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A B S T R A C T   

Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a 
powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing appli
cations to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unpar
alleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is 
variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review 
is to address the primary methodological issues including investigator decision points in the application of rsfMRI 
to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to 
identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, 
and reproducible for the TBI imaging research community. Part one of this review provides the results of a 
literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing 
pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of 
maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three 
summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize 
the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical 
transparency and data sharing to address the reproducibility crisis in the field.   

1. Introduction 

Resting-state functional magnetic resonance imaging (rsfMRI) has 
provided neuroscientists with a powerful tool to model synchronous 
low-frequency oscillations in the blood oxygen level dependent (BOLD) 
signal as an apparent measure of brain activity patterns (Biswal et al., 
1995; Lee et al., 2013). Resting-state fMRI eliminates task demands and 
typically shortens scan times, making it easier to use with cognitively 
impaired participants who may have difficulty sustaining attention or 
completing complex fMRI tasks while in the scanner (e.g., Leunissen 
et al., 2013). In the first application of rsfMRI to brain injury, Nakamura 
and colleagues (2009) performed whole-brain network analyses of the 
rsfMRI signal in 8 patients at 3 months and 6 months following severe 
TBI. Their results revealed alterations of network properties including 
enhanced functional connectivity (FC) early after injury that became 
more comparable to healthy adults over the course of the first 6 months 
post injury. Since this initial study, more than 100 rsfMRI studies have 
been published in TBI patients with a particular surge in contributions in 
the most recent years. The scope, methodology, and utility of rsfMRI in 

TBI has been reviewed in previous review papers (e.g., Caeyenberghs 
et al., 2017, Hayes et al., 2016; Morelli et al., 2021; O’Neill et al., 2017; 
Esagoff et al., 2023). For example, Hayes and colleagues (2016) sum
marized findings from both structural, diffusion, and rsfMRI studies to 
examine how brain networks are disrupted by axonal injury. In another 
review, Caeyenberghs and colleagues (2017) reviewed alterations to 
graph theoretical properties of the functional brain networks in TBI 
patients, outlining pertinent methodological challenges associated with 
the examination of FC in these patients. 

Despite the breadth of empirical work examining rsfMRI changes 
after TBI, the literature has yet to coalesce around a consistent set of 
findings. Efforts for meaningful meta-analyses have been unsuccessful 
(Bickart et al., 2023; Eierud et al., 2014; Hallquist and Hillary, 2018; 
Hannawi et al., 2015; Verhulst et al., 2023) and were at least partially 
the inspiration for this critical review. For example, Bickart and col
leagues (2023) recently concluded that there were no consistent findings 
in TBI and rsfMRI. Another meta-analysis by Verhulst and colleagues 
(2023) demonstrated that FC within the default-mode network showed 
consistent associations with cognitive performance in all types of acute 
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onset brain injury and was associated with worse cognition. However, 
this consistent finding was only found in four studies in TBI and stroke 
patients. Inconsistent results across studies pose critical challenges to 
the field and hinder progress towards clinical and diagnostic applica
tions of rsfMRI. With the effects of the replication crisis now observable 
in virtually every discipline in science, there is increasing concern 
regarding the reproducibility of TBI research (Priestley et al., 2023). 

The methods used in rsfMRI have not been spared from this scrutiny, 
with several reviews outlining the challenges of reproducibility in the 
rsfMRI literature in both basic (Esteban et al., 2019; Poldrack et al., 
2017) and applied neurosciences (Hallquist and Hillary, 2018). There 
has been growing concern about the reliability of rsfMRI methods and 
how they might be appropriately applied to the study of TBI across basic 
(cognitive neuroscience) and applied (neurorehabilitation) topics. For 
example, in a review of 106 rsfMRI studies in the clinical neurosciences 
(including TBI), more than 50 brain parcellation schemes were utilized 
to create networks for analysis, rendering the literature nearly impos
sible to integrate and interpret (Hallquist and Hillary, 2018). The wide 
range of pathways for data analysis results in a decentralized imple
mentation of rsfMRI procedures, with low methodological overlap, poor 
harmonizability, and conflicting interpretations. For example, when 70 
investigators were asked to test the same hypotheses on the same im
aging data set, no two teams chose an identical analysis workflow: thus, 
the investigators’ results were highly discrepant (Botvinik-Nezer et al., 
2020). Concerns about researcher degrees of freedom (Gelman and 
Loken, 2013) and under-powered studies (Button et al., 2019) are now 
being voiced, refocusing attention on maximizing reliability in rsfMRI 
studies (Teeuw et al., 2021). Unfortunately, the problem of “forking 
paths” (which refers to investigator freedom to choose from myriad 
analytical approaches) that Gelman and Loken (2013) discuss, appears 
trivial when compared to the massive parameter space facing in
vestigators using rsfMRI. When considering only the pre-processing of 
data, Poldrack and colleagues (2017) show that there are more than 
60,000 pathways to analyze data using accepted procedures. There is an 
urgent need to reconcile inconsistent findings in rsfMRI studies (see 
Hallquist and Hillary, 2018; Rajtmajer et al., 2022), a seemingly 
impossible task in the face of methodological divergence of this 
magnitude. 

This reproducibility crisis is more pronounced when studying pa
tients with TBI due to the heterogeneity in brain injuries. TBI can result 
from different causes (such as traffic accidents, falls, assaults, blast ex
plosions), leading to diverse lesion types, locations and sizes across TBI 
patients (Covington and Duff, 2021). This variability in lesion charac
teristics can result in inconsistencies in resting state networks and other 
diverse patterns of FC across patients, making it challenging to identify 
reproducible findings across rsfMRI studies in TBI patients (Bickart 
et al., 2023). There is also a high between-subject variability in brain 
reorganization mechanisms (i.e., differences in restoration and 
compensation mechanism) across TBI patients, which can lead to dif
ferences in FC patterns (Hylin et al., 2017). Patients with TBI can present 
with a wide range of cognitive and motor deficits, potentially increasing 
head motion during fMRI scans (Caeyenberghs et al., 2009; Irimia & Van 
Horn, 2015). This can introduce artifacts and spurious correlations in 
the data and reduce the quality of the rsfMRI data, impacting the 
reproducibility of results. The majority of rsMRI studies in TBI patients 
have low sample sizes with insufficient statistical power, impacting the 
generalizability. There are several strategies that TBI researchers can 
employ to enhance reproducibility of rsfMRI studies, which will help 
improve the reliability and generalizability of findings in this chal
lenging population. 

One approach to address issues of reproducibility is to identify a 
minimum set of recommended methods that are reliable, harmonizable, 
and reproducible within the TBI imaging research community. The pri
mary focus of this review is to galvanize the TBI research community in favor 
of an agreed-upon set of reproducible methods. We aim to increase 
analytical transparency and data sharing to address long-standing 

methodological challenges in the field, while preserving investigators’ 
freedom to choose methods appropriate to their empirical questions. To 
achieve this, we will outline the following seven recommendations (see 
Fig. 1 for an overview) to improve the reproducibility of rsfMRI studies 
in TBI patients: (i) account for heterogeneity in TBI sample character
istics; (ii) share data to boost sample sizes, increase representativeness, 
and address heterogeneity; (iii) utilize a minimum set of rsfMRI 
sequence acquisition parameters; (iv) standardize quality assessment 
procedures of rsfMRI data; (v) employ consistent approaches for head 
motion correction and nuisance signal regression; (vi) standardize pro
cedures for dealing with lesions in moderate-to-severe TBI patients; and 
(vii) use standardized data processing workflows for pre- and post- 
processing analyses. These seven recommendations should serve as a 
useful reference for those TBI researchers who are new to rsfMRI anal
ysis, helping them to avoid ‘analysis paralysis’ in the face of tens of 
thousands of highly technical methodological decisions, and as a check 
for those who may already be running studies, but may have overlooked 
some important confounds. In part 1, we provide an overview of 181 
currently published rsfMRI studies in TBI, focusing on their design 
choices and processing techniques. In part 2, we offer a set of recom
mendations for best practices, supported by key literature. In cases 
where no solutions are obvious, we highlight and chart important goals 
for their future resolution. Finally, in part 3, we outline new directions 
and opportunities for future rsfMRI studies in TBI patients, including 
multimodal MRI studies, lesion mapping strategies, and single-subject 
analyses. 

