. (4.5.28)

Now we use this to obtain an estimate on |∇u|. Define a cut-off function ψ that is supported

in B1 and equal to 1 in B1/2. Recall that

ur(x) =

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)ψ∂`w
φ cos(φ− θ)ρdρdφd`

− 2

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)∂ρψ∂ρu
ρ cos(φ− θ)ρdρdφd`

−
∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)(∂2
ρψ +

1

ρ
∂ρψ)uρ cos(φ− θ)ρdρdφd`.

(4.5.29)

If we differentiate this equation we obtain

∇ur(x) =

∫ π

−π

∫ 2π

0

∫ ∞
0
∇G(x, y)ψ∂`w

φ cos(φ)ρdρdφd`

− 2

∫ π

−π

∫ 2π

0

∫ ∞
0
∇G(x, y)∂ρψ∂ρu

ρ cos(φ)ρdρdφd`

−
∫ π

−π

∫ 2π

0

∫ ∞
0
∇G(x, y)(∂2

ρψ +
1

ρ
∂ρψ)uρ cos(φ)ρdρdφd`

= I1 + I2 + I3.

(4.5.30)
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We now estimate each term. Using the estimates on |∇G| and using (4.5.28) we obtain

|I1| ≤
∫ π

−π

∫ ∞
0

(∫ 2π

0
|∇G(x, y)|dφ

)
|ψ||∂`wφ|ρdρd`

≤ C‖∇w‖L∞(B1)

∫
B1

|∇G|dy

≤ C‖∇w‖L∞(B1)
1

|x− y|2
e−c0|x

′−y′|dy

≤ C‖∇w‖L∞(B1)
1

|x− y|2
dy

≤ C‖∇w‖L∞(B1)

≤ Cδr−1+2α+δ.

(4.5.31)

For the next term we will use integration by parts to move the partial derivative with respect

to ρ to the other terms. Then we have

|I2| ≤ 2

∫
B1

|∂ρ∇G(x, y)∂ρψu
ρ|ρdφdρd`+ 2

∫
B1

|∇G(x, y)∂2
ρψu

ρ|ρdφdρd`

+ 2

∫
B1

|∇G(x, y)∂2
ρψu

ρ|dφdρd`

≤ C‖uρ‖L∞(B1)

∫
B1\B1/2

[|∂ρ∇G|+ |∇G|] dy

≤ C‖uρ‖L∞(B1)

≤ Cr−1+2α+δ.

(4.5.32)

Here we used the decay of u in (4.4.11) and we stress that due to the cutoff function, the

singularity at x = y is cut-off so the integration of ∂ρ∇G is justified. Lastly, for I3, we use

the bounds on |∇G| and the decay of u in (4.4.11) to obtain

|I3| ≤ Cr−1+2α+δ. (4.5.33)

Hence we obtain

|∇ur| ≤ Cδr−1+2α+δ. (4.5.34)
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Next we obtain estimates on |∇uz|. By the divergence-free condition,

∂ru
r +

ur

r
+ ∂zu

z = 0 (4.5.35)

so using the boundedness of ur and the bound on |∇ur|, we get

|∂zuz| ≤ |∂rur|+
∣∣∣∣urr
∣∣∣∣ ≤ Cr−1+2α+δ. (4.5.36)

By using the fact that wθ = ∂zu
r − ∂ruz and the decay of wθ in (4.4.12), we have

|∂ruz| ≤ |∂zur|+ |wθ| ≤ Cr−1+2α+δ. (4.5.37)

Hence we obtain

|∇uz| ≤ Cδr−1+2α+δ. (4.5.38)

We finally obtain estimates on |∇uθ|. We use the fact that wr = −∂zuθ and

wz = ∂ru
θ + 1

ru
θ to obtain

|∂ruθ| ≤ |wz|+
∣∣∣∣uθr
∣∣∣∣ ≤ Cr−1+2α+δ. (4.5.39)

and

|∂zuθ| ≤ |wr| ≤ Cr−1+2α+δ. (4.5.40)

This yields

|∇uθ| ≤ Cδr−1+2α+δ, (4.5.41)

which together with (4.5.34) and (4.5.38) we get that

|∇u| ≤ Cδr−1+2α+δ. (4.5.42)
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Now that we have a decay estimate on |∇u|, we can use this to obtain a better

estimate on |∇w|. In (4.5.17), we note that all terms except for I2 and I3 decay like

Cδr
−3/2+5/2α+δ. Therefore, we only recalulate I2 and I3. By using (4.5.28) we have

|I2| ≤ C‖∂w‖L2(B1) + C‖∇u‖L∞(B1)‖∂w‖L2(B1) + C‖u‖L∞(B1)‖∂w‖L∞(B1)

≤ Cδr−3/2+5/2α+δ + Cδr
−3/2+5/2α+δ + C‖u‖L∞(B1)‖∂w‖L∞(B1)

≤ Cδr−3/2+5/2α+δ + Cδr
−2+4α+2δ

≤ Cδr−3/2+5/2α+δ.

(4.5.43)

Next using (4.5.28) we have

|I3| ≤ C‖∂u‖L∞(B1)‖w‖L∞(B1) + C‖∂u‖L∞(B1)‖w‖L∞(B1) + C‖∇w‖L2(B1)

≤ Cδr−2+4α+2δ + +Cδr
−3/2+5/2α+δ

≤ Cδr−3/2+5/2α+δ.

