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Nonlinear multilevel latent variable modeling has been suggested as an alternative to tra-

ditional hierarchical linear modeling to more properly handle measurement error and

sampling error issues in contextual effects modeling. However, a nonlinear multilevel

latent variable model requires significant computational effort because the estimation

process involves high dimensional numerical integration, particularly when the number

of latent variables is large. The main purpose of this study is to improve estimation effi-

ciency in obtaining full-information maximum likelihood (FIML) estimates of contextual

effects by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai,

2008, 2010a, 2010b). This study considers contextual effects not only as compositional

effects but also as cross-level interactions, in which latent variables are measured by cat-

egorical manifest variables. R programs (R Core Team, 2012) implementing the MH-RM

algorithm were produced to fit nonlinear multilevel latent variable models. Computa-

tional efficiency and parameter recovery were assessed by comparing results with an EM

algorithm that uses adaptive Gauss-Hermite quadrature for numerical integration. Re-

sults indicate that the MH-RM algorithm can produce FIML estimates and their standard

errors efficiently, and the efficiency of MH-RM was more prominent for a cross-level in-

teraction model, which requires 5-dimensional integration. Simulations, with various

sampling and measurement structure conditions, were conducted to obtain information
ii



about the performance of nonlinear multilevel latent variable modeling compared to tra-

ditional hierarchical linear modeling. Results suggest that nonlinear multilevel latent

variable modeling can more properly estimate and detect a contextual effect and a cross-

level interaction than the traditional approach. As empirical illustrations, two subsets

of data extracted from Programme for International Student Assessment (PISA; OECD,

2000) were used. A negative contextual effect was found from the U.S. data in terms

of the relationship between reading literacy and self-concept about reading, supporting

results from previous studies. A negative, but not statistically significant, cross-level in-

teraction was found between reading literacy and co-operative learning preference from

the analysis of data collected in Korea.
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CHAPTER 1

Introduction

This study adopts a Metropolis-Hastings Robbins-Monro (MH-RM; Cai, 2008, 2010a,

2010b) algorithm to estimate contextual effects more efficiently in the multilevel latent

variable modeling framework. This chapter provides a review of relevant background and

research goals. The following section discusses how to define and specify contextual

effects in a statistical model and the methodological issues that have drawn researchers’

attention.

1.1 Background

1.1.1 Contextual Effects

The Greek philosopher Aristotle said, ”Man is a social animal. [...] He who lives without

society is either a beast or a God” in Politics I.2. Since human beings are social, their

behaviors are naturally influenced by social groups such as one’s family, classroom,

school, workplace, and country. The study of the roles of group context on actions

and attitudes of individuals is called contextual analysis (Iversen, 1991). Without the

influence of social context, any individual-level relationship between two variables of

interest will be constant across groups, meaning the group-level relationship is the same

as the individual-level relationship. In this case, two individuals who have the same

characteristics are expected to have the same outcome.

However, it is possible for two individuals to have different outcome levels even

though their individual characteristics are the same. When the difference in expected

outcomes can be explained by a group-level variable, we take the difference as an ef-
1



fect of social context. By decomposing the effect of a predictor on an outcome at both

the individual and group levels, the effect of social context can be investigated. Ac-

cordingly, a contextual effect or a compositional effect is defined as the extent to which the

magnitude of the group-level relationship differs from the individual-level effects (see,

e.g., Raudenbush & Bryk, 2002). Understanding human behaviors through not only an

individual level perspective, but also the lens of social context, helps social science re-

searchers obtain a more complete picture of individuals as well as society. Therefore,

methodologists have tried to quantify contextual effects using statistical models that are

known as contextual models.

An interesting aspect of the relationship between individuals and groups is that the

direction of influence is not unilateral. Group context affects individual actions or atti-

tudes, but the group context is often formed from individual characteristics. In many

cases, the interaction between an organization and an individual leads to a contextual

effect. The rationale of using a cross-level interaction term in statistical modeling for a

contextual effect lies in the interactive dynamics between individuals and groups.

The particular contextual effect of interest in this study is one that occurs when

a group-level characteristic of interest is measured by individual-level characteristics,

which is different from the case where a group-level characteristic is simply defined as

deterministic categories such as a public school or a private school in an educational set-

ting. Lüdtke et al. (2008) discussed two different aggregation processes in constructing

a group-level construct by aggregating individual data at the group level: reflective and

formative. The former assumes an “isomorphic relationship” between the individual-

level data and the group-level construct, while the latter assumes the group-level vari-

able is a simple index of level-1 construct. This study considers the reflective aggregation

in general. However, formative aggregation can also benefit from this multilevel latent

variable modeling in that possible measurement error in level-1 can be considered. The

modeling also provides opportunities for further qualitative research. For example, a

composition of students in terms of gender or ethnicity can be a contextual variable.

However, further analysis to investigate what kind of cultural components or psycholog-
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ical constructs account for differences in the phenomena will eventually require reflective

aggregation.

Contextual models are widely applied in organizational and industrial psychology,

where researchers try to isolate the effects of individual persons from those of larger

groups (see, e.g., Firebaugh, 1978; Erbring & Young, 1979). Iversen (1991) pointed out

that educational research has been “the major user” of contextual analysis among social

science disciplines. This is because of: 1) the nature of typical educational data in which

students are nested in schools, and 2) the nature of educational research questions that

connect school-level or class-level characteristics to student-level outcomes. Educational

researchers’ endeavor to open the black box between school input and outcome started

more actively since Coleman, Hoffer, and Kilgore (1982) reported skeptical results about

school effects. Therefore, most previous contextual analyses cannot be separated from

the proliferation of hierarchical linear models (HLM 1, Raudenbush & Bryk, 2002).

In educational research, a contextual effect has been traditionally defined as the dif-

ference between two coefficients in the multilevel analysis framework (Raudenbush &

Bryk, 1986; Willms, 1986; Lee & Bryk, 1989; Raudenbush & Willms, 1995): one from

the individual-level and the other coefficient from the school-level. A representative ap-

plication of this kind of contextual effect in education is discussed in Raudenbush and

Bryk (2002) using a subset of High School and Beyond Data (HS&B). In this example, in-

dividual math achievement is regressed on individual-level socioeconomic status (SES)

and school-level math achievement is regressed on aggregated school-level SES using

multilevel modeling. The result shows that two coefficient estimates are not the same,

indicating two students who have the same SES level are expected to have different lev-

els of math achievement depending on to which school a student belongs. Statistically

significant difference between these two coefficients represents a significant composi-

tional effect. Moreover, the contextual effect in the study was interpreted as the positive

1HLM has various names such as multilevel linear models in sociological research (Mason, Wong, &
Entwisle, 1983), mixed-effects models or random effect models in biometric research (Elston & Grizzle, 1962;
Laird & Ware, 1982; Singer, 1998). Random-coefficient regression models (Rosenberg, 1973; Longford, 1993)
and covariance components models (Dempster, Rubin, & Tsutakawa, 1981; Longford, 1987) also refer to the
same kind of models in econometrics and statistical literature, respectively.
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increment to student-level learning by virtue of attending a school which has higher

school-level SES (see. Figure 1.1).

Another example of a contextual effect in psychology is the “bigfish-little-pond effect

(BFLPE)” in which the magnitude of effect of student-level achievement on student aca-

demic self-concept is not consistent across classrooms or schools (Marsh, 1987). More

precisely, the relationship between student-level achievement and student academic self-

concept is positive, but the magnitude of the effect at school-level is found to be different

from the effect of achievement on academic self-concept at student-level. Accordingly,

two students who have the same academic achievement can have different levels of aca-

demic self-concept depending on the school achievement levels in which each student is

situated. In this case, the student who belongs to a school with lower average achieve-

ment shows greater self-concept just like a fish that feels it is big because it is in a little

pond. More applications of contextual models can be found in organizational research

(see, e.g., Bliese, 2000; Kozlowski & Klein, 2000; Bliese, Chan, & Ployhart, 2007; LaHuis

& Ferguson, 2009).

Contextual effect models are widely applied in other social science disciplines such

as criminology (e.g., Bottoms & Wiles, 2004; Wikström, 1998; Wooldredge & Thistleth-

waite, 1999; Sampson, Morenoff, & Gannon-Rowley, 2002; Oberwittler, 2004) and public

health research (e.g., Iversen, 1991; Croon & van Veldhoven, 2007; Henry & Slater, 2007).

In those studies, not only schools but also other groupings, such as neighborhoods or

hospitals, are considered. As an example, the contextual effect of neighborhood on se-

rious juvenile offenses has been studied by investigating the role of subcultural values

and social disorganization (Oberwittler, 2004). After controlling the effect of individ-

ual predictors, the study found that serious offences were more frequently related to

adolescents with attitudes typical of delinquent subcultures and those who have lower

neighborhood-level social capital, in particular. The level of social capital in Oberwittler

(2004) was measured from individual survey responses just as school-level SES was mea-

sured from student-level SES.

4



1.1.2 Modeling Contextual Effects as Compositional Effects

As briefly mentioned in section 1.1.1, an appropriate modeling framework for contextual

effects was not available before hierarchical linear models (HLM) were developed. HLM

can handle nested data, properly accounting for dependence among individuals in the

same level-2 unit (Raudenbush & Bryk, 2002). Therefore, contextual effect analysis has

long been conducted within the HLM framework.

A traditional contextual effect model is illustrated in Figure 1.1 (Raudenbush & Bryk,

2002). In this setting, level-1 is the student level and level-2 is the school level; the predic-

tor is SES, and the outcome is math achievement. The figure shows that the association

between student-level SES and student level math achievement βw is different from the

school-level SES and school level achievement βb, and the difference βc is defined as the

contextual effect. Therefore, βc is the expected difference in math achievement between

two students who have the same SES level but who attend different schools in terms of

school-mean SES. In other words, the compositional effect βc is the expected difference

in achievement between two students who are similar in terms of family SES, but who

attend schools that differ by 1 unit in their mean SES values.

The corresponding HLM can be written as follows.

Yij = β0j + β1j(Xij − X.j) + rij,

β0j = γ00 + γ01(X.j − X..) + u0j,

β1j = γ10,

γ10 = βw,

γ01 = βb,

βc = γ01 − γ10 (1.1)

In Equation (1.1), Yij and Xij denote outcome and predictor values of student i in school j,

respectively. Yij and Xij are typically constructed by summing item scores on self-report

responses. The random effects rij and u0j are assumed to be normally distributed with

5



zero means and variances (σ2 and τ). In this particular definition of a contextual effect as

a compositional effect, the within-slope, γ10, is the same across groups as a fixed effect,

which may or may not be appropriate, depending on the context.

1.1.3 Contextual Effects as Cross-level Interactions

In the previous compositional effect model, the within-group slopes are treated as a fixed

effect, i.e., they are treated as being the same across groups. However, contextual effects

can occur not only in individual outcome levels but also the individual-level outcome-

predictor relationship, indicating that within-group slopes vary across groups and the

contextual variable can explain some of the variance. Such a model may resemble the

following:

Yij = β0j + β1j(Xij − X.j) + rij,

β0j = γ00 + γ01(X.j − X..) + u0j,

β1j = γ10 + γ11(X.j − X..) + u1j,

γ10 = βw,

γ01 = βb,

βc = γ01 − γ10 (1.2)

The reduced form equation is:

Yij = γ00 + γ01(X.j − X..) + γ10(Xij − X.j) + γ11(X.j − X..)(Xij − X.j)

+u1j(Xij − X.j) + u0j + rij (1.3)

Equation (1.3) shows that the new parameter γ11 is the regression coefficient associated

with XijX.j, which is a cross-level interaction term. γ11 captures the effect of contextual

variable X.j on the within-group slopes β1j and eventually on the individual outcome.

As β1j varies across groups, γ10 is the expected within-group slope when the group
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mean X.j is the same as the grand mean X... The difference between γ01 and γ10 be-

comes the average compositional effect, holding constant not only the influence of the

individual level predictor but also the effect of the interaction between the individual-

level predictor and the group-level predictor. The compositional effects here vary across

groups as a function of γ11 and the deviation of the group-mean X.j from the grand

mean X...

Therefore, γ11 captures another important aspect of compositional effect. According

to Bauer and Cai (2009), omitting an interaction in HLM results in spurious large vari-

ation in slopes. Broadening the concept of contextual effects, not only as compositional

effects, but also as cross-level interactions allows researchers to investigate further if the

magnitude of contextual effects varies across groups.

1.1.4 Methodological Issues in Modeling Contextual effects

Though hierarchical linear modeling opened the door to estimating contextual effects,

there have been two unresolved problems that have drawn researchers’ attention. The

first one is related to the attenuated coefficient estimates due to measurement error in

predictors (Spearman, 1904), and the other is biased parameter estimates due to sam-

pling error that are associated with aggregating level-1 variables to form level-2 vari-

ables by simply averaging the observed values. The issues are illustrated in details in

the following two sections.

1.1.4.1 Measurement Error

The first source of error in estimating a contextual effect is measurement error using ob-

served scores Xij in modeling. Observed scores contain measurement error, unlike true

scores. Measurement error is defined as the difference between a true score and an

observed score in classical test theory (Allen & Yen, 2001). Borrowing some concepts

from generalizability theory (Cronbach, Gleser, Nanda, & Rajaratham, 1972; Brennan,

1992), measurement error can be viewed as a type of sampling error that occurs when
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a limited number of items are sampled from the universe of potential items. The Item

response theory framework has contributed to the definition and estimation of standard

errors of measurement that vary across latent trait levels so that an appropriate scale can be

constructed (Lord & Novick, 1968). The traditional multilevel modeling approach uses

only manifest variables as both outcome and predictor variables. Therefore, those ob-

served values are assumed to be error-free, which is not the case in most of educational

research.

The effect of measurement error in predictors on regression coefficients estimates

has been well known since Spearman (1904), and is typically referred to as “regres-

sion dilution” or “attenuation bias.” The consequence of measurement error in multiple

regression settings has been described by Fuller (1987). Raudenbush and Bryk (2002,

p. 347-50) discussed similar issues in the multilevel modeling framework. More pre-

cisely, when Xij is contaminated by measurement error in Equation (1.1), the estimated

regression coefficient β̂1j is attenuated, which leads to underadjustment of individual-

level effects. In addition to β̂1j, β̂b is also attenuated since X.j is also contaminated by

measurement error when Xij is simply aggregated to level-2 to form X.j. Accordingly,

the difference between β̂b and β̂w will be biased. To properly handle measurement error

in predictors, researchers have paid more attention to latent variable modeling in which

multiple manifest variables are used as indicators for latent variables that are free of

measurement error.

Not only point estimates but also standard errors of between-level regression coef-

ficients are expected to be underestimated when a traditional approach is taken. The

dispersion matrix of estimates γ̂ is,

Var(γ̂) = (∑ WT
j ∆−1

j Wj)
−1, (1.4)

where Wj is a vector of between-level predictors for group j and ∆j is the variance of β̂j.
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In HLM approach, variance of β̂j is defined as,

Var(β̂j) = Var(uj + ej) = T + Vj = ∆j

= parameter dispersion + error dispersion. (1.5)

While T reflects the true variance of the parameters, Vj does not properly capture the er-

ror dispersion that comes from a measurement structure. Accordingly, smaller Vj yields

smaller ∆j that eventually leads underestimation of standard errors based on Equation

(1.4). As statistical inferences are made based on point estimates and standard errors,

the underestimated standard error issue needs to be properly addressed in modeling.

1.1.4.2 Sampling Error

The second source of error is sampling error which is associated with aggregating level-1

variables to level-2 to construct level-2 predictors. Multi-stage probability based sampling

is often used in educational research, in which schools or districts are sampled first

and classrooms or students are sampled from the upper level units. To illustrate this

phenomenon, Equation (1.1) can be rewritten as a single level equation and rearranged

as follows:

Yij = β0 + βw(Xij − X.j) + βb(X.j − X..) + u0j + rij

= β0 + βwXij + βcX.j − βbX.. + u0j + rij. (1.6)

Then, instead of using X.j, suppose we have a latent group mean for the jth school. The

latent group mean for the jth school ξ.j can replace X.j, yielding

Yij = β0 + βwXij + βcξ.j − βbξ.. + u0j + rij. (1.7)
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From equation (1.7), we also assume a simple two-level model for the predictor:

Xij = ξ.j + εij, εij ∼ N(0, σxx)

ξ.j = ξ.. + δ.j, δ.j ∼ N(0, τxx) (1.8)

The student-level Xij varies around its school mean ξ.j. The deviations εij, follows

a normal distribution with mean zero and within-school variance (σxx). Similarly, the

school mean varies around the latent grand mean (ξ..). The deviations (δ.j) also follow a

normal distribution with a zero mean and between-school variance (τxx). The bias that

is associated with Equation (1.6) instead of using Equation (1.7) can be easily seen when

we take expectations of Yij given Xij and X.j. The conditional expectation of Equation

(1.7) is as follows.

E[Yij|Xij, X.j] = β0 + βwXij + βcE[ξ.j|Xij, X.j]− βbE[ξ..|Xij, X.j]. (1.9)

Using equation (1.8), the expectation of ξ.j given Xij and X.j can be written as,

E[ξ.j|Xij, X.j] = λjX.j + (1− λj)ξ.., (1.10)

where λj=τxx/(τxx+σxx/nj) is called the “reliability” of X.j as an estimate of ξ.j (Rau-

denbush and Bryk, 2002, chap.3). If we insert Equation (1.10) into Equation (1.9) and

rearrange terms, we obtain the following equation:

E[Yij|Xij, X.j] = [β0 + βc(1− λ)ξ..] + βwXij + βcλX.j − βbE[ξ..|Xij, X.j]. (1.11)

When sample size nj approaches infinity and λj is close to 1, bias (denoted here as

βc(1− λ)) in estimating βc is close to 0. However, with a limited sample size, λ cannot

be 1 and also λj varies from school to school as a function of the within-school sample

size nj. In Equation (1.11), X.j is an error-contaminated measurement of ξ.j even if Xij is

a perfectly reliable measure of an individual construct. Therefore, the sample mean is
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an unreliable estimate of the observed group mean, and this unreliability will generally

lead to bias in regression coefficients.

Using X.j instead of ξ.j can be problematic not only where contextual effects are of

interest but also where they need to be controlled for. For example, in the case of quasi-

experiments or policy studies where intact classes or schools are assigned to different

conditions, researchers often want to (or should) control for group mean predictors;

otherwise, differences that we see between level-2 units could be due to differences in

pre-existing compositional effects rather than the effects of treatment. However, working

with X.j could result in under adjustments due to regression attenuation. Similarly,

cross-level interaction effects could also be underestimated due to attenuation.

1.1.5 Modeling Contextual Effects through Multilevel Latent Variable Modeling

To handle measurement error and sampling error more properly, multilevel latent variable

modeling has been suggested as an alternative to traditional methods (e.g. Lüdtke et al.,

2008; Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; Marsh et al., 2009).

In the present research, multilevel latent variable modeling refers to a class of para-

metric statistical models that specify linear or nonlinear multilevel relations among a set

of continuous latent variables. Different terms such as multilevel latent structure models

and multilevel structural equation models are also used interchangeably. In this statistical

modeling framework, observed variables are related to latent variables via the measure-

ment model, and the relations among latent variables are defined by multiple levels of the

structural model.