2. Part 1: Summary of the studies 

For this narrative review, we aimed to understand the methods used 
in rsfMRI studies of TBI, so a basic search strategy was conducted using 
Ovid Medline to retrieve rsfMRI studies in TBI patients. The search 
strategy used alternative terms for TBI (“traumatic brain injur*” OR 
“TBI” OR “moderate to severe TBI” OR “severe TBI” or “concussion”) 
AND rsfMRI (“rsfMRI” or “functional connect*” OR “functional 
network” OR “connect*” OR “graph theory”). The search strategy was 
further refined by limiting the results to studies carried out in human 
populations and excluding review papers. After this initial search, du
plicates were manually removed, and remaining results were screened 
and reviewed in the full-text format for relevance and quality. Because 
the primary goal was to understand investigators’ methods/approaches 
in this literature, inclusion of studies was also based on the co-authors’ 
expertise and familiarity with the rsfMRI literature. One hundred eighty- 
one research articles (153 in mild and 28 in moderate-to-severe TBI) met 
the search criteria. 

To critique the methods used in this literature, we documented the 
key study parameters of each study (such as sample size, acquisition 
parameters, pre-and post-processing techniques) in the Supplementary 
Table. This Table provide an overview of the methodological issues that 
can affect the reliability of rsfMRI results in TBI patients. These results 
were used to guide our set of recommendations to improve the repro
ducibility of rsfMRI studies, which are outlined in section 3. 

In the 181 studies reviewed in this paper, different approaches were 
used to examine resting-state brain activity in TBI patients (see Sup
plementary Table). The majority of the studies (86 studies) have used a 
region-of-interest (ROI) analysis, whereby a seed region is selected a 
priori, and the subsequent FC map is extracted from the temporal cor
relations between the ROI and all other brain regions. Fifty-six studies 
applied network analyses or graph theory on the resting-state fMRI data. 
Thirty-six papers have employed the independent component analysis 
(ICA) method, whereby the data for the entire brain is decomposed into 
a set number of components, each of which is depicted as a functional 
map. Only a few ICA studies evaluated resting-state FC differences of the 
same canonical network, including the default mode network (6 
studies), task-positive network (2 studies), salience network (2 studies), 
fronto-parietal network (2 studies). Twelve studies extracted voxel-wise 
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quantitative features from the rsfMRI data, such as the regional homo
geneity (ReHo, 3 studies), in TBI patients. The remaining studies used 
either one of these methods in combination with other analysis tech
niques, or a completely different approach, such as principal component 
analysis (PCA, 4 studies), multi-voxel pattern analysis (MPVA, 2 
studies), Bayesian multi-subject vector autoregressive modelling (BVAR, 
1 study), and cross-correlational analysis (CCA, 1 study). This variability 
in the analysis characteristics varied so greatly that it was impossible for 
us to perform a meta-analysis. 

3. Part 2: Recommendations 

3.1. Account for heterogeneity in sample characteristics 

It is critical to account for heterogeneity in patients with TBI when 
attempting to categorize injury-based rsfMRI connectivity alterations. 
More so than in other brain disorders, TBI patients present with a wide 
range of injury characteristics and individual factors that can result in 
resting state functional connectivity (rsFC) fluctuations (Priestley et al., 
2023). However, 57.46% of studies in our review had sample sizes less 

than 30 (see Supplementary Table), resulting in conclusions that may 
not be generalizable within and across different populations. Focused 
attention is required to address how myriad effects ranging from de
mographics to clinical injury variables influence modeling and ulti
mately the reproducibility of rsfMRI results. A total of 7, 392 
participants were studied across all papers included in the review. Mild 
TBI, as opposed to moderate-severe TBI, accounts for over 90% of the 
population studied. 

Males commonly show higher rates of TBI (Frost et al., 2013) and 
have greater representation in the studied population (68.87%). Perhaps 
due to less representation of women, 90.06% of studies did not report 
including sex as a covariate in post-processing analyses. Sex remains a 
critical variable of study with studies now showing that females have 
higher rates of sports-related concussion in sex comparable sports 
(Bretzin et al., 2021; Covassin et al., 2016; O’Connor et al., 2017). 
Because of this, there is growing emphasis in examining sex differences 
in both the biological response to injury as well as in the study of long- 
term outcome. As one example, epidemiological data suggest sex dif
ferences in recovery trajectories for both sports-related (Bretzin et al., 
2022) and non-sports related (Roby et al., 2023) concussions. Moreover, 

Fig. 1. Schematic overview of the seven recommendations from the ENIGMA rsfMRI working group.  
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studies have demonstrated sex differences in cognitive functioning for 
both acute (Broshek et al., 2005; Iverson et al., 2017) and chronic TBI 
stages (Forslund et al., 2019; Levin et al., 2021; Rauen et al., 2021). 
Biological older adult males are more likely to show decreases in rsFC six 
months after mild TBI, compared to similar age females (Amgalan et al., 
2022a). Others have pointed to sexual dimorphism of brain morphom
etry including axonal structure as a source of between-sex difference in 
symptom presentation and recovery following TBI (Dolle et al., 2018). 
While this literature continues to emerge, there is ample evidence that 
investigating the biological basis for recovery of TBI requires consider
ation of biological sex, and work to date has only begun to do so. 

With respect to age, the majority of studies in our review (70.59%) 
recruited mostly adult TBI patients (> 21 years). TBI rates increase with 
age (Peters and Gardner, 2018), and older adults are at greater risk of 
hospitalization after TBI (Coronado et al., 2005). Older age at injury is a 
risk factor for significant rsFC alterations, which underlie common post- 
traumatic cognitive deficits (Amgalan et al., 2022b). Physiologically and 
anatomically, brain injury during development is vastly different to that 
during adulthood (Figaji, 2017), making extrapolation of results be
tween age groups inappropriate. Thus, studies should either examine 
TBI patients according to constrained age ranges, or age should be 
included as a covariate in all analyses. 

Of the reviewed studies, ethnicity and/or race were not reported as 
covariates in any post-processing analyses. Ethnicity is known to affect 
TBI risk, treatment, and functional outcomes. In addition to having 
greater risk of sustaining a TBI (Brenner et al., 2020; Chen et al., 2020), 
Black and Hispanic patients are less likely to receive treatment post-TBI 
(Gary et al., 2009) and to be discharged to rehabilitation (Asemota, 
George et al., 2013; McQuistion et al., 2016; Budnick et al., 2017; 
Brenner et al., 2020) relative to White patients. Representation of non- 
White persons with TBI in the literature is a critical issue as well as 
the lack of representation of premorbid psychiatric history, homeless
ness, and substance abuse even though those groups are over- 
represented in the population of head injury as it naturally occurs (see 
Dell et al., 2021a; Dell et al., 2021b) These longstanding issues with 
regard to representativeness must be addressed for generalizability of 
results; social and biological determinants of health have clear influence 
on TBI outcome and should be directly modeled. 

