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First Impressions Matter:
A Model of Confirmatory Bias

Abstract

Psychological research indicates that people have a cognitive bias that leads them to misinterpret
new information as supporting previously held hypotheses. We model such confirmatory bias in a
symmetric model in which exactly one of two hypotheses is true. We show that the confirmatory
bias induces overconfidence: Given any probabilistic assessment by an agent that one of the
hypotheses is probably true, the appropriate beliefs should deem it less likely to be true. When the
agent believes relatively weakly in a hypothesis after receiving extensive information, the
hypothesis he believes in may be more likely to be wrong than right. If the confirmatory bias is
strong enough, with positive probability the agent may eventually come to believe with near
certainty in a false hypothesis even after receiving an infinite amount of information.
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The human understanding when it has once adopted an opinion draws all things else to
support and agree with it. And though there be a greater number and weight of
instances to be found on the other side, vet these it gither neglects and despises, or else
by some distinction sets aside and rejects, in order that by this great and pernicious
predetermination the authority of its former conclusion may remain inviolate.

— Francis Bacon’

1. Introduction

How do people form beliefs in situations of uncertainty? Economists have traditionally assumed that
people begin with subjective belicfs over the different possible states of the world, and use Bayes’ Rule to
update those beliefs. This elegant and powerful model of economic agents as Bayesian statisticians is the
foundétion of modern information economics.

Yet a large and growing body of psychological research suggests that the way people process
information often departs systematically from Bayesian npdating. In this paper, we formally model and
explore the consequences of one particular departure from Bayesian rationality, confirmatory bias. A
person suffers from confirmatory bias if he tends to misinterpret ambiguous ¢vidence as confirming his
current hypotheses about the world. Teachers misread performance of pupils as supporting their initial
impressions of those pupils, many people misread their observations of individual behavior as supporting
their prior stereotypes about groups to which these individuals belong; scientists biasedly interpret data as
supporting their hypotheses.

Qur simple model by and large confirms an intuition commeon in the psychology literature:
Confirmatory bias leads 1o overconfidence, in the sense that people on average believe more strongly than
they should in their favored hypotheses. The model also yields surprising further results. An agent who
suffers from confirmatory bias may come to believe in a hypothesis that is probably wrong, meaning that a
Bayesian observer who was aware of the agent’s confirmatory bias would, after observing the agent’s
beliefs, favor a different hypothesis than the agent. We also show that even an infinite amount of
information does not necessarily overcome the effects of confirmatory bias: Over time an agent may with
positive probability come to believe with near certainty in the wrong hypothesis.

In Section 2—which readers impatient for math may wish to skip—we review some of the
psychological evidence that humans arc prone o confirmatory bias. In Section 3 we present our formal

model, and provide examples and gencral propositions illustrating the implications of confirmatory bias.

! From The New Organon and Related Writings (1960; 1620), quoted in Nisbett and Ross (1980, p. 167).




We consider a situation where an agent initially believes that each of two possible states of the world is
equally likely. The agent then receives a series of independent and identically distributed signals that are
correlated with the true state. To model confirmatory bias, we assume that when the agent gets a signal
that is counter to the hypothesis he currently believes is more likely, there is a positive probability that he
misreads that signal as supporting his current hypothesis. Becausec we assume that the agent always
recognizes evidence that confirms his current beliefs, relative to proper Bayesian updating he is biased
towards confirming his current hypothesis.

So, for example, a teacher may believe either that Marta is smarter than Bart or that Bart is smarter
than Marta; he initially believes cach is equally likely, and over time he collects a series of signals that
help him to identify who is smarter, If, after receiving one or more signals, the teacher believes that
Marta is probably smarter than Bart, confirmatory bias may Iead him to erroneously interpret his next
signal as supporting this hypothesis. Therefore, the teacher’s updated belief that Marta is smarter than
Bart may be stronger than is warranted.

The notion that the teacher is likely to belicve “too strongly” that Marta is smarter corresponds to the
commonly-held intuition that confirmatory bias leads to overconfidence. While qualifying this intuition
with several caveats, our model by and large confirms it; Given any probabilistic assessment by an agent
that one of the hypotheses is probably true, the appropriate beliefs should on average deem it less likely to
be true. Intuitively, a person who believes strongly in a hypothesis is likely to have misinterpreted some
signals that conflict with what he belicves, and hence is likely to have received more evidence against his
believed hypothesis than he realizes.

Our analysis shows that a more surprising result arises when confirmatory bias is severe: A
Bayesian observer with no direct information of her own, but who can observe the agent’s belief in favor
of one hypothesis, may herself believe that the other hypothesis is more likely. We show that such
“wrongness” can aris¢ when the agent’s evidence is sufficiently mixed. Intuitively, if the agent has
perceived almost as much evidence against his hypothesis as supporting it, then, since some of the
evidence he perceives as supportive is actually nof supportive, it is likely that a majority of the real signals
oppose his hypothesis. Because such wrongness only arises when the agent has relatively weak evidence
supporting his favored hypothesis, however, the agent on average correctly judges which of the two
hypotheses is more likely, in the sensc that his best guess is right most of the time.

While seemingly straightforward, the intuition for our overconfidence and wrongness resuits
conceals some subtle implications of the agent’s confirmatory bias. For example, an agent who currently
believes in Hypothesis A (say) may have once believed in Hypothesis B, at which time he had a propensity
to misread evidence in favor of Hypothesis A. But then the agent may underestimate how many signals
subporting Hypothesis A he has received, and thus he may be underconfident in his belief in favor of
Hypothesis A. Indeed, we show that an agent who has only recently come to believe in a hypothesis is
likely to be underconfident in that hypothesis, because until recently he has been biased against his current




hypothesis. If a teacher used to think Bart was smarter than Marta and only recently concluded that
Marta is smarter, then probably he has been ignoring evidence all along that Marta is smarter. The
simple overconfidence and wrongness results hold because an agent has probably believed in his currently
held hypothesis during most of the time he has been receiving information and so, on average, has been
biased towards this hypothesis.

In Section 4 we investigate the implications of confirmatory bias after the agent receives an infinite
sequence of signals. In the absence of confirmatory bias, an agent will always come to believe with near
certainty in the correct hypothesis if he receives an infinite sequence of signals. If the confirmatory bias is
sufficiently severe or the strength of individual signals is weak, however, then with positive probability the
agent may come to believe with near certainty that the incorrect hypothesis is true. Intuitively, once thé
agenl comes to believe in an incorrect hypothesis, the confirmatory bias inhibits his ability to overturn his
erroneous beliefs. If the bias is strong enough, the expected drift once the agent comes to believe in the
false hypothesis is towards believing more strongly in that hypothesis, guarantecing a positive probability
that the agent ends up believing very strongly in the falsc hypothesis. The results of Section 4 belie the
common intuition that learning will eventually correct cognitive biases. While this is true for sufficiently
mild confirmatory bias, when the bias is sufficiently severe “learning” can exacerbate the bias.

The premise of this paper is that explicit formalizations of departures from Bayesian information
processing are crucial to incorporating psychological biases into economic analysis. We do not in this
paper take the important next step of developing specific economic applications of the bias we model. We
conclude in Section 3, however, by discussing some possible implications of our model in multi-person

economic situations, as well as highlighting some likely problems with such applications.

2. A Review of the Psychology Literature

Many different strands of psychological research yield evidence on phenomena that we are modeling
under the rubric of confirmatory bias. Before reviewing this literature, we first wish to distinguish a form
of “quasi-Bayesian” information processing from the bias we are examining. Though the two phenomena
are related—and not always distinguished clearly in the psychology literature—they differ importantly in
their implications for decision theory. Suppose that, once they form a strong hypothesis, people simply
stop being attentive to relevant new information that contradicts or supports their hypotheses. Intuitively,
when you become convinced that one investment strategy is more lucrative than another, you may simply

stop paying attention to even freely available additional information.?

% Such behavior corresponds to a natural economic “cognitive-search” model: If we posit a cost to
information processing, in many settings the natural stopping rule would be to process information until
beliefs are sufficiently strong in one direction or ancther, then stop.