Lüdtke et al. (2008) proposed a multilevel latent variable modeling framework for

contextual analysis. Lüdtke et al. (2008)’s simulation study is noteworthy in that the

study examined the relative bias in contextual effect estimates when the traditional HLM

model is used under different data conditions. The results showed that the relative

percentage bias of contextual effect was less than 10% across varying data conditions

when a multilevel latent variable model was used. On the other hand, the relative
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percentage bias of contextual effect was up to 80% when the traditional HLM model was

used.

However, the traditional HLM model can yield less than 10% relative bias under

favorable data conditions - that is, when level-1 and level-2 units exceed 30 and 500,

respectively, and when there is substantial intra-class correlation (ICC) in the predictor

(e.g., 0.3). The study also compared the limited-information approach with full informa-

tion estimation, and results suggest that the full information estimation is particularly

desirable for small numbers of level-1 or level-2 units and a small ICC. However, the

manifest variables are limited to only continuous variables in Lüdtke et al. (2008), which

is different from the current study. Here, multiple categorical variables are used as man-

ifest variables for both latent predictor and outcome variables. While previous research

adopted the EM algorithm with numerical integration for model estimation, the current

study adopted an MH-RM algorithm to avoid high dimensional numerical integration

and thereby achieve higher efficiency.

Another study using multilevel latent variable modeling for contextual effect analysis

was conducted by Marsh et al. (2009). Marsh and colleagues reviewed and compared

several contextual modeling options related to BFLPE estimates using an empirical data

set in which academic achievement and self-concept were measured by three and four

continuous manifest variables, respectively. Among the tested models, a multilevel latent

variable model that takes both measurement and sampling error into account yielded the

largest BFLPE estimate. The authors described this model as a doubly latent variable con-

textual model. Such a model is theoretically the most desirable choice for researchers,

since the model tries to took both measurement and sampling error into account by uti-

lizing information from the manifest variables, rather than using summed or averaged

scores of those manifest variables. The study also illustrated how the nonlinear multi-

level latent variable modeling approach can provide flexibility in modeling by including

random slopes, latent (within-level or cross-level) interactions, and latent quadratic ef-

fects. Marsh et al. (2009)’s study used three continuous manifest variables, while the

current study considers categorical indicators for all latent variables in the model.
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However, nonlinear multilevel latent variable modeling presents significant compu-

tational difficulties. Standard approaches such as numerical integration (e.g., adaptive

quadrature) or Markov chain Monte Carlo (MCMC, e.g., Gibbs Sampling) based estima-

tion methods have important limitations that make them less practical for routine use,

because their computational efficiency drops dramatically when the dimensionality is

high. Lüdtke et al. (2011) also reported the occurrence of unstable estimates.

The model has difficulty reaching convergence when sample size is small and the

predictors have small intraclass correlations, or when there are substantial amounts of

missing observations. Another model specification issue is the assumptions imposed on

the distributions of manifest variables. Though it is currently possible to fit a multilevel

latent variable model to a real data set that has categorical manifest variables, estimation

and model fit diagnosis is more difficult when compared to the cases with continuous

manifest variables. Particularly, the underlying contingency table for categorical mani-

fest variables can have many empty cells when the number of categories or items is large

and the sample size is small. Therefore, further research is needed to improve estimation

of contextual effect in the nonlinear multilevel latent variable modeling framework.

1.2 Research Goals

This study considers a contextual effect not only as a compositional effect that captures

the influence of contextual variables on individual level outcomes, but also cross-level

interactions that capture the influence of contextual variables on within-group slopes,

group-varying compositional effects, and eventually individual-level outcomes.

The main objective of the current study is to develop a more efficient and stable esti-

mation method for contextual effects in the nonlinear multilevel latent variable modeling

framework, using Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008,

2010a, 2010b). Computational efficiency and parameter recovery will be assessed in a

comparison with EM algorithm using adaptive Gauss-Hermite quadrature for numerical

integration (e.g. Mplus; Muthén & Muthén, 2008).
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Another objective is to find, through a simulation study, how much measurement

error and sampling error can influence contextual effect estimates under different con-

ditions. The results will provide the rationale for using computationally demanding

nonlinear multilevel latent variable models. Those conditions cover number of indica-

tors, types of indicators, level-1 and level-2 sample sizes, as well as size of ICCs. Previous

research (See, Lüdtke et al., 2011; Marsh et al., 2009) provide guidelines for the varying

conditions.

The last objective of the proposed study is to provide an empirical illustration of

estimating contextual effects by applying nonlinear multilevel latent variable models

to real data that contain more complex measurement structures and unbalanced data.

Subsets from Programme for International Student Assessment (PISA; Adams & Wu,

2002) are analyzed to illustrate a contextual effect model and a cross-level interaction

model.

1.3 Research Significance

This study is situated in the current streams of research (e.g., Goldstein & Browne, 2004;

Goldstein, Bonnet, & Rocher, 2007; Kamata, Bauer, & Miyazaki, 2008) that try to develop

a comprehensive, unified model that benefits from both multilevel modeling and latent

variable modeling by combining multidimensional IRT and factor analytic measurement

modeling with the flexibility of nonlinear structural modeling in a multilevel setting.

Considering that one of the most urgent needs in developing a unified model is an

efficient estimation method, the current study contributes to nonlinear multilevel latent

variable modeling by investigating an alternative estimation algorithm. The principles of

MH-RM algorithm and the previous study results (Cai, 2008) suggest that the algorithm

can be more efficient than the existing algorithms when a model is associated with a

large number of latent variables or random effects.

As computational breakthroughs have contributed to wide applications of statistical

models (e.g., EM algorithm), a computational contribution can benefit both method-
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ological researchers and substantive researchers by making nonlinear multilevel latent

variable modeling more practically applicable. The current study is expected to make

contributions to statistical modeling in educational research by providing discussions on

how measurement error and sampling error can affect estimates in multilevel models.

The estimation of contextual effects using multilevel latent variable modeling is associ-

ated with more precise estimation of group-level latent means (e.g. class- or school-level

achievement or teacher characteristics, and environmental characteristics). Obtaining

precise group-level latent means is particularly important in estimating teacher or school

effects (e.g., value-added models) since many important educational decisions are made

based on these results (e.g., budget allocation, school shut-down). Additionally, the

multilevel latent variable modeling framework is useful in that this approach takes mea-

surement and sampling error into account properly. This is significant not only when the

contextual effects are of interest, but also when they need to be statistically controlled

for, as in the case of quasi-experiments or policy evaluation studies.

Furthermore, developments in statistical modeling provide researchers with opportu-

nities to contemplate more refined meaning of contextual effects as compositional effects

as well as cross-level interactions. For example, the meaning of compositional effects

in the traditional HLM framework is different from those in nonlinear multilevel latent

variable modeling when a cross-level interaction is considered.
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Figure 1.1: Illustration of the compositional effect (βc) associated with attending school
2 versus school 1

(Raudenbush & Bryk, 2002)
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CHAPTER 2

Nonlinear Multilevel Latent Variable Model

This chapter provides some theoretical background on nonlinear multilevel latent vari-

able modeling along with estimation methods. The chapter also describes the observed

and complete data likelihoods of contextual models that are necessary to obtain the

maximum likelihood estimate (MLE) of parameters using an MH-RM algorithm.

2.1 Development of Nonlinear Multilevel Latent Variable Model

2.1.1 Structural Equation Modeling

Structural equation modeling is rooted in path analysis and factor analysis (Bollen,

1989). Path analysis (Wright, 1918, 1921, 1934, 1960) contributed the path diagrams

and the equations that relate correlations or covariances to parameters in current struc-

tural equation modeling. Factor analysis (Spearman, 1904) contributed to the conceptual

synthesis of latent variable and measurement models in structural equation modeling.

With some exceptions, such as the EQS model (Bentler, 1985), factor analysis in general

governs the measurement part of latent variable modeling, and path analysis deals with

the structural relationship among latent variables. Though the origins of this analyti-

cal framework go back to the early 1900’s, applications of latent structure models that

contain both measurement models and linear structural equations has become prevalent

since the 1970’s. The breakthroughs by Keesling (1972), Jöreskog (1973), and Wiley (1973)

made the practical applications possible. Starting with the LISREL program (Jöreskog

& Sörbom, 1974), software packages such as EQS (Bentler, 1985) and Mplus (Muthén &

Muthén, 2010) contributed to the increased popularity of structural equation modeling
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with latent variables.

2.1.2 Multilevel Structural Equation Modeling

Structural equation modeling with latent variables in the multilevel context emerged

from the hopes of combining the best of multilevel and latent variable modeling (e.g.

McDonald & Goldstein, 1989; McDonald, 1993, 1994; Lee, 1990; Lee & Poon, 1998;

Muthén, 1990; Muthén, 1991; Muthén, 1994; Raudenbush & Willms, 1995). McDonald

and Goldstein (1989) and McDonald (1993, 1994) focused on estimation in the case of

both balanced and unbalanced designs. Muthén (1990), Muthén (1991), and Muthén

(1994) proposed a partial maximum likelihood solution in the case of unbalancedness,

and Lee and Poon (1998), Raudenbush and Willms (1995), and Liang and Bentler (2004)

developed a full maximum likelihood estimator using the EM algorithm. Recent research

efforts for multilevel structural equation modeling with latent variables are moving to-

ward unifying and extending generalized linear mixed models, multilevel factor and

item response models, and multilevel structural equation models (e.g., Rabe-Hesketh,

Skrondal, & Pickles, 2004; Skrondal & Rabe-Hesketh, 2004; Goldstein & Browne, 2004;

Goldstein et al., 2007; Kamata et al., 2008). This stream of research is also observed in

measurement theory frameworks, e.g., multilevel IRT, multilevel factor analysis frame-

work (Adams, Wilson, & Wu, 1997; Ansari & Jedidi, 2000; Kamata, 2001; Fox & Glas,

2001; Maier, 2001), and explanatory IRT (de Boeck & Wilson, 2004).

2.1.3 Nonlinear Multilevel Structural Equation Modeling

Another important point that stands out in nonlinear multilevel latent structure model-

ing is nonlinearity in two different parts of a contextual model. The measurement model

can be nonlinear. Take, for example, de Boeck and Wilson (2004)’s illustrations of the

ways in which IRT models can also be considered nonlinear random effects models. In

addition to measurement models, nonlinear terms could be directly specified in struc-

tural models to accommodate interaction or polynomial effects (Kenny & Judd, 1984).

18



When modeling contextual effects, the variability in within-group slopes or contextual

effects can be explained by a cross-level interaction term, which introduces nonlinearity

into the structural model. Bauer and Cai (2009) reported that omitting nonlinearity in

multilevel modeling can result in spurious random variation in regression slopes and

cross-level interactions. Nonlinear functional forms have been studied from both mul-

tilevel (e.g. Cudeck & du Toit, 2003) and structural equation modeling perspectives

(e.g. Arminger & Muthén, 1998; Cudeck, Harring, & du Toit, 2009; Lee, Song, & Poon,

2004). However, the models still impose heavy computational burden because of high

dimensionality in the latent variable space.

2.2 Contextual Effects in a Nonlinear Multilevel Latent Variable Model

2.2.1 Latent Structure Models

For a contextual effect as a compositional effect that is based on latent variables, we

can start with Equation (1.1). Recall that Yij and Xij denote the outcome and predictor

values of student i in school j, respectively. Instead of using Yij and Xij that are observed

variables, we substitute them with latent variables ηij and ξij for individual i in group j.

Then Equation (1.1) translates into the following:

ηij = β0j + β1j(ξij − ξ.j) + rij,

β0j = γ00 + γ01(ξ.j − ξ..) + u0j,

β1j = γ10,

γ10 = βw,

γ01 = βb,

βc = γ01 − γ10 (2.1)

Similar to Equation (1.1), the random effects rij and u0j are assumed to be normally

distributed with zero means and variances σ2 and τ00, respectively.
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To model varying within-group slopes (β1j), a random effect (u1j) can be added,

re-defining β1j as the following:

ηij = β0j + β1j(ξij − ξ.j) + rij,

β0j = γ00 + γ01(ξ.j − ξ..) + u0j,

β1j = γ10 + u1j,

γ10 = βw,

γ01 = βb,

βc = γ01 − γ10 (2.2)

In Equation (2.2), u1j also follows a normal distribution with mean zero and variance

τ11. The covariance between u0j and u1j is τ10. For both models, the contextual effect βc

is defined as a compositional effect, that is, the difference between γ01 and γ10.

However, care must be taken to the contextual effect, particularly when the within-

group slopes are random. For example, the contextual effect might also be treated as a

random effect that varies across the groups. Therefore, the interpretation of the differ-

ence between γ01 and γ10 in Equation (2.2) is not exactly the same as the interpretation

of the compositional effect in Equation (2.1).

Now consider a contextual effect as a cross-level interaction. The grand-mean-centered

contextual variable (ξ.j) is included in the model as a predictor for β1j. Therefore, β1j is

re-defined as follows:

ηij = β0j + β1j(ξij − ξ.j) + rij,

β0j = γ00 + γ01(ξ.j − ξ..) + u0j,

β1j = γ10 + γ11(ξ.j − ξ..) + u1j,

γ10 = βw,

γ01 = βb,

βc = γ01 − γ10 (2.3)
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Again, the compositional effect βc is considered only when the cross-level interaction

of the predictor is controlled for. Even a simple compositional effect can be defined

in several different ways depending on what kind of aspects are considered and the

research question being answered. For notational simplicity, latent individual deviations

from latent group means (ξij− ξ.j) can be defined as δij, and group mean deviations from

the latent grand mean (ξ.j− ξ..) can be defined as δ.j. Equation (2.3) can be re-written as:

ηij = β0j + β1jδij + rij,

β0j = γ00 + γ01δ.j + u0j,

β1j = γ10 + γ11δ.j + u1j,

γ10 = βw,

γ01 = βb,

βc = γ01 − γ10 (2.4)

Substituting level-2 effects into the level-1 equation, the reduced form equation is:

ηij = γ00 + γ01δ.j + γ10δij + γ11δ.jδij + u1jδij + u0j + rij (2.5)

In Equation (2.5), it is more transparent that the difference between two coefficients

γ01 and γ10 defines a contextual effect as a compositional effect, and γ11 captures a

contextual effect as a cross-level interaction effect. By fixing γ11 at zero or fixing both γ11

and u1j at zero, the traditional contextual model with latent variables can be obtained.

Thus the models in Equations (2.1) and (2.2) are nested within the model in Equation

(2.5). The three models represented by Equations (2.1), (2.2), and (2.3) are illustrated

using path diagrams through Figures 2.1, 2.2, and 2.3.
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2.2.2 Measurement Models

The measurement models define the relationship between observed variables and latent

variables. The measurement models are developed as IRT models. For brevity, only

the measurement models of level-1 latent predictor variable ξij will be described in this

section, since the measurement models for other variables such as the latent outcome ηij

follow the same principles. Let the vector of responses form the ith respondent in the jth

group to the set of L observed variables for latent variable ξij be xij = (x1ij,...,xlij,...,xLij)’.

We assume the conditional independence of observed variables given latent trait ξij (Lord

& Novick, 1968). The likelihood of observing xij given ξij is:

fθ(xij|ξij) =
L

∏
l=1

fθ(xijl|ξij), (2.6)

where θ contains the free item parameters. The two models considered in this study are

for dichotomously scored items and graded response items, but other IRT models may

be used.

2.2.2.1 Dichotomous Response

This model can be considered a generalized 2-parameter logistic model (2-PL) as well as

a special case of a graded response model with two categories, (to be described in the

next section). The conditional probability for xijl = 1 is

Pθ(xijl = 1|ξij) =
1

1 + exp[−(bl + alξij)]
, (2.7)

Here, bl and al denote intercept (difficulty parameter) and slope (discrimination param-

eter), respectively. Let χk is an indicator function. χk is 1 if xijl = k, or 0 otherwise. In the

case of dichotomous response, k is 1; therefore, χ1 is 1 if xijl = 1, or 0 otherwise. Finally,
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the conditional density for xijl is that of a Bernoulli random variable:

fθ(xijl|ξij) =
1

∏
k=0

Pθ(xijl = k|ξij)
χk(xijl), (2.8)

θ shows that the item properties belong to the list of free parameters.

2.2.2.2 Graded Responses

When manifest variables are graded response variables with multiple categories, Samejima

(1969)’s model can be utilized. Let x1ij ∈ {0, 1, 2, ..., Kl − 1} be an element of ith individ-

ual’s response in jth group to lth item that has Kl ordered categories. Then the logistic

conditional cumulative response probability for each category are listed as follows:

Pθ(xijl ≥ 0|ξij) = 1,

Pθ(xijl ≥ 1|ξij) =
1

1 + exp[−(b1,l + alξij)]
,

Pθ(xijl ≥ 2|ξij) =
1

1 + exp[−(b2,l + alξij)]
,

...

Pθ(xijl ≥ Kl − 1|ξij) =
1

1 + exp[−(bKl−1,l + alξij)]
, (2.9)

The category response probability is defined as the difference between two adjacent

cumulative probabilities:

Pθ(xijl = k|ξij) = Pθ(xijl ≥ k|ξij)− Pθ(xijl ≥ k + 1|ξij), (2.10)

where Pθ(xijl ≥ k|ξij) is zero. Again, χk is an indicator function in which χk is 1 if xijl =

k, or 0 otherwise. The conditional density for xijl follows a multinomial with trial size 1

in Kl categories:

fθ(xijl|ξij) =
Kl−1

∏
k=0

Pθ(xijl = k|ξij)
χk(xijl). (2.11)
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2.2.3 Observed and Complete Data Likelihoods

As ξij is measured by xij, ηij is measured by yij, the conditional density of yij is written

as:

fθ(yij|ηij) = fθ(yij|ξij, ξ.j, βj, rij), (2.12)

If we integrate rij out of Equation (2.12),

∫
fθ(yij|ξij, ξ.j, βj) fθ(rij)d(rij) = fθ(yij|ξij, ξ.j, βj), (2.13)

where fθ(rij) is the density of a normal distribution N(0, σ2). For identification purpose,

σ2 is fixed at 1 in this study, which makes fθ(rij) the density of a standard normal

random variable. Integrating out ξij yields

fθ(yij, xij|ξ.j, βj)

=
∫

fθ(xij|ξij) fθ(yij|ξij, ξ.j, βj) f (ξij)d(ξij) (2.14)

When J and Ij stand for the number of groups and number of individuals in group j, the

conditional joint density of y.j and x.j for group j is the multiplication of the conditional

joint densities for yij and xij in the same group as can be seen in the following equation:

fθ(y.j, x.j|ξ.j, βj) =

Ij

∏
i=1

fθ(yij, xij|ξ.j, βj) (2.15)

Integrating out level-2 latent variable and random coefficients ξ.j and βj yields

fθ(y.j, x.j) =
∫ Ij

∏
i=1

fθ(yij, xij|ξ.j, βj) f (ξ.j) f (βj)d(ξ.j)d(βj) (2.16)

In this manner, one can integrate all latent variables and random coefficients out of

the model to get a marginal distribution from which the parameters can be estimated.