Time post injury is a critical determinant of system-level plasticity, 
yet it was modeled in the analysis of only 4.42% of studies. Time since 
injury is a critical factor to consider in understanding recovery trajec
tories and has been shown to be vital in the understanding of network 
plasticity. There is evidence that rsFC connectomics may change over 
time during the first year post injury, with increases in rsFC found at 6- 
months, 1-year, and 18-months after injury in adult patients with mild, 
moderate, and severe TBI (Hillary et al., 2011; Sharp et al., 2011; Hillary 
et al., 2014; Dall’Acqua et al., 2017; de Souza et al., 2020; Roy et al., 
2018). Other studies have shown limited changes in rsFC between 3 and 
5 months after injury (Mayer et al., 2011), as well as heterogeneous 
patterns of altered whole-brain connectivity at the chronic stage (Pala
cios et al., 2013; Venkatesan et al., 2015). 

Accounting for important demographic and clinical differences such 
as injury severity, sex, age, ethnicity, and time since injury when 
analyzing rsFC after TBI is crucial. Where possible, these variables could 
be included as covariates in rsfMRI models to understand their influence 
on network metrics. There have been recent calls to redefine our science 
with focus on better isolating and defining features that comprise our 
samples (Boukrina et al., 2020). In other areas of the behavioral sciences 
there has been a call for a “heterogeneity revolution” (Bryan et al., 2021) 
in order to address contextual differences in groups – an issue critical to 
the understanding of TBI and interventions designed to improve 
outcome. Reliable rsfMRI findings will require that the next generation 
of studies can define their TBI samples using Common Data Elements 
(CDEs) or standardized assessments for assessing demographic and 
clinical characteristics of the TBI patients. For example, a combination 
of CDEs is commonly utilized to assess TBI severity (Tenovuo et al., 

2021), including injury-related measures (such as the Glasgow Coma 
Scale (GCS) scores, duration of Posttraumatic Amnesia (PTA) assessed 
using tools such as the Galveston Orientation and Amnesia Test or 
Westmead PTA scale), clinical assessments (using standardized tools, 
such as the Injury Severity Score or Abbreviated Injury Score), imaging 
findings using CT or MRI scans at the time of injury (such as number of 
lesions, type of lesions, midline shift), or biomarkers (such as levels of 
axonal markers). Standardizing the collection of these data elements will 
enhance the comparability of TBI assessments across rs-fMRI studies and 
facilitate data-sharing (as discussed in the next section). It will 
contribute to the development of comprehensive databases for 
advancing TBI research and enable the conduct of meta-analyses. 

3.2. Share data to boost sample sizes, increase representativeness, and 
address heterogeneity 

The rsfMRI TBI literature reviewed here is composed primarily of 
samples that are heterogeneous with respect to demographics and injury 
characteristics. Functional imaging studies are uniformly under- 
powered (see Button et al., 2019; Poldrack, 2017). Our Supplementary 
Table reveal consistently small sample sizes (< 30, an arbitrarily chosen 
cut-off to suggest low sample size) across the reviewed papers. The 
reasons for these shortfalls are many, including challenges with partic
ipant enrollment, and in longitudinal studies, retainment, MRI contra
indications, and financial expense. Data sharing holds new opportunities 
to address long-standing problems with under-powered studies and 
heterogeneity in demographic and clinical factors in TBI that have un
doubted influence on patient outcome. Opportunities through team 
science and data sharing now make this possible (Thompson et al., 
2020). For example, the Enhancing Neuro Imaging Genetics through 
Meta-Analysis (ENIGMA) Brain Injury working group (e.g., Dennis et al., 
2021; 2022; Olsen et al., 2021) has addressed the inconsistent neuro
imaging findings in TBI by aggregating MRI data from TBI patients 
across multiple sites to obtain sufficient power to reliably conduct an
alyses on MRI data. As one example, Bruin and colleagues (2023) have 
recently conducted a mega-analysis of rsfMRI data from 1, 024 obsessive 
compulsive disorder (OCD) patients and 1, 028 healthy controls from 28 
independent samples of the ENIGMA-OCD consortium. Their images 
were analyzed using HALFpipe (Harmonized AnaLysis of Functional 
MRI pipeline) (Waller et al., 2022), which is an fMRIPrep-based 
analytical tool modified for the clinical neurosciences (Esteban et al., 
2019). HALFPipe follows standardized protocols to standardize data 
processing, increase data fidelity, and harmonize data across multiple 
sites (see Adhikari et al., 2019). Their mega-analysis revealed several 
rsFC differences between people with OCD and healthy matched con
trols, showing global hypo-connectivity across networks, most promi
nently in the sensorimotor network, as well as fewer hyper-connections, 
mostly pertaining to the thalamus. A similar coordinated analysis of 
rsfMRI data of TBI patients across multiple cohorts of the ENIGMA TBI 
working group with standardized pipelines is ongoing and may help to 
address issues of sample heterogeneity and provide novel insights into 
system-level plasticity and convergence in findings. 

A fundamental concern for data sharing and collaborative science is 
the need to protect participants’ privacy. Researchers need to employ 
techniques like anonymization, removing personally identifiable infor
mation, and implementing strict access controls (see critical reviews, 
Poline et al., 2012, White et al., 2022). Additionally, establishing data- 
sharing agreements and obtaining informed consent with clear privacy 
provisions are crucial steps in safeguarding participants’ confidentiality. 
To anonymize rsfMRI data investigators should consider applying de- 
identification software (e.g., Conquest DICOM software, DICOM li
brary, DICOMworks) to automatically scrub meta-data from the DICOM 
data, to ensure that the sensitive information is eliminated (Aryanto 
et al., 2015). Investigators should use MR defacing algorithms (such as 
afni_refacer, deepdefacer, mri_deface, mridefacer, etc) to remove facial 
features, preserving anonymity of the participants (Theyers et al., 2021). 
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Structural anonymizing (defacing) is standard for BIDS format as well. 
The use of meta-data or aggregating data to a higher level (e.g., group 
averages) can minimize the risk of re-identifications. For example, 
HALFpipe enables users to tackle consortium analyses of multi-cohort 
fMRI data by running a standardized analysis protocol (preprocessing 
and feature extraction) at each site and/or cohort prior to sharing the 
derived maps and summary statistics to perform group level statistics 
(Waller et al., 2022). 

3.3. Utilize a minimum set of rsfMRI acquisition parameters 

The Supplementary Table displays the variability in sequence pa
rameters for rsfMRI data acquisition across the reviewed studies. 
Resting-state fMRI acquisition parameters depend on several factors, 
including scanner hardware (field strength, type of radiofrequency coils, 
gradient strength) and software, and studies’ research questions. How
ever, scanning parameters must be carefully considered and optimized 
to obtain reliable and reproducible rsfMRI data in TBI patients. In 
multisite TBI studies, MRI physicists can approximate sequence pa
rameters for different scanners. Also, scanning parameters should be 
consistently reported: many important parameters, including the resting 
state condition (eyes closed 41%, eyes open 18%, eyes open with fixa
tion point 13%), were not reported in 40% of the publications (Sup
plementary Table). While a single set of parameters is unlikely to meet 
the goals for all investigators, we propose a range of acceptable and 
literature-driven acquisition parameters (in alignment with the scanning 
protocol of the Human Connectome Project, see Harms et al., 2018) that 
should be considered when conducting resting state fMRI studies in TBI 
patients, such as the field strength, scan duration, spatial resolution, and 
repetition time. We refer the interested reader to a review paper by 
Raimondo and colleagues (2021), which provides an overview of rec
ommendations for rsfMRI acquisition strategies for a range of applica
tions, from the most common approaches for rsfMRI acquisition 
strategies, to more recent rsfMRI studies with dedicated scanner hard
ware and ultra-high field scanners. 

