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Professor Frank W. Zok, Committee Chair

May 2018



Classification, design and mechanical performance of periodic trusses

Copyright c© 2018

by

Ryan Michael Latture

iii



Acknowledgements

I’d like to thank my adviser, Frank Zok, for his patience and guidance when I needed

it most. His incisive questions during our meetings have helped develop my critical

thinking, and working with him to distill the ideas of a manuscript into a clear,

concise form has improved my writing immensely. I’d also like to thank Matthew

Begley. He has a unique talent for seeing potential in every project. His interesting

ideas and new directions would often get research back on track at times I thought

I’d reached a dead end. His help has been invaluable. I am grateful for the other

members of my committee, Robert McMeeking and Otger Campàs, for sharing their
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Abstract

Classification, design and mechanical performance of periodic trusses

by

Ryan Michael Latture

Periodic truss structures can be designed with high specific stiffness and specific

strength, exceeding those of stochastic foams by an order of magnitude at low relative

densities. Despite the recognition of the enormous potential of periodic trusses,

stochastic foams are still used in many applications. Two factors that limit the

adoption of trusses are addressed in the present work: (i) there are no widely-accepted

descriptors of truss structure, and (ii) many studies neglect effects that come into

play in real (finite) truss structures. Instead, previous analyses largely focused on

notional truss materials: aggregates of many struts with dimensions much smaller

than macroscopic scales of interest. This approach fails to capture the effects of

external boundaries which are key to understanding the performance of manufactured

trusses. The goals of the present study are to: (i) develop a conceptual framework

for classification of truss topologies that enables identification of topologies with

potentially attractive mechanical attributes; (ii) couple this framework with robust

finite element models to predict deformation and failure of trusses; and (iii) provide

new insights into the roles of realistic features that can limit truss performance,

including the presence of free surfaces, nodes with finite stiffness and strength, and
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defects in the form of individual missing struts. These goals are pursued through

a combination of finite element simulations of the mechanical responses of trusses

under compressive, tensile or shear loadings and experimental studies on mechanical

properties of select truss structures, employing digital image correlation to examine in

detail deformation and failure of individual constituent struts as well as the structure

as a whole.

The present work begins by establishing a system for classification of truss struc-

ture. By systematically stepping through and analyzing structure types identified

through the classification system, several maximally-stiff, elastically-isotropic trusses

are identified. In finite-sized trusses, strain elevations are obtained in struts near the

external free boundaries: a consequence of reduced nodal connectivity and thus re-

duced constraint on strut deformation and rotation. Some of these effects can be

mitigated by circular nodal fillets, which are shown to enhance the bending stiffness

of the strut ends and thus increase the stress for buckling (by ≈ 20% for the geome-

tries tested). In all trusses studied, the strain elevations due to bulk defects (distant

from free surfaces) are comparable to or lower than those associated with the sur-

faces themselves. Although defects located at truss corners and truss edges cause the

highest elevations in strut strains, their effects on truss strength are small (5–25%).

The results provide a set of design guidelines that, when used in combination, yield

trusses that are defect tolerant, possess high stiffness and achieve the full strength

potential of the truss.
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Chapter 1

Introduction

Cellular structures and materials are ubiquitous in biological systems [61], structural

engineering [18] and materials science [20]. Broadly, they consist of periodic arrays

of plate- or strut-like elements. They can be designed to most efficiently exploit

the properties of the constituent elements and/or the intervening spaces in achiev-

ing functionality, e.g., bearing loads, enabling fluid flow, facilitating heat transfer,

altering optical transmission. They are generally superior to structures in which the

elements are distributed in a non-periodic manner, e.g. stochastic foams [18]. In

some cases (e.g. photonic materials), periodicity is essential to achieving functional-

ity.

For load bearing applications, periodic strut-based structures and materials —

hereafter collectively referred to as trusses — are preferred over stochastic foams.

In low relative density applications, the stiffness and strength of properly designed
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trusses can exceed that of a stochastic foam by a factor of 10 [11]. The differ-

ence arises from the dominant deformation mechanisms of each topology: stochastic

foams deform by strut bending whereas properly designed trusses deform by strut

stretching.