Treating ηij, ξij, ξ.j, βj and rij as missing data, the complete data likelihood, when J and
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Ij stand for the number of groups and number of individuals in group j, is:

J

∏
j=1

[ Ij

∏
i=1

fθ(yij|ξij, ξ.j, βj, rij) fθ(xij|ξij) fθ(ξij) fθ(rij)
]
× fθ(βj) fθ(ξ.j) (2.17)

where fθ(xij|ξij) = ∏Lx
l=1 fθ(xijl|ξij) and fθ(yij|ξij, ξ.j, βj) = ∏

Ly
l=1 fθ(yijl|ξij, ξ.j, βj). Lx and

Ly are the number of manifest variables for ξij and ηij, respectively.
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Figure 2.1: Conceptual path diagram showing the compositional effect model in Equa-
tion (2.1).
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Figure 2.2: Conceptual path diagram showing the compositional effect model with ran-
dom slopes in Equation (2.2).
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Figure 2.3: Conceptual path diagram showing the compositional effect model with ran-
dom slopes and a cross-level interaction in Equation (2.3).
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CHAPTER 3

A Metropolis-Hastings Robbins-Monro Algorithm

Considering the missing data formulation, where the observed data are Yo and the miss-

ing data are Ym, the observed data likelihood can be written as L(θ|Yo) and the complete

data likelihood function is L(θ|Y) where Y = (Yo,Ym). While maximizing L(θ|Yo) in-

volves high-dimensional integrals, the complete data likelihood L(θ|Y) involves a series

of products of likelihoods that are fairly simple to maximize. Therefore, having plausi-

ble values of random effects and latent variables makes the estimation problem simpler.

This also allows straightforward optimization of the the complete data likelihood with

respect to θ. However, proper imputation requires the distribution of the missing data

to be conditional on the observed data. As the model is nonlinear, analytical deriva-

tion of the distribution of missing data conditional on the observed data is difficult.

Nevertheless, a property of the posterior of the missing data enables us to have ap-

propriate imputation. That is, the posterior of missing data, given observed data and

a provisional θ, is proportional to the complete data likelihood. To utilize this prop-

erty, Metropolis-Hastings sampler (MH; Hastings, 1970; Metropolis, Rosenbluth, Rosen-

bluth, Teller, & Teller, 1953) is adopted to produce the imputations from a Markov chain

with the missing data posterior as the target. Then, the random imputations are com-

bined into Stochastic Approximation using the Robbins-Monro algorithm (RM; Robbins

& Monro, 1951).
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3.1 The EM Algorithm and MH-RM

Cai (2008) described the MH-RM algorithm as an extension of the Stochastic Approxima-

tion EM algorithm (SAEM; Celeux & Diebolt, 1991; Celeux, Chauveau, & Diebolt, 1995;

Delyon, Lavielle, & Moulines, 1999). Accordingly, it is helpful to review the conventional

EM algorithm for incomplete data before proceeding to the MH-RM algorithm.

The EM algorithm is composed of two steps (Dempster, Laird, & Rubin, 1977). The E-

step computes the conditional expectation of complete data log-likelihood using the cur-

rent estimates for the parameters, and the M-step maximizes the conditioned expected

log-likelihood found in the E-step. By alternating the two steps until convergence, max-

imum likelihood or maximum a posteriori (MAP) estimates of parameters are obtained.

Using the missing data notation used in the previous chapter, the complete data can

be written as Y = (Yo,Ym). The complete data and observed data log-likelihood can be

expressed as l(θ|Y) and l(θ|Yo), respectively.

When the current estimate is denoted as θ∗, the expected complete-data log-likelihood

Q(θ|θ∗) =
∫
(l(θ|Y))Fθ∗(dYm|Yo) (3.1)

is computed in E(xpectation)-step where Fθ(Ym|Yo) denotes the posterior predictive dis-

tribution of missing data. Then M(aximization)-step computes new parameters that

maximize Q(θ|θ∗).

Fisher (1925) proved that the conditional expectation of ∇θl(θ|Y), on the right had

side of the Equation 3.2, is the same as the gradient of the observed data log-likelihood,

on the left hand side of Equation 3.2.

∇θl(θ|Yo) =
∫
E
∇θl(θ|Y)Fθ(dYm|Yo), (3.2)

where Fθ(Ym|Yo) is the posterior predictive distribution of missing data, and E is some

sample space. Equation (3.2) is known as Fisher’s Identity. Cai (2008) pointed out that
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Fisher’s Identity is a strong motivation of the MH-RM algorithm in that one can obtain

the gradient of the observed data log-likelihood from the conditional expectation of

the complete data gradient ∇θl(θ|Y). The solution that makes the right-hand side of

Equation (3.2) zero is the same solution that makes ∇θl(θ|Yo) zero.

Taking the expectation of∇θl(θ|Y) with respect to Fθ(Ym|Yo) is now critical. This can

be accomplished by imputing missing data from its posterior predictive distribution. As

the posterior distribution depends on unknown θ, the solution needs to be obtained

iteratively.

3.2 The RM Algorithm and MH-RM

Robbins and Monro (1951)’s algorithm is a root-finding algorithm under observational

noise functions and MH-RM can be conceived of as a generalized RM algorithm (Cai,

2008) for multiple parameters. Let θ be a variable and g(·) be a continuously differen-

tiable function. Newton’s procedure yields the following equation to find the root of a

function g(θ):

θk+1 = θk + [−∇θg(θk)]−1g(θk). (3.3)

The procedure starts with θk, which is a starting value when k = 0, and then iteratively

updates θk. When the function is unknown or not differentiable, the following RM

recursive filter can be used analogously to Newton’s procedure:

θk+1 = θk + γkRk+1, (3.4)

where Rk+1 = g(θk)+ζk+1 and γk is a sequence of gain constants. Here, ζk+1 is a random

variable with mean zero. Because g(θk) is unknown, Rk+1 becomes the estimate of

g(θk). On the other hand, the sequence of gain constants γk should satisfy the following

conditions:

γk ∈ (0, 1], Σ∞
k=1γk = ∞, Σ∞

k=1γ2
k < ∞. (3.5)
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These conditions make the gain constants decrease slowly to zero. An interesting part

of this approach is that Rk+1 does not need to be highly accurate since it only provides

the right direction for the next move. The role of decaying gain constants is to eliminate

the effect of the noise, enabling θk to converge to the root point-wise. The MH-RM

algorithm is a generalized form of the RM Algorithm for multiple parameters (Cai,

2008). The noise is introduced by stochastic data augmentation. Recall that we need

to take the expectation of ∇θl(θ|Y) with respect to Fθ(Ym|Yo). A Markov chain can be

constructed to draw plausible missing values from the posterior predictive distribution

to obtain complete data Y. Let θk be the estimate at the end of iteration k.

The (k + 1)th iteration of the MH-RM algorithm consists of 3 steps: Stochastic Impu-

tation, Stochastic Approximation, and Robbins-Monro Update.

1. Stochastic Imputation

Draw mk sets of missing data, which are the random effects and latent variables, from a

Markov chain that has the distribution of missing data conditional on observed data as

the target. Then, mk sets of complete data are as follows:

{
Yk+1

j ; j = 1, ..., mk

}
(3.6)

2. Stochastic Approximation

Using Fishier’s Identity, a Monte Carlo approximation to ∇θl(θk|Yo) can be computed

as the sample average of complete data gradients. We also compute a recursive approx-

imation of the conditional expectation of the information matrix of the complete data

log-likelihood. For simplicity, let s(θ|Y) stand for ∇θl(θ|Y), and the sample average of

complete data gradients can be written as:

s̃k+1 =
1

mk

mk

∑
j=1

s(θk|Yk+1
j ), (3.7)
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and Γk+1 is

Γk+1 = Γk + γk

[
1

mk

mk

∑
j=1

H(θk|Yk+1
j )− Γk

]
, (3.8)

where H(θ|Y) is the complete data information matrix, which is −1 times the second

derivative matrix of the complete data log-likelihood.

3. Robbins-Monro Update

Now new parameters are estimated through the following update:

θk+1 = θk + γk(Γ
−1
k+1s̃k+1) (3.9)

The iterations can be stopped upon convergence wheen the changes in parameter esti-

mates are sufficiently small. Cai (2008) verified that the asymptotic behaviors of MH-RM

in time and it converges to MLE. More detailed information about the relationship be-

tween MH-RM and other existing algorithms are described in Cai (2008).

3.3 Approximation to the Observed Information Matrix

One of the benefits of using the MH-RM algorithm is that the observed data informa-

tion matrix can be approximated as a byproduct of the iterations. The inverse of the

observed data information matrix becomes the large-sample covariance matrix of pa-

rameter estimates. The square root of the diagonal elements are the standard errors.

Utilizing Fishier’s Identity, the score vector is approximated recursively at kth iteration,

ŝk+1 = ŝk−1 + γk{s̃k+1 − ŝk}, (3.10)

where s̃k is defined as Equation (3.7) and γk is a sequence of gain constants. A Monte

Carlo estimate of the conditional expectation is defined as follows:

G̃k =
1

mk

mk

∑
j=1

[
H(θk|Yk+1

j )− s(θk|Yk+1
j )[s(θk|Yk+1

j )]′
]

. (3.11)
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For recursive SA, a better estimate is defined as the next equation since the ŝk is too

noisy.

Ĝk+1 = Ĝk + γk{G̃k+1 − Ĝk}. (3.12)

Finally, the observed information matrix is approximated as

Ik+1 = Ĝk+1 + ŝk+1ŝ′k+1, (3.13)

Another practical option for approximating the observed information matrix is a di-

rect application of Louis’s (1982) approach, in which the score vector and the conditional

expectation are approximated directly after converge. The straightforward differentia-

tion of Equation 3.1 yields (with slight changes in notations here from Louis’s (1982)

formula),

IYo = Eθ

{
H(Y, θ)|Y

}
− Eθ

{
s(Y, θ)sT(Y, θ)|Y

}
+ Eθ

{
s(Y, θ)|Y

}
Eθ

{
sT(Y, θ)|Y

}
. (3.14)

Eθ

{
s(Y, θ)|Y ∈ R

}
is 0 when θ is evaluated at MLE θ̂. When v denotes the number

of samples that are used to approximate the covariance matrix, and Yi is an imputation

from Fθ(Ym|Yo), the first two terms in Equation 3.14 are calculated using Equations 3.15

and 3.16, respectively.

Eθ

{
H(Y, θ)|Y

}
≈ 1

v

v

∑
i=1

H(θ̂, Yi|Yi), (3.15)

Eθ

{
s(Y, θ)sT(Y, θ)|Y

}
≈ 1

v

v

∑
i=1

[s(θ̂, Yi)sT(θ̂, Yi)|Yi]. (3.16)

In this study, the first method is called recursively approximated standard errors and the

latter is called post-convergence approximated standard errors. More precisely, these meth-

ods approximate the observed data information matrix that yields the standard error

estimates. Both methods were adopted for this study to examine the quality of the
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estimates and practicability.
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CHAPTER 4

Implementation of MH-RM for Contextual Models

This chapter describes how an MH-RM algorithm is implemented to obtain maximum

likelihood estimates for a contextual effect model and a cross-level interaction model in

the multilevel latent variable modeling framework. The first section explains how an MH

sampler can be constructed, and the second section reports the complete data models

and their first and second derivatives that are used to update parameter estimates. The

final section provides details related to acceleration and convergence of the algorithm.

4.1 A Metropolis-Hastings Sampler

The first step of an MH-RM algorithm for multilevel latent variable modeling is the

stochastic imputation of latent variables and random effects. The imputation process is

composed of 1) generating the candidate values for random effects with a random walk

sampler, 2) evaluating acceptance probabilities, and 3) accepting or rejecting the candi-

dates. This process ultimately aims at sampling from the distribution of missing data

given observed data Fθ(Ym|Yo) in Equation (3.2), which is proportional to the complete

data likelihood L(θ|Y). Recall the notation in Equations (2.1), (2.2), and (2.3), where ξij,

ξ.j, ξ.. and ηij, are latent variables and rij, β0j, and β1j are random variables. On the other

hand, γ00, γ01, γ10, and γ11 are fixed parameters in the structural model, and there are

also item parameters in the measurement model. Except for latent variables and random

effects, all other parameters are considered fixed in the population and can be denoted

as θ. In applications of latent variable modeling in which a latent variable is measured

by multiple manifest variables, either factor standardization or anchoring one of the factor
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loadings should be made for identification purpose. For this study, factor standardization

is chosen to estimate all factor loadings. Accordingly, γ00 is fixed at zero. Among latent

variables, the mean of ξ.. can similarly be fixed at zero for identification. Following stan-

dard practice in IRT, ξij is defined scale with mean zero and variance 1. Furthermore,

ηij is a combination of other random variables and can be calculated once ξij, ξ.j, β0j,

β1j, and rij are known. If we omit ηij and ξ.. for now, the remaining random variables

of interest are the latent predictor ξij, the group level latent predictor ξ.j, residuals at

level-1 rij, the within-group intercept β0j, and within-group slope β1j. These variables

are viewed as missing data. Therefore, the set of missing data corresponds to Ym in

Equation (3.2).

Considering the multilevel structure of the proposed model, level-1 latent variables

are independent conditional on level-2 latent variables, and level-2 random variables

are also independent conditional on level-1 latent variables when there is no cross-level

interaction. For further illustration, the vector of level-1 latent variables (ξij, rij) is called

Ym,ij, and the vector of level-2 latent variables (ξ.j, β0j, β1j) is called Ym,.j. The latent

variables Ym,ij and Ym,.j are treated as missing data. The MCMC imputation procedure

can be constructed using Gibbs sampling. Let Yl
m,ij be the value of Ym,ij in the lth iteration

of a Gibbs sampler with the following steps:

DrawYl
m,1j ∼ fθ(Ym,1j|Yl−1

m,2j, ..., Yl−1
m,I j, Ym,.j, Yo)

DrawYl
m,2j ∼ fθ(Ym,2j|Yl

m,1j, Yl−1
m,3j, ..., Yl−1

m,I j, Ym,.j, Yo)

...

DrawYl
m,ij ∼ fθ(Ym,ij|Yl

m,1j, ..., Yl
m,i−1j, Yl−1

m,i+1j, ..., Yl−1
m,I j, Ym,.j, Yo)

...

DrawYl
m,I j ∼ fθ(Ym,I j|Yl

m,1j, ..., Yl
m,I−1j, Ym,.j, Yo) (4.1)

Each of the full conditionals are still difficult to sample directly. This suggests coupling
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the Gibbs sampler with the MH algorithm. Let

α(Ym,ij, Y∗m,ij|θ, Yo,ij, Ym,.j)

= min

{
fθ(Yo,ij|Y∗m,ij)h1j(Y∗m,ij|µ1j, Σ1j)h2(Ym,.j|µ2, Σ2)q(Y∗m,ij, Ym,ij)

fθ(Yo,ij|Ym,ij)h1j(Ym,ij|µ1j, Σ1j)h2(Ym,.j|µ2, Σ2)q(Ym,ij, Y∗m,ij)
, 1

}
(4.2)

be the acceptance probability of moving from state Ym,ij to Y∗m,ij given parameters θ,

observed data Yo,ij, and Ym,.j, where q(Ym,ij, Y∗m,ij) is a transition density. When a simple

random walk chain is used, a candidate is Y∗m,ij = Ym,ij + eij, where eij follows a scaled

multivariate standard normal distribution in p dimensions, where p is the number of

latent variables. For example, p = 2 for the increment to Ym,ij = (ξij, rij)
′, and a set of eij

is drawn from a scaled standard bivariate normal distribution N2(0, w2 I2). The w value

can be changed to tune the acceptance ratio of the MH chain and generally needs to be

smaller than 1 for high-dimensional problems (Cai, 2008). Due to the symmetry of the

increment density, q(Ym,ij, Y∗m,ij) = q(Y∗m,ij, Ym,ij), Equation (4.2), yielding the reduced

form as follows:

α(Ym,ij, Y∗m,ij|θ, Yo,ij, Ym,.j)

= min

{
fθ(Yo,ij|Y∗m,ij)h1j(Y∗m,ij|µ1j, Σ1j)h2(Ym,.j|µ2, Σ2)

fθ(Yo,ij|Ym,ij)h1j(Ym,ij|µ1j, Σ1j)h2(Ym,.j|µ2, Σ2)
, 1

}
(4.3)

As it can be seen in Equation (4.3), the density function related to level-2 missing data

h2(Ym,.j|µ2, Σ2) is the same for the current draws and candidate draws. Therefore, Equa-

tion (4.3) can be further reduced as:

α(Ym,ij, Y∗m,ij|θ, Yo,ij, Ym,.j) = min

{
fθ(Yo,ij|Y∗m,ij, Ym,.j)h1j(Y∗m,ij|µ1j, Σ1j)

fθ(Yo,ij|Ym,ij)h1j(Ym,ij|µ1j, Σ1j)
, 1

}
(4.4)

In short, conditional on Ym,.j, a candidate is Y∗m,ij = Ym,ij + eij. The acceptance probabil-

ities are calculated by Equation (4.4) and the candidates are accepted or rejected based

on the evaluation.

Similarly, let Yl
m,.j be the value of Ym,.j in the lth iteration of a Gibbs sampler with the
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following steps:

DrawYl
m,.1 ∼ fθ(Ym,.1|Yl−1

m,.2, ..., Yl−1
m,.J ,

{
Ym,ij

}I1
i=1 , Yo)

DrawYl
m,.2 ∼ fθ(Ym,.2|Yl

m,.1, Yl−1
m,.3, ..., Yl−1

m,.J ,
{

Ym,ij
}I2

i=1 , Yo)

...

DrawYl
m,.j ∼ fθ(Ym,.j|Yl

m,.1, ..., Yl
m,.j−1, Yl−1

m,.j+1, ..., Yl−1
m,.J ,

{
Ym,ij

}Ij
i=1 , Yo)

...

DrawYl
m,.J ∼ fθ(Ym,.J |Yl

m,.1, ..., Yl
m,.J−1,

{
Ym,ij

}IJ
i=1 , Yo) (4.5)

In the same manner, the Gibbs sampler is coupled with the MH algorithm. Once the

level-1 candidate draws are accepted or rejected, level-2 random effects candidates are

generated as Y∗m,.j = Ym,.j + e.j. Similarly, e.j is drawn from a scaled standard mul-

tivariate normal distribution N3(0, w2 I3), Conditional on Ym,ij, now level-2 draws are

generated and evaluated in the same manner. The only difference is that the likelihoods

are evaluated at level-2 as Ym,.j are level-2 random effects and latent variables. For this

process after simplification, the acceptance probability of moving from state Ym,.j to Y∗m,.j

is calculated as follows:

α(Ym,.j, Y∗m,.j|θ, Yo,ij, Ym,ij)

= min

Π
Ij
i=1 fθ(Yo,ij|Y∗m,ij, Y∗m,.j)h2(Y∗m,.j|µ2, Σ2)

Π
Ij
i=1 fθ(Yo,ij|Ym,ij, Ym,.j)h2(Ym,.j|µ2, Σ2)

, 1

 (4.6)

By alternating sampling level-1 missing data conditional on level-2 missing data and

sampling level-2 missing data conditional on level-1 missing data, the MH sampler

makes the sequence of drawings converge in distribution to Fθ(Ym|Yo) (Gelfand & Smith,

1990; Geman & Geman, 1984).
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4.1.1 Tuning Constants

Recall from Equation (4.6), the distributions of level-1 and level-2 missing data are de-

fined by µ1j, Σ1j, µ2, and Σ2, and they are presented in Table 4.1. At level 1, δij and rij are

treated as missing values and the mean vector is fixed at zero vector. This is because δij

is the individual deviations from group mean, and the group mean is also centered on

grand mean. The expected within level residuals follow a standard normal with variance

1. As β0j and β1j are the combinations of fixed effects and random components u0j and

u1j, drawing β0j and β1j is basically the same as drawing u0j and u1j. The means of these

two random components are all zeros. Therefore, µ1j = (0,0)’ for both contextual effect

model and a cross-level interaction model, and µ2 = (0,0)’ and (0,0,0)’ for each model,

respectively. The variance-covariance matrix at level 2 is defined as we parameterized in

the models, which is the τ matrix in the traditional HLM framework.