In our review, the majority of the rsfMRI studies were conducted on 
3T scanners (approximately 95%; see Supplementary Table). Only 8 
studies out of 181 employed 1.5T scanners (and no studies were per
formed on ultra-high field scanners, such as 7T). Even though high-field 
MRI scanners (3T or more) increase the risk of susceptibility artifacts, 
they are preferred for rsfMRI studies as they provide better signal-to- 
noise ratio (SNR) and a higher spatial resolution (Wardlaw et al., 
2012). The scan duration should be long enough to capture the resting- 
state fluctuations in the BOLD signal, but short enough to avoid fatigue 
in the participants (Birn et al., 2013; Power et al., 2014; Raimondo et al., 
2021). Resting-state fMRI scans typically lasted between 4.1 and 20 min 
(mean: 7.19 min). However, TBI researchers should consider a minimum 
of 13 min (for group-based analyses; Birn et al., 2013) and a minimum of 
25 min (for single-subject analyses, Laumann et al., 2015; see also sec
tion 4.3) to improve the reliability of the rsfMRI scan in TBI patients. 
This length of the scan duration increases the risk of head motion. 
Therefore, it is important to consider to minimise head motion through 
the following steps: (i) advanced motion correction procedures (see 
section 3.5); (ii) practice sessions in a mock scanner before the actual 
scanning session if available and (iii) administer two runs (6 min 30 
each) of rsfMRI; and (iv) employ multiband acceleration factors (e.g., a 
multiband factor between 2 and 4) to acquire multiple slices simulta
neously (Preibisch et al., 2015; Risk et al., 2021). 

As can be seen in the Supplementary Table, repetition time (TR) 
ranged between 460 and 6565 ms (mean 2041 ms). We recommend a 
TR ~ 1 s as a minimum in future studies (e.g., Fan et al., 2021; Gilbert 
et al., 2018; Lu et al., 2022; Hou et al., 2019), which is feasible on most 
scanners used in standard clinical practice. Scans with a very short TR 
[< 1000 ms (range = 460–––900 ms); as in the studies by Boroda et al., 
2021; Cassoudesalle et al., 2020; Rangaprakesh et al., 2017, 2018; 
Mayer et al., 2019; Meier et al., 2021] can capture more rapid changes in 

the signal and provide a better sampling of physiological noise (from 
respiration and cardiac pulsation) that can then be filtered out (Jahanian 
et al., 2019; Raimondo et al., 2021). These fast rsfMRI scans allow the 
exploration of dynamic and transient brain states that change over 
shorter time intervals (see critical reviews by Preti et al., 2017; Zalesky 
et al., 2014). 

The range of spatial resolutions (i.e., voxel size) common across 
rsfMRI studies of TBI was between 1.2 mm3 and 4 mm3 (see Supple
mentary Table). A small isotropic voxel size (e.g., 2.5 mm3) is optimal as 
it provides higher spatial resolution and reduces partial volume effects 
(Raimando et al., 2021; Van Dijk et al., 2010). Moreover, a large field of 
view (FOV) (e.g., 250 mm x 250 mm) and many slices (50–70) are ideal, 
as they reduce the spatial aliasing and increase the SNR, although the 
additional collection time might be considered for patient tolerance. 
Several rsfMRI studies in TBI cropped the cerebellum; however, this 
subcortical region is very important in TBI impairment and recovery, 
therefore this practice is best avoided (Keleher et al., 2022; Caeyen
berghs et al., 2009). It is also recommended to acquire fieldmaps or 
additional (two or more) reverse phase encoded spin echo images for 
distortion correction (Raimondo et al., 2021). 

As can be seen in the Supplementary Table, there is high variability 
across rsfMRI studies in terms of acquisition of rsfMRI data with eyes 
open (e.g., Shumskaya et al., 2017; Konstantinou et al., 2019), eyes 
fixated on a crosshair (e.g., Bruijel et al., 2022; Grossner et al., 2019), or 
eyes closed (e.g., Lancaster et al., 2019; Threlkeld et al., 2018). Although 
these conditions produce comparable FC results, several studies have 
shown that acquiring rsfMRI data with eyes fixated on a cross may 
reduce variability (more control of eye movements), show greater reli
ability of within-network connections (Patriat et al., 2013; Zou et al., 
2015), and show more significant correlations with demographic and 
behavioral variables (Agcaoglu et al., 2019). Recent work (Vanderwal 
et al., 2015; Gal et al., 2022) has also demonstrated the benefits of 
collecting rsfMRI data while participants are exposed to naturalistic 
stimuli, such as watching abstract shapes (e.g., headspacestudios.org 
/inscapes), instead of fixating on a crosshair. These studies have 
revealed that naturalistic-stimulus-derived FC predicted individual 
brain activity and cognitive traits more accurately than rs-derived FC, 
and improved participant compliance related to motion and wakeful
ness. These naturalistic stimuli will provide a powerful tool of studying 
brain organization in TBI patients. Finally, it is also important to 
consider to monitor physiological parameters (such as respiration and 
heart rate) and eye tracking of the TBI patients during the rsfMRI 
acquisition, which can be corrected for during the preprocessing of the 
rsfMRI data. 

3.4. Standardize quality assessment procedures of rsfMRI data 

Besides optimizing rsfMRI acquisition protocols, it is crucial to 
ensure the quality of the data to obtain meaningful and reliable results. 
As seen in the Supplementary Table, several studies (n = 115) did not 
report performing quality assessment steps on the rsfMRI data. Quality 
assessment of rsfMRI data will ensure that the acquired fluctuations in 
the BOLD signal truly reflect biological signals of interest and are not 
contaminated by noise or artifacts, such as head motion, physiological 
noise, high intensity wrap-around, scanner drift, susceptibility-related 
artifacts (Caballero-Gaudes and Reynolds, 2017; Friston et al., 1996; 
Power et al., 2015). While quality of the raw data is assessed in many 
laboratories, the details of the assessments are not always reported, 
possibly because conventions are lacking for reporting types of data 
quality checks and the measures to be reported. Further, there is a risk of 
assessment of the quality of preprocessed data being overlooked when 
using pipelines. We suggest details on all quality assessment measures be 
included in manuscripts. High-quality rsfMRI data leads to more robust 
findings and enhances the reproducibility of results of FC patterns in TBI 
patients, which allows different research groups to compare and validate 
rsfMRI findings in future meta-analyses. 
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Therefore, it is very important to conduct quality assessment steps on 
the raw and preprocessed rsfMRI data. Several tools are available that 
allow users to perform both visual inspection and extraction of quality 
metrics, such as the configurable pipeline for the analysis of connectome 
C-PAC (Craddock et al., 2013), the Conn toolbox for Statistical Para
metric Mapping (SPM) (Whitfield-Gabrieli & Nieto-Castanon, 2012), 
ENIGMA HALFpipe (Waller et al., 2022), the eXtensible Connectivity 
Pipeline XCP (Ciric et al., 2018), the data processing and analysis of 
brain images toolbox DPABI (Yan et al., 2016), fMRIPrep (Esteban et al., 
2019), Magnetic Resonance Imaging Quality Control tool (MRIQC) 
(Esteban et al., 2017), FitLins (Markiewicz et al., 2021), Analysis of 
Functional NeuroImages (AFNI) software suite (Cox, 1996), and SPM 
(Friston et al., 1995). There are several quality metrics that can be used 
to distinguish and quantify distinct noise sources in BOLD signal, which 
can typically be classified into separate domains based on criteria 
related to their ability to capture spatial versus temporal properties of 
fMRI time series. In Fig. 2, we present motion quality metrics in two mild 
TBI patients (one with (bad) and one without (good) the presence of 
motion artifact) generated by the ENIGMA HALFpipe using the default 
pre-processing steps and quality assessment criteria (see https://github. 
com/HALFpipe/HALFpipe#quality-checks for a detailed manual). Of 
note, these quality metrics are often interrelated, so they potentially 
represent a common basis set for the TBI field to use in determining 
image quality moving forward. 