In stretch-dominated trusses, struts are loaded axially in either tension or com-

pression and thus the macroscopic truss stiffness is proportional to the extensional

strut stiffness. Since extensional stiffness (determined from the cross-sectional area

of the struts) scales linearly with relative density, stiffness scales similarly: E ∝ E0ρ

where E and Eo are the Youngs moduli of the truss and the constituent strut material

and ρ is relative density. Analogously, if truss failure is dominated by yielding, the

yield stress σy also scales linearly with ρ: σy ∝ σy,oρ where σy,o is the yield strength

of the solid.

In contrast, stochastic foams exhibit bend-dominated behavior. That is, rather

than changing length, struts bend under an applied load and thus truss stiffness and

strength are proportional to the bending stiffness and yield strength, respectively. As

a result, these properties follow power-law scalings with relative density: E ∝ Eoρ
2

and σy ∝ σy,oρ
1.5 [20]. To retain favorable scaling (∝ ρ) at low relative densities,

trusses must be designed to ensure stretch-dominated response.

Trusses are under development for use in an incredibly broad range of technolo-
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gies, including structural biomedical implants [38], aerospace and naval structures

[18], cushioning and force protection systems [59], thermal management [59], actu-

ated structures [16, 25] and photonic materials [2, 3]. Five main classes of fabrication

routes have been employed.

(i) Investment casting has been used to make laboratory-scale metallic truss struc-

tures [10, 12, 62]. Typically, a pattern is created using additive manufacturing

techniques (see below) and is then used to form the mold. Casting alloys are

poured into the mold to form the truss. This method has been used to man-

ufacture small quantities of high-quality trusses provided the aspect ratio of

the struts is not too high (l/2r < 14, where l is strut length and r is radius)

and individual members are are not too thin (r > 1mm) [10]. However, invest-

ment casting is generally the most expensive and least amenable to large-scale

production relative to other fabrication routes because of the high labor and

material costs involved.

(ii) Fabrication schemes based on conventional machining, bending, assembly and

joining of sheet materials have been devised as a low-cost method to make

trusses [13, 42, 48, 59]. In one version, diamond-shaped holes are punched

or laser-machined into thin steel sheet, leaving an X-pattern of narrow struts.

The sheet is then bent along lines of nodes to produce one layer of the targeted
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truss. Brazing methods are used to join the nodes of successive layers [60].

When bending is not required, this method is also amendable to carbon fiber

composites. Instead of brazing, joints of the composite truss are joined using a

high strength epoxy [14].

(iii) Metallic trusses can also be made by weaving wires into the desired structure

and subsequently brazing the wires together [29, 59]. One of the drawbacks

is that the weaving operations yield wavy or kinked strut segments between

nodes. Moreover, since the nodes are formed by brazing of contacting wires,

the integrity of these nodes is likely to be strength-limiting.

(iv) Self-propagating photocuring (SPPC) of photosensitive polymers has found

utility in rapid fabrication of polymer trusses for use in impact mitigation and

cushioning systems [26, 27, 28]. The main advantage of this process is the

short time needed for polymerization (typically less than a minute). Metal-

lic lattices can been formed by electroplating and etching away a polymeric

template [53, 58], and polymer-derived ceramic trusses can be formed from

pyrolizing pre-ceramic trusses formed from UV-curable resins [17]. One sig-

nificant limitation of SPPC is its restriction to topologies in which all struts

intersect one of the external faces. That is, it is inherently a “line-of-sight”

curing method.
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(v) Additive manufacturing (AM) offers the widest range of material and topology

options. Broadly, AM consists of several technologies that build 3D parts layer

by layer. A few of the more prominent AM technologies used to fabricate truss

structures include fused deposition modeling (FDM) [49], selective laser sin-

tering (SLS) [65], electron beam melting (EBM) [7, 47], and stereolithography

(SLA) [66]. Some of the most notable developments in recent years have been in

Ti-alloy trusses, produced by selective EBM of fine alloy powders, for biomed-

ical implants [9, 34, 37, 38]. In another arena, direct laser writing by optical

lithography has been used to fabricate polymer truss structures with extremely

fine-scale features, for potential use in photonic applications [2, 3]. Currently,

build volumes of commercial AM systems typically range from 0.001m3 to 1m3.