To determine the size of tuning constant w that yields between 20 to 30% of accep-

tance rate at each level (Gelman, Gilks, & Roberts, 1997), an experiment was conducted

in which the tuning constants were varied. Based on the results summarized in Table

4.2, the combination of 1.2 and 0.2 was chosen for a compositional effect model. For a

cross-level interaction model, the combination of 1.2 and 0.12 was used since this model

is a higher dimensional model with one more random effect. As Cai (2008) suggested,

high dimensional model requires a much smaller tuning constant particulary for level 2.

It is because the group level values are aggregated and much more stable and naturally

a smaller tuning constant is needed to obtain targeted acceptance rates.

4.1.2 “Burn-in”

Another condition that should be determined in implementing an MH sampler is how

the “burn-in” process should be made. Examination of auto correlations of random

drawings and monitoring the traces of parameter estimates can provide needed infor-

mation to make such decisions. The time series plots for every random effect drawings

at level 1 and level 2 for a simulated data set with 2000 individuals nested in 100 groups
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are reported in Appendix A. The plots suggest that at least 20 burn-in cycles is prefer-

able. Therefore, the number of burn-in cycles was initially set at 20. However, when the

sampler is combined with the RM update for parameter estimates, further examination

of the traces of parameter estimates was conducted. After comparisons of the traces

from 20 burn-in cycles and 5 burn-in cycles(see section 4.3), the final burn-in cycle was

decided as 5 and this number was used throughout this study.

4.2 Complete Data Models and Derivatives for Stochastic Approxima-

tion and the RM Update

With the imputations that the MH sampler generates, ∇θl(θ|Yo) in Equation (3.2) can

be approximated as the second step of MH-RM algorithm, stochastic approximation. As

it is described in Equations (3.7) and (3.8), the sample average of complete data gradi-

ents and the conditional expected distribution of missing data given observed data are

calculated. Finally, the third step of the MH-RM algorithm, RM update is made by the

Equation (3.9) with a set of gain constants. The iterations of these three steps converge

to the MLE. As the complete data log-likelihood l(θ|Y) and its derivatives ∇θl(θ|Y)

are needed for Equations (3.7), (3.8) and (3.9), the first and second order derivatives of

the complete data models with respect to unrestricted parameters are described in the

following subsections.

4.2.1 Latent Structure Models

Denote the expected value and covariance matrix of η by µ and Σ. When µ and Σ contain

parameter vectors θ and τ respectively, the complete data log-likelihood function can be

written as,

l = −1
2
[η− µ(θ)]′[Σ(τ)]−1[η− µ(θ)]− 1

2
log|Σ(τ)| − 1

2
Nlog2π. (4.7)
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Then the first derivative of l with respect to the parameter vector θ is

∂l
∂θ

=
∂µ
′

∂θ
Σ(τ)−1(η− µ(θ)). (4.8)

The first derivative of l with respect to a parameter τk is

∂l
∂τk

= −1
2

[
tr(Σ−1 ∂Σ

∂τk
)− (η− µ)′Σ−1 ∂Σ

∂τk
Σ−1(η− µ)

]
. (4.9)

The second derivative of l with respect to the parameter vector θ is

∂2l
∂θ∂θ′

= −∂µ
′

∂θ
Σ−1 ∂µ

′

∂θ
′ +

{
(η− µ)′Σ−1 ∂2µ

∂θi∂θ′

}
. (4.10)

The second derivative of l with respect to parameters τk and τs is

∂2l
∂τs∂τk

= −1
2

{
tr
(

Σ−1 ∂Σ
∂τs

Σ−1 ∂Σ
∂τk

Σ−1 ∂2Σ
∂τs∂τk

)
+ (η− µ)′

[
(−1)Σ−1 ∂Σ

∂τs
Σ−1 ∂Σ

∂τk
Σ−1 + Σ−1 ∂2Σ

∂τs∂τk
Σ−1

− Σ−1 ∂Σ
∂τk

Σ−1 ∂Σ
∂τs

Σ−1
]
(η− µ)

}
. (4.11)

4.2.2 Graded Responses

For the manifest variables that have more than two categories, Equation (2.9) can be

redefined as follows, suppressing subscripts:

T0 = 1,

T1 =
1

1 + exp[−(b1,l + aξ)]
,

T2 =
1

1 + exp[−(b2,l + aξ)]
,

...

TK−1 =
1

1 + exp[−(bKl−1,l + aξ)]
,

TK = 0
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The cumulative response probability for a category k is defined as Pk = Tk − Tk+1. Tak-

ing the log of the likelihood function of the complete data model yields the following

equation,

l =
K−1

∑
k=0

χk(x)logPk =
K−1

∑
k=0

χk(x)log(Tk − Tk+1), (4.12)

where x is the response to a graded item with K categories. The first derivatives of the

complete data model log-likelihood are

∂l
∂bk

=
∂

∂bk
(χk−1(x)log(Tk−1 − Tk) + χk(x)log(Tk − Tk+1))

= −( χk−1(x)
Tk−1 − Tk

− χk(x)
Tk − Tk+1

)
∂Tk
∂bk

∂l
∂a

=
K−1

∑
k=0

χk(x)
Tk − Tk+1

(
Tk
∂a
− Tk+1

∂a
),

where
∂Tk
∂bk

= Tk(1− Tk),
∂Tk
∂a

= Tk(1− Tk)ξ.
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The second derivatives are given by

∂2l
∂b2

k
= −( χk−1(x)

(Tk−1 − Tk)2 +
χk(x)

(Tk − Tk+1)2 )(
∂Tk
∂bk

)2

−( χk−1(x)
Tk−1 − Tk

− χk(x)
Tk − Tk+1

)(
∂

∂bk

∂Tk
∂bk

)

∂2l
∂bk−1∂bk

=
χk−1(x)

(Tk−1 − Tk)2 (
∂Tk−1

∂bk−1
)(

∂Tk
∂bk

)

∂2l
∂bk+1∂bk

=
χk(x)

(Tk+1 − Tk)2 (
∂Tk+1

∂bk+1
)(

∂Tk
∂bk

)

∂2l
∂a∂bk

= − χk(x)
(Tk+1 − Tk)2 (

∂Tk
∂bk

)(
∂Tk
∂a
− ∂Tk+1

∂a
)

+
χk−1(x)

(Tk−1 − Tk)2 (
∂Tk
∂bk

)(
∂Tk−1

∂a
− ∂Tk

∂a
)

−( χk−1(x)
Tk−1 − Tk

− χk(x)
Tk − Tk+1

)(
∂

∂a
∂Tk
∂bk

)

∂2l
∂a∂a′

=
K−1

∑
k=0
{− χk(x)

(Tk − Tk+1)2 (
∂Tk
∂a
− ∂Tk+1

∂a
)(

∂Tk
∂a′
− ∂Tk+1

∂a′
)

+
χk(x)

Tk − Tk+1
(

∂

∂a
∂Tk
∂a′
− ∂

∂a
∂Tk+1

∂a′
)},

where

∂

∂bk

∂Tk
∂bk

= Tk(1− Tk)(1− 2Tk)

∂

∂a
∂Tk
∂bk

= Tk(1− Tk)(1− 2Tk)ξ

∂

∂a
∂Tk
∂a

= Tk(1− Tk)(1− 2Tk)ξξ ′.

4.3 Acceleration and Convergence

Asymptotically in time, the MH-RM algorithm converges to the MLE. However, Cai

(2008) pointed out that the algorithm can be stuck in locations that are not close to the

MLE during the initial stage of iterations due to the sequence of gain constants being

deterministic and eventually going to zero. In this case, premature convergence can
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occur. As a solution, using adaptive gain constants is suggested in a three-stage gain

procedure (Cai, 2008). The first stage is initial M1 iterations with constant gain constant

1. At the end of iteration M1, run another M2 iterations. The parameter estimates that

are updated during the M2 iterations are averaged and used as starting values again in

the final stage of iterations with decreasing gain constants. The three stage procedure

ensures that the algorithm can effectively and stably converge to the MLE.

As a convergence check method, Cai (2008) proposed to monitor a “window” of the

largest difference between two successive parameter estimates, in which the iterations

stop when all of monitored differences are less than a small number. Cai (2008) sug-

gested 3 as a reasonable width of the window to be monitored in practice.

To find proper conditions of number of iterations, magnitude of gain constants, and

convergence criteria, the traces of parameter estimates were examined. Figures 4.1, 4.2,

4.3, 4.4, and 4.5 are the time series plots of all measurement and statical parameter esti-

mates when every 20th random drawing was used to approximate the score vectors and

the hessian matrix and update parameter estimates when a constant gain was 0.1 and

the decreasing gain constant γk at kth iteration is defined as,

γk =
0.1
kε

. (4.13)

The value of ε was 0.75 for this study after examining the traces of estimates .

To see the behavior of the parameter estimates as the iterations proceed, a large

number of iterations (1000) was used and another 1000 iterations were attempted for the

decreasing gain constant stage. The plots suggest that at least 100 iterations are needed

for the initial M1 stage to let the parameter estimates move to close to the MLEs. Then

about 300 to 500 iterations are enough to see that the estimates are oscillating around

the MLEs. When 1.0× 10−5 was used as the convergence criteria, 1,000 iterations for

decreasing gain constant stage (M3) was not enough and the iteration does not stop.

When 1.0× 10−4 was used as the criteria, the iteration stops but the point estimates are

still slightly different from MLEs that are obtained from the EM algorithm. Accordingly,
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0.5 × 10−5 which is between 1.0 × 10−5 and 1.0 × 10−4 was used for the convergence

check for this study. This means that when the largest difference among three successive

parameter estimates gets smaller than 0.5× 10−5, the iteration stops. The reported time-

series plots show that after about 500 iterations at the decreasing gain constants stage,

the sequence of parameter estimates satisfy the convergence criterion.

In addition, under the same conditions, 5 burn-in cycles were tried and the time

series plots of parameter estimates are reported in Figures 4.6, 4.7, 4.8, 4.9, and 4.10. As

the time series plots of the parameter estimates appear to be similar to those when 20

burn-in cycles were used, 5 burn-in cycles were chosen for higher efficiency throughout

the study.

45



Table 4.1: Latent variable distributions

Contextual Effect Model

Level 1

[
δij
rij

]
∼ µ1j =

[
0
0

]
Σ1j =

[
1 0
0 1

]

Level 2

[
ξ.j
u0.j

]
∼ µ2 =

[
0
0

]
Σ2 =

[
τ00 0
0 Var(ξ.j)

]

Cross-level Interaction Model

Level 1

[
δij
rij

]
∼ µ1j =

[
0
0

]
Σ1j =

[
1 0
0 1

]

Level 2

 ξ.j
u0.j
u1.j

 ∼ µ2 =

 0
0
0

 Σ2 =

 τ00 τ01 0
τ10 τ11 0
0 0 Var(ξ.j)



Table 4.2: Tuning constants and acceptance rates of drawings
Set 1 Set 2 Set 3 Set 4

L1 L2 L1 L2 L1 L2 L1 L2
Tuning constant 1 1 1.2 0.8 1.2 0.5 1.2 0.17

Acceptance rate (%) 34-38 3-4 30-36 4-6 32-35 6-10 32-35 20-32
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Figure 4.1: The time-series plots of slope estimates for X side manifest variables (total
sample size=2, 000, number of groups=100, compositional effects model simulated data,
20 burn-in cycles)
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Figure 4.2: The time-series plots of slope estimates for Y side manifest variables (total
sample size=2, 000, number of groups=100, compositional effects model simulated data,
20 burn-in cycles)
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Figure 4.3: The time-series plots of intercept estimates for X side manifest variables (total
sample size=2, 000, number of groups=100, compositional effects model simulated data,
20 burn-in cycles)
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Figure 4.4: The time-series plots of intercept estimates for Y side manifest variables (total
sample size=2, 000, number of groups=100, compositional effects model simulated data,
20 burn-in cycles)
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Figure 4.5: The time-series plots of structural parameter estimates (total sample
size=2, 000, number of groups=100, compositional effects model simulated data, 20
burn-in cycles)
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Figure 4.6: The time-series plots of slope estimates for X side manifest variables (total
sample size=2, 000, number of groups=100, compositional effects model simulated data,
5 burn-in cycles)
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Figure 4.7: The time-series plots of slope estimates for Y side manifest variables (total
sample size=2, 000, number of groups=100, compositional effects model simulated data,
5 burn-in cycles)
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Figure 4.8: The time-series plots of intercept estimates for X side manifest variables (total
sample size=2, 000, number of groups=100, compositional effects model simulated data,
5 burn-in cycles)
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Figure 4.9: The time-series plots of threshold estimates for Y side manifest variables
(total sample size=2, 000, number of groups=100, compositional effects model simulated
data, 5 burn-in cycles)
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Figure 4.10: The time-series plots of structural parameter estimates (total sample
size=2, 000, number of groups=100, compositional effects model simulated data, 5
burn-in cycles)

56



CHAPTER 5

Simulation Studies

Two simulation studies were conducted with two distinct objectives. The first study

examined the parameter recovery and standard errors when MH-RM algorithm is im-

plemented in comparison to those from an existing EM algorithm. The aim of the sec-

ond study was to compare the performance of estimating a compositional effect and a

cross-level interaction between a traditional HLM model that ignores measurement and

sampling error and the multilevel latent variable model that takes the two error sources

into account. This chapter summarizes the methods and results of the two simulation

studies.

5.1 Simulation Study 1: Comparison of Estimation Algorithms

5.1.1 Methods

To examine parameter recovery and standard errors between the MH-RM algorithm and

EM algorithm, simulated data were generated under a favorable sampling condition

with a simple measurement structure. Here, a favorable sampling condition means large

sizes at both levels and a sufficiently large ICC for the predictor latent variable based on

previous research.

The data-generating and fitted models followed Equation (2.1) for a compositional

effect model and Equation (2.4) for a cross-level interaction model. The simulated data

are balanced in that the number of level-2 units (ng) is 100 and the number of level-1

units per group (np) is 20. The generating ICC value for the latent predictor was 0.3.

For the measurement model, five dichotomously scored manifest variables were gener-
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ated for each latent trait (i.e., η, and ξ) using a 2-PL model. For ηij, the manifest variables

are Y1, Y2, Y3, Y4, and Y5. For ξij, which is the sum of deviations and the level-2 latent

mean (δij + ξ.j), the manifest variables are X1, X2, X3, X4, and X5. The item parameters

were the same across levels, representing cross-level measurement invariance.

100 data sets were generated with the same parameters but with 100 different ran-

dom seeds for each model. The first 10 data sets were analyzed using two methods: an

MH-RM algorithm implemented in R (R Core Team, 2012) and an adaptive quadrature

EM approach implemented in Mplus (Muthén & Muthén, 2010). Then the other 90 data

sets are all analyzed using the MH-RM algorithm. Standardized summed scores for the

predictor and outcome manifest variables were used as starting values for ξij and ηij.

Fixed parameter starting values were obtained from traditional HLM model estimates

using these standardized summed scores. Starting values for level-1 and level-2 random

variable samples are randomly drawn from a standard normal distribution.

For compositional effect estimation, the MH-RM algorithm’s convergence criterion

was 5.0× 10−5, and the maximum numbers of iterations for each stage were M1 = 100,

M2 = 500, and M3 = 600. For the cross-level interaction model, the MH-RM algorithm

convergence criterion was 5.0× 10−5 and the maximum numbers of iterations for each

stage were M1 = 100, M2 = 800, and M3 = 800. To calculated post-convergence approx-

imated standard errors, 100 to 500 samples were used for the compositional effect model,

and 100 to 800 samples were used for the cross-level interaction model. The convergence

rates at the given number of iterations were 100% and 52% for the compositional effect

model and the cross-level interaction model, respectively.

5.1.2 Results

5.1.2.1 Compositional Effect Model

The following results indicate that a compositional effect model can be efficiently esti-

mated through the MH-RM algorithm, requiring less time than an EM algorithm with

14 adaptive quadrature points. All point estimates in the measurement and structural
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model were reasonably close to generating values. While post-convergence approxima-

tion of observed information method was more efficient than the recursive approxima-

tion, the standard errors of item intercepts appeared to be smaller when the former

method is applied.

The generating values and the corresponding estimates for the compositional effect

model from different algorithms are summarized in Table 5.1. The first column contains

the true parameters for the measurement and structural parameters. The second set of

columns and the third set of columns include the estimates and SEs from EM with differ-

ent numbers of adaptive quadrature points (5 and 14). The default number of quadrature

points is 15 in Mplus, but the computer memory cannot handle 15 quadrature points for

this four-dimensional model. The maximum possible number of quadrature points was

14 for a compositional effect model. A smaller number of quadrature points (5) was

tested to compare the results in terms of point estimates and standard errors of estima-

tion. The fourth set of columns includes the corresponding values using the MH-RM

algorithm.

The means of point estimates from different algorithms are generally very close to one

another. For structural parameter estimates in the first panel, the number of quadrature

points does not appear to make a large difference, though 14-quadrature-point estimates

are slightly closer to the MH-RM estimates and the generating values in terms of τ00 and

var(ξ.j). Standard errors are also very similar.

For measurement parameter estimates, both the means of point estimates and the

standard errors were the same up to the second decimal point across different numbers

of quadrature points. The biggest difference in means of point estimates between EM

algorithm and the MH-RM algorithm was 0.02, indicating that the two approaches yield

roughly identical estimates. However, mean standard error estimates are slightly differ-

ent between MH-RM and EM results in that the standard error estimates from MH-RM

algorithm for intercepts are smaller than those form EM algorithm. The biggest differ-

ence in standard error estimates for measurement parameters between two algorithms

was 0.13. This may be due to the difference in SE calculation across programs.
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The log of standard error estimates from EM algorithm and log of post-convergence

approximated standard errors from MH-RM algorithm are plotted against log standard

deviations of point estimates in Figure 5.1. The estimates are clustered on the diagonal

line, indicating that estimated standard errors are generally close to the Monte Carlo

standard deviations of the point estimates, except for the intercept parameter standard

errors, which appear to be underestimated when the post-convergence approximation is

used for the MH-RM algorithm.

When one processor was used for estimation, 5 quadrature point EM required a very

short time, while 14 quadrature point EM required over an hour. The MH-RM algorithm

required about 40 minutes. Note that MH-RM is implemented in R (an interpreted lan-

guage), while Mplus is written in FORTRAN (a compiled language). As an interpreted

language is expected to be slow compared to a compiled language, a direct comparison

is inappropriate.

To examine the performance of the MH-RM algorithm further, 100 generated data

sets were analyzed, and the results are summarized in Table 5.2. The means of point es-

timates are reasonably close to generating values in general, with slight underestimation

of variance estimates in the structural parameters. For structural parameters, the Monte

Carlo standard deviations of parameter estimates (column 5) are also similar to both

standard error estimates (column 4 and 6); the largest difference is 0.02. With respect to

point estimates, means of item parameter estimates are very close to generating values.