Bruner and Potter (1964) elegantly demonstrate such anchoring. About 90 subjects were shown
blurred pictures that were gradually brought into sharper focus. Different subjects began viewing the
pictures at different points in the focusing process, but the pace of the focusing process and final degree of
focus were identical for all subjects. Strikingly, of those subjects who began their viewing at a severe-blur
stage, less than a quarter eventually identified the pictures correctly, whereas over half of those who began
viewing at a light-blur stage were able to correctly identify the pictures. Bruner and Potter (1964, p. 424)
conclude that “Interference may be accounted for partly by the difficulty of rejecting incorrect hypotheses
based on substandard cues.” That is, people who use weak evidence to form initial hypotheses have
difficulty correctly interpreting subsequent, better information that contradicts those initial hypotheses.’

This form of anchoring does not necessarily imply that people misinterpret additional evidence to
cither disconfirm or confirm initial hypotheses, only that they ignore additional evidence. Such a
tendency to anchor on initial hypotheses can therefore be reconciled with Bayesian information
processing. While such anchoring is potentially quite important, psychological evidence reveals a
stronger and more provocative phenomenon: People tend to misread evidence as additional support for
initial hypotheses. If a teacher initially believes that one student is smarter than another, she has the
propensity to confirm that hypothesis when interpreting later performance.* Lord, Ross, and Lepper
(1979, p. 2099) posited some of the underlying cognitive mechanisms involved in such propensities:

...there is considerable evidence that people tend to interpret subsequent evidence so
as to maintain their initial beliefs. The biased assimilation processcs underlying this
effect may include a propensity to remember the strengths of confirming evidence but
the weaknesses of disconfirming evidence, to judge confirming evidence as relevant and
reliable but disconfirming evidence as irrelevant and unrcliable, and to accept
confirming evidence at face value while scrutinizing disconfirming evidence
hypercritically, With confirming evidence, we suspect that both lay and professional
scientists rapidly reduce the complexity of the information and remember only a few
well-chosen supportive impressions. With disconfirming evidence, they continue to
reflect upon any information that suggests less damaging “alternative interpretations.”
Indeed, they may even come to regard the ambiguities and conceptual flaws in the data
opposing their hypotheses as somehow suggestive of the fundamental correctness of

3 A similar experiment (Wyatt and Campbell (1951)) was cited by Perkins (1981) as one interpretation of
the perspective that “fresh” thinkers may be better at seeing solutions to problems than people whoe have
meditated at length on the problems, because the fresh thinkers are not overwhelmed by the “interference”
of old hypotheses.

* A related arena where the confirmation bias has been studied widely is in counselor judgments:
Counselors in clinical settings tend to confirm original suppositions in their eventual judgments. If you
are told ahead of time that an interviewse is combative, then both your conduct and your interpretation of
his conduct during an interview may reinforce that supposition, even if he is in fact no more combative
than the average person. See, e.g., Haverkamp (1993). There has also been extensive research on
confirmatory bias in the interviewing process more generally; see, ¢.g., Dougherty, Turban, and Callender
(1994) and Macan and Dipboye (1994). Research applying varianis of confirmatory bias to other domains
includes Arkes (1989) and Borum, Otto, and Golding (1993) to the law; Baumann, Deber, and Thompson
{1991) to medicing, and Souter {1993) discusses the implications of overconfidence to business insurance.




those hypotheses. Thus, compietely inconsistent or even randem data — when
“processed” in a suitably biased fashion — can maintain or even reinforce one’s
preconceptions.

The most striking evidence for the confirmatory bias is a serics of experiments demonstrating how
providing the same ambiguous information to people who differ in their initial beliefs on some topic can
move their beliefs further apart. To illustrate such polarization, Lord, Ross, and Lepper (1979) asked 151
undergraduates to complete a questionnaire that included three questions on capital punishment. Later,
48 of these students were recruited to participate in another experiment. Twenty-four of them were
selected because their answers to the earlier questionnaire indicated that they were “‘proponents’ who
favored capital punishment, believed it to have a deterrent effect, and thought most of the relevant
rescarch supported their own beliefs. Twenty-four were opponents who opposed capital punishment,
doubted its deterrent effect and thought that the relevant research supported their views.” These subjects
were then asked to judge the merits of randomly sclected studies on the déterrem efficacy of the death
penalty, and to state whether a given study (along with criticisms of that study) provided evidence for or
against the deterrence hypothesis. Subjects were then asked to rate, on 16 point scales ranging from -8 to
+8, how the studies they had read moved their attitudes towards the death penalty, and how they had
changed their beliefs regarding its deterrent efficacy. Lord, Ross, and Lepper (1979, pp. 2102-4)

summarize the basic results (all of which hold with confidence p < .01) as follows:

The relevant data provide strong support for the polarization hypothesis. Asked for
their final attitudes relative to the experiment’s start, proponents reported that they were
more in favor of capital punishment, whereas opponents reported that they were Jess in
favor of capital punishment ... Similar results characterized subjects’ beliefs about
deterrent efficacy. Proponents reported greater belief in the deterrent effect of capital
punishment, whereas opponents reported less belief in this deterrent effect.

Plous (1991) replicates the Lord, Ross, Lepper results in the context of judgments about the safety of
nuclear technology. Pro- and anti-nuclear subjects were given identical information and arguments
regarding the Three Mile Island nuclear disaster and a case of false military alert that could have lead to
the launching of U.S. nuclear missiles. Plous (1991, p. 1068} found that 54% of pro-nuclear subjects
became more pro-nuclear from the information, while only 7% becéme less pro-nuclear. By contrast, only
7% of the anti-nuclear subjects became less anti-nuclear from the information while 45% became more

anti-nuclear.’

® These percentages were derived from Table 2 of Plous (1991, p. 1068), aggregating across two studies;
the remaining subjects in each case reported no change in beliefs. For other papers following on Lord,
Ross, and Lepper (1979), see Fleming and Arrowood (1979), Jennings, Lepper, and Ross (1981), Hubbard
(1984), Lepper, Ross, and Lau (1986), see also Miller, McHoskey, Bane, and Dowd (1993) for more
mixed evidence regarding the Lord, Ross, and Lepper experiment. In the passage above, Lord, Ross, and
Lepper posit that even professional scientists are susceptible to such same-evidence polarization. Indeed,




Darley and Gross (1983) demonstrate a related and similarly striking form of polarization due to
confirmatory bias. Seventy undergraduates were asked to assess a nine-year-old girl’s academic skills in
several different academic areas. Before completing this task, the students received information about the
gitl and her family and viewed a video tape of the girl playing ina plaj’ground. One group of subiects was
given a fact sheet that described the girl’s parents as college graduates who held white-collar jobs; these
students viewed a video of the girl playing in what appeared to be a well-to-do, middle class
neighborhood. The other group of subjects was given a fact sheet that described the girl’s parents as high
school graduates who held blue-coliar jobs; these students viewed a video of the same girl playing in what
appeared to be an impoverished inner-city neighborhood. Half of each group of subjects were then asked
to evaluate the girl’s reading level, measured in terms of equivalent grade level® There was a small
difference in the two groups’ estimates—those subjects who had viewed the “inner-city” video rated the
girl’s skill level at an average of 3.90 (i.e., 9/10 through 3 grade) while those who had viewed the
“suburban video” rated the girl’s skill level at an average of 4.29. The remaining subjects in cach group
were shown a second video of the girl answering (with mixed success) a series of questions. Afterwards,
they were asked to evaluate the girl’s reading level. The inner-city video group rated the girl’s skill level
at an average of 3.71, significantly below the 3.90 estimate of the inner-city subjects who did not view the
question-answer video. Meanwhile, the suburban video group rated the girl’s skill level at an average of
4.67, significantly above the 4.29 ¢stimate of the suburban subjects who did not view the second video.
Even though the two groups viewed the identical question-and-answer video, the additional information
further polarized their assessments of the girl’s skill level. Darley and Gross (1983) interpret this result as
evidence of confirmatory bias—subjects were influenced by the girl’s background in their initial
judgments, but their beliefs were evidently influenced even more strongly by the effect their initial
hypotheses had on their interpretation of further evidence.