Sub-mm minimum feature sizes and print resolutions of tens of µm are now rou-

tinely achieved. Therefore, in addition to enabling fabrication of even the most

complex trusses, AM allows fine control of structural features and tailoring local

geometries in ways that were heretofore unimaginable.

Although these technologies allow complex trusses to be fabricated, the mechan-

ical properties of the manufactured trusses are often lower than theoretical predic-

tions due to defects in the manufactured trusses that are not included in the models

[6, 46, 52]. The extent to which defects degrade mechanical properties can be consid-
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ered in terms of the stability of deformation as localized failure events accumulate.

When the load-bearing capacity is dictated by elastic buckling of a family of struts

that are equally strained, the macroscopic truss strength is dictated by the volume-

averaged strut stress once all struts have buckled. Because the stress needed for

continued buckling of an elastic strut is constant (i.e. the compressive response is

essentially elastic, perfectly-plastic), a premature buckling event caused by a struc-

tural imperfection does not affect the ultimate truss strength. Analogously, in cases

where the strut slenderness ratio is small and the nodal regions are augmented to

mitigate the area reduction caused by strut overlap, the truss strength is dictated by

the material yield strength and the load bearing area of all struts. Here, again, local

structural defects or stress concentrations that may cause localized yielding should

not affect truss strength. These represent best-case scenarios.

In an alternative scenario, where the material is relatively brittle and its strength

follows weakest-link scaling laws, strut fracture is expected to be stochastic and

controlled by extreme values in the stress distribution and the volumes over which

such stresses persist. For example, local stress elevations due to structural defects

may cause local fracture, leading to load shedding and potentially additional fracture

events in neighboring regions. In one limit, where the truss is comprised of only a

small number of unit cells (and hence a small number of struts), the first strut fracture

6



event may lead to instability and catastrophic truss failure. The truss strength

would therefore be inherently stochastic. Conversely, if the macroscopic structural

dimensions greatly exceed the unit cell dimensions and the truss is designed to exhibit

some degree of damage tolerance (i.e. toughness), a single localized failure event may

not be critical to structural stability.

An additional consideration is the effects of free surfaces. Nodal connectivities

of struts that terminate at external boundaries are lower than those in the bulk.

Consequently, near-boundary stiffness and strength may differ from the correspond-

ing bulk properties. The effect persists to a depth that scales with strut length and

depends sensitively on truss topology.

Effects of boundaries on elastic properties of truss structures have been stud-

ied through finite element calculations of large aggregates of unit cells [19, 35] and

through novel application of Bloch wave theory [44]. Studies on 2-dimensional

elastically-isotropic trusses have shown that, in fully triangulated and hexagonal

structures, the thickness of the elastic boundary layer is comparable to the strut

length and the layer has negligible influence on the elastic properties of finite-sized

structures. In contrast, the 2-dimensional regular Kagome structure (which is also

elastically isotropic) exhibits a thick boundary layer when loaded in certain direc-

tions; the thickness of this layer is inversely propertional to truss relative density.
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The effect is a manifestation of the transition from a stretch-dominated mode of

deformation in the bulk to combined bending and stretching along some boundary

planes. Interestingly, when long cracks are present, boundary effects in the latter

case cause a reduction in crack tip stresses and lead to an unusually high fracture

toughness [19]. Computational studies on 3-dimensional octet trusses have similarly

shown that the boundary layer is negligible [35] and that the stiffness and compres-

sive buckling strength are independent of truss size [32]. Notwithstanding, we show

in subsequent chapters that important boundary effects occur along the edges of

trusses. Although benign with respect to global elastic response, the effects play a

crucial role in compressive failure when the strut material has limited ductility.

1.1 Dissertation objectives and outline

The overarching goals of this work are two-fold: (i) to develop a set of conventions

that yield unambiguous descriptions of structure types and (ii) to use this framework

to identify trusses that are stiff, strong and defect tolerant. The former employs con-

cepts from crystallography and geometry to describe nodal locations and connectivity

of struts. The latter is accomplished using a combination of finite element simula-

tions and experimental tests. FE simulations are used to predict the mechanical

8



properties of potential structures, and experimental tests measure the performance

of manufactured trusses and serve as a comparison to the models. Together, these

results are used to inform future truss designs.