In addition to using visual inspection to check for artifacts in raw 
data, three types of visual inspection of preprocessed data that are 
commonly used are: (i) Visual inspection of the skull stripping of the 
anatomical image (to make sure that there are no portions of the brain 
missing or too much of the skull retained); (ii) Visual inspection of the 
registration of the anatomical scan to the MNI space (to ensure there is 
no misalignment between the MNI template and the anatomical scan); 
and (iii) Visual inspection of the registration of the EPI image to MNI 
space (to ensure there is no misalignment between the MNI template and 
the EPI). 

Temporal Signal-to-Noise Ratio (tSNR) of the rs-fMRI data is a 
measure of the ratio of the mean signal to the standard deviation of the 
signal over time (with higher tSNR indicating better data quality). 
Global signal (GS) is the average time series of all brain voxels. Drastic 
fluctuations or outliers in the GS might be indicative of physiological 
noise or artifacts. DVARS, which is the temporal change in root-mean- 
square intensity (with D referring to the temporal derivative of the 
time course and VARS corresponding to the root-mean-square variance 
over all voxels), indicates the change in BOLD signal across the whole 
brain at each volume relative to the previous volume (Power et al., 
2012). It therefore provides insight into the relationship between the 
BOLD signal and movement. 

Excessive head motion is a common issue in rsfMRI studies in TBI 
patients as it can introduce spurious correlations or impair the detection 
of significant ones. Subject motion can be assessed by examining the 
motion parameters obtained during the preprocessing step (see also 
section 3.5). The above-mentioned software packages provide quality 
metrics related to motion correction, which can be used to identify and 
exclude volumes and participants with excessive motion from the 
analysis. Quality assessment of motion was reported in 167 of the 181 
studies. One of the most common and informative metrics includes mean 
frame-wise displacement (FD), or the average displacement of the sub
ject’s head between two consecutive fMRI volumes in all six directions 
(3 translations and 3 rotations) (with higher values of FD indicating 
more substantial head motion). It is important to note that there is no 
strict threshold for what constitutes acceptable head motion and the 
threshold is often driven by the TR of the rsfMRI acquisition (see section 
3.3). However, most tools consider FD values below 0.5 mm as relatively 
low motion, while FD values greater than 3 mm are considered 
problematic. 

While Independent Components Analysis (ICA) is itself an analysis 
method for rsfMRI data, the assessment of the signal components 

obtained from ICA decomposition can be used as a quality metric at the 
level of the individual. The temporal characteristics of each independent 
component can be inspected for irregularity. Signal components usually 
have low frequency fluctuations (0.01 – 0.1 Hz) and are fairly regular, 
while noisy components can be high in frequency with sudden spikes or 
differing patterns (Griffanti et al., 2017). In studies with healthy sub
jects, the spatial maps of independent components can be examined to 
determine if well-defined functional networks (e.g., the default mode 
network, salience network, visual network, etc) are represented. If the 
data from the healthy subjects looks correct, the patient data may be 
examined for maps that are accurate or partially match the standard 
networks. 

3.5. Employ consistent approaches for head motion correction procedures 
and nuisance signal regression 

The effects of head motion on data fidelity are now well recognized 
in rsfMRI data acquisitions (Power et al., 2012; Satterthwaite et al., 
2012; Van Dijk et al., 2012). Rigid-body spatial realignment of each 
acquired volume, spatial and temporal smoothing, and regression of 
motion parameters (Friston et al., 1996; Birn et al., 2013), are known to 
be insufficient to mitigate such effects. Since then, a growing literature 
has aimed at finding the best procedures for data pre-processing to 
effectively remove BOLD oscillations due to motion while preserving 
oscillations related to neural activity. This issue is all the more critical in 
the context of TBI, particularly in acute and moderate and severe cases 
in both pediatric and adult subjects, since they are well known to have 
increased incidence of in-scanner motion (Monti et al., 2015; Hannawi 
et al., 2016). 

It is crucial for studies including TBI populations to use exacting 
procedures to reduce motion during acquisition and correct the effects of 
motion during pre-processing. For example, in a recent survey of 88 
acute moderate-to-severe TBI patients, application of three different 
approaches to determine when to reject BOLD data due to excessive 
motion resulted in the loss of 9% to 32% of datasets (Weiler et al., 2022). 
When compared across a range of group-level data quality measures 
(Parkes et al., 2018), the approach resulting in the greatest data loss 
minimized the spurious effects of motion on brain correlations. 
Furthermore, under this most stringent data exclusion regime, group- 
level quality was uniformly high compared to the other approaches, 
across a range of pre-processing pipelines (cf., Weiler et al., 2022, Figs. 2 
and 3). This is very important as it shows that appropriate rejection of 
datasets corrupted by excessive motion is a primary factor in deter
mining quality of group-level data and allows researchers to then adopt 
the pre-processing strategy that best conforms to their research question. 

Based on a recent comparison of different pre-processing strategies 
applied to moderate-to-severe TBI patients (Weiler et al., 2022), one of 
the most crucial aspects of denoising is the appropriate selection of 
which data to retain for analysis (Satterthwaite et al., 2012, 2013; Van 
Dijk et al., 2012). While costly in terms of degrees of freedom for 
inference, strict rejection of low-quality data (i.e., exclude if: < 4 min of 
data; mFD > 0.25 mm; FD > 0.2 mm in more than 20% of volumes; or 
any volume has FD > 5 mm; cf., Satterthwaite et al., 2013) offers several 
advantages. First, and foremost, it has been shown to be the best strategy 
for minimizing spurious motion-related associations (Power et al., 2012; 
Satterthwaite et al., 2012; Van Dijk et al., 2012). Second, when data are 
of high quality, selection of de-noising in the pipeline becomes sec
ondary and can thus be guided by the nature of the datum (e.g., degree 
of pathology present) and the analytical approach that best matches the 
researcher’s aims (Weiler et al., 2022). In the presence of extensive 
pathology, for example, methods that implement automated tissue 
segmentation (e.g., AROMA) might be less desirable than methods 
where segmentations can be performed with customized pipelines (e.g., 
aCompCor) or methods not requiring any segmentation (e.g., 
censoring). Similarly, choice of pre-processing strategy can constrain the 
analytical approaches that can then be applied. Techniques leveraging 
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Fig. 2. EPI Confounds output from a HALFpipe QC report for two mild TBI patients with good (top) and bad (bottom) data (from an ongoing study led by KC). 
Displayed are time courses (x-axis) of the magnitude (y-axis) of the global signal (GS), global signal in CSF (GSCSF) and white matter (GSWM), DVARS (D: temporal 
derivative of time courses; VARS: RMS variance over voxels) and the framewise displacement (FD). The time courses are followed by a carpet plot, a two-dimensional 
heatmap of the BOLD time series, with time on the x-axis and voxels on the y-axis. Voxels are arranged into cortical (blue) and subcortical (orange) grey matter, 
cerebellum (green), and white matter and cerebro-spinal fluid (red). QC involves looking for fluctuations in intensity in the carpet plot with reference to motion and 
signal changes in the time courses. Sudden changes in the carpet plot are likely to be caused by abrupt movement, whereas prolonged signal changes may be 
indicative of motion or acquisition artifacts. Sustained and substantial changes in the carpet plot of TBI03 (red arrows), particularly around the halfway mark, 
corresponding to changes in the time courses of all other quality metrics (with a maximum FD > 5 mm), are associated with movement (determined by visual 
inspection). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the frequency of BOLD fluctuations, for example, require the temporal 
structure of the data not to be altered by pre-processing; thus, pipelines 
that remove individual timepoints cannot be used (e.g., censoring). 
Retaining the freedom afforded by high-quality data to select the most 
appropriate pre-processing pipeline is thus an important aspect of being 
able to meet one’s intended scientific goals. 