Our reading of the psychology literature leads us to conclude that any of three different information
processing problems contribute to confirmatory bias. First, researchers widely recognize that confirmatory
bias and overconfidence arise when people must interpret ambiguous evidence (see, ¢.g., Keren (1987)

and Griffin and Tversky (1992)). Lord, Ross, and Lepper's (1979) study, discussed above, clearly

many economists and other academics have probably observed how differing schools of thought interpret
ambiguous cvidence differently. An example was once told to one of us by a colleague. He saw the same
model—calibrating the elasticity of demand facing a Cournot oligopolist as a function of the number of
firms in an industry—described at the University of Chicago and at M.LT. A Chicago economist derived
the formula and said, “Look at how few firms you need to get close to infinite clasticities and perfect
competition.” An M.L.T. economist derived the same formula and said, “Look at how large » [the number
of firms)] has to be before you get anywhere close to an infinite elasticity and perfect competition.” These
different schools each interpreted the same mathematical formula as evidence reinforcing their respective
views. For related analysis in the scientific domain, see also Mahoney (1977).

® The subjects were also asked to evaluate the girl’s mathematics and liberal arts skill levels; we report the
results that are least supportive of the existence of confirmatory bias.




illustrates the point. Keren (1988) notes the lack of confirmatory bias in visual perceptions and concludes
that confirmatory tendency depends on some degree of abstraction and “discrimination” (i.e., the need for
interpretation) not present in simple visual tasks. A primary mechanism of stereotype-maintenance is our
tendency to interpret ambiguous behavior according to previous stercotype.” Similarly, a teacher may
interpret an ambiguous answer by a student as cither creative or just plain stupid, according to his earlier
impressions of the student, but will be less likely to biasedly interpret more objective feedback such as
answers to multiple-choice questions.

Second, confirmatory bias can arise when people must interpret statistical evidence to assess the
correlation between phenomena that are separated by time. Nisbett and Ross (1980) argue that the
inability to accurately identify such correlation (e.g., between hyperactivity and sugar intake, or between
performance on exams and the time of day the ¢xams are held) is one of the most robust shortcomings in
human reasoning.® People often imagine a correlation between events when no such correlation exists.’
Jennings, Amadibile, and Ross (1982} argue that illusory correlation can play an important role in the
confirmation of false hypotheses, finding that people underestimate correlation when they have no theory
of the correlation, but exaggerate correlation and see it where it is not when they have a preconceived
theory of it.!°

Third, confirmatory bias occurs when people selectively collect or scrutinize evidence. One form of

“scrutiny-based” confirmatory bias is what we shall call Aypothesis-based filtering."! While it is sensible

7 A vast literature explores the mechanisms by which people retain ethnic, gender and other group
stereotypes.  See, ¢.g., Hamilton and Rose (1980), Bodenhausen and Wyer (1985), Bodenhausen and
Lichtenstein (1987), Stangor (1988), Stangor and Ruble (1989), and Hamilton, Sherman, and Ruvolo
(1990},

¥ As Jennings, Amabile, and Ross (1982, p. 212) put it, “even the staunchest defenders of the layperson's
capacities as an intuitive scientist ... have had little that was flattering to say about the layperson's
handling of bivariate observation.”

® Chapman and Chapman (1967, 1969, 1971) demonstrate that clinicians and laypeople often perceive
entirely illusory correlation among (for instance) pictures and the personality traits of the people who
drew the pictures. Stangor (1988) and Hamilton and Rose (1980) also discuss the role of illusory
correlation in the context of confirmatory-like phenomena.

19 Similarly, Redelmeier and Tversky (1996) argue illusory correlation may help explain the persistent
belief that arthritis pain is related to the weather.

" Another mechanism can be defined as “positive test strategy”: People tend to ask questions (of others, of
themselves, or of data) that are likely to be true if their hypothesis is true—without due regard to the fact
that they are likely to be true even if the hypothesis is false. See Einhom and Hogarth (1978), Klayman
and Ha (1987), Beattie and Baron (1988), Devine, Hirt, and Gehrke (1990), Hodgins and Zuckerman
{1993), Friedrich (1993), and Zuckerman, Knee, Hodgins, and Miyake (1995). We are using this term a
bit differently than we suspect psychologists would use it. So far as we know, the term was coined by
Klayman and Ha (1987) to point out that much of what was put under the rubric of confirmatory bias
could indeed be a rational form of hypothesis testing. Fischhoff and Beyth-Marom (1983, pp. 255-6) and
Friedrich (1993) also point out that if people are fully aware that asking “soft” questions teaches them
little about the truth of hypotheses, then no bias has occurred. While we feel research on the positive test




to interpret ambiguous data according to current hypotheses, people tend to use the consequent “filtered”
evidence inappropriately as further evidence for these hypotheses. If a student gives an unclear answer to
an exam question, it is reasonable for a teacher to be influenced in his evaluation of the answer by his
prior perceptions of that student’s mastery of the material. However, after assigning differential grades to
students according to differential interpretation of comparable answers, it is a mistake to then use
differential grades on the exam as further evidence of the differences in the students” abilities.'> This sort
of error is especially likely when the complexity and ambiguity of evidence requires the use of prior
theories when interpreting data and deciding what data to examine.

Finally, one of the main results in our model is confirmation of the conjecture common in the
psychelogical literature that confirmatory bias leads to overcbnﬁdence. A vast body of psychological
research, separate from research on confirmatory bias, finds that people are prone towards overconfidence

in their judgments.”

3. Confirmatory Bias and Belief Formation

Consider two states of the world, x € {4, B}, where 4 and B ar¢ two exhaustive and mutually
exclusive hypotheses regarding some issue. We consider an agent whose prior belief about x is given by
prob(x = A) = prob(x = B) = 0.5, so the agent initially views the two alternative hypotheses as equally
likely to be true. In every period f € {1, 2, 3, ...} the agent receives a signal, s; € {a, b}, that is correlated
with the true state of the world. Signals received at different times f are independently and identically

strategy needs more careful calibration versus Bayesian updating, we believe that the evidence suggests
that people do not fully appreciate how little they have learned about the validity of their hypotheses when
asking soft questions. (Mehle, Gettys, Manning, Baca, and Fisher (1981), for instance, show that people
with specified hypotheses for observed data tend to over-use such hypotheses to explain the data because
they do not have “available” the many unspecified hypothesis that could also explain the data.)

12 1 ord, Ross, and Lepper (pp. 2106-7) note a similar distinction in reflecting on the bias in their
experiment discussed above. They note that it is proper for people to differentially assess probativeness of
different studies according to their current beliefs about the merits of the death penalty. The “sin” is in
using their hypothesis-based interpretations of the strength of different studies as further support for their
beliefs.

13 See, e.g., Oskamp (1982), Mahajan (1992), and Paese and Kinnaly (1993). An early paper that makes
this point is Fischhoff, Slovic, and Lichtenstein (1977), who also tested the robustness of overconfidence
with monetary stakes rather than reported judgments. No decrease in overconfidence was found relative
1o the no-money-stakes condition. (As Camerer (1995) notes, there exist very few conclusions reached by
researchers on judgment that have been overturned when monetary stakes are added.) There have,
however, been criticisms of the evidence in support of overconfidence. See Bjorkman (1994), Pfeifer
(1994), Tomassini, Solomon, Romney, and Krogstad (1982), Van Lenthe (1993), and Winman and Juslin
(1993). We feel, nevertheless, that the evidence makes a strong case for overconfidence. Indeed, see Soll -
(1996) for evidence that overconfidence does extend to ecologically valid domains.




distributed, with prob(s~ajd) = prob(s=5biB) = 6, for some 0 € {.5,1). After receiving each signal, the
agent updates his belief about the relative likelihood of x=A4 and x = B.

To model confirmatory bias, we suppose that the agent may misinterpret signals that conflict with
his current belief about which hypothesis is more likely. Suppose that, given the signals the agent thinks
he has observed in the first #-1 periods, he believes that state 4 is more likely than state B. Because of his
confirmatory bias, the agent may misread a conflicting signal s; = b in the next period, believing instead
that he observes s; = a.

Formally, in every period ¢ € {1, 2, 3, ...} the agent perceives a signal o, € {o,f}. When the agent
perceives a signal oy = o he believes that he actually received a signal s; = g, and if he perceives ;= [ he
believes that he actually received a signal s, = . He updates his beliefs using Bayes’ rule given his
(possibly erroneous) perceptions of the signals he is receiving. We assume that with probability g > 0 the
agent misreads a signal s, that conflicts with his belief about which hypothesis is more likely, and that the
agent always correctly interprets signals that confirm his belief. If he currently believes that hypothesis A
is more likely, then for sure he intefprets a signal 5, = @ as o; = o, but with prdbability ¢ he misreads 5, = b
as G, = .