The dissertation is organized in the following manner. A taxonomy of truss

structure is formalized in Chapter 2. This framework is used to identify trusses

that are stiff and that possess high strength in Chapter 3. Two isotropic binary

compound trusses and many isotropic ternary trusses are identified, all with Youngs

moduli equal to the maximal possible value for isotropic strut-based structures. In

Chapter 4, experimental tests are used to measure the performance of additively

manufactured trusses. Two coupled aspects of truss design and performance are

addressed: (i) the extent to which circular nodal fillets enhance node stiffness and

alleviate stress concentrations, and (ii) the extent to which external boundaries affect

local strut strains. In Chapter 5, finite element simulations are used to to determine

the extent to which individual strut defects and free surfaces, both separately and

together, elevate strains in neighboring struts and, in turn, the effects of strain

elevations on truss strength. Finally, in Chapter 6 key findings are summarized, and

opportunities for future work are discussed.
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Chapter 2

Periodic truss structures

2.1 Introduction

Despite the broad recognition of the potential of periodic trusses for use in many

diverse fields of technology, there are no widely-accepted descriptors of their struc-

ture. In the numerous articles on this topic that have appeared in the past two

decades, the terminology has been based loosely on descriptions of various poly-

hedra, but often without explicit connections between truss structure and specific

characteristics of the reference polyhedron.

This chapter is adapted from a peer-reviewed publication: Frank W Zok, Ryan M Latture,
and Matthew R Begley. Periodic truss structures. Journal of the Mechanics and Physics of Solids,
96:184–203, 2016. Available at: https://doi.org/10.1016/j.jmps.2016.07.007
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For example, trusses designated as pyramidal are conceptually constructed by

placing struts along the four edges of a regular square pyramid at which the trian-

gular faces intersect, but not along the edges of the square base [18, 59]. Similarly,

tetrahedral trusses are formed by placing struts along three non-coplanar edges of a

tetrahedron, but not on the other three edges [48, 59]. In other cases, truss structures

are constructed by placing struts normal to and at the center of each face of the ref-

erence polyhedron (not along the edges), e.g. the truncated octahedral truss [22, 30].

Elsewhere, truss structures have been described as being “tetrahedral with three-fold

symmetry” or “tetrahedral with six-fold symmetry”, without explicit designations of

strut locations [28].

In some instances, new words have been devised to describe truss structure. The

octet truss, for example, derives from a combination of octahedral and tetrahedral.

Here struts are placed along all edges of a series of regular octahedra and tetrahedral

arranged to fill three-dimensional space [12]. Other truss structures have been de-

scribed loosely as “fully triangulated”, “bulk cross” [29], “cross I symmetric”, “G6”,

“G7”, “dode-thin”, and “hatched” [9, 38]. These and the preceding designations are

re-visited in a later section of this article.

In addition to the vagaries introduced by using polyhedra as the basis of truss

designations, the terminology fails to recognize the fundamentally different nature
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of polyhedra and of trusses. A polyhedron is a three-dimensional solid whose outer

boundaries are defined by plane polygons such that the edge of each polygon belongs

to one other polygon. A truss, on the other hand, consists of a set of points (or

nodal locations) and a set of lines (or struts) joining certain points. Solid geometry

alone lacks the structure needed to completely and unambiguously describe truss

structure.

Descriptions of trusses have also frequently invoked terms derived from the field

of crystallography. Examples include “body centered cubic” and “diamond”. Indeed,

the association between nodal positions of trusses and space lattices in crystallogra-

phy has led to the characterization of trusses as lattice materials, lattice structures

or simply lattices. In addition to the unfortunate conflict with the definitions of lat-

tices in the context of crystallography, the terminology (again) fails to recognize the

fundamental differences between space lattices and truss structure: A space lattice

defines only an array of regularly-spaced points and provides no information about

the connectivity of those points (i.e. topology). Therefore, crystallography alone

(like solid geometry) lacks the structure needed to describe truss structure.
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2.2 Elements of a new language