3.6. Standardize procedures for dealing with lesions in moderate-to-severe 
TBI patients 

There are longstanding issues for handling MRI segmentation and 
normalization in the context of subcortical and cortical structural ab
normalities, which are common in moderate to severe TBI. There have 
been no gold-standard solutions to date for handling brain lesions in the 
context of rsfMRI, often resulting in investigators removing any study 
participant with large identifiable changes due to neurotrauma, which is 
not ideal and fundamentally changes the scope of our work. There have 
been both manual (with some of the earliest over two decades ago, see 
Brett et al., 2001), and automated attempts to handle TBI brain lesions 

(see Hillary and Biswal, 2009; Diamond et al., 2020), including voxel
wise examination of the constituents of the BOLD signal in peri-lesional 
space (e.g., oxygen extraction, cerebral blood flow) (see Hillary and 
Biswal, 2007). In what follows, we provide simple guidelines and rec
ommendations to alleviate the challenges of automated rsfMRI analysis 
for TBI patients. 

An important difference in the rsfMRI signal between lesioned and 
non-lesioned tissue is edema and increased water resulting in a distinct 
signal detectable in T2* data acquisition (Chan et al., 1984; Tang et al., 
2020). We recommend that researchers acquire a high-resolution T2*- 
weighted scan as part of their resting-state study. Doing so is useful to 1) 
localize edematous lesions and 2) to guide co-registration of T2* scans 
with T1 volumes. First, brain cells in regions affected by edema often 
exhibit more oxidative stress and higher rates of catabolic turnover and 
abnormal reactivity to physiological changes than cells affected by other 
lesion types, and these changes ordinarily affect the BOLD signal (Toklu 
and Tumer, 2015). These processes typically affect T2* weighting more 
so than T1; the higher likelihood of BOLD signal hyperintensities due to 
these phenomena thus motivates the inclusion of T2* scans with rsfMRI 

Fig. 3. Ability of different preprocessing pipelines (rows) to mitigate spurious head-motion related noise, under different participant exclusion regimens (i.e., 
censoring-based, lenient exclusion threshold, stringent exclusion threshold), as captured by two quality control metrics (top: the correlation between head motion 
parameters and functional connectivity, QC-FC; bottom: the degree to which the QC-FC correlation depends on how distant two ROIs are, QC-FC Distance depen
dence). As discussed in the text, stringent rejection of datasets (i.e., exclude if: <4 min of the data; mFD > 0.25 mm; FD > 0.2 mm in more than 20% of volumes; or 
any volume has FD > 5 mm; cf., Satterthwaite et al., 2013) minimizes the spurious effects of motion and makes the choice of pipeline secondary, albeit at the cost of 
potentially large data loss. (Figure adapted from Weiler et al., 2023, OHBM). 
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protocols to render TBI-related fMRI signals less challenging to analyze. 
Second, to prevent co-registration failure in the presence of lesions, a 
first registration should be used to align rsfMRI scans to T2* weighted 
scans. In the second step, the T2* scans should be registered to T1 scans. 
Finally, the two registrations in steps 1 and 2 should be combined to 
generate a registration to align the fMRI scan to the T1 scan. 

Importantly, to identify the spatial profiles of regions with rsfMRI 

hyperintensities, it is helpful to investigate time-averaged rsfMRI maps. 
In the presence of posttraumatic edema, the sole inspection of single- 
time frame functional images may not be helpful because frame-to- 
frame oscillations in the fMRI signals of edematous areas are relatively 
less predictable, such that their visibility is poorer than on time- 
averaged fMRI maps. Such maps can be cross-referenced against fluid 
attenuated inversion recovery (FLAIR) volumes, where edematous 

Fig. 4. Models of edema (red), low-density tissue (yellow), and cerebral spinal fluid (blue) in a male subject with moderate-severe TBI (49 years old at time of scan, 
15 years since injury). Lesion tracing indicates large areas of edema involving anterior and inferior frontal lobes, right lateral temporal and parietotemporal regions 
extending to the posterior frontal lobe. Low tissue density is observed in the anteromedial aspect of the right thalamus, and the anterior body and genu of the corpus 
callosum. MRI volumes (FLAIR, T1-weighted, and averaged rsfMRIs) are provided below the model. Canonical volumetric views (axial, sagittal, and coronal) are 
displayed in radiological convention for all images. Five trained lesion raters traced edema on FLAIR volumes, and low-density tissue was traced on T1-weighted MRI. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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regions are more readily apparent in the presence of cerebrospinal fluid 
infiltration into the parenchyma (Fig. 4). In the absence of FLAIR scans, 
one can inspect T1-weighted scans for areas of low phospholipid density 
(Fig. 4). Such areas may appear hypointense if lipid density is suffi
ciently low relative to the healthy-appearing background; however, this 
is likelier for regions within gray matter rather than white matter. We 
recommend the inclusion of a susceptibility weighted imaging (SWI) 
scan as part of fMRI acquisition protocols, because T2*-weighted signal 
drop-out is produced by ferritin and/or hemosiderin accumulation 
during acute hemorrhage and/or chronic bleeds should be considered as 
additional factors that can alter the BOLD signal. Lesion boundaries can 
be difficult to delineate on typical T1- or T2*-weighted scans, but the 
synergy of SWI as part of a standard fMRI acquisition protocol for TBI 
patients with rsfMRI protocols can be helpful for lesion delineation 
(Robles et al., 2022). Because the intensity profile of SWIs is very 
different from that of fMRI scans, these should not be coregistered 
directly. Rather, the SWI scan should first be registered to either the T1 
or T2* scan, to which the fMRI was already registered as described 
above. 

3.7. Use standardized data processing workflows for pre-and post- 
processing analyses 

Adoption of common data pre-processing and analysis procedures 
will maximize resources and opportunities for between-site data sharing 
and comparisons between studies. Of course, offering universal guide
lines is challenging given the scientific demands of individual labs and 
investigators. To accommodate the tremendous diversity of pre- and 
post-processing analytical options (Esteban et al., 2019; Dafflon et al., 
2022; Poldrack et al., 2017), there is a critical need for methodological 
universals that permit direct comparison to the literature. With respect 
to rsfMRI network analysis, there are (at least) two parts to this problem 
that require addressing. Both pertain to investigator degrees of freedom 
or “forking paths” (Gelman & Loken, 2013): the first path is related to 
data pre-processing and the second to the creation and analysis of 
functional neural networks. 

Adhering to established data processing workflows that are sup
ported by empirical comparisons of pre-processing options is key to 
addressing issues pertaining to the first “forking path”. fMRIPrep 
(Esteban et al., 2019) is now a widely used software tool that performs a 
series of standard pre-processing steps (including data organization, 
anatomical data pre-processing, fMRI pre-processing, and several qual
ity control metrics) to ensure the reliability of the rsfMRI data. More 
recently, the ENIGMA consortium has developed HALFpipe (Waller 
et al., 2022), which is an open-source tool that facilitates reproducible 
analysis of rsfMRI data through uniform application of pre-processing, 
quality assessment, single-subject feature extraction, and group-level 
statistics. This framework was developed specifically for neurological 
disorders with attention to the consequences of brain injury for struc
tural and functional data (Waller et al., 2022). 