However, recursively approximated standard errors are closer to the Monte Carlo

standard deviations of item parameter estimates than the post-convergence approxi-

mated standard errors. More specifically, the most prominent differences are found

in the standard errors of intercept parameters in that post-convergence approximated

standard errors for item intercept parameters are underestimated. Therefore, recursively

approximated standard errors perform better than post-convergence approximated stan-

dard errors. However, a drawback of using recursively approximated standard errors is

the requirement of a large number of iterations (at least 1000). In addition, given the pre-

specified maximum 1,500 M3 iterations, only half of the replications reached a properly
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converged (i.e., positive definite) observed data information matrix. For this reason, cal-

culation of post-convergence approximated standard errors is adopted for the remaining

simulations in this study since this approach gives proper standard error estimates in

general, except for those that are associated with item intercept parameters.

Finally, 95% confidence intervals of each parameter estimate using the post-convergence

approximated standard errors were calculated. The percentages of intervals that cover

the generating values are reported in the last column of Table 5.2. Based on the 100 repli-

cations performed, coverage of fixed structural parameters appears proper, in general.

For measurement parameters, the coverage rates tend to be lower as the magnitude of

parameter gets larger. Coverage rates are the lowest for the large threshold parameters

due to the underestimated standard errors.

5.1.2.2 Cross-level Interaction Model

The following results indicate that a cross-level model can be efficiently estimated through

the MH-RM algorithm, requiring less time than an EM algorithm with 8 adaptive quadra-

ture points. All point estimates in the measurement and structural model were reason-

ably closed to generating values. The underestimated standard errors, particulary for

item intercepts were consistently observed.

The generating values and the corresponding estimates from analyzing the first sim-

ulated data set using different algorithms are summarized in Table 5.3. Unlike the com-

position effect model results, the number of quadrature points for the EM algorithm

makes some noticeable differences in the mean point estimates as well as the standard

errors. The maximum possible number of quadrature points was 8 for this cross-level

interaction model that requires 5-dimensional integration. The point estimates and stan-

dard errors using 8 and 5 quadrature points are reported in the first and second sets of

columns in Table 5.3. The differences are particularly prominent in the structural param-

eters and the slopes of predictor-side indicators, as within-level variance estimates of the

predictor were different across the number of quadrature points being used. However,

the results from MH-RM algorithm are closer to the 8-quadrature-points results, indi-
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cating that reducing the number of quadrature points for a higher dimensional model is

not desirable.

Efficiency of the MH-RM algorithm compared to the EM algorithm was more promi-

nent for this cross-level interaction model, even as it is still in R. Using Mplus, even with

8 processors, the estimation took more than 1 hour and 30 minutes, while it took similar

or even shorter time for the MH-RM algorithm implemented in R. When 1 processor

was used, it took about 4 to 5 hours to yield a result using Mplus. This difference is

remarkable considering that R does not have support for multi-processors.

For further analysis, more simulated data sets were analyzed by applying the MH-

RM algorithm, and the generating values and corresponding estimates are summarized

in Table 5.4. Results are generally similar to those obtained from the compositional ef-

fect model. The largest relative bias of the parameter estimates for both measurement

and structural parts is less than 10%. Means of standard error estimates and Monte

Carlo standard deviations of point estimates are reasonably compatible; however, un-

derestimation of standard errors for threshold estimates was consistent, indicating that

the post-convergence approximation approach can be chosen for efficiency reason but

with a cost in accuracy.

However, only 26 of 50 replications converged within the specified number of itera-

tions. For this condition, the cause of low convergence rate was mostly due to the ap-

proximation of observed data information matrix rather than point estimates themselves.

Either allowing larger numbers of iterations or achieving more efficient approximation

of the observed data information matrix would help the convergence rate increase. As

a trial, 1000 iterations was tried, and this could increase the convergence rate up to 78%

for this condition.

5.2 Simulation Study 2: Comparison of Models

The second simulation study was conducted to examine how measurement error and

sampling error may influence compositional effect and cross-level interaction estimates
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across different conditions with both a traditional HLM model and a latent variable

model. The methods and results are reported in following sections.

5.2.1 Methods

Simulation Conditions

A total of 42 conditions (compositional effect sizes (2) × sampling conditions (3) ×

ICC sizes (2) × measurement conditions (3) + no compositional effect model (6)) were

examined for the compositional effect model.

First, two different sizes of compositional effect were considered in this study. The

generating value of γ10 was either 0.5 or 0.8, giving a compositional effect of 0.5 or 0.2,

respectively.

Second, the combination of large (ng=100, np=20) and small (ng=25, np=5) numbers

of groups and individuals makes a total of 4 different sampling conditions. However, the

combination of small number of groups and small group size leads to too small a total

sample size (N=125), which is inappropriate for this kind of high-dimensional model.

Therefore, only three different sampling conditions were used for this simulation study.

For latent predictor ICC levels, 0.1 and 0.3 were used to generate small- and a large-

ICC conditions.

Finally, three different measurement structures were considered to address variations

in measurement situations, as described in Table 5.5. The true item parameters used are

reported in Table 5.6.

Additionally, data were generated from a model with no compositional effect (γ01 =

γ10) with the first measurement condition and analyzed to examine empirical Type I

error rates for the traditional model and the latent variable model.

100 replications were attempted for each condition and the contextual effect model

was applied. Similarly, two different magnitudes of the cross-level interaction effect

(γ11 = 1 or 0.5) were considered for the cross-level interaction model, in which the
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sampling, ICC, and measurement conditions are kept the same. Therefore, 54 conditions

were examined for the cross-level interaction model. For the cross-interaction model, 50

replications were attempted.

Analysis

As simulated data sets have the true generating values of ηij and ξij, these values (true

scores) can be analyzed using a traditional model. Then the resulting parameter esti-

mates can be considered gold standard estimates that are influenced only by sampling

fluctuations but not by measurement conditions. Therefore, each data set has three sets

of parameter estimates: 1) estimates from analyzing the generating values of ηij and ξij

with a traditional multilevel model, which is treated as the gold standard (denoted as

G), 2) estimates obtained by applying latent variable model (denoted as L), and 3) the

estimates from analyzing the observed summed scores with the manifest variable ap-

proach (denoted as M). All of the traditional HLM analyses were conducted using an R

package nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2012).

Statistics

To compare these three sets of estimates, four statistics are calculated: 1) the percent-

age bias of the estimate relative to the magnitude of generating value, 2) the root mean

squared difference between the estimate and the true parameter (RMSE), 3) the observed

coverage of the 95% confident interval (CI) for true value, and 4) the observed power to

detect the effect of interest as significant. The percentage bias of the parameter captures

how well compositional effects and cross-level interaction parameters are recovered, and

RMSE captures the variability of the estimates across replications. The observed cover-

age of the CI can tell us how well the standard errors associated with the parameters of

interest are estimated, and the observed percentage of the significant compositional ef-

fects and cross-level interaction effects can tell us how researchers’ substantive decisions

can be different when either a traditional model or a latent variable model is applied.

It should be noted that the regression coefficient estimates from the observed sum

score analysis using a traditional multilevel model are not on the same scales as those

obtained using the latent variable approach. To make the coefficient estimates more
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comparable, the estimates from traditional model approach were standardized by multi-

plying the parameter estimates by the ratio of standard deviation of the predictor to the

standard deviation of the outcome.

Convergence rates and mean estimation time across generated data conditions are

reported in Table 5.7. Only converged cases were taken into calculate statistics, and per-

centages were calculated out of converged cases. In addition, the observed coverage and

power were not calculated for the cross-level interaction model with measurement mod-

els 2 and 3 because the numbers of converged cases were too small to make inferences

about coverage or power.

5.2.2 Results

5.2.2.1 Compositional Effect Model

The following results indicate that the nonlinear multilevel latent variable modeling is

preferred to the traditional HLM based on the examinations of bias, RMSE, coverage

rates, and Type I error rates because the point estimates and standard errors are less

biased and more precise across sampling conditions when the latent variable model was

applied to analyze the simulated data. Particularly, substantial Type I error rates were

concerned when the traditional HLM was applied.

Relative percentage bias

Since a compositional effect estimate is defined as the difference between γ̂01 and γ̂10,

those parameter estimates are examined together, along with the compositional effect

estimates. Relative percentage bias of these three estimates across data conditions and

models are summarized in Tables 5.8, 5.9, and 5.10. The first panel is for relative per-

centage bias for γ̂01, and the second panel shows relative percentage bias for γ̂10. The

last panel shows the relative percentage bias in the compositional effect (γ̂01 − γ̂10).

First, with respect to measurement model 1 (See Table 5.8), in which the generating

values of ηij and ξij are analyzed (columns titled G), the bias of γ̂01 ranged from 1 to

15% across the sampling conditions. The percentage bias is less than 5%, but when the

65



ICC is small and the number of groups sampled was as small as 25, the bias increases

up to about 15%.

As expected, the bias of γ̂10 is less than 3% across sampling conditions because this

parameter is estimated mostly with information from level 1. The two parameter esti-

mates were combined to obtain the compositional effect estimates presented in the last

panel. Percentage bias in the compositional effect ranged from about 3 to 50%. When

ICC and the number of people per group were small, the bias is about 10%, and it can be

up to 50% when ICC and the number of groups sampled were small. Therefore, small

ICC conditions are problematic in general. When small ICC is combined with a small

number of people per group, the bias gets worse. However, the largest bias occurs when

small ICC is combined with a small number of groups, which is to be expected.

Second, the general patterns of relative bias in the parameters of interest from the

latent variable modeling approach (see, L titled columns) are similar to those from the

generating value analysis. However, the bias is larger in general, as latent factors are es-

timated by imperfect measures. For measurement model 1, the relative bias of between-

level coefficient γ̂01 can be up to 10% when ICC is small with small or large numbers

of people per group. However, when small ICC is combined with a small number of

groups, the bias can be as large as 22%. For γ̂10, the bias is less than 5% across con-

ditions. With respect to the compositional effect, the magnitude of bias is also similar

to those from the generating value analysis in that the biggest bias (about 50%) occurs

when ICC and the number of groups sampled were small.

Third, the bias when a traditional model is applied (columns titled M), is severe and

similar to levels that are reported in previous research. For γ̂01 and γ̂10, the percentage

bias ranges from 30 to 70%. With respect to the compositional effect, the bias can be

small as about 8% when ICC is large and the sampling condition favorable, but the bias

can be as large as 80% when the sample is associated with small ICC and a small number

of people per group. It is noteworthy that the bias in the compositional effect from the

traditional model can be smaller than the bias when a latent variable model is applied

to when ICC is small and the number of group sampled is small as 25. However, the
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number of replication is small and more research is warranted.

Fourth, given that the bias in estimates using generating values is not avoidable,

the latent variable modeling approach yields less bias in compositional effect estimates

than a traditional analysis. Particulary, when ICC is small and the number of people

per group is small, the improved performance of latent variable modeling in estimation

of contextual effect is prominent, as long as enough number of groups are sampled.

However, in the combination of small ICC and small number of groups, the traditional

model may yield less bias then latent variable model approach.

Fifth, performance of the traditional model and the latent variable model in terms

of estimating γ̂01, γ̂10, and compositional effect, is similar across measurement condi-

tions, indicating the measurement model is a less influential source of bias in this study.

Considering the bias of estimates when generating values were analyzed, no significant

improvement was found as enforcing predictor measurement model by adding more

information (measurement model 2) or items (measurement model 3). Very slight im-

provement was found with respect to the bias in γ̂10 from traditional model. However,

in terms of latent variable modeling, the bias in the compositional effect when the sam-

ple is associated with a small ICC and a small number of groups gets even worse using

measurement model 3 (See, the last panel of Table 5.10). This might be caused by the fact

that many more parameters are estimated in this model (number of parameter estimated

is 84) from N = 500 sample. Consequently, the parameter estimates may be less precise.

RMSE

The RMSEs of the compositional effect across conditions and models are summarized

in Table 5.11. When generating values are analyzed, the smallest RMSE (0.15) is found

when ICC is large with favorable sampling conditions, and the largest (0.69) is found

with the combination of small ICC and the small number of groups. As previous re-

ported, RMSEs are small in general when the traditional model is applied, indicating

that this model yields consistently biased estimates. The latent variable model analysis

resulted in generally large RMSE, ranging from 0.21 (when the ICC is large with favor-
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able sampling conditions) and 2.51 (when the ICC is small and the number of group

is small, measurement model 1). Again, measurement structures do not seem to make

a significant difference in terms of RMSE, indicating that sampling conditions are the

primary cause of bias in this study.

Percentage coverage rate

To examine the performance of standard errors, the 95% CI coverage rate for the true

compositional effect was calculated across simulated data conditions and models. Re-

sults are summarized in Table 5.12.

When generating values are analyzed, the coverage rates of contextual effect across

sample conditions are generally as close to 95%, except for the cases where ICC is small

and the number of group sampled is small. In this case the coverage rate can be low

as 85%. The coverage rates of latent variable model were also similar to those from

generating value analysis, ranging from 88% to 98% for measurement model 1 and 2.

When more item parameters need to be estimated, the sample is associated with a small

ICC, a and small number of groups are sampled, the coverage rate can be low as about

79%.

Traditional model performance in terms of coverage rate for the contextual effect can

be very problematic when the number of people per group and ICC are small at the

same time, in that the coverage can be low as 7%. When the number of groups sampled

is small and ICC is small, the coverage rate of traditional model was slightly better than

latent variable approach for measurement model 3.

Observed percentage of significant compositional effect

To examine how researchers can make different statistical decisions when they apply a

traditional model and a latent variable model to different conditions, the percentages

of significant compositional effect are calculated. Results for measurement model 1 are

shown in Table 5.13.

The first panel of Table 5.13 shows empirical Type I error rates of models across data

conditions. Generating value analysis model yields Type I error rates of .05 to .07 across

68



sampling conditions. The latent variable model is similar, except for the cases when the

number of people per group is small. When the number of people per group is small

and ICC is small, Type I error increases to .14, indicating that it is more likely to conclude

that there is a significant contextual effect than other approaches. On the other hand,

when the number of people per group is large and ICC is small, latent variable modeling

is very conservative, rarely indicating that there is a significant contextual effect.

For traditional model, Type I error rate inflation is huge - up to .57 when ICC is large

and the number of people per group is large. Under the conditions when small ICC

combines with a small number of group or a small number of people per group, the

type I error of the traditional model remains at a proper level. Finally, these trends are

consistent across measurement models as summarized in Table 5.14.

When a compositional effect is large (see the third panel), generating value analysis

yields power of about .85 when ICC is large and the number of groups is large. When

ICC is small the power decreases to as low as .35 with favorable sampling conditions.

The lowest power (.15) is found when ICC is small and the number of groups is small.

The patterns are similar for the latent variable model, but when ICC is small, and

the number of people per group or the number of groups is small, the latent variable

model yields a slightly higher percentage of significant compositional effects. While the

traditional model can yield a very high percentage of significant compositional effects

when the ICC is large and the number of people per group is large, the power decreases

remarkably when ICC is small and the number of people per group or the number of

groups is small. Similarly, the power of the traditional model is high when ICC is large

and the number of people per group is large, and the power of latent variable model

tends to be higher than the traditional model when a small ICC is associated with a

small number of people per group.

In summary, relative bias of γ̂01 are γ̂10 are large when the traditional model is ap-

plied, as found in previous research. However, the difference between the two estimates

is kept to a certain degree, since both coefficients are underestimated. As a result, the
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final compositional effect point estimate can be well captured by 95% confidence in-

tervals when ICC is big and the sampling condition is desirable. However, the Type I

error rate is severely inflated under this condition, as this model can falsely claim that

there is a significant compositional effect even when there is none. This can be seen as

a phenomenon caused by the combination of biased estimates and the spuriously small

standard error estimates that the traditional model yields.

On the other hand, bias seems unavoidable when a sampling condition is not favor-

able and ICC is small, even with generating true scores. However, the latent variable

model yields less biased estimates in general. When ICC is small and the number of

people per group is small, the Type I error rate slightly increases, but the magnitude

is still preferable compared to the Type I error inflation of the traditional model across

sampling conditions. The concern with the latent variable model approach in terms of

sampling is more about the small number of groups rather than the number of people

per group. As long as the number of groups sampled is sufficiently large, the perfor-

mance of the latent variable model approach is preferable.

Finally, the measurement structure was less influential in this study, and this can

be due to quality of all fixed item parameters that are used across simulation studies.

However, the results from measurement model 3 in this study indicate that estimation

of too many item parameters with limited sample size can possibly undermine the per-

formance of the latent variable model approach.

5.2.2.2 Cross-level Interaction Model

The following results indicate that the nonlinear multilevel latent variable modeling is

preferable to the traditional HLM based on the bias, RMSE, coverage rates, and Type I

error rates. The point estimates and standard errors are less biased and more precise

across sampling conditions when the latent variable model was applied to analyze the

simulated data. In particular, when the traditional HLM was applied, bias in the cross-

level interaction coefficient was substantial. Moreover, the combination of bias and small

70



standard errors resulted in the failure of most 95% CIs to cover a true generating value.

Relative percentage bias

The relative percentage bias in γ̂11 across simulated data conditions is summarized in

Table 5.15. First, when generating values are analyzed, bias can be as small as about

2% when the sampling condition is favorable and ICC is large enough. However, the

bias can be as large as about 40% even when generating values are analyzed when the

ICC is small and the number of groups sampled is 25. While the traditional approach

yields more than 75% underestimation across conditions and reached almost 100% when

a small ICC is combined with limited sample conditions, the bias in γ̂11 from the latent

variable model analysis was smaller than that from the manifest variable model analysis.

The smallest bias (about 9%) is found when the ICC is big and the number of groups

and the number of people per group are sufficiently large (i.e., 100 and 20, respectively).

However, the bias increases to 70% when small ICC is combined with a small number of

groups and about 50% when either ICC or sampling condition is not favorable.

RMSE

Table 5.16 contains RMSE of the cross-level interaction across simulated data con-

ditions. RMSEs from the generating value analysis ranged from 0.11 to 0.67. When

the latent variable model was applied, RMSEs ranged from 0.19 to 1.05. The largest

RMSEs for both models were found when there was a large cross-level interaction but

ICC of the latent predictor is small and only 25 groups were sampled from the popula-

tion. However, with respect to traditional model analysis, RMSEs were large in general

when the magnitude of cross-level interaction was big regardless of ICC and sampling

condition, indicating that cross-level interaction estimates from the traditional model ap-

proach were not only biased but also varied substantially across replications, whereas

those from the latent variable model analysis were less biased and relatively consistent

across replications.

Percentage coverage rate

Coverage rates for true cross-level interaction effects using 95% confidence intervals

are reported in Table 5.17. When generating values were analyzed, 95% confidence
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intervals covered the true cross-level interaction 81 to 100% of the time. When the la-

tent variable model was applied, the coverage rates ranged from 12 to 87% depending

on sampling conditions. When the number of sampled groups was small, the confi-

dence intervals hardly captured the true values, even with the latent variable modeling

approach. However, these coverage rates were still much higher than those from the tra-

ditional model approach. As bias in estimates was big and the standard error estimates

were small in the traditional model approach, it was extremely rare to observe that con-

fidence intervals actually covered the true value. Most of the coverage rates were 0.