The principal objective of the article is to present a framework within which

trusses can be systematically described and classified. This requires a set of conven-

tions and terminology that, when applied in a consistent manner, yields concise yet

unambiguous descriptions of structure types and of specific truss designs. In turn,

this goal requires a language of truss structure. As with any language whether ex-

pressed by words in a spoken language or by symbols in mathematics or music the

language of truss structure must have three hierarchical elements: (i) a lexicon of the

smallest distinct meaningful elements (or morphemes); (ii) a grammatical system by

which the morphemes are combined to form the smallest elements that, in isolation,

have practical meaning (i.e. words); and (iii) a syntax, or a set of rules by which

the ordering of elements is used to convey complex ideas (i.e. sentences). The key

elements of the proposed language of truss structure are summarized in Table 2.1

and detailed in due course. Although seemingly short, the language is capable of

describing the many truss structures of current scientific and technological interest.

The language of truss structure is derived from logical descriptors of both the

nodal points in space and the connectivity of those points by struts. These de-

scriptors and their organization form the basis for the conventions of the language.

13



The fundamental bases of the proposed conventions and associated terminology are

fourfold:

(i) An elementary cubic truss is constructed by joining nearest-neighbor points of

one of the three cubic space lattices with struts.

(ii) An elementary non-cubic truss is constructed by applying an affine deforma-

tion to an elementary cubic truss such that the new nodal locations exhibit

symmetry of a different space lattice.

(iii) A compound truss is constructed by combining two different trusses on a single

space lattice, with specified scaling, translational and orientational relationships

and that have matching nodes.

(iv) Complex trusses are constructed by either assigning two or more nodes to each

lattice point and then joining nearest-neighbor nodes with struts, or by assem-

bling a number of truss sub-cells to form a super-cell and tiling that super-cell

in space.

Hereafter, structure types are denoted by {...}, affine (non-distortional) deforma-

tions by a stretch vector 〈λxλy λz〉, translational shifts in origin by [u v w], rotational

transformations about the principal axes by (θx θy θz), and nodal locations at a lat-

tice point by ⌊p q r⌋. Specific truss configurations further include numerical values
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n within {...} to indicate the number of unit cells and superscripts β on {...} that

denote the number of directions in which the truss is tiled in space (1, 2 or 3). Unlike

crystallography, where the concepts are predicated on the notion of an infinite array

of repeating unit cells, the classification system presented here is not restricted to

infinite systems; it naturally allows for the presence of free “boundaries”.

The conventions and terminology are introduced and developed through a series

of illustrative examples of progressively increasing complexity; generalizations of the

resulting framework and taxonomy are presented afterwards. The hierarchy of the

classification system and its conceptual evolution are depicted in Fig. 2.1. The system

begins with elementary cubic trusses (at the center of the figure) and increases in

complexity with the introduction of non-cubic and compound trusses and, finally,

with complex trusses. The taxonomy is then applied to the descriptions of structure

types employed in various science and engineering fields. The merits of one particular

compound truss are assessed by comparing the elastic properties of the compound

truss with those of the octet truss.
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2.3 Development of the language of truss struc-

ture

In the present context, trusses are defined as arrays of straight, interconnected

struts with periodic character. They can comprise few (large) repeating units, as

found in structural engineering, or aggregates of many (small) repeating cells that,

collectively, behave essentially as a material. Their structure is defined completely

by: (i) the positions of all nodes in space, and (ii) the connectivity of the nodes

by struts. Details of node geometry, strut cross-section, strut waviness and other

geometric features and defects are not considered.

2.3.1 Elementary cubic trusses

By our definition, an elementary cubic truss is constructed by joining pairs of

(only) nearest-neighbor points of one of the three cubic space lattices by struts. The

complete set of elementary truss types constructed in this manner is illustrated in

Fig. 2.2. The three structure types are denoted simple cubic, {SC}, body-centered

cubic, {BCC}, and face-centered cubic, {FCC}. (Here the structure types, indicated

by {...} brackets, are distinct from those of lattices or crystals.) Any number of unit

cells of one truss type, connected at the cell faces, can be tiled to form a truss. The
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three specific trusses in Fig. 2.2 consist of 2 × 2 × 2 arrays of unit cells of {SC},

{BCC} and {FCC} trusses; accordingly, they are denoted {2SC}3, {2BCC}3 and

{2FCC}3. Here the superscript (3) on {...} indicates the number of directions in

which the trusses are tiled in space and the numerical value within the {...} brackets

indicates the number of unit cells in each direction.