It is recognized that while we promote standardization in this 
critique, the goal is not to stifle creativity or scientific innovation. For 
investigators who cannot (for whatever reason) employ standard pipe
lines it is incumbent upon the scientific teams to demonstrate the reli
ability of the workflow including the effect of idiosyncratic deviations 
from the standard. This may include testing how each decision point 
influences data analysis and outcome – an approach now being 
formalized as multiverse analysis (see Dafflon et al., 2022). Multiverse 
analysis provides the opportunity to directly examine the most consis
tent results across a range of data processing decisions. Such analyses 
have been applied to understand the effect of distinct covariates on 
analytical outcome (see Demidenko et al., 2022) and may serve as a 
powerful tool to help in determining the consequences of investigator 
decisions on analytical outcomes and ensuring that the most robust 
findings emerge, independent of workflow decisions. These approaches 
may also aid in developing standards where the gold standard remains 

uncertain (e.g., some types of motion correction, segmentation with 
large brain lesions). 

Recent critiques have edged the clinical neurosciences toward stan
dardization in network creation and analysis. This second “forking path” 
allows for fewer investigator decisions than those of pre-processing 
(Botvinik-Nezer et al., 2020; Esteban et al., 2019), that nonetheless 
are critical to data interpretation (see van Dijk et al., 2010; Hallquist and 
Hillary, 2018). We summarized in Table 1 several key elements that all 
analyses should include to offer comparable network indices across 
papers. 

4. Part 3: Future directions 

The goal of our seven recommendations for data acquisition, pro
cessing, and analysis of rsfMRI data in patients with TBI is to maximize 
study reliability and between-site comparability, pushing the field to
wards the future rsfMRI research in TBI patients. In the following sec
tion, we outline new directions for future rsfMRI studies, such as 
multimodal MRI studies for examining the relationships between 
structural connectivity and functional connectivity (SC-FC), lesion 
mapping strategies and single-subject profiling of functional connec
tivity for making inferences at the single subject level in patients with 
TBI. 

4.1. Multimodal MRI studies 

Combining complementary information from different imaging mo
dalities may be more fruitful than reporting rsFC metrics in isolation (for 
a review, see Damoiseaux and Greicius, 2009; Straathof et al., 2019; 
Suárez et al., 2020). This is especially important for the study of brain- 
injured patients, as TBI has a cascade of complex effects on the brain that 
are better captured by multiple modalities. For example, T1-weighted 
imaging is necessary to ascertain direct and secondary tissue loss and 
atrophy (Cole et al., 2018) and diffusion weighted imaging provides 
information about white matter (WM) damage (axonal loss and demy
elination (Liang et al., 2021; Poudel et al., 2020)). A recent review has 
also identified multimodal neuroimaging biomarkers as one of the most 

Table 1 
Specific considerations for functional connectomic studies in TBI (Table adapted 
from Hallquist & Hillary, 2018).  

Issue Recommendation 

Pre-processing Use a standard approach for data pre-processing (e.g., 
fMRIprep). For decisions that are investigator/lab 
specific, directly examine the effects of those decision(s) 
on the outcome (e.g., multiverse analysis). 

Brain parcellation and 
network size 

A functional atlas should ideally be used for parcellation. 
Parcellation should include at least 200 nodes, cortical 
and subcortical structures, and cerebellum. It is best 
practice to compare distinct parcellation schemes 
(Craddock, 2012). 

Scope of graph Conceptualize and report graph analyses in terms of 
telescoping levels of analysis, from global (e.g., path 
length) to regional (nodal strength). 

Edge definition for 
networks 

The reliability of functional connectomes based on 
conditional association (e.g., partial correlation) 
diminishes as the number of nodes increases or the 
number of measurements decreases (Cassidy et al., 
2018). 

Graph metrics To promote formal comparisons across studies, report a 
standard set of graph metrics, even if these are in the 
form of descriptive tables or supplementary material. As 
a minimal set, we propose: 1) degree distribution, 2) 
global clustering coefficient, 3) average path length, 4) 
modularity, 5) network degree, and 6) summary statistics 
of edge strength. 

Tests of Reproducibility Whenever possible, include analyses of within-subject 
changes, such as test–retest reliability of effects (e.g., 
longitudinal data; repeat measurement within session).  
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promising areas of development, especially given the complexity of 
multiple secondary injury mechanisms in TBI, stating it may be “helpful 
to test multiple sources to identify a specific injury profile and tailor 
treatment more effectively” (Wilde et al., 2022). 

As can be seen in the Supplementary Table (indicated by ◊), 53 
studies analyzed other modalities in addition to rsfMRI. For example, 
Diez and colleagues (2017) examined TBI-induced alterations in both 
functional and structural networks, which showed overlapping results. 
Specifically, TBI patients demonstrated increased prefrontal connectiv
ity in SC-FC networks, relative to controls. In a study by Raizman and 
colleagues (2023), the discriminatory power of their logistic regression 
models yielded higher accuracy if FA (fractional anisotropy) of the 
corpus callosum was modeled alongside functional connectivity values. 
Despite these promising multimodal findings, these studies often 
derived the structural connectivity measures in the form of a single score 
(e.g., FA value of a white matter tract). However, it is important and 
informative to reconstruct equidimensional SC-FC indices with respect 
to the same set of atlas templates (Caeyenberghs et al., 2013). Recent 
toolboxes, such as Micapipe (Cruces et al., 2022) and Connectivity 
Analysis Toolbox (CAT) (de Lange et al., 2023) allow researchers to 
reconstruct SC-FC for the same pair of regions of interest based on (sub) 
cortical atlases providing aligned connectivity matrices for integrative 
multimodal MRI analyses. Moreover, in order to extract relevant infor
mation from the brain’s structural–functional relationship, it is neces
sary to validate them against different parameters of another 
framework, such as graph theory. 

Recent developments in network neuroscience facilitate investi
gating direct structure–function relationships. Kuceyeski and colleagues 
(2016) published one of the first studies using an advanced integrative 
network analysis to facilitate the integration of multiple sources of in
formation. Specifically, they used a network diffusion model, which 
relates an individual’s structural and functional connectomes by 
assuming that functional activation diffuses along structural pathways, 
to capture functional rerouting. Their findings revealed strong signifi
cant correlations between level of consciousness and network diffusion 
model propagation time (i.e., the time functional activation spends 
traversing the structural network) in severe TBI patients. In a recent 
study by Parsons et al (2023), the authors applied another novel 
mathematical framework, known as a multiplex network analysis (De 
Domenico et al., 2016), to quantify the proportion of direct and indirect 
SC-FC connections across the brain. They extracted the degree of 
structural connectivity between the functional synchronous nodes 
across the brain network, i.e., SC-FC Multiplex Bandwidth. Their 
multiplex analyses revealed that direct and indirect SC-FC Bandwidth 
predicted processing speed in mild TBI patients. Moreover, a subnet
work of interhemispheric edges with increased SC-FC Bandwidth was 
identified at the chronic, relative to the acute mild TBI post-injury in
terval. The increased interhemispheric SC-FC Bandwidth of this network 
corresponded with improved processing speed at the chronic post-injury 
interval. These integrative network analyses are novel and make a nice 
contribution to the rsfMRI literature in TBI patients, as they shed light on 
the relationship between connectomics and impairment/recovery after 
TBI. Future work should use more advanced models (including multi
layer network analysis, neural mass models, etc) to study relationships 
between relevant variables across several brain metrics that may un
derpin behavioral outcomes in TBI patients. 