This model of confirmatory bias incorporates several unrealistic simplifying assumptions. For
instance, we assume that the severity of the bias summarized by g does not depend on the strength of the
agent’s beliefs about which of the two states is more likely. It would be reasonable to expect that ¢ is
greater if the agent’s beliefs are more extreme. We conjecture that our qualitative results would continue
to hold were we to relax this assumption. Also, we assume that the agent misreads conflicting evidence as
confirming evidence. A more realistic alternative model would assume instead that the agent merely has
a tendency to overlook evidence that conflicts with his beliefs. This model, too, would yield the same
qualitative results as our model.

The presence of confirmatory bias means that the agent’s perceived signals o, are neither
independently nor identically distributed. Suppose that, after receiving signals s = (s1,...,5.1) the agent
has perceived a sequence of signals o = (&), ..., 6.1) and holds beliefs prob(x = Als™). Define:

6% = prob(o; = of prob(x = 4] of*1) > 0.5, x = B) = prob(c, = p| prob(x = B} o’"1) > 0.5, x = 4).
8** = prob(o; = o prob(x = 4| 6”1y > 0.5, x = A) = prob(c; = B probix = B " 1) > 0.5, x = B).

©* and 9** summarize the distribution of the agent’s perceived signal o, when the agent believes that one
hypothesis is more likely than the other, i.c. when prob(x=A|c""} = 0.5. o* is the probability that the
agent perceives a signal confirming his belief that one hypothesis is more likely when in fact the other
hypothesis is true. 0** is the probability that the agent perceives a signal confirming his belief that a
hypothesis is more likely when in fact it is true. Because with probability ¢ the agent misreads a signal
that conflicts with his beliefs, 0* = (1 -8) + g0 and 8%* = 6 + g(1 - 6). When prob(x = 4ic™) = 0.5, i.e.




when the agent believes that the two possible hypotheses are equally likely, the agent does not suffer from
confirmatory bias. In this case, he correctly perceives the signal that he receives, and he updates
accurately, so 8 = prob(c, = o] prob(x=d|o’-1) = 0.5, x=4) = prob(s, = B prob(x=Bic’1) = 0.5, x=B).
If g = 0 then the agent is an unbiased Bayesian statistician, while if ¢ = 1 the agent’s first piece of
information completely determines his final belief, since he always misreads signals that conflict with the
first signal he receives. More generally, the higher is g, the more extreme is the confirmatory bias.
Suppose that the agent has perceived n, o signals and n P signals, where n, > np. Because the
agent believes he has received n, @ signals and ng b signals, his updated posterior beliefs are given by

PN prob(x = A|n, ,ny)
prob(x = Ajng, ng) = —— . Define Afn,,np)= . A(ng,np) represents
8" L (1-0)= T prob(x = Bln, .ng)}
fl
the agent’s beliefs in terms of a relative likelihood ratio. Using Bayes’ Rule, A{#n,, ng) = P If
(1-6)*

A{na,np) > 1 the agent believes that A is more likely than B to be the true state, while if A(n,, np) < 1 the
agent believes that B is more likely than 4. If A(1,, #g) = 1 the agent believes that the two states are
equally likely. The agent’s interpretation of an additional signal is biased whenever A(n,, np) # 1.

In order to identify the effects of confirmatory bias, it is helpful to compare the agent’s beliefs with
the beliefs of a hypothetical unbiased, Bayesian observer who learns how many o and [3 signals the agent
has perceived, and who knows that the agent suffers from confirmatory bias. Like the agent, the Bayesian
observer initially believes that prob(x = 4) = prob(x = B) = 0.5, and she has no independent information
about whether x = 4 or x = B, This hypothetical observer’s beliefs, therefore, reflect the true probability
that x = 4 and x = B, given the signals that the agent has perceived.

Define A*{n,, ng) as the Bayesian observer’s likelihood ratio of 4 versus B when she knows that an
agent who suffers from confirmation bias has perceived n, o signals and ny § signals, where n. > np. In
general, when g > 0 the biased agent’s likelihood ratio A(n,, np) and the unbiased observer’s likelihood
ratio A*(n,, ng) are not equal. If A(n,, ng) > A*(ny, ng) when n, > ng, the agent is overconfident; his
belief in favor of the hypothesis that x = A4 is stronger than is justified by the available evidence.
Similarly, if A(n,, 75) < A*(nq, n1g), the agent is underconfident in his belief that x = 4.

Ih the formal results that we develop below, we assume that, while the unbiased observer knows how
many o and P signals the agent has perceived, she does not know the order in which the agent perceived
his signals. But when g > 0 the order of the'agent’s perceived signals, if known, would influence a
Bayesian observer’s beliefs, since the agent’s confirmatory bias implies that his perceived signals are not
distributed independently. Suppose that the agent has perceived three o signals and two p signals, in
which case his beliefs are A(n, = 3, ng = 2) = 6/(1-8)." If the Bayesian observer knew the order of the
agent’s signals, her posterior belief A*(n, = 3, ng = 2) could be Jess than, greater than, or equal to 6/(1-6),
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depending on the order of the signals. Thus, from the perspective of an outside observer, the agent could
be overconfident, underconfident, or perfectly calibrated in his beliefs.
Suppose, for example, that the Bayesian observer knew that the agent’s sequence of perceived signals

was (o, o, «, B, ). In this case the observer’s posterior likelihood ratio is:

2 2 2
Ao 0O@+1-0)’A-0)* _(0+9(1-0)’(1-06) 8 ge@ 1.
(1-6)(1-6 +¢0)26> (1-6+g6)°’0  1-0

Intuitively, the Bayesian observer recognizes the possibility that the agent may have misread his second
and third signals, perceiving that they supported the hypothesis that x = 4 when in fact one or both may
have supported the hypothesis that x = B. Therefore, the Bayesian observer is less convinced that x = A
than the agent, who is overconfident in his belief. More generally, an observer who knows that a biased
agent has always believed in his current hypothesis should judge the agent to be overconfident in his
belief, since there is a positive probabitity that the agent has misread signals that are counter to his
favored hypothesis. An observer who knows that a teacher has always believed that Bart is smarter than
Marta should recognize that the teacher’s confirmatory bias may have led him to misread evidence that
Marta is in fact smarter.

Alternatively, suppose that the Bayesian observer knew that the agent’s sequence of perceived
signals was (B, B, o, «, o). Now the observer’s posterior likelihood ratio is:

Ate (1-0)(1-0+40)0° _ (1-0+40)0%
B0 +g(1-0))1-0)> (B+q(1-08)(1-6)> 1-9

., Vge (0 1]

In this case, the Bayesian observer believes that the agent may have misread his second signal, perceiving
that it supported the hypothesis that x = B when in fact it may have supported the hypothesis that x = 4.
Thus, the Bayesian observer believes that there is a greater likelihood that x = 4 than the agent, who is
underconfident in his belief More generally, an observer who knows that a biased agent only recently
came to believe in his current hypothesis after long believing in the opposite hypothesis should judge the
agent 1o be underconfident in his belief, since the agent may have misread one or more signals that
support his current hypothesis when he believed the opposite. An observer who knows that a teacher
initially thought that Bart was smarter than Marta, but eventually started to believe that it was slightly
more likely that Marta was smarter than Bart, should conjecture that the teacher is underconfident about
his new hypothesis. When the teacher believed that Bari was smarter than Marta, he may have
misinterpreted signals that Marta was smarter, The fact that the teacher came to believe that Marta was
smarter despite his initial bias towards belicving that Bart was smarter indicates that the evidence is very
strong that Marta is smarter.

The preceding examples illustrate how information about the order of the agent’s signals would
significantly influence an outside observer’s judgment about whether, and in what direction, the agent’s

beliefs were biased. Nevertheless, for the remainder of the paper we assume that an outside observer only
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knows the number of o and P signals that the agent has received, and not the order in which he received
them. This assumption enables us to identify whether, on average, the agent is over- or underconfident.
This appears to be the question that the psychological literature addresses; presumably, it is also of interest
to economists,

Clearly, if g = 0, then A*(nq, #5) = Ang, n5). When g > 0, however, Proposition 1 establishes that
AX(ng, np) < A(ng, ng). That is, when the agent perceives that a majority of his signals support (say)
hypothesis 4, he believes in 4 with higher probability than is warrant M

Proposition 1:  Suppose that n, > ng and n, + ng > 1. Then A*(n,, ng) < A, ng).