The unit cells can be arranged in other ways, to form rectangular (generally non-

cubic) prisms. For example, a 2 × 5 × 5 array of {SC} cells could be expressed as

2{5{5SC}} or, more compactly, as 2{5SC}2, i.e. two layers of a 5×5 array of {SC}

cells. As another example, a 2× 3× 6 array would be 2{3{6SC}}.

In the preceding construction, struts are not placed between non-nearest-neighbor

points on the space lattice. Doing so, in some cases, would lead to strut intersections.

The problem can be visualized with the {SC} truss; struts added between second

nearest-neighbors — along the face diagonals — would intersect at the face centers.

Although in principle the problem could be rectified by introducing new lattice points

at the intersections, the process would alter the space lattice and unnecessarily com-

plicate the truss description. Moreover, the trusses that would emerge through this

procedure would not be unique; they could be constructed by other routes, e.g. via

the compound trusses described below.

As with their crystallographic counterparts, each unit cell of an infinite array of
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the three elementary trusses contains a characteristic number, jo, of lattice points:

jo = 1 for {SC}, jo = 2 for {BCC} and jo = 4 for {FCC}. By analogy — but

now going beyond the realm of crystallography — each unit cell of that infinite array

contains a characteristic number, bo, of struts. For example, in an infinite {SC}

truss, there are 12 struts per cell, each shared by four adjoining cells, for a net of

bo = 3 struts per cell. Each strut is of length l = a where a is the edge length of the

unit cell (analogous to the lattice parameter in crystallography). In {BCC} trusses

there are eight struts per unit cell, each starting at the body center and radiating to

one of the eight corners, all wholly contained within that cell; thus bo = 8. The strut

length is l = 3
√

a/2. In an {FCC} cell, there are 12 struts connecting the six face

centers, all wholly contained within that cell. There are also four struts joining each

face center to the four corners on each of the six cube faces; since each of the latter

struts is shared by two adjoining unit cells, collectively they net a total of 12 struts

per cell. Combining with the ones joining the face centers yields a total of bo = 24

struts. Each has a length of a/
√
2.

Analogous procedures are used to determine the number of struts b and lattice

points j for systems of finite size. Consider for example multiple unit cells of an

elementary truss arranged either as a line of n cells (joined at their faces), as a

square array of n× n cells, or as a cubic array of n× n× n cells. The {SC} trusses
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thus produced are denoted {nSC}1, {nSC}2 and {nSC}3. Analogous terminology

would be used to describe {BCC} and {FCC} trusses constructed in this manner.

General results for b and j of finite trusses are obtained from geometry and are

expressed by the simple formulae in Table 2.2.

A key characteristic of truss topology is the connectivity, Z, defined as the average

number of struts meeting at each node. Since each strut ends at two nodes, the

average connectivity is Z = 2b/j. For infinite trusses, Z = Zo = 2bo/jo. The

latter takes on values of Zo = 6, 8 and 12 for {SC}, {BCC} and {FCC} trusses,

respectively. For linear, square and cubic arrays of finite size, the connectivity can

be calculated using the expressions for b and j in Table 2.2.

Truss geometry is further characterized by the relative density (or volume frac-

tion) ρ of strut material within the volume defined by the external boundaries of

the truss. When the strut radius r is small in comparison to the strut length l,

the relative density of a unit cell (contained within an infinite truss) is given by

ρ = ρo = πbo(r/a)
2(l/a). Expressions for ρ for systems of finite size have also been

derived and are presented in Table 2.2.
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2.3.2 Compound cubic trusses

Deficiencies in connectivity of elementary trusses (discussed below) can be recti-

fied by combining dissimilar elementary trusses to form compound cubic trusses. For

example, combining a {2BCC}3 truss and a {2SC}3 truss — both residing in the

same Cartesian coordinate system with the same origin and the same unit cell edge

length — yields the compound truss {2BCC}3|{2SC}3 (Fig. 2.3(a)). (The vertical

line is used to indicate that information on either side pertains to different con-

stituent trusses.) If all strut radii are the same, the relative density of the compound

truss is simply the additive sum of the relative densities of the constituent trusses.