(4.5.44)

Therefore we have

|∇w| ≤ Cδr−3/2+5/2α+δ. (4.5.45)

To finish the proof, we use this decay to improve the decay of u. Let ψ be a cut-off

function independent of x3 and supported in B(x, r/2) such that ψ = 1 in B(x, r/4). Then

by the Green’s function representation in (4.3.55) we have

ur(x) =

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)ψ∂`w
φ cosφρdρdφd`

− 2

∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)∂ρψ∂ρu
ρ cosφρdρdφd`

−
∫ π

−π

∫ 2π

0

∫ ∞
0

G(x, y)(∂2
ρψ +

1

ρ
∂ρψ)uρ cosφρdρdφd`.

(4.5.46)
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By recalling the estimates we did following (4.3.55), we see that the last two terms decay

exponetially so only the first term needs attention. By using the decay |∇w| in (4.5.45) and

the decay of G we have that altogether

|ur| ≤ Cδr−3/2+5/2α+δ (4.5.47)

By differentiating the equation, we have

∇ur(x) =

∫ π

−π

∫ 2π

0

∫ ∞
0
∇G(x, y)ψ∂`w

φ cosφρdρdφd`

− 2

∫ π

−π

∫ 2π

0

∫ ∞
0
∇G(x, y)∂ρψ∂ρu

ρ cosφρdρdφd`

−
∫ π

−π

∫ 2π

0

∫ ∞
0
∇G(x, y)(∂2

ρψ +
1

ρ
∂ρψ)uρ cosφρdρdφd`

= I1 + I2 + I3.

(4.5.48)

We now estimate each term. By using the gradient estimate of G we have

|I1| ≤ C‖∂`wφ‖L∞(B(x,r/2))

∫
B(x,r/2)

|∇G(x, y)|dy

≤ C‖∇wφ‖L∞(B(x,r/2))

∫
B(x,r/2)

e−c0|x
′−y′|

|x− y|2
dy

≤ C‖∇wφ‖L∞(B(x,r/2))

∫
B(x,r/2)

1

|x− y|2
dy

≤ C‖∇wφ‖L∞(B(x,r/2))

≤ Cδr−3/2+5/2α+δ.

(4.5.49)
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We also have by |∇ψ| ≤ C
r , the decay of ∇u and ∇G that

|I2| ≤
C

r
‖∇u‖L∞(B(x,r/2))

∫
B(x,r/2)

|∇G(x, y)|dy

≤ C

r
‖∇u‖L∞(B(x,r/2))

∫
B(x,r/2)

e−c0|x
′−y′|

|x− y|2
dy

≤ C

r
‖∇u‖L∞(B(x,r/2))

∫
B(x,r/2)

1

|x− y|2
dy

≤ C

r
‖∇u‖L∞(B(x,r/2))

≤ Cδr−2+2α+δ.

(4.5.50)

Similarly we have

|I3| ≤ Cδr−2+2α+δ, (4.5.51)

which gives us that

|∇ur| ≤ Cδr−3/2+5/2α+δ. (4.5.52)

Hence we have

|ur|+ |∇ur| ≤ Cδr−3/2+5/2α+δ. (4.5.53)

Next by using the divergence free condition and the decay in (4.5.53) we have

|∂zuz| ≤
∣∣∣∣urr
∣∣∣∣+ |∂rur|

≤ Cδr−3/2+5/2α+δ.

(4.5.54)

Since ∂zu
θ = −wr, we have

|∂zuθ| ≤ Cδr−3/2+5/2α+δ. (4.5.55)

Now because of the condition
∫ π
−π u

θdz =
∫ π
−π u

zdz = 0, we know by mean value

theorem that for any r, there exists z0, z1 ∈ [−π, π] such that uθ(r, z0) = uz(r, z1) = 0.

Hence by fundamental theorem of calculus, (4.5.54) and (4.5.55)
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|uθ(r, z)| =
∣∣∣∣∫ z

z0

∂zu
θdz

∣∣∣∣ ≤ 2π‖∂zuθ(r, ·)‖L∞([−π,π]) ≤ Cδr−3/2+5/2α+δ. (4.5.56)

and

|uz(r, z)| =
∣∣∣∣∫ z

z1

∂zu
zdz

∣∣∣∣ ≤ 2π‖∂zuz(r, ·)‖L∞([−π,π]) ≤ Cδr−3/2+5/2α+δ. (4.5.57)

Hence by (4.5.53), (4.5.56), and (4.5.57) we have that for large r

|u(x)| ≤ Cδr−3/2+5/2α+δ. (4.5.58)

We need both −3/2 + 5/2α + δ ≤ −1 and
(

4
r

)1/3 ≤ δ. This means we need both

a suitably small δ which depends on a suitably large r. By supposing that δ =
(

4
r

)1/3
and

solving the first inequality we see that if we pick r ≥ − 32
(5α−1)3

> 0, then −3/2 + 5/2α+ δ ≤

−1. Let r0 = −32
(5α−1)3

. If we choose δ =
(

4
r0

)1/3
, then (4.5.58) will hold for all points x with

|x′| = r ≥ r0 and the exponent will be less than or equal to −1. This is exactly what we

needed to use the results in [KNSS] to obtain that u ≡ 0.
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Chapter 5

Future Work

A natural question to ask is if the conditions of the theorem can be relaxed so that

we do not require that
∫ π
−π u

zdz =
∫ π
−π u

θdz = 0. This condition cannot be removed if we

wish to use the method presented in this thesis. However, in [CPZZ], if we assume that

∫
R2×[−π,π]

|∇u|2dx <∞

instead of (4.1.2), then the conditions
∫ π
−π u

zdz =
∫ π
−π u

θdz = 0 are not necessary. This

involves a different method that requires we have no growth in the Dirichlet integral.

However, one can still ask if there are uniqueness theorems if we allow there to be

a non-zero, divergence free forcing term. This is if u1, u2 satisfy (4.1.1) with a forcing term,

then under what extra conditions will it be the case that u1 = u2? This is still an open

problem that we will investigate as our future work.
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