Proposition 1 establishes that an agent who suffers from confirmatory bias will be overconfident in
his belief about which state is most likely.

An observer who knows the agent’s beliefs cannot usually observe the exact sequence of the agent’s
perceived signals. Therefore, the observer’s judgment about whether the agent is under- or overconfident
depends on her belief regarding the likelihood of the different possible sequences of signals. Proposition 1
establishes that overconfidence is the dominant force. The intuition for this result is fairly
straightforward: If you cannot directly observe the agent’s past beliefs, but you know that he now believes
in hypothesis 4, you should surmise that, on average, he spent more time in the past believing hypothesis
A than hypothesis B. Consequently, you should surmise that, on average, the agent misread more signals
while believing in hypothesis A-—contributing to overconfidence—than he misread while beligving in
hypothesis B—contributing to underconfidence. Proposition 1 hinges to some extent on our assumption
that the agent receives signals that are the same strength in cvery period. We believe that (far more
complicated) versions of Proposition 1 hold in more general models, but we show in Appendix A that
underconfidence is sometimes possible when the agent’s signals are of different strengths in different
periods.

Proposition 1 shows that when the agent believes that the state is x = 4 with probability 1 > 0.5, the
true probability that the state is x = 4 is less than p. Interestingly, the true probability that 4 is the true
state may be less than 0.5, meaning that B is more likely than 4. The possibility that the agent may suffer
not merely from overconfidence, but also from “wrongness,” arises when the agent’s confirmatory bias is
severe and he has perceived at least two signals in favor of each hypothesis.

To see the intuition for this result, suppose that the agent has since his first signal 5; = a believed
that hypothesis A is more likely than B, but that he nevertheless has perceived two signals o, = c,=p at
two times £, £ > 1. If the agent’s confirmatory bias is severe (i.c. g =~ /), only his first perceived signal in
favor of A provides true evidence that x = 4. Once the agent believes that 4 is true, his confirmatory bias

4 All proofs are in Appendix B. Because our model is entirely symmetric, we shall for convenience
present all results and much of our discussion solely for the case where A is perceived as more likely.
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predisposes him to perceive that subsequent signals support this belief, and, therefore, additional signals
in favor of 4 are not very informative. But, because the agent’s two perceived signals in favor of B
conflict ﬁm what he believ_es-w—that x = A is more likely—they reflect actual signals in favor of B. Thus,
although the agent has always believed that x = 4 is more likely, he has effectively received only one
signal in favor of 4 and two signals in favor of B. In this case the agent’s belief that x = 4 represents
extreme overconfidence; had he correctly interpreted evidence, he would believe that x = B is more likely.

It is, of course, possible that hypothesis 4 is more likely than the agent realizes if he first perceives a
signal 5, = b, falsely read a’s as b’s for a while, and only later perceives enough a’s to come to believe in
A, And it is true that getting more true a’s than true b’s implies hypothesis 4 is more likely. Yet it can be
shown that these possibilities may be far less likely than the cases leading to extreme overconfidence, so
that the net effect is it is more likely that B i3 true than that A4 is true if the agent believes in 4 with mixed
evidence.

For example, suppose that the agent has perceived seven signals, 4 a’s and 3 B’s. Given these
signals, the agent’s posterior beliefs are A(n,=4, ny=3) = 0/(1 - 8) > 1; the agent believes that the state x
= A is more likely. Meanwhile, the true likelihood ratio is A*¥(n,=4,ns=3) =

(1-6)°[86" +86°0%* +7020%* +509*** |+ (1- 6)2[6°0**0* 140" 9%+ 26" (1-6)6**

B*[8(1- )" +8(1-6)*9*+7(1- §)26*2 +5(1- 0)8** 1+ 0°[(1-6)° 6> *6* +4(1- 6)* g**1+ 260(1 - 6)* 6**°

Suppose that = 75, Then the agent’s posterior likelihood ratio is A(4,3) = 3. Suppos¢ further that ¢ =
.95, and therefore the agent suffers from severe confirmatory bias. Then, the true likelihood ratio is
A*(4,3) = .63, and therefore x = B is more likely to be the true state, despite the agent having perceived
more o signals than  signals.

Indeed, it turns out to be the case that when confirmatory bias is very severe and the signals arc very
informative, then whenever you observe the agent believing in hypothesis 4 and having perceived two or
more P signals, then you should assume that it is more likely that B is true than 4. We formalize this in

Proposition 2. Let A*(n,,np i 4,9) be the appropriate beliefs as a function of g and 0. Then:

Proposition 2: Forn,>ngandng < 1,lim ., o A¥(ngng I l-g,1-€}> 1.
For all 7, > g 2 2, lim ,__, o A*(na,15 ] 1-6,1-6) < 1.

That is, for © and ¢ both very close to 1, when the agent has perceived one or fewer f§ signals and
believes in hypothesis 4, she is probably correct (though overconfident) in her beliefs; when the agent has
perceived two or more f signals and believes in hypothesis 4, she is probably incorrect in her beliefs—
hypothesis B is more likely to be true.

We emphasize that the very premise of the proposition means that the situations to which it applies

are uncommon; when both ¢ and 6 are close to 1, the probability of perceiving anything besides a
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sequence of signals favoring the correct hypothesis is small. Therefore, Proposition 2 telis us about a very
low-probability event. For example, in our example with 7 signals, ¢ = .95, and & = .75, the probability
that the signals are sufficiently mixed that the agent is probably wrong is a little more than ¥2%.

While we do not know more generally the highest probability with which the agent can be wrong,
some calibrations illustrate that it can be relatively likely that the agent ends up with beliefs that a
Bayesian observer would deem probably wrong. The tables below display, for various values of », 6, and
g, the probability that A* <n and A > I or A* > I/m and A < 1, where n represents different thresholds
for how wrong the agent is. Table entries are in percentage terms (rounded to the nearest percent), with

rows corresponding to different values of ¢ and columns to different values of 8. (Dashes indicate an

entry exactly equal to zero.)
o 6
q |6 7 8 .9 g 6 7 8 9
d ]- - - - d - - - -
2 1122 0 - 2 - - - -
S 121 9 1 0 3110 5 4 -
4 129 15 5 1 4 |15 13 5 1
S 127 18 10 3 5 19 18 9§ 3
6 ]33 22 12 5 6 16 18 12 3
J 27 21 15 7 7 118 21 13 7
8 33 24 15 8 8 111 16 5 7
9§21 17 12 9 9 14 8 12 6
n=50,n=1 ] | n=50,n=%
6 ]
q |6 7 8 .9 a lJe 7 8
d |- - - - 1 1- . - -
2 |- - - - 2 1. - - .
3 1]- - - - 3 {- - -
4 1- 5 - - 4 1- - - -
Sl 12 7 1 5 |- . . 2
6 13 14 11 4 s1- s 3 1
g k2 11 12 6 T |3 3 2 35
8311 6 12 7 8|10 8 6 3
9 10 4 7 6 9 2 2 1
|  n=50,n=19 | | n=7,n=1 |

For instance, with 6 = .6 and g = .5, the probability that the agent has beliefs after 50 signals that the
observer would deem probably wrong is about 27%. The probability in this same case that his beliefs will
lead the observer to believe in the other hypothesis with at least probability 2/3 is 19%, and the probability
that the observer would believe in the hypothesis opposite to the agent’s with at 9/10 probability is about
3%.'