Observed percentage of significant cross-level interaction

Table 5.18 shows observed percentage of significant cross-level interaction across dif-

ferent sampling conditions and analysis models. Results from the generating value anal-

yses are encouraging in that power can be about .80 for both large and small cross-level

interactions, as long as ICC is large enough and sufficient number of groups is sam-

pled. However, when a small number of groups is sampled, the power can be as low

as .32 for a large cross-level interaction and .06 for a small cross-level interaction. The

latent variable model approach can detect cross-level interaction better than the tradi-

tional modeling approach in that the percentages of significant cross-level interactions

are higher in general than those from the traditional model analysis. However, when

the cross-level interaction is large and the sampling condition is favorable with large

ICC, the traditional model can detect the effect slightly more frequently than the latent

variable modeling approach. It should be noted that the CI’s do not cover the true value

in this case even though the traditional model can detect the existence of the cross-level

interaction. It is notable that the power of the traditional model decreases dramatically

when either ICC or the number of people per group is small. In terms of empirical Type

I error rates, the latent variable model analysis shows the highest Type I error rate (.17)

when ICC is small and the number of sampled people per group is small. Except for

that condition, Type I error rates for the three models are at acceptable levels.

In summary, the bias in cross-level interaction estimates is smaller and less variable

when the latent variable model is applied than when the traditional model is applied. In
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spite of the variability across sampling conditions, the latent variable modeling approach

can better capture the value of true cross-level interaction effect and detect it with signif-

icance more often than the traditional model approach. However, when a small number

of people per group is sampled and the ICC of the latent predictor is small, the Type

I error rate of the latent variable model is inflated; therefore, the analysis can yield a

spurious cross-level interaction effect. Traditional model, however, leads to misleading

inferences as the CIs do not cover true values.
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Table 5.1: Generating values and estimates for a compositional effect model (N=2,000,
ng=100, np=20, 10/10 converged)

Structural Parameters
EM (5qp) EM (14qp) MHRM

θ E(θ̂) E{se(θ̂)} E(θ̂) E{se(θ̂)} E(θ̂) E{se(θ̂)}
γ01 1.00 1.02 0.19 1.01 0.19 1.00 0.18
γ10 0.50 0.52 0.05 0.51 0.05 0.52 0.09
τ00 1.00 0.90 0.16 0.91 0.17 0.93 0.16

var(ξ.j) 0.43 0.40 0.07 0.42 0.07 0.42 0.07
Measurement Parameters

ax1 0.80 0.79 0.07 0.79 0.07 0.79 0.08
ax2 1.00 1.01 0.08 1.01 0.08 1.00 0.09
ax3 1.20 1.24 0.09 1.24 0.09 1.24 0.11
ax4 1.40 1.39 0.10 1.39 0.10 1.39 0.12
ax5 1.60 1.67 0.14 1.67 0.14 1.69 0.15
ay1 0.80 0.78 0.06 0.78 0.06 0.78 0.06
ay2 1.00 1.00 0.07 1.00 0.07 1.00 0.07
ay3 1.20 1.23 0.09 1.23 0.09 1.23 0.08
ay4 1.40 1.40 0.11 1.40 0.11 1.40 0.10
ay5 1.60 1.61 0.13 1.61 0.13 1.60 0.12
cx1 -0.80 -0.75 0.08 -0.75 0.08 -0.75 0.06
cx2 0.00 0.02 0.08 0.02 0.08 0.02 0.05
cx3 1.20 1.30 0.11 1.30 0.11 1.29 0.08
cx4 -0.70 -0.61 0.11 -0.61 0.11 -0.62 0.07
cx5 0.80 0.92 0.14 0.92 0.14 0.92 0.08
cy1 -0.80 -0.80 0.11 -0.80 0.11 -0.81 0.06
cy2 0.00 0.01 0.13 0.01 0.13 0.00 0.05
cy3 1.20 1.19 0.16 1.19 0.16 1.18 0.08
cy4 -0.70 -0.74 0.18 -0.74 0.18 -0.75 0.07
cy5 0.80 0.79 0.21 0.79 0.21 0.78 0.08

Efficiency
one processor 5∼7 min 60∼100min 35∼40min

Note.θ = Generating values; E(θ̂) = mean of point estimates; E{se(θ̂)} =
mean of estimated SEs (post-convergence approximated SEs); a = item
slope parameters; c = item threshold parameters.
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Table 5.2: Generating values and estimates for a compositional effect model (N=2,000,
ng=100, np=20)

Structural Parameters
θ E(θ̂) E{se1(θ̂)} SD(θ̂) E{se2(θ̂)} 95% Coverage using se1

γ01 1.00 0.99 0.17 0.19 0.18 95.0
γ10 0.50 0.50 0.06 0.07 0.09 95.0
τ00 1.00 0.97 0.20 0.18 0.16 89.0

var(ξ.j) 0.43 0.43 0.08 0.09 0.07 89.0
Measurement Parameters

ax1 0.80 0.80 0.07 0.06 0.07 98.0
ax2 1.00 1.01 0.10 0.09 0.09 91.0
ax3 1.20 1.22 0.12 0.10 0.11 92.0
ax4 1.40 1.40 0.12 0.10 0.13 84.0
ax5 1.60 1.60 0.15 0.13 0.15 73.0
ay1 0.80 0.80 0.07 0.07 0.06 95.0
ay2 1.00 1.01 0.07 0.07 0.07 94.0
ay3 1.20 1.21 0.10 0.09 0.09 86.0
ay4 1.40 1.39 0.10 0.09 0.10 89.0
ay5 1.60 1.61 0.10 0.13 0.13 74.0
cx1 0.80 0.80 0.14 0.08 0.06 94.0
cx2 0.00 0.00 0.07 0.09 0.05 95.0
cx3 -1.20 -1.22 0.09 0.12 0.08 91.0
cx4 0.70 0.69 0.12 0.11 0.07 89.0
cx5 -0.80 -0.80 0.12 0.15 0.08 89.0
cy1 0.80 0.81 0.08 0.09 0.06 87.0
cy2 0.00 0.01 0.11 0.11 0.06 78.0
cy3 -1.20 -1.20 0.13 0.13 0.08 75.0
cy4 0.70 0.71 0.15 0.15 0.07 62.0
cy5 -0.80 -0.79 0.14 0.18 0.08 59.0

Efficiency
35∼40min 90∼120min

Note.θ = Generating values; E(θ̂) = mean of point estimates; E{se1(θ̂)} = mean of recur-
sively approximated standard error estimates (67 converged replications); E{se2(θ̂)} =
mean of post-convergence approximated standard errors; SD(θ̂) = Standard deviation of
point estimates; 95% Coverage using se1: Percentage coverage rate of generating value
using post-convergence approximated standard errors; a = item slope parameters; c =
item threshold parameters.
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Table 5.3: Generating values and estimates for a cross-level interaction model (N=2,000,
ng=100, np=20, 1st simulated data set)

Structural Parameters
EM (5qp) EM (8qp) MHRM

θ E(θ̂) E{se(θ̂)} E(θ̂) E{se(θ̂)} E(θ̂) E{se(θ̂)}
γ01 1.00 1.86 0.25 1.35 0.22 1.44 0.22
γ10 0.50 1.94 0.15 0.63 0.13 0.63 0.05
γ11 0.50 1.27 0.45 0.83 0.29 0.83 0.06
τ00 1.00 0.85 0.11 0.88 0.12 0.90 0.18
τ11 1.00 0.78 0.33 0.83 0.25 0.79 0.16
τ01 0.50 0.96 0.15 0.49 0.12 0.49 0.11

var(ξ.j) 0.43 0.40 0.02 0.39 0.05 0.39 0.07
Measurement Parameters

ax1 0.80 0.78 – 0.78 – 0.78 0.08
ax2 1.00 1.40 0.14 0.96 0.14 0.96 0.07
ax3 1.20 2.05 0.19 1.41 0.19 1.41 0.12
ax4 1.40 2.37 0.21 1.62 0.21 1.63 0.18
ax5 1.60 2.51 0.24 1.69 0.25 1.71 0.12
ay1 0.80 0.79 0.00 0.79 0.00 0.79 0.05
ay2 1.00 0.95 0.11 0.93 0.11 0.93 0.06
ay3 1.20 1.17 0.11 1.15 0.12 1.16 0.07
ay4 1.40 1.00 0.14 0.98 0.15 1.22 0.08
ay5 1.60 1.43 0.18 1.40 0.19 1.51 0.09
cx1 -0.80 -0.68 0.06 -0.73 0.07 -0.74 0.05
cx2 0.00 0.10 0.08 0.10 0.08 0.09 0.05
cx3 1.20 1.43 0.11 1.43 0.12 1.41 0.09
cx4 -0.70 -0.52 0.11 -0.51 0.12 -0.53 0.08
cx5 0.80 1.11 0.13 1.10 0.14 1.09 0.08
cy1 -0.80 -0.72 0.09 -0.73 0.11 -0.73 0.06
cy2 0.00 0.03 0.11 0.04 0.13 0.03 0.06
cy3 1.20 1.26 0.14 1.26 0.16 1.26 0.08
cy4 -0.70 -0.53 0.14 -0.52 0.16 -0.52 0.07
cy5 0.80 0.96 0.17 0.96 0.20 0.96 0.08

Efficiency
8 processors 15 min 100 min 60min
1 processor 40 min 4hour 40 min
Note 1.θ = Generating values; E(θ̂) = mean of point estimates; E{se(θ̂)} =
mean of estimated SEs (post-convergence approximated SEs); a = item
slope parameter; c = item threshold parameter.

Note 2.Mplus does not allow standardized factor identification option;
therefore, anchoring the first factor loading option was used to estimate
the model and the results are transformed to make the estimate
comparable.
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Table 5.4: Generating values and estimates for a cross-level interaction model using
MH-RM algorithm (N=2,000, ng=100, np=20, 26/50 converged)

Structural Parameters
θ E(θ̂) E{se(θ̂)} SD(θ̂)

γ01 1.00 1.07 0.18 0.21
γ10 0.50 0.55 0.07 0.14
γ11 0.50 0.46 0.27 0.19
τ00 1.00 1.06 0.29 0.17
τ11 1.00 1.05 0.28 0.27
τ01 0.50 0.50 0.15 0.12

var(ξ.j) 0.43 0.43 0.07 0.09
Measurement Parameters

ax1 0.80 0.78 0.08 0.06
ax2 1.00 0.98 0.08 0.08
ax3 1.20 1.23 0.11 0.09
ax4 1.40 1.37 0.12 0.14
ax5 1.60 1.59 0.18 0.12
ay1 0.80 0.77 0.06 0.06
ay2 1.00 0.97 0.07 0.06
ay3 1.20 1.19 0.11 0.06
ay4 1.40 1.37 0.12 0.14
ay5 1.60 1.56 0.17 0.13
cx1 -0.80 -0.77 0.06 0.09
cx2 0.00 0.00 0.05 0.09
cx3 1.20 1.21 0.08 0.12
cx4 -0.70 -0.66 0.07 0.14
cx5 0.80 0.78 0.08 0.14
cy1 -0.80 -0.79 0.06 0.12
cy2 0.00 0.00 0.06 0.15
cy3 1.20 1.21 0.09 0.19
cy4 -0.70 -0.67 0.08 0.23
cy5 0.80 0.84 0.09 0.24

Efficiency
60∼90min

Note.θ = Generating values; E(θ̂) = mean
of point estimates; E{se(θ̂)} = mean of
estimated SEs (post-convergence approx-
imated SEs); a = item slope parameter; c =
item threshold parameter.
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Table 5.5: Conditions of measurement models
Condition ξij indicators ηij indicators

Measurement model 1 X1∼X5 (2PL) Y1∼Y5 (2PL)
Measurement model 2 X1∼X5 (GR, K=5) Y1∼Y5 (GR, K=5)
Measurement model 3 X1∼X15 (2PL), X16∼X20(GR, K=5) Y1∼Y5 (GR, K=5)

Table 5.6: Generating values for item parameters
Measurement Model 1

slope intercept
X1, Y1 0.8 -1
X2, Y2 1.0 0
X3, Y3 1.2 1
X4, Y4 1.4 -0.5
X5, Y5 1.6 0.5

Measurement Model 2
X1, Y1 0.8 -1, 0, 1, 2
X2, Y2 1.0 -1, 0, 1, 2
X3, Y3 1.2 -1, 0, 1, 2
X4, Y4 1.4 -1, 0, 1, 2
X5, Y5 1.6 -1, 0, 1, 2

Measurement Model 3
X1 0.6 -1
X2 0.8 -0.5
X3 1.0 0
X4 1.2 0.5
X5 1.4 1
X6 1.6 2
X7 1.8 -1
X8 0.6 -0.5
X9 0.8 0
X10 1.0 0.5
X11 1.2 1
X12 1.4 2
X13 1.6 0.5
X14 1.8 1
X15 1.5 2
X16, Y1 0.8 -1, 0, 1, 2
X17, Y2 1.0 -1, 0, 1, 2
X18, Y3 1.2 -1, 0, 1, 2
X19, Y4 1.4 -1, 0, 1, 2
X20, Y5 1.6 -1, 0, 1, 2
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Table 5.7: Percentage of convergence and average time per estimation (sec)

Compositional effect model
Large Compositional Effect = 0.5

np=20 np=5
ng=100 M1 M2 M3 M1 M2 M3
ICC=0.1 100(2781) 89(4911) 96(24000) 97(972) 81(1593) 91(5934)
ICC=0.3 100(2657) 95(5301) 93(24450) 100(955) 95(1613) 94(6022)
ng=25 M1 M2 M3 M1 M2 M3

ICC=0.1 98(1046) 92(1522) 97(6253) N/A
ICC=0.3 99(865) 93(1524) 98(6407)

Small Compositional Effect = 0.2
np=20 np=5

ng=100 M1 M2 M3 M1 M2 M3
ICC=0.1 97(2937) 91(5165) 94(21730) 95(1021) 92(1588) 90(4909)
ICC=0.3 98(1785) 92(4910) 99(22060) 100(1046) 91(1593) 95(4910)
ng=25 M1 M2 M3 M1 M2 M3

ICC=0.1 95(919) 78(1521) 92(5922) N/A
ICC=0.3 93(915) 95(1519) 95(5219)

Cross-level interaction model
Large Cross-level interaction = 1

np=20 np=5
ng=100 M1 M2 M3 M1 M2 M3
ICC=0.1 56 (3412) 30 (28210) 4 (86720) 76 (1674) 40 (8654) 16 (25810)
ICC=0.3 48 (2426) 0 (75789) 16 (28860) 45 (1956) 32 (9357) 16 (27850)
ng=25 M1 M2 M3 M1 M2 M3

ICC=0.1 52(1639) 42 (7247) 15 (27590) N/A
ICC=0.3 58(2103) 32 (10630) 16 (29190)

Small Cross-level interaction = 0.5
np=20 np=5

ng=100 M1 M2 M3 M1 M2 M3
ICC=0.1 22 (2370) 45 (22120) 4 (93150) 51 (1282) 32 (5901) 15 (27270)
ICC=0.3 33 (2549) 17 (20460) 5 (80010) 33 (1604) 18 (6769) 15 (26850)
ng=25 M1 M2 M3 M1 M2 M3

ICC=0.1 38 (962) 28 (5880) 14 (28750) N/A
ICC=0.3 35 (1684) 35 (8753) 14 (28960)

Note1. M1 = Measurement model 1 result; M2 = Measurement model 2 result; M3
= Measurement model 3 result; ng = number of groups; np = number of people per
group.
Note2. 100 replications for the compositional effect model and 50 replications for the
cross-level interaction model.
Note3. For cross-level interaction model with M3 condition, any of replication didn’t
converge in terms of standard errors. The reported numbers are merely the number
of replications that have been made.
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Table 5.13: Percentage of statistically significant compositional effects, measurement
model 1

No Compositional Effect = 0
np=20 np=5

ng=100 G L M G L M
ICC=0.1 2.9 2.9 21.1 7.0 14.0 1.0
ICC=0.3 5.0 2.0 57.0 5.1 0.0 17.2
ng=25 G L M G L M

ICC=0.1 3.0 5.0 5.0 N/A
ICC=0.3 6.0 4.0 32.0

Small Compositional Effect = 0.2
np=20 np=5

ng=100 G L M G L M
ICC=0.1 9.3 5.2 16.5 7.3 15.9 3.7
ICC=0.3 18.4 13.3 81.6 17.0 22.0 43.0
ng=25 G L M G L M

ICC=0.1 12.5 18.8 12.5 N/A
ICC=0.3 10.8 4.3 24.7

Large Compositional Effect = 0.5
np=20 np=5

ng=100 G L M G L M
ICC=0.1 35.0 28.0 34.0 29.9 34.0 11.3
ICC=0.3 85.0 64.0 96.0 82.0 55.0 71.0
ng=25 G L M G L M

ICC=0.1 15.5 26.8 9.9 N/A
ICC=0.3 33.3 25.3 40.4

Note. G = Generating value analysis result; L =
Latent variable model analysis result; M = Mani-
fest variable model analysis result; ng = number
of groups; np = number of people per group.

86



Ta
bl

e
5.

14
:P

er
ce

nt
ag

e
of

st
at

is
ti

ca
lly

si
gn

ifi
ca

nt
co

m
po

si
ti

on
al

ef
fe

ct
s,

m
ea

su
re

m
en

t
m

od
el

2
an

d
3

M
ea

su
re

m
en

t
m

od
el

2
La

rg
e

C
om

po
si

ti
on

al
Ef

fe
ct

=
0.

5
Sm

al
lC

om
po

si
ti

on
al

Ef
fe

ct
=

0.
2

np
=2

0
np

=5
np

=2
0

np
=5

ng
=1

00
G

L
M

G
L

M
G

L
M

G
L

M
IC

C
=0

.1
33

.7
1

28
.0

9
23

.6
0

30
.8

6
30

.8
6

7.
41

9.
89

20
.8

8
12

.0
9

8.
64

25
.9

3
6.

17
IC

C
=0

.3
84

.2
1

63
.1

6
90

.5
3

80
.0

0
57

.8
9

61
.0

5
27

.1
7

30
.4

3
53

.2
6

23
.0

8
20

.8
8

27
.4

7
ng

=2
5

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

12
.9

6
25

.9
3

11
.1

1
N

/A
1.

28
14

.1
0

1.
28

N
/A

IC
C

=0
.3

33
.3

3
36

.5
6

33
.3

3
9.

47
13

.6
8

9.
47

M
ea

su
re

m
en

t
m

od
el

3
La

rg
e

C
om

po
si

ti
on

al
Ef

fe
ct

=
0.

5
Sm

al
lC

om
po

si
ti

on
al

Ef
fe

ct
=

0.
2

np
=2

0
np

=5
np

=2
0

np
=5

ng
=1

00
G

L
M

G
L

M
G

L
M

G
L

M
IC

C
=0

.1
41

.4
48

.3
44

.8
33

.0
38

.5
20

.9
11

.5
25

.0
21

.2
11

.1
21

.1
8.