4.2. Lesion mapping strategies 

As raised in recommendation 3.6, there are no gold-standard solu
tions to date for handling brain lesions in the context of rsfMRI analyses. 
However, it is common practice in the TBI literature to compare whole- 
brain FC maps between groups without masking out lesioned areas (see 
Supplementary Table). The lesion masks can be generated using (semi) 
automated lesion identification tools (Sanjuán et al., 2013; Seghier et al., 
2008), in conjunction with expertise from neurologists and 

neuroradiologists to enhance the accuracy of the lesion maps and clin
ical relevance of the rs-fMRI findings. For example, in Rigon and col
leaugues (2016) T1-weighted images were inspected for focal lesions 
and manually traced using FSLVIEW and these resulting lesion masks 
were used during special normalization with FNIRT to increase the ac
curacy of the alignment to MNI space. 

Another potential strategy is to verify whether FC differences be
tween TBI patients and controls are due to the presence of focal lesions 
in the TBI sample. For example, Rigon and colleagues (2016) conducted 
a separate analysis confirming that differences in interhemispheric FC 
remained evident even when patients with focal lesions were excluded. 
Similarly, in work by van der Horn and colleagues (2020), their sub
group analyses were conducted to assess the influence of CT-lesions by 
comparing network measures between patients with (14 patients) and 
without lesions (54 patients) on CT scans. 

Researchers can also consider adjusting for lesion characteristics 
(such as number of lesions, lesion volume) in the statistical analyses. 
This was done in a functional connectome study by Roy and colleagues 
(2018), whereby total lesion volume (calculated a percentage of lesion 
volume to total gray matter volume) was used as a predictor of total 
network strength at 3, 6, and 12 months following moderate and severe 
TBI. The results demonstrated a near-zero relationship between lesion 
volume and global network strength. Although white matter volume 
could also be important to take into account, and the method of lesion 
segmentation could affect accuracy of volume measures (Guo et al., 
2019). Yet, another strategy is to implement ROI analyses focusing on 
specific brain regions affected by lesions to gain insights into localised 
effects. It should be emphasized, however, that unlike brain tumor or 
stroke, the pathophysiology of TBI is not easily isolated to a single 
location (Aerts et al., 2016). Therefore, convergent findings are often 
indicators of brain response to insult more generally as opposed to 
ROI-based injury-brain-behavior response. Thus, there is currently no 
agreed upon approach for handling conspicuous brain pathology after 
TBI in FC analyses. While this paper is focused on TBI, future work may 
be informed by lesion measurement and correction in white matter 
diseases (Guo et al., 2019). Other recent developments include lesion 
identification and in-painting of brain lesions, via virtual brain grafting 
or deep learning approaches (Almansour et al., 2021; Liu et al., 2021; 
Radwan et al., 2021) that may substantially improve brain parcellation 
thus reducing the extent to which individual regions or whole TBI pa
tients need to be excluded from analysis due to failure. 

4.3. Single-subject analyses 

The majority of the rsfMRI studies (see Supplementary Table) have 
focused on group-wise comparisons in functional connectivity metrics (i. 
e., N patients vs M controls). These traditional group analyses cannot 
adequately reflect what happens in individual TBI patients or handle 
between-patient heterogeneity (Covington and Duff, 2021). Moreover, 
clinicians need to perform diagnostic and prognostic inferences at the 
level of individual TBI patients. There are several recent rsfMRI studies 
that exploit TBI heterogeneity with the aim of individualizing ap
proaches to treatment. 

In recent years, rsfMRI has been integrated in the clinical practice, 
where it is utilized to obtain personalized brain stimulation targets and 
to understand each patient’s brain-based changes in said targeted net
works. For example, a proof-of-concept study combining data from five 
studies demonstrated that using multimodal neuroimaging (including 
rsfMRI) helps to customize Transcranial Magnetic Stimulation (TMS) 
treatment, by targeting specific brain areas and networks in mild and 
severe TBI patients with co-occurring depression, alcohol use disorder, 
and cognitive dysfunction (Herrold et al., 2020). Relatedly, analysis of 
rsFC at the network level has been suggested to be more important in TBI 
patients where injury may have further increased the inter-individual 
variability already observed across healthy brains (Gordon et al., 
2017). Several studies have shown that focusing on rsfMRI subnetworks 
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associated with complex symptoms reported across TBI patients may be 
the best way to tackle the challenge of interindividual variability 
(Herrold et al., 2020; Siddiqi et al., 2020, 2023; Sultana et al., 2023). For 
example, the cingulo-opercular network and the dorsal attention 
network can be differentially targeted within the dorsolateral prefrontal 
cortex to address distinct clusters of cognitive deficits or mood problems. 
These two networks could be differentiated and identified in a patient 
with severe TBI and a comorbid disorder of consciousness (Siddiqi et al., 
2020). Resting-state fMRI is being increasingly adopted to aid with both 
diagnosis and prognosis across several neurological disorders, such as 
schizophrenia, Alzheimer’s disease, and Parkinson’s disease (e.g., Baker 
et al., 2014; de Vos et al., 2018; Franzmeier et al., 2020; Wolters et al., 
2019; Woodward et al., 2012). Similarly, in the context of severe brain 
injury, recent translational guidelines recommend including rsfMRI in 
the diagnostic and prognostic process for patients with disorders of 
consciousness (Kondziella et al., 2020). 

Despite this emerging base of empirical work over recent years, there 
are only a few available neuroimaging-based clinical tools (Scarpazza 
et al., 2020) that allow single-subject level inferences to be made. Spe
cifically, there is a need to develop patient-tailored frameworks that 
produce detailed subject-specific characterization of rsFC, including 
regional alterations, and changes in subnetworks, and network metrics 
of entire functional connectomes. The resulting individual profiles can 
then be evaluated against reference populations, such as a group of or
thopedic or healthy controls. This contextual information can enable us 
to meaningfully, qualitatively, and quantitatively, assess rsFC alter
ations in single individuals. These individual brain measures can be used 
by clinicians for integrative neuroscience-guided rehabilitation (Dichter 
et al., 2012; Stoeckel et al., 2014; Wing et al., 2017), assisting them in 
designing personalized rehabilitation programs (based on the unique 
profile of each patient), track their progress and adjust care as necessary. 
Recent studies already successfully employed this novel single-subject 
brain profiling in TBI patients, albeit in small TBI samples using struc
tural MRI metrics (Imms et al., 2023; Clemente et al., 2023; Attye et al., 
2021; Jolly et al., 2020). These single-subject analyses will require the 
development of large reference cohorts of healthy controls (N > 100) 
(Scarpazza et al., 2020) that are stratified by age group, gender, and 
other important demographic variables (such as level of education, see 
section 3.1) to detect FC abnormalities at the level of the individual 
patient as statistical deviation from the reference group, as done in the 
ENIGMA Lifespan Working group using morphological brain metrics 
(CentileBrain, Ge et al., 2023). Such profiling will enable clinicians to 
progress from the traditional paradigm of group-based comparisons of 
TBI patients against controls, to a personalized medicine approach, 
taking us a step closer to translational integrative research that informs 
clinical practice. 

5. Conclusion 

There remains tremendous promise in the application of rsfMRI in 
the study of neurological disorders, and in particular TBI. To date, 
however, this potential has yet to be realized, slowed by limited sample 
sizes that fail to address clinical and demographic heterogeneity and the 
sheer volume of analytical approaches, rendering most findings as iso
lated observations that are irreproducible. In response to these widely 
recognized concerns in the fMRI literature, the goal of this position 
paper was to summarize the current literature and then offer directions 
for a path forward applying rsfMRI to the study of TBI. First, there is a 
need for data sharing and larger samples. Second, there is a need for 
greater consistency of methods and analyses to facilitate contributions 
to the literature that permit synthesis and more direct interpretation. 
There is also a need for more transparency with respect to analytical 
pipelines and making data and code available for confirmation of find
ings within the broader TBI community. While not all recommendations 
offered here will be agreed upon by the community, if this paper elicits 
conversations that achieve consensus on methods and procedures, then 

the field will benefit greatly. 
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