15 Readers may note that these probabilities generally increase in q then decrease, with probability about 0
for g = 0 and g = 1. But they are not single-peaked in g. This is because there are two factors at work in
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In the example above and in Proposition 2, the agent can be wrong in her beliefs. Even more
surprising, perhaps, the true probability that A is the correct hypothesis need not be monotonically
increasing in the proportion of o signals the agent perceives. Continue to assume that the agent has
received seven signals, but now suppose that five support x = 4 and two support x = B. Then, because 6 =
.75, the agent’s posterior likelihood ratio is A(5,2) = 27 > A(4,3). Meanwhile, the true likelihood ratio is:

(1-0)[70%0** + 900 *** 1 40%0*+%| 1+ (1-0)0°0 **+*0 *
02[7(1-0)%0 % +9(1-0)0** +4(1-0)°0**1+0(1-0)°0% 0 *+

A*(ny =5nmy=2) =

Maintaining the assumption that g = .95, A*(5,2) = .62 < A*(4,3) = .63. Therefore, the relative
likelihood that the true state is x =4 versus x = B is smaller if the agent perceives that five out of seven
signals support x = A than if he perceives that only four out of seven signals support x = 4.

While seemingly counterintuitive, this result reflects the fact that the agent is more likely to have
perceived (truly informative) signals o; = B that conflict with a belief that x = 4 when he has perceived
only two signals in favor of B than when he has perceived three signals in favor of B. Intuitively, the
agent is more likely to have believed for many periods that x = 4 in the former case than in the latter case.
Put differently, the agent is Jess likely to have perceived (tuly informative) signals o; = o that conflict
with a belief that x = B when he has perceived only two signals in favor of B than when he has perceived
three signals in favor of B.

The preceding examples illustrate that an agent who suffers from confirmatory bias may believe that
one of the two possible states is more likely than the other when in féct the reverse is true. Nevertheless,
Proposition 3 shows that a Bayesian observer who knows only that a biased agent believes that x = 4 is
more likely than x = B will herself believe that x = 4 is more likely. Therefore, an agent who suffers from
confirmatory bias will “on average” correctly judge which of the two possible states is more likely, though,
as Proposition 1 establishes, he will always be overconfident in his belief.

Define A*(n) as the likelihood ratio of a Bayesian observer who knows that a confirmatory agent has
perceived a total of » signals, and knows that n, > np but does not know the exact values of n, and np.
That is, the observer knows only that the agent believes A is more likely than B, but observes nothing
about the strength of his beliefs. Then:

Proposition 3: For all n, A¥(m)> 1.

determining the influence of g on the probability. As g increases, the probability that the agent will end
up with close-to-even mixes of o and P signals decreases continuously. But because an increase in ¢
increases the likelihood that any given combination of o’s and $’s involves the agent being
probabilistically wrong, there will be at certain points discrete jumps upward in the likelihood of
wrongness for some values of g. The result is an extremely poorly-behaved function.
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In light of the above examples where the agent may be wrong, the simple generality of Proposition 3
may seem surprising. It is reconciled with the examples by observing that the agent suffers from
“wrongness” only when his confirmatory bias is very severe, meaning that g is close to 1, and yet he has
perceived mixed signals about which state is more likely. But the agent is unlikely to receive mixed

signals when his confirmatory bias is strong, because each signal o, will tend to mirror 1.

4. Beliefs after an Infinite Number of Signals

A fully Bayesian agent—for whom g = 0—will after an infinite number of signals come to believe
with near certainty in the correct hypothesis. We now investigate the implications of confirmatory bias in
the limit as an agent receives an infinite number of signals.

We begin with definitions and a lemma that will help to analyze this question. Suppose that the
agent has thus far received m = n,, - ny > 0 more perceived signals in support of hypothesis 4 than in
support of hypothesis B. Suppose further that, so long as n, > np, prob (o, = &) = y. Note that y = 6* if B
is true, and v = 8** if 4 is true. We wish to consider some preliminary results that hold in either casc.
We define p(m, v) as the probability that there exists some time in the future the agent will have received
an equal number of o and P signals. (At that time the agent’s posterior belief is the same as his prior
belief, prob{x = 4) = 0.5.) We have the following lemma.

Lemma I: Forallm >0,y 205, p(m, vy=[(1 -yH]". Fory<0.5, pfm, y)=1.

We define Py as the probability that the agent, beginning with the prior belief prob(x = 4) = 0.5,
comes to believe with certainty in the wrong hypothesis after receiving an infinite number of signals.'®
That is, Py is the probability that, although the true state is x = 4, the agent instead comes to believe

irreversibly, with near certainty, thatx = B. Proposition 4 characterizes Py as a function of g and 0:

(1—9)-(1— (1_9? )J
Proposition 4: ¥ q>1-1/(20), then By = ( >0,

1- (1—6)'(1;? ) _e(l_e ))

Ead

3]
Hg<1-1/(20), then Py = 0.

When g > 1 - 1/(20), o* = (1-6)+49>05 When o* > 0.5, then once the agent comes to believe
that the wrong hypothesis about x is more likely, he is consequently more likely to receive a signal o; that

16 More formally, Py = Prob(¥ k> 0 and V £ > 0, 3 n* such that Prob(n,-ng > k for ail # > n*) > 1-g).

i6




confirms this incorrect belief than he is to receive a signal that conflicts with this incorrect belief. This
guarantees that there is a positive probability that the agent will never overturn his incorrect hypothesis,
and in fact come to believe more and more strongly in that wrong hypothesis. Conversely, if g <1 -
1/(20), then 8% < _5, which guarantees that the agent will, every time he comes to believe the wrong
hypothesis is more likely, eventually come to abanden that belief. This in turn implies that the agent will
tepeatedly come 1o believe the correct hypothesis is more likely; and since 8** = 0 + g(1-0) > 8 > .5, he
will eventually come to believe in it with near certainty.

The proposition shows that, despite receiving an infinite number of signals, the agent may become

certain that the incorrect hypothesis is in fact true.”

This occurs when the agent’s confirmatory bias is
sufficiently severe. For example, suppose that ¢ = 0.5 and 8 = .75. Then Py = 7/52, meaning that 13.5%
of the time the agent will eventually come to believ.e with certainty in the wrong hypothesis. As the
quality of the agent’s true signal worsens he is more likely to believe with certainty in the wrong
hypothesis. Indeed, a corollary to Proposition 4 is that, fixing any g > 0, limqg ., Pyyr= 4.

- We now investigate the related question of when the agent will maintain an incorrect initial belief.
To do so, we relax our assumption that the agent initially believes that each state x is equally likely and
suppose instead that the agent initially believes that the wrong hypothesis is more likely to be true. For
example, if x = B is the true state of the world then the agent initially believes prob(x = 4) = p > 0.5.
Crucially, we assume that this belief arose from signals that are independent of the new signals that the
agent receives, which are distributed as outlined above.

Given the assumption that the signals are independently distributed and ignoring integer problems,
these prior beliefs can be interpreted as if the agent has already received D more signals supporting the
incorrect hypothesis, where:

gP
"o ra-?
This formula implicitly defines a function D(p). The agent must receive D(p) more conflicting signals o
than confirming signals in order to reach a posterior belief that the two possible states of the world, 4 and
B, are equally likely.

We define Pj(y) as the probability that the agent, beginning with the prior belief 1 > 0.5 that the

wrong hypothesis about the state of the world is true, comes to believe with certainty in the wrong

hypothesis after receiving an infinite number of signals.’®

' 1t is straightforward to show that the agent becomes certain that the correct hypothesis about the state of
the world is true with complementary probability. Therefore, afier an infinite number of signals the agent
will believe that one of the hypotheses is certainiy true.

B Pul0.5) =Py .
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Proposition 5: Choose any € > 0 and any p > 0.5, Then:

(iy  Forall 6 € {0.5,1), there exists ¢ > 0 such that Pp(p) > 1 - 2.
(ii)  Forall g > 0, there exists 6 > 0.5 such that Pe(u) > 1 -¢.

Proposition 5 says that an agent who begins with an arbitrarily small bias in the direction of the
incorrect hypothesis will almost surely maintain his belief in this hypothesis when either of two conditions
is satisfied. First, and not very surprisingly, this will occur when the agent is subject to severe
confirmatory bias, When g is very close to I then the agent almost never receives signals that conflict
with his initial belief, and therefore it is not surprising that this belief is rarely overturned. Second, and
somewhat more surprisingly, the agent almost surely maintains his incorrect belief provided that his true
signals are very weak, meaning that 8 is very close to 0.5. This result does not depend on the level of
confirmatory bias, so long as g > 0. This result means that if the agent receives only very weak feedback
from his environment and is subject to any confirmatory bias, -he almost never overcomes any inifial
beliefs that are significantly incorrect, and in fact comes to believe that the incorrect hypothesis is
certainly true. While one should not overinterpret the sccond result in Proposition 5—we can question
whether agents really pay attention to such weak feedback—the conclusion is nevertheless very striking.
Propositions 4 and 5 show that an infinite sequence of signals will not necessarily lead people to overcome

erroncous beliefs; rather, people may simply become more and more confident in those erroneous beliefs.