9
IC

C
=0

.3
82

.8
82

.8
93

.1
75

.5
63

.8
68

.1
23

.1
21

.2
65

.4
30

.5
31

.6
40

.0
ng

=2
5

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

14
.9

31
.9

21
.3

N
/A

9.
2

18
.5

12
.3

N
/A

IC
C

=0
.3

35
.7

34
.7

44
.9

12
.6

14
.7

24
.2

N
ot

e.
G

=
G

en
er

at
in

g
va

lu
e

an
al

ys
is

re
su

lt
;

L
=

La
te

nt
va

ri
ab

le
m

od
el

an
al

ys
is

re
su

lt
;

M
=

M
an

if
es

t
va

ri
ab

le
m

od
el

an
al

ys
is

re
su

lt
;n

g
=

nu
m

be
r

of
gr

ou
ps

;n
p

=
nu

m
be

r
of

pe
op

le
pe

r
gr

ou
p.

87



Ta
bl

e
5.

15
:R

el
at

iv
e

pe
rc

en
ta

ge
bi

as
of

cr
os

s-
le

ve
li

nt
er

ac
ti

on
ef

fe
ct

(γ̂
11

)

M
ea

su
re

m
en

t
m

od
el

1
Sm

al
lγ

11
=

0.
5

La
rg

e
γ

11
=

1
np

=2
0

np
=5

np
=2

0
np

=5
ng

=1
00

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

-5
.8

2
-4

5.
52

-9
2.

08
6.

84
-3

8.
85

-9
5.

77
-1

4.
95

-3
6.

13
-8

9.
85

-1
.0

3
-4

4.
30

-9
5.

26
IC

C
=0

.3
-4

.9
7

-8
.5

2
-7

6.
54

-7
.8

6
-2

9.
35

-8
6.

84
-3

.0
5

-8
.3

5
-7

2.
27

-2
.7

8
-3

1.
19

-8
6.

25
ng

=2
5

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

-4
1.

03
-7

0.
55

-9
8.

45
N

/A
-1

3.
37

-2
4.

48
-8

5.
72

N
/A

IC
C

=0
.3

-1
.4

9
-1

6.
55

-7
8.

04
-9

.8
4

-9
.1

3
-7

6.
30

M
ea

su
re

m
en

t
m

od
el

2
Sm

al
lγ

11
=

0.
5

La
rg

e
γ

11
=

1
np

=2
0

np
=5

np
=2

0
np

=5
ng

=1
00

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

-7
0.

85
-1

26
.1

0
-1

00
.7

0
12

.9
6

26
.7

8
-9

8.
44

-5
.5

8
-1

7.
63

-9
4.

17
-6

.5
6

10
.6

6
-9

5.
81

IC
C

=0
.3

0.
84

-1
3.

92
-8

8.
82

-3
.2

5
21

.5
5

-9
2.

31
-1

.9
7

-4
.5

8
-8

9.
77

1.
25

9.
47

-9
3.

79
ng

=2
5

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

-6
2.

94
23

.3
3

-9
7.

14
N

/A
8.

65
-2

.4
6

-9
3.

47
N

/A
IC

C
=0

.3
3.

53
51

.1
9

-8
9.

53
-1

2.
20

-1
2.

37
-9

0.
67

M
ea

su
re

m
en

t
m

od
el

3
Sm

al
lγ

11
=

0.
5

La
rg

e
γ

11
=

1
np

=2
0

np
=5

np
=2

0
np

=5
ng

=1
00

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

63
.2

6
-5

7.
94

-9
6.

23
-2

4.
98

-1
.2

3
-9

8.
52

21
.9

3
22

.8
9

-9
6.

43
-1

0.
56

-2
6.

19
-9

8.
76

IC
C

=0
.3

-1
3.

77
4.

82
-9

6.
97

-1
3.

77
4.

82
-9

6.
97

-5
.2

6
-1

8.
84

-9
5.

58
6.

37
0.

10
-9

6.
68

ng
=2

5
G

L
M

G
L

M
G

L
M

G
L

M
IC

C
=0

.1
-6

6.
02

-5
8.

97
-9

9.
19

N
/A

27
.7

5
24

.2
0

-9
6.

02
N

/A
IC

C
=0

.3
-4

.9
9

-2
8.

83
-9

5.
78

3.
41

-2
7.

03
-9

5.
39

N
ot

e.
G

=
G

en
er

at
in

g
va

lu
e

an
al

ys
is

re
su

lt
;L

=
La

te
nt

va
ri

ab
le

m
od

el
an

al
ys

is
re

su
lt

;M
=

M
an

if
es

t
va

ri
ab

le
m

od
el

an
al

ys
is

re
su

lt
;n

g
=

nu
m

be
r

of
gr

ou
ps

;n
p

=
nu

m
be

r
of

pe
op

le
pe

r
gr

ou
p.

88



Ta
bl

e
5.

16
:R

oo
t-

m
ea

n-
sq

ua
re

er
ro

rs
of

cr
os

s-
le

ve
li

nt
er

ac
ti

on
ef

fe
ct

(γ̂
11

)

M
ea

su
re

m
en

t
m

od
el

1
Sm

al
lγ

11
=

0.
5

La
rg

e
γ

11
=

1
np

=2
0

np
=5

np
=2

0
np

=5
ng

=1
00

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

0.
37

0.
45

0.
96

0.
35

0.
57

0.
98

0.
32

0.
38

0.
90

0.
31

0.
49

0.
96

IC
C

=0
.3

0.
16

0.
20

0.
88

0.
16

0.
29

0.
94

0.
12

0.
44

0.
73

0.
21

0.
46

0.
87

ng
=2

5
G

L
M

G
L

M
G

L
M

G
L

M
IC

C
=0

.1
0.

62
0.

60
1.

00
N

/A
0.

67
1.

05
0.

89
N

/A
IC

C
=0

.3
0.

35
0.

41
0.

90
0.

39
0.

65
0.

77
M

ea
su

re
m

en
t

m
od

el
2

Sm
al

lγ
11

=
0.

5
La

rg
e

γ
11

=
1

np
=2

0
np

=5
np

=2
0

np
=5

ng
=1

00
G

L
M

G
L

M
G

L
M

G
L

M
IC

C
=0

.1
0.

49
0.

71
1.

00
0.

34
0.

81
0.

99
0.

27
0.

45
0.

94
0.

38
0.

92
0.

96
IC

C
=0

.3
0.

37
0.

22
0.

95
0.

16
0.

41
0.

96
0.

09
0.

51
0.

90
0.

20
0.

72
0.

94
ng

=2
5

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

0.
71

1.
01

0.
99

N
/A

0.
56

0.
87

0.
94

N
/A

IC
C

=0
.3

0.
31

0.
59

0.
95

0.
33

0.
47

0.
91

M
ea

su
re

m
en

t
m

od
el

3
Sm

al
lγ

11
=

0.
5

La
rg

e
γ

11
=

1
np

=2
0

np
=5

np
=2

0
np

=5
ng

=1
00

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

0.
42

0.
60

0.
98

0.
47

0.
97

0.
99

0.
33

0.
78

0.
96

0.
45

0.
77

0.
99

IC
C

=0
.3

0.
17

0.
23

0.
98

0.
17

0.
23

0.
98

0.
08

0.
34

0.
96

0.
22

0.
57

0.
97

ng
=2

5
G

L
M

G
L

M
G

L
M

G
L

M
IC

C
=0

.1
0.

62
1.

02
1.

00
N

/A
0.

67
1.

32
0.

96
N

/A
IC

C
=0

.3
0.

23
0.

35
0.

98
0.

35
0.

50
0.

95
N

ot
e.

G
=

G
en

er
at

in
g

va
lu

e
an

al
ys

is
re

su
lt

;L
=

La
te

nt
va

ri
ab

le
m

od
el

an
al

ys
is

re
su

lt
;M

=
M

an
if

es
t

va
ri

ab
le

m
od

el
an

al
ys

is
re

su
lt

;n
g

=
nu

m
be

r
of

gr
ou

ps
;n

p
=

nu
m

be
r

of
pe

op
le

pe
r

gr
ou

p.

89



Ta
bl

e
5.

17
:P

er
ce

nt
ag

e
co

ve
ra

ge
ra

te
s

fo
r

cr
os

s-
le

ve
li

nt
er

ac
ti

on
ef

fe
ct

(γ̂
11

)

M
ea

su
re

m
en

t
m

od
el

1
Sm

al
lγ

11
=

0.
5

La
rg

e
γ

11
=

1
np

=2
0

np
=5

np
=2

0
np

=5
ng

=1
00

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

92
.6

59
.3

0.
0

10
0.

0
65

.8
0.

0
10

0.
0

30
.0

0.
0

10
0.

0
51

.0
0.

0
IC

C
=0

.3
10

0.
0

76
.5

0.
0

94
.7

81
.6

0.
0

10
0.

0
86

.7
0.

0
88

.9
55

.6
0.

0
ng

=2
5

G
L

M
G

L
M

G
L

M
G

L
M

IC
C

=0
.1

92
.2

19
.6

0.
0

N
/A

89
.5

65
.8

2.
6

N
/A

IC
C

=0
.3

81
.0

12
.1

0.
0

90
.6

75
.0

0.
0

N
ot

e.
G

=
G

en
er

at
in

g
va

lu
e

an
al

ys
is

re
su

lt
;L

=
La

te
nt

va
ri

ab
le

m
od

el
an

al
ys

is
re

su
lt

;M
=

M
an

if
es

t
va

ri
ab

le
m

od
el

an
al

ys
is

re
su

lt
;n

g
=

nu
m

be
r

of
gr

ou
ps

;n
p

=
nu

m
be

r
of

pe
op

le
pe

r
gr

ou
p.

90



Table 5.18: Percentage of significant cross-level interaction effect (γ̂11), measurement
model 1

No cross-level interaction = 0
np=20 np=5

ng=100 G L M G L M
ICC=0.1 0.0 7.0 0.0 1.0 17.0 1.0
ICC=0.3 3.0 9.0 1.0 2.0 5.0 0.0
ng=25 G L M G L M

ICC=0.1 3.0 3.0 0.0 N/A
ICC=0.3 0.0 2.0 0.0

Small cross-level interaction = 0.5
np=20 np=5

ng=100 G L M G L M
ICC=0.1 40.7 22.2 7.4 34.2 42.1 3.9
ICC=0.3 82.4 70.6 47.1 84.2 42.1 13.2
ng=25 G L M G L M

ICC=0.1 5.9 9.8 2.0 N/A
ICC=0.3 25.9 22.4 13.8

Large cross-level interaction = 1
np=20 np=5

ng=100 G L M G L M
ICC=0.1 81.8 72.7 0.0 80.4 60.8 3.9
ICC=0.3 100.0 81.3 100.0 100.0 59.3 48.1
ng=25 G L M G L M

ICC=0.1 31.6 31.6 18.4 N/A
ICC=0.3 78.1 46.9 53.1

Note. G = Generating value analysis result; L =
Latent variable model analysis result; M = Mani-
fest variable model analysis result; ng = number of
groups; np = number of people per group.

91



CHAPTER 6

Empirical Applications

To illustrate how nonlinear multilevel latent variable modeling can be applied to em-

pirical data to estimate a contextual effect not only as a compositional effect but also as

a cross-level interaction, the following real data analyses were conducted. This chapter

summarizes the methods and results of two empirical applications.

6.1 Compositional Effect Model: A “Big-fish-little-pond” Effect

A compositional effect in the relationship between academic self-concept and academic

achievement has attracted Marsh et al. (2009)’s attention and been studied in light of mul-

tilevel latent variable modeling to address methodological issues. However, a nonlinear

measurement structure with a number of categorical indicators has not been studied in

the estimation of the compositional effect. In contrast to the previous research of Marsh

et al. (2009), in which three continuous indicators were used to measure academic self-

concept and academic achievement, the analysis presented here uses categorical item

response data for both latent variables, academic self-concept and academic achievement.

6.1.1 Data

For this compositional effect analysis, a subset of The Programme for International Stu-

dent Assessment (PISA 2000; OECD, 2000) data were extracted and analyzed. PISA is

a large international educational survey. The focus of PISA 2000 was literacy. A large

amount of student and school level information that covering cognitive and affective do-

mains was collected.
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Though 42 countries participated in the data collection, a sample of students from

the United States was analyzed in this study for the purpose of illustration. Originally,

a total of 129 reading items were administered to estimate country level reading literacy

mean using a balanced incomplete block design. However, for simplicity, only booklets

8 and 9 were used for this analysis. These two booklets included 33 reading items, but

1 item was dropped, since all item responses for this item were zero, which meant the

item had no information. Therefore, the analyzed data set contained 32 item responses

(3 graded responses items with 3 categories and 29 dichotomously scored items) of 667

students from 141 schools. The number of students within a school ranged from 1 to 8,

which is rather a small number of students per group. The outcome variable self concept

in reading was measured by the following three items:

CC02Q05 “I’m hopeless in <test language> classes” (reverse coded),

CC02Q09 “I learn things quickly in <test language> class”,

CC02Q23 “I get good marks in <test language>”, and

Each item has a Likert-type scale, ranging from 1 (disagree) to 4 (agree). <test

language> was English for students in the United States.

6.1.2 Results

The structural parameter estimates from the multilevel latent variable model analysis

(EM algorithm and the MH-RM algorithm) and traditional multilevel model analysis are

reported in Table 6.1. In general, a positive and significant within-level coefficient γ̂10

is found across different models and algorithms. Between-level coefficient γ̂01 estimates

were not significantly different from 0 when the multilevel latent model was applied,

while the estimate was significantly different from 0 when the traditional multilevel was

applied, due to the small standard error.

The compositional effect (“big-fish-little-pond”) is calculated by subtracting γ̂10 from

γ̂01 as illustrated in Figure 6.1. The direction of the compositional was negative as re-

ported in previous research (Marsh et al., 2009). This indicates that two students who

have the same levels of achievement can have different level of academic self-concept,
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depending on the group-level academic achievement. As the compositional effect is

negative, the students who belong to a higher-level achievement group tend to have

lower academic self-concept compared to students who belong to a lower-level achieve-

ment group. On the other hand, the students who belong to a lower-level achievement

group tend to have higher academic self-concept compared to students who belong to a

higher-level achievement group - just like a fish that feels big if the pond where it lives

is small. However, in terms of the statistical significance of the compositional effect, the

traditional model yields that the effect is not significantly different from 0. This result is

consistent with what was found in the simulation study presented in Chapter 5 in that

the power of the latent variable model to detect a compositional effect is higher than that

of the traditional model, when the data set is associated with a sufficiently large number

of groups and a small number of students per group.

The measurement parameter estimates are summarized in Table 6.2. The point es-

timates from the MH-RM algorithm are plotted against those from the EM algorithm

in Figure 6.2. As can be seen, the estimates are very close to each other. Standard er-

rors of the item parameters exhibited a similar pattern as found previously (see Figure

6.3), confirming that the post-convergence approximation method yields slightly smaller

standard errors, while the recursive approximation tends to yield larger standard errors.

6.2 Cross-level Interaction Model: Co-operative Learning Preference

and Reading Literacy

As illustrated in Section 1.1.3, a group-level latent variable can influence not only individual-

level outcome, but also the relationship between a predictor and an outcome. In particu-

lar, when the relation between two variables varies across groups and can be explained as

a function of a group-level predictor, a cross-level interaction model is useful to explain

the phenomenon. For illustrative purposes, the relationship between cooperative learning

preference and academic achievement was examined was examined. The co-operative learn-
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ing theory is based upon substantial theoretical and practical foundations in education.

An extensive review of the relevant theoretical review is not included in this study, since

the substantive implications of the research were not of primary interest of the current

study. The effect of co-operative learning has been studied often in the context of higher-

or lower-achievement groups (e.g., Tsay & Brady, 2010; Johnson & Johnson, 1989; Baker

& Clark, 2010). The application study being reported here is rooted in the awareness of

this research stream. However, it should be also noted that co-operative learning pref-

erence in this study is different from co-operative learning instruction that is executed

in classrooms. The concept of co-operative learning preference is developed in light of

learning style or preference in learning situations rather than class instruction. More

information related to measures and concept can be found in Owens and Barnes (1992).

6.2.1 Data

For this cross-level interaction model analysis, a subset of PISA 2000 was extracted and

analyzed. The data were collected in Korea, and those students who were administered

booklets 8 and 9 for reading literacy were used in this analysis. In the process of data

cleaning, 4 reading items were dropped, since all item responses were zero. 29 item

responses (3 graded responses and 26 dichotomously scored items) of 1,103 students in

143 schools were analyzed. These 29 items are the indicators for the latent predictor

variable. The number of students within a school ranged from 1 to 8, which can be

considered a small number of students per group. The outcome variable, co-operative

learning preference, was measured by the following four items:

CC02Q02 “I like to work with other students”,

CC02Q08 “I learn the most when I work with other students”,

CC02Q19 “I like to help other people do well in a group”,

CC02Q19 “It is helpful to put together everyone’s ideas when working on a project”.

Each item has a Likert-type scale, ranging from 1 (disagree) to 4 (agree).
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6.2.2 Results

The structural parameter estimates from the multilevel latent variable model analysis

(EM algorithm and the MH-RM algorithm) and traditional multilevel model analysis are

reported in Table 6.3. In general, positive within- and between-level coefficients (γ̂10 and

γ̂01) were found, indicating that the level of co-operative learning preference and reading

literacy is positively associated. However, none of these were statistically significant

when the MH-RM algorithm was applied, and only the between-level coefficient was

significant at p < .05 level when the EM algorithm was applied, which is also different

from the traditional HLM analysis in that both coefficients are statistically different from

0 due to the small standard errors.

The parameter estimate of interest that captures a cross-level interaction effect was

γ̂11, which appears to be negative in this particular example across computational algo-

rithms and models. The negative cross-level interaction can be interpreted as that the

relationship between co-operative learning preference and reading literacy is weaker in

schools with higher achievement levels, indicating the slope of between two variables

becomes less stiffer as school-level achievement increases (see Figure 6.4). If the nega-

tive cross-level interaction size is large enough, the direction of the relationship between

the co-cooperative learning preference and reading literacy could be negative at schools

where school-level reading literacy is very high. However, γ̂11 was not statistically dif-

ferent from 0 across models and computational algorithms.

With respect to computation, 8 adaptive quadrature points estimation using Mplus

did not converge, and only 5-quadrature-point solution was available with some changes

in default settings that are related to the M-step. When the MH-RM algorithm was

applied, it took 18 hours to estimate, and a large number of samples (3,000) were used

to calculate the observed data information.

The point estimates from the MH-RM algorithm are plotted against those from the

EM algorithm in Figure 6.5. As can be seen, the estimates are reasonably close to each

other. The standard errors based on the MH-RM algorithm that are obtained using the
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post-convergence approximation method tend to smaller than those based on the EM

algorithm but reasonably compatible as expected (see Figure 6.6).
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Table 6.1: Structural parameter estimates from PISA 2000 USA data analysis using the
compositional effect model

Latent variable model Manifest variable model
MH-RM EM EM

Parameter θ θ̂ se(θ̂) t-value θ̂ se(θ̂) t-value θ̂ se(θ̂) t-value
γ10 0.42 0.06 7.17 0.42 0.05 7.92 0.11 0.01 7.75
γ01 0.16 0.11 1.43 0.18 0.11 1.68 0.07 0.02 3.60
τ00 0.47 0.11 0.39 0.47 0.11 4.28 0.37 0.61(SD) 190.31(χ2)

var(ξ.j) 0.12 0.07 2.30 0.11 0.06 1.86 N/A N/A N/A
BFLPE -0.27 0.13 -2.12 -0.24 0.12 -1.98 -0.04 0.02 -1.76

Computation 1 hour 40 min 1 hour 40 min
Time M1=100, M2=300, M3=300 14qp,1 processor

burn-in=5

Note1. Reported standard errors for MH-RM algorithm are from recursively approxi-
mated observed data information.
Note2. M1=Number of maximum iterations at initializing stage; M2=Number of max-
imum iterations at the constant gain stage; M3=Number of maximum iterations at the
decreasing gain stage; qp=number of adaptive quadrature points.