5. Discussion and Conclusion

We belicve that confirmatory bias is important in many social and economic situations, and that
variants of the formulation developed in this paper can be usefully applied in formal economic models.
One possible application is to a principal-agent model. Confirmatory bias may lead agents to take
undesirable actions not solely becausc of “moral hazard” problems, but also because they are
overconfident. Beyond making sure that people live with the negative consequences of bad choices,
therefore, incentives should also be designed to prevent decisions based on good-faith overconfidence. For
instance, at a conference one of the authors attended, a leading economist conjectured that bad investment
decisions by businesses in Eastern Europe receiving bank loans were more often the result of
overconfidence by borrowers than of intentions to mislead banks.'> We hope applications of our model
can help economists formally analyze such a claim, rather than relegating it to the category of informal

intuitions that have no place in mainstream research.

1° Relatedly, Wood (1989) asserts that money managers become more confident in their investment
decisions as they gather more information—even when the quality of their investment decisions arc not
improved.

18




Another potential area of application concerns how a decision-maker aggregates information from
many sources. In a setting where several individuals (non-strategically) report their beliefs to a principal,
how should she combine their beliefs to form her own beliefs? If the principal thought the agents were
Bayesians, then she would be very sensitive to how strong the agents” beliefs are. Suppose, for instance,
that the principal knows that all agents receive signals of strength © =.6. Then if two agents report
believing hypothesis A with probability .6 and one agent reports believing hypothesis B with probability
77 (meaning he has gotten three more & signals than a signals), the principal should believe in
Hypothesis B with probability .6.

What if the principal were aware that agents are subject to confirmatory bias? One intuition is that if
confirmatory bias is severe, so that only the first signal each agent gets is informative to the principal,
then the agent should discount the strength of agents’ belicfs, and basically aggregate according to a
“majority rules” criterion. In the example above, for instance, the principal should perhaps think
Hypothesis A4 is more likely, because two of three agents believe in it. We think this intuition has merit,
but it is complicated by the fact that agents who believe relatively weakly in a hypothesis may be more
likely to be wrong than right. So, if the principal thought confirmatory bias were severc and were very
sure that all agents had received lots of information, then in our example she should believe all three
agents have provided evidence in favor of Hypothesis B. Hence, she should believe more in Hypothesis B
than she would if the agents were Bayesian.”

In many contexts, we suspect that usefully incorporating confirmatory bias into economic analysis
will depend upon assumptions about judgment whose psychological validity has not (to our knowledge)
been determined by research. For instance: Do people believe that others suffer from the bias? It could
be that people are well aware of biases in others' judgment, or that people are unaware of the general
tendency towards confirmatory bias.? Investors who hire a money manager might or might not believe
that the money manager suffers from a confirmatory bias (and is therefore prone towards overconfidence).
A principal hiring an employee to make decisions might or might not know that the employee will be

prone to making such errors. By the logic of economic models that involve multiple agents, these

2 We do suspect that the “majority-ules intuition” is more valid, especially when considering realistic
uncertainty by the principal about how many signals each agent has received. If she were highly
uncertain how much information each agent received, she would assume weak beliefs merely reflected
that an agent got few signals. Similarly, if the principal thinks susceptibility to confirmatory bias is
heterogeneous, she might infer that an agent’s weak beliefs indicates merely that he is not susceptible to
overconfidence, and count weak beliefs as much as strong beliefs. Indeed, she may then count them more
heavily, since confirmation-free agents are not only less likely to be overconfident, they are also less likely
io be wrong,.

2 Unfortunately, while this issue may turn out to be central to economic applications of confirmatory bias
(and to applications of other psychological biases), we have not found psychological research that
convincingly resolves this issue. There is a small literature in “construal” that concerns third-party
awareness of biases. See, e.g., Ross (1987), and tangentially Paese and Kinnaly (1993). We have not
found investigation of this issue in the context of confirmatory bias or overconfidence.
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distinctions are likely to matter: Just as assuming that rationality is common knowledge is often very
different than merely assuming that people are rational, assuming that agents are aware of others’
irrationality may be very different than merely assuming that people are irrational.

How might economic implications depend on people’s awareness of others” confirmatory bias? One
possibility is that people might exploit the bias of others. A principal may, for instance, design an
incentive contract for an agent that yiclds the agent lower wages on average than the agent anticipates,
because the agent will be overconfident about her judgments in ways that may lead her to exaggerate her
yield from a contract. Conversely, others may wish to mitigate bias rather than exploit it. A principal
may be more concerned with overcoming costly bias of an agent than with exploiting it, and design

contracts that avoid errors.

Appendix A: Differential-Strength Signals and Underconfidence

If the agent receives signals of different strengths in different periods, it is possible that the agent
will be underconfident in his belief about which of the two states is most likely. Suppose, for example,
that the agent receives three signals 5, € {a, b}, t € {1, 2, 3}. Supposc that the first two signals are
distributed according to prob(s, = ald) = prob(s, = b|B) = 6 > 0.5, f e {1, 2}, but that the agent’s third

83

signal is distributed according to prob(ss = al4) = prob(s; = b|B) = m
+ —_

. That is, the agent’s

third signal is three times as strong as first- or second-period signals. As before, with probability ¢ > 0
the agent misreads signals that conflict with his belief about which state is more likely. (This means that
the probability of misreading is independent of the strength of the signal.)

Suppose that the agent perceives that his first two signals support hypothesis B, while his third
signal supports hypothesis 4. Formally, the agent perceives (o,=p, 0.=p, os=at). Given these perceived
signals, the agent’s posterior likelihood ratio is A(s=b, 5,=b, 53=a) = 6/(1 - 6) > 1. Now, suppose that a
Bayesian observer knows both that the agent’s posterior likelihood ratio is A = 0/(1 - 0) and that the agent
suffers from confirmatory bias. Given the distributions of the signals, the observer is able to infer that the
agent has perceived (¢1=B, >=B, o3=a). Then, the observer’s belief regarding the relative likelihood that
the state is x = 4 versus x = B is given by:

1-0)(1-0+q0)(1-g)8° _ (1-8+g96)8° s 9
0@ +q(1-OX1-)(1-6)° (8+q(1-O)(1-6)" 1-6

A*Q,B.a)= Vg e(0,1].
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Therefore, given what she infers about the agent’s sequence of perceived signalé, a Bayesian observer
believes that the biased agent is underconfident in his belief that the true state is 4.

This underconfidence result arises here because the observer infers the exact sequence of the agent’s
perceived signals from his likelihood ratio. In this light, the results here are the same as the path-
dependent underconfidence example in the text—if the agent is known to have only recently come to
believe in a hypothesis, then he will be underconfident. In our main model, in which the agent receives
signals of equal strength, an observer who knows the agent’s beliefs cannot infer the exact sequence of the
agent’s perceived signals.

While there may be some domains in which this differential-signal model is applicable, constructing
examples of underconfidence seem to require clever contrivance. It is first of all clear that the
“gverconfidence” result will be stronger than the underconfidence result in one sense: In the model of this
paper, the overconfidence result holds for a// final beliefs by the agent. Any underconfidence example
will clearly hold for only some final beliefs—because it will always be the case that a confirmatory agent
is overconfident when all his perceived signals favor one hypothesis.

We suspect, moreover, that more complicated and weaker versions of Proposition 1 will hold in more
general models. The underconfidence result seems to rely on the agent having received a small number of
signals, where certain final beliefs can only be generated by a unique path of updating. Consequently, it is
very likely that a “limit overconfidence” result would hold—once an agent is likely to have received large

numbers of signals of a1l strengths, we can assure A* <A when A> |

Appendix B: Proofs

Proof of Proposition 1: We first notice that

%
prob(n, ,n,| 4) = Z prob(i, il 4)c, 606 +g(1- )] (1-g)" (1- )™

i=0

i)
prob(n_,n; | B) = > prob(i.i| B)c; (1- 0)(1-6) +g61™ ' (1-g)" 0"
=0
where ¢; is the number of ways to choose n, - nz more a signals than b signals in n, + ng - 2i draws
without ever having chosen an equal number of a4 and 5 signals, and prob(i,ilx) is the probability of
observing i perceived a and i perceived b signals in 2/ draws when the true state is x € {4,B}. Given the
symmetric distribution of the signals, prob(i,ii4) = prob(i,i|B).
Using Bayes’ Rule, '

" probii, il 4)e, 00 +g(1- )] (1-g)»~ (1-6)~
prob(n,.m,|4) _ %o
prOb(nasnblB) o . n 1 . P )
D probi, | Bye; (1-8)[(1-0) +40]™ " (1~ )™ 70"

i=0

(1.1} A*(n, ny)=
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Because 8+q(1-0) < 8
{1-8)+¢g0 1-6

(1L2)  [8+qQ-O="" (1-6)= T S[(1-6) +qa g

with a strict inequality for 7 = 0 since the hypotheses imply that n, = 2. Factoring and multiplying (1.2)

by (1-0)(1-4g)™" and rearranging, we have:

Vg (0.,1] it follows that:

(13) 0{8+q(l 9)]"“_1 1(1 q)nb (1 e)m—ls(l 8)[(1-—~9)+q€] n,—1- 1(1 q)na-!enbvl(lee)

V¥ i, with a strict inequality for at least i = 0 since n, > 2. Using (1.1), (1.3) and prob(i,/|4) = prob(i,iB):

6 Ha—ny
Z prob(i, il A)e; (1- OI(L—6) +¢6]™ '~ (1-g)" ' 6™ [ = g] o Ve
A*(n,,m,) < =(1_gj = A, 1)
> prob(i, i1 B)c; (1- )1 6) +q6)"= "' (1- )™ 0™~
i=0
QED
Proof of Proposition 2: Clearly lim..,o A (12,0 | 1-6,1-6) =0 ¥ n,> 0.
lime 0 A'(n5,1 | 1-6,1€) = (na+ 1)/ (no-1) ¥ 1z > 1.
It can be shown that, if the agent’s current beliefs are that
A and B are equally likely, and 4 is true, then the probability that the next signal is o= 1 isf =¢
Bistrue, ... =g =1
A is probably true, and 4 is true, ... =1 = g?
Bistre, ... | &g
B is probably true, and A is true, ~g =1
and B is true, =g’ =1

From these numbers we can calculate that, if n,> ng:

e Suppose A is the true state. Consider all paths ¢~ such that (1) o, = p and (2) there is always a strict
majority of § signals until 241 signals, after which all signals are .. Then the probability of any
particular path ¢” is about £™*'. All other paths each occur with probability on the order of gt
or greater when ng2 2.

e Suppose B is the true state. Consider all paths o such that (1) o," = « and (2) there is always a
strict majority of o signals. The probability of any particular path o** is about g™ All other

paths each occur with probability on the order of &™ *Z or greater when ng> 2.

To show A (nang ’ 1-g,1-) < 1 with ng 2 2, therefore, we need only to show that the number of
paths of type o~ is stnctly greater than the number of paths of type o This is easy to verify. For every
particular path of type o, there exists a path of type o that is the mirror image of that path for the first
2ng-1 signals (replacing each o with a B and each B with an o), and whose last n-nt1 mgnals consist of
nm-nB-I o’s followed by 2 f’s. In addition, there will exist at least one more path of type o ; for instance,
ne o’s followed by ng f’s. QED

Proof of Proposition 3: The proof is by induction. Suppose that A(1) > 1. Then a Bayesian observer
infers that the agent observed a single true “a” signal, and A*(1) = 8/(1-0) > 1. Now suppose that A(n ),
A*(n), and A(n+1) > 1. We must show that A*(n+1) > 1. First, suppose » is an even number. Because
A(n) > 1, after period n the agent has perceived at least two more “a” signals than “b” signals. Therefore,
knowing only that A(n) > 1, a Bayesian observer’s refative likelihood ratio, A*(n) = prob(x=4)/prob(x=5),
is given by:
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n
3-1

J
>N pli,il e, 010 +q(1- O (1-g) T 1- )7

A
_ j=0i=0 P
@1 A* =3 - T )
D pli,il By, (1-O)I(1- ) +q8" I A- gy ¢
J=0i=0

where p(i,ilx) and c; are defined as in the proof of Proposition 1. Define p°(n) as the probability of
perceiving a majority of “oc” signals in » draws given the state x € {4, B}. Then A*(n + 1) is given by:
p*(m+p(2.214)

P (")""P(z 23 IB)(I“G)
Because p{2,2|4)= p(2,2|B) and 6 > 0.5, A% + 1) > 1 follows immediately from the hypothesis that
A*(n) > 1, which implies that p(n) > p°(m).

Now suppose that n is an odd number. Because by hypothesis A(n) > 1, afier period » the agent has
perceived more “g” than “b” signals. Therefore, knowing only that A(n) > 1, a Bayesian observer’s
relative likelihood ratio, A*{r) = prob(x = 4)/prob{x = B), is given by:

ir—!

ZZP(: 14)c,000+q(-O1 " 1-g) T 1-0)7
@3) A =5 -2
g, RO

33 i B, A~ B -0+l (1= )7 07
7=0 i=0
Meanwhile, A*(n + 1) is given by:

st

P =3 plii| A, 010+g(1- O (1-g) T (1-6)F 7 (1-g)(1-0)
i=0

(24) A*(n+1D) = o
2
E.= ES I = O
PP =2, pi.ilBe, - O)(1-0)+46) ' A-) T 767 '(1-g)6
=0
Because A*(n) > 1 implies () > p®(n), in order to establish A*(+1) > 1 it is sufficient to show that:
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S bl il e, A0+g(1-O1F " (1-g) T (1-6)T T (1-g)(1-6) <
@5 ~°

2 A*n+h=

.l
2

> ptiilBle, - O1-60)+q8] " (1-9)T 0 7 (1-9)0
i=0
Using the fact that p(i,il4) = p(i,i|B) and canceling like terms, the inequality in (2.5) is satisfied if

L i Ly - . Lo
[0+g(1-8)]7 "(1-0)F 7 <[1-0+40]7 0% Ve {0,...,”71}. But this inequality is always

. 8+4g{1-9) 2]
satisfied because 1-6) 70 < —

Vg €(0,1]. Therefore, A*(n+1)> 1. QED

Proof of Lemma 1: Here we suppress the dependence of p(m, y) on v to conserve notation.

Clearly (1) p()=yw(@)+{1-v
) p@=w3)+{1-7)p)

(m) pm)y=ypm+}+ (1 -y pm-1)
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Summing (1) - (m), we obtain

D pm =y, pm) = D) + (=), P + (=)

ar

2o pmy =2 pm) = () + (1-7)

So, p(1) = (1 - y)/y. The general formula for p(m) is derived by induction, using the fact that for all m we
have p(m) = p(m - Dfy - (1-n))p(m -2). QED

Proof of Proposition 4:  The first hypothesis implies that 8* > 0.5 and therefore, using Lemma 1, Py
satisfies

Pyr=(1-8)[(1-p(1,8%) + p(1, 0%)-Py] + 6-[p(1, 87 )-Py, or
(1~e‘)j

1-9).|1- 273

(1-9) ( 5

[1 _ a-e).(l;f") i e(zgg‘)j

B, =

P> 0'because 6% > 0.5 for all g 2 0,

The second hypothesis implies that 6% < 0.5 and therefore, using Lemma 1, Py satisfies:
Py=(1-8)Py+6-[p(1, 6**)-Py]
Pyy= 0 because p(1, 8%") < 1, QED

Proof of Proposition 5:  Ignoring integer problems, and since q > 1-1/(2/0) for the cases we consider
below, the definition of D(p) and Lemma 1 imply that:

e 200 « D)
PW(u):(l—[Ig_e} J + {1—;9-“] B, (05) > 0.

@) Note that lim, 8" = 1 for all (, ©). Therefore, for ¢ sufficiently close to 1, Pa{}t) can be
made arbitrarily close to 1.

(i) Note that limg , o5 8" > 0.5 and limg 05 D() = oo for all (y, g). Therefore, for 6
sufficiently close to 0.5, Py{p) can be made arbitrarily close to 1. QED
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