Figure 6.1: Illustration of compositional effect of academic achievement on academic self
concept in literacy
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Table 6.2: Item parameter estimates from PISA 2000 USA data analysis using the com-
positional effect model

Slope Threshold
EM MH-RM EM MH-RM

Item θ̂ se(θ̂) θ̂ se(θ̂) Item θ̂ se(θ̂) θ̂ se(θ̂)
Y1 1.47 0.18 1.50 0.28 Y1-1 -1.15 0.15 -1.08 0.14
Y2 2.44 0.29 2.48 0.39 Y1-2 -0.09 0.13 -0.02 0.15
Y3 3.22 0.57 3.22 0.54 Y2-1 -4.58 0.40 -4.48 0.58
X1 0.83 0.10 0.83 0.11 Y2-2 -1.94 0.22 -1.83 0.30
X2 1.02 0.11 1.03 0.16 Y2-3 1.42 0.22 1.55 0.30
X3 1.40 0.17 1.40 0.25 Y3-1 -6.39 0.98 -6.20 1.14
X4 1.02 0.11 1.03 0.17 Y3-2 0.84 0.25 1.00 0.18
X5 0.89 0.10 0.90 0.11 Y3-3 0.86 0.25 1.01 0.17
X6 1.04 0.11 1.03 0.15 X1 -0.41 0.11 -0.32 0.12
X7 1.18 0.10 1.19 0.15 X2 0.32 0.12 0.42 0.13
X8 0.87 0.10 0.87 0.12 X3 1.61 0.16 1.74 0.17
X9 0.99 0.11 1.00 0.15 X4 -1.02 0.12 -0.92 0.14

X10 0.72 0.09 0.73 0.12 X5 -0.24 0.11 -0.15 0.12
X11 0.99 0.11 1.00 0.14 X6 -1.09 0.14 -0.99 0.14
X12 1.19 0.11 1.20 0.13 X7-1 0.20 0.14 0.32 0.14
X13 1.05 0.09 1.06 0.15 X7-2 1.08 0.14 1.20 0.15
X14 1.10 0.11 1.10 0.15 X8 -0.84 0.11 -0.75 0.12
X15 1.37 0.12 1.38 0.16 X9 0.75 0.12 0.85 0.12
X16 1.41 0.14 1.41 0.20 X10 0.24 0.10 0.31 0.12
X17 1.67 0.18 1.66 0.22 X11 -0.59 0.12 -0.49 0.13
X18 1.88 0.19 1.89 0.28 X12-1 -1.36 0.15 -1.24 0.15
X19 1.17 0.14 1.18 0.17 X12-2 1.72 0.15 1.84 0.17
X20 1.02 0.12 1.03 0.15 X13-1 -0.77 0.12 -0.67 0.14
X21 1.58 0.14 1.59 0.20 X13-2 2.44 0.15 2.54 0.18
X22 1.46 0.13 1.47 0.17 X14 -0.91 0.13 -0.80 0.14
X23 1.42 0.13 1.43 0.21 X15 -1.37 0.15 -1.23 0.17
X24 1.09 0.11 1.09 0.15 X16 -1.67 0.17 -1.53 0.18
X25 0.82 0.09 0.83 0.14 X17 -1.78 0.19 -1.60 0.20
X26 1.43 0.16 1.44 0.18 X18 -2.18 0.24 -1.99 0.26
X27 1.20 0.12 1.20 0.16 X19 -1.60 0.14 -1.48 0.17
X28 0.93 0.10 0.94 0.14 X20 -0.93 0.12 -0.83 0.14
X29 1.22 0.14 1.22 0.16 X21 0.20 0.16 0.36 0.17
X30 1.05 0.11 1.05 0.18 X22 0.53 0.15 0.67 0.17
X31 1.53 0.17 1.53 0.19 X23 1.64 0.18 1.79 0.19
X32 1.06 0.12 1.06 0.18 X24 -0.62 0.13 -0.51 0.13

X25 0.52 0.11 0.60 0.12
X26 2.14 0.20 2.29 0.27
X27 -0.83 0.13 -0.70 0.14
X28 -0.03 0.12 0.06 0.12
X29 0.39 0.13 0.51 0.15
X30 -0.71 0.13 -0.60 0.14
X31 -1.90 0.19 -1.74 0.19
X32 0.95 0.13 1.05 0.14

Note. One of the categories had zero frequency for the first self-
concept item, so this item was analyzed by the graded response
model with three categories.
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Figure 6.2: Item parameter estimates based on the EM and MH-RM algorithms, PISA
2000 USA data analysis
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CHAPTER 7

Discussions

7.1 Summary

Contextual effects refer to the influence of group context (group-level predictor variable)

on either the level of individual actions/attitude (individual-level outcome variable) or

the relationship between an individual-level outcome and an individual-level predictor.

The traditional hierarchical linear modeling framework (HLM) contributed to defining

these contextual effects quantitatively: the former is called a compositional effect and

defined as the difference between the group-level regression coefficient and the within-

group level regression coefficient, and the latter is called a cross-level interaction effect

when the within-group slopes vary across groups. The particular contextual effect of

interest in this study is one that occurs when a group-level characteristic of interest is

measured by individual-level characteristics, and the individual-level characteristics are

measured by multiple categorical indicators.

Since observed summed or averaged item scores are used for an individual level

variable and observed group-means are used for a group-level variable in the traditional

HLM framework, measurement error and sampling error issues have not been properly

addressed. Those issues include attenuated regression coefficients and standard errors

that have attracted researchers’ attention. Accordingly, nonlinear multilevel latent vari-

able modeling has been suggested as an alternative, in which latent variables are used

instead of observed variables by incorporating item responses as latent variable indica-

tors in modeling (e.g. Lüdtke et al., 2008, 2011; Marsh et al., 2009). However, a nonlinear

multilevel latent variable model requires significant computation effort because the esti-
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mation process involved high dimensional numerical integration, particularly when the

number of latent variables is large. This curse of dimensionality has constrained the

practicability of nonlinear multilevel latent variable modeling in routine use.

The main purpose of this study was to improve estimation efficiency in obtaining

full-information maximum likelihood (FIML) estimates of contextual effects by adopting

the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). R

programs (R Core Team, 2012) implementing the MH-RM algorithm were produced to

fit nonlinear multilevel latent variable models. Computation efficiency and parameter

recovery were assessed by comparing results with an EM algorithm that uses adaptive

Gauss-Hermite quadrature for numerical integration. Results indicate that the MH-

RM algorithm can obtain FIML estimates and their standard errors efficiently, and the

efficiency of MH-RM was more prominent for a cross-level interaction model, which

requires 5-dimensional integration. While using EM algorithm with only 8 adaptive

quadrature points required about 100 minutes to estimate a cross-level interaction model,

the MH-RM algorithm required about 60 minutes to have similar results. Considering

the difference between an interpreted language and a compiled language in which each

algorithm is implemented, even more substantial improvement in efficiency is expected

if the MH-RM algorithm is written in a compiled language in the future.

The second purpose of this study was to provide information about the performance

of nonlinear multilevel latent variable modeling compared to traditional HLM through a

simulation study with various sampling and measurement structure conditions. Results

suggest that nonlinear multilevel latent variable modeling can more properly estimate

and detect a contextual effect than the traditional approach in most conditions. Sub-

stantial bias was found in the between-level coefficient in the compositional model and

in the cross-level interaction coefficient when the traditional model is applied, Notably,

when the intraclass correlation (ICC) and the number of individuals per group were

both small, the bias can be more than 80%, and the CIs hardly capture the true values.

This is because that when the ICC is small, the between-group variance is too small

to be decomposed and estimated, indicating between-group variation is small and the
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characteristic of interest is homogenous across groups. When this issue is combined

with a small number of groups or a small number of people per group, the condition

exacerbates the difficulty in estimating between-group variance and yield difficulty in

convergence and biased estimates.

Since the within-level coefficient is also underestimated in the traditional model anal-

ysis, the point estimate of a compositional effect can be unbiased when the ICC size and

the number of level-1 units per level-2 unit are both large (e.g., ICC=0.3 and the number

of level-1 units per level-2 =20). However, Type I error rates of the traditional model are

substantially elevated (up to 60%) in this sampling condition, indicating that the com-

positional effect detected by the traditional model under desirable sampling conditions

could be spurious. These unacceptable Type I error rates are caused by the small stan-

dard error of between-level regression coefficient in the traditional HLM. The standard

error of the between-level coefficients in HLM is influenced by the variance of between-

level coefficient estimate, which is the sum of parameter dispersion and error dispersion

(Raudenbush & Bryk, 2002). As the error dispersion does not reflect measurement error

in HLM, the variance of between-level coefficient estimate is underestimated and so is

the standard error. In contrast, the latent variable approach yielded less biased estimates,

and statistical inferences across sampling and the ICC size conditions were more consis-

tent than those of the traditional model, as long as the number of groups is sufficiently

large (25 was found to be too small).

The third purpose of this study was to provide empirical illustrations using two

subsets of data extracted from Programme for International Student Assessment (PISA;

Adams & Wu, 2002). A negative compositional effect was found from the U.S. data

in terms of the relationship between reading literacy and self-concept about reading,

supporting the results from previous studies, which is called “Big-fish-little-pond” effect

(e.g. Marsh et al., 2009). The compositional effect was statistically significant at p< .05

level when the nonlinear multilevel latent variable model was applied. On the other

hand, the traditional HLM approach could not detect a statistically significant effect. It

is because that the power of HLM substantially decreases when the numbers of people
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per group are small and this subset of data was the case. With respect to a cross-

level interaction model, the relation between reading literacy and co-operative learning

preference was examined, using a subset of PISA data collected in Korea. A negative, but

not statistically significant, cross-level interaction was found between reading literacy

and co-operative learning preference. The nonlinear multilevel latent variable model and

the traditional HLM approach yielded similar results in that the cross-level interaction

estimates were not statistically different from zero in both results.

Unlike the results from the simulation study, the results of empirical applications

were not dramatically different in model comparison-wise. One possible explanation is

that predictor variable reading literacy is measured by a large number of well-developed

items for these empirical applications, and accordingly, the summed scores are very

reliable. However, in other circumstances where less reliable measures (e.g., affective

domain measures or teacher instructional variables) are used as predictors or where

even a smaller number of people per group are sampled, it is expected to observe more

substantial differences between the results from a nonlinear multilevel latent variable

model and a traditional HLM. In addition, these two models also can yield divergent

statistical inferences even when there are a sufficient size of ICC and a large number of

people per group due the substantial elevation of Type I error rates when the traditional

HLM is applied. Therefore, a wide range of further empirical applications should be

followed, and the improved estimation efficiency, by adopting an MH-RM algorithm for

the nonlinear multilevel latent variable models, can contribute to further applications by

making the nonlinear multilevel latent variable modeling framework more practical in

routine use.

7.2 Directions for Future Study

This study suggests a number of areas for further research. Above all, there is a need to

make the nonlinear multilevel latent variable model more widely applicable in a wide

range of research settings.
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First, additional efforts are required to increase convergence rates of the cross-level

interaction model. This could include exploration of the number of iterations that are

needed and review of more options to approximate standard errors in an efficient and

stable manner. For example, using multiple level-2 samples conditioned on a level-1

sample can be an option, but further investigation is needed to determine a proper

number of samples.

Second, to give more information to users in terms of model selection, calculation of

fit indices or the likelihood needs to be further investigated so that, for example, a like-

lihood ratio test for these two nested models can be available in the future. Having the

likelihood can be especially useful in evaluating convergence of the current algorithm,

since monitoring only the differences among point estimates is complicated by the scale

of parameters and the size of gain constants.

Third, exploring further estimation method option is also worthwhile particularly to

improve the bias in estimates when a small number of sample is used. For example,

when a sample size is limited and there are too many item parameters to be estimated,

two-stage estimation can be tried by using known item parameter estimates (from a scal-

ing sample or the sample sample in typical IRT applications). There have been concerns

about underestimation of standard error of latent trait in those applications, but Yang,

Hansen, and Cai (2012) reported that the magnitude of underestimation is negligible

when a large number of scoring sample is used and proposed a method to character-

ize the uncertainty in item parameter estimates. Therefore, it is expected to observe

improvement in estimation efficiency as well as precision by considering a two-stage es-

timation approach for circumstances where scoring sample is not sufficient to estimate

high dimensional model.

Fourth, an expansion of the model to multi-dimensional measurement structures

such as bi-factor type model, or to structural models with more than 2-levels deserves

the further research. In real data applications, items are often clustered with local depen-

dence, and cross-level interactions can be found not only in two-level context but also

in situations where 3 or more of nesting (e.g., student-teacher-school or student-school-
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country).

Fifth, centering of latent variables is another issue that should be addressed by mul-

tilevel latent variable model users. The latent variable model presented here imposes

a group-mean centering for the level-1 variables and grand-mean centering for level-2

variables. A recent investigation reported that an un-centered or grand-mean-centered

level-1 predictor produced negative bias for level-1 interaction effect, and group-mean

centering produced negative bias for the level-2 interaction effect (Ryu, 2012). Accord-

ingly, group-mean centering at level-1 and grand-mean centering at level-2 in this study

seems to have been appropriate for the cross-level interaction model. Without centering,

multicolinearity becomes a serious concern with the model.

Sixth, with respect to the cross-level interaction model, it will be useful to exam-

ine different options for model identification condition, providing guidance concerning

whether to use a standardized factor or to anchor the first factor loadings. Theoretically,

the options should yield the same results and statistical inferences. However, some dif-

ferences were found when these options were tested using Mplus. This could be simply

a software issue, but further exploration using different estimation approach such as

MCMC with Gibbs sampler might lead to more clues about this phenomenon.

Seventh, a multiple group analysis for the compositional effect or a cross-level inter-

action in the framework of multilevel latent variable modeling also can be considered. In

the process of empirical studies, the compositional effect appears to be different across

countries (e.g., no significant compositional effect was found in the subset of Korea data).

In general, further generalized multilevel latent variable modeling is required to make

models more flexible to answer a broad range of questions.

Finally, The cross-level interaction model could be applied to longitudinal data (e.g.,

Seltzer, Choi, & Thum, 2003; Choi, Seltzer, Herman, & Yamashiro, 2007). Unlike cross-

sectional data, longitudinal data are often associated with a small number of subjects

(level-2 units) and a large ICC. The combination of these conditions may influence the

performance of the multilevel latent variable model. Therefore, it would be worthwhile
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to examine the utility of this approach to various longitudinal applications.
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APPENDIX A

Time-series plots of MH sampler random drawings
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Figure A.1: The time-series plots of every 200th individual δij drawings
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Figure A.2: The time-series plots of every 200th individual rij drawings
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Figure A.3: The time-series plots of every 10th group ξ.j drawings
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Figure A.4: The time-series plots of every 10th group u0.j drawings
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Figure A.5: The time-series plots of every 200th individual δij drawings
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Figure A.6: The time-series plots of every 200th individual rij drawings
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Figure A.7: The time-series plots of every 10th group ξ.j drawings
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Figure A.8: The time-series plots of every 10th group u0.j drawings
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Figure A.9: The time-series plots of every 10th group u1.j drawings
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Oberwittler, D. (2004). A multilevel analysis of neighbourhood contextual effects on se-

rious juvenile offending: The role of subcultural values and social disorganization.

European Journal of Criminology, 1(2), 201-235.

Owens, L., & Barnes, J. (1992). Learning Preferences Scales (Tech. Rep.). Hawthorn, Vic.:

Australian Council for Educational Research.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2012). nlme: Linear and

nonlinear mixed effects models [Computer software manual]. (R package version

3.1-104)

R Core Team. (2012). R: A language and environment for statistical com-

puting [Computer software manual]. Vienna, Austria. Retrieved from

http://www.R-project.org (ISBN 3-900051-07-0)

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural

equation modeling. Psychometrika, 69, 167-190.

Raudenbush, S. W., & Bryk, A. S. (1986). A hierarchical model for studying school

effects. Sociology of Education, 59, 1–17.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data

analysis methods (2nd ed.). Thousand Oaks, CA: Sage.

Raudenbush, S. W., & Willms, J. (1995). The estimation of school effects. Journal of

Educational and Behavioral Statistics, 20(4), 307-335.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of

Mathematical Statistics, 22, 400-407.

Rosenberg, B. (1973). Linear regression with randomly dispersed parameters. Biometrika,

60, 61-75.

Ryu, E. (2012). Interaction of level-1 variables in multilevel structural equation models. Un-

128



published paper presented atInternational Meeting of the Psychometric Society,

Lincoln, Nebraska.

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded

scores. Psychometric Monographs, 17.

Sampson, R. J., Morenoff, J. D., & Gannon-Rowley, T. (2002). Assessing neighborhood

effects: Social processes and new directions in research. Annual Review of Sociology,

28, 443-78.

Seltzer, M., Choi, K., & Thum, Y. M. (2003). Examining relationships between where

students start and how rapidly they progress: Using new developments in growth

modeling to gain insight into the distribution of achievement within schools. Edu-

cational Evaluation and Policy Analysis, 25, 263-286.

Singer, J. D. (1998). Using SAS PROC MIXED to multilevel models, hierarchical models,

and individual growth models. Journal of Educational and Behavioral Statstics, 23(4),

323-355.

Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multi-

level, longitudinal, and structural equation models. Boca Raton, FL: Chapman and

Hall/CRC.

Spearman, C. (1904). “General intelligence” objectively determined and measured. Amer-

ican Journal of Psychology, 15, 201-293.

Tsay, M., & Brady, M. (2010). A case study of cooperative learning and communication

pedagogy; does working in terms make a difference? Journal of the Scholarship of

Teaching and Learning, 10, 78-89.

Wikström, P.-O. H. (1998). Oxford handbook on crime and punishment (M. Tonry, Ed.).

Oxford: Oxford University Press.

Wiley, D. E. (1973). Structrual equation models in the social sciences. In A. Goldberger

& O. D. Duncan (Eds.), (p. 69-83). New York: Academic Press.

Willms, J. D. (1986). Social class segregation and its relationship to pupils’ examination

results in scotland. American Socialological Review, 55, 224-241.

Wooldredge, J. D., & Thistlethwaite, A. (1999). Reconsidering Domestic Violence Recidivism:

129



Individual and Contextual Effects of Court Dispositions and Stake in Conformity (Tech.

Rep.). Cincinnati, OH: University of Cincinnati. (Final Report submitted to the

National Institute of Justice)

Wright, S. (1918). On the nature of size factors. Genetics, 3, 367-374.

Wright, S. (1921). Correlation and Causation. Journal of Agricultural Research, 20, 557-585.

Wright, S. (1934). The method of path coefficients. Annals of Mathmatical Statistics, 5,

161-215.

Wright, S. (1960). Path Coefficients and path regressions: Alternative or complementary

concepts? Biometrics, 16, 189-202.

Yang, J. S., Hansen, M., & Cai, L. (2012). Characterizing sources of uncertainty in item

response theory scale scores. Educational and Psychological Measurement, 72(2), 264-

290.

130