For example, for an infinite truss of the structure type {BCC}|{SC}, the relative

density is ρo = (4
√
3+3)π(r/a)2. Similarly, the number of struts is the sum of those

in the constituent trusses, i.e. bo = 3 + 8 = 11. In contrast, the number of nodes jo

is not additive. Instead, it is greater of the two values of jo of the two trusses, i.e.

jo = j
{BCC}
o = 2. Consequently, the average connectivity is Zo = 2bo/jo = 11. But

the connectivity is not the same at each node: Zo = 8 for half of the nodes (at the

body centers) and Zo = 14 for the other half (at the body corners).

Recognizing that only half of all lattice points of the {2BCC}3 truss are used in

the construction of the {2SC}3 truss, a second SC truss with the same edge length

could be added. It would differ from the first only in that its origin would reside at the
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position [1/2
1/2

1/2] (in units of edge length). But, because of the constraints set by

the size of the parent truss, only one such unit cell could be added; additional struts

emanating from this truss would extend beyond the external boundaries of the parent

truss. This particular compound truss is denoted {2BCC}3|{2SC}3|{SC} [1/2 1/2
1/2]

(Fig. 2.3(b)). The latter part of the designation indicates that the origin of the last

in the series of constituent trusses, notably {SC}, is shifted by [u v w] = [1/2
1/2

1/2]

with respect to the origin of the parent {BCC} truss. Similarly, large trusses of this

type (with n ≫ 1) would be denoted {nBCC}3|{nSC}3|{(n−1)SC} [1/2 1/2
1/2]. The

structure type is {BCC}|{SC}|{SC} [1/2 1/2
1/2]. Values of Zo for these and other

structure types are given in Table 2.3.

Another example of a compound truss, {2FCC}3|{2SC}3, is shown in Fig. 2.3(c).

Here, again, the constituent elementary trusses share a common coordinate system

and origin. Although the {SC} truss does not occupy all of the nodes defined by the

{FCC} truss, a third unit cell (e.g., a second {SC} truss) cannot be introduced into

the existing {2FCC}3|{2SC}3 truss without producing strut intersections. For this

structure type — {FCC}|{SC} — ρo and bo are additive (ρo = (12
√
2 + 3)π(r/a)2

and bo = 27), jo = 4 (that for {FCC}) and the average connectivity is Zo = 13.5.

Yet another example of a compound cubic truss, {2FCC}3|{2BCC}3, is shown

in Fig. 2.3(d). As in the preceding example, no more than one of each of the
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two truss types can be combined without producing strut intersections. For the

{FCC}|{BCC} structure type, ρo and bo are (again) additive: ρo = (12
√
2 +

4
√
3)π(r/a)2 and bo = 32. But, because the {BCC} contributes one additional

node at the body center of each cell (not present in the parent {FCC} truss), the

number of nodes is jo = 5 and the connectivity is Zo = 12.8.

A variant on the {2FCC}3|{2SC}3 compound truss is shown in Fig. 2.4(a). It

comprises a 2×2×2 array of {SC} cells with edge length a and one {FCC} cell with

the same origin but with twice the edge length (2a). Conceptually, the {FCC} cell

is produced by scaling the edge lengths of the parent {FCC} truss by a stretch ratio

vector 〈λx λy λz〉 = 〈2 2 2〉. The truss is therefore denoted {2SC}3|{FCC}〈2 2 2〉. It

represents a cubic supercell that can be duplicated and tiled in space to make larger

trusses. Its structure type is {2SC}3|{FCC}〈2 2 2〉. By analogy to superlattices

in compound crystals, such collections are called supertrusses. Five other cubic su-

pertrusses are shown in Fig. 2.4: {2SC}3|{BCC}〈2 2 2〉, {2SC}3|{FCC}〈2 2 2〉,

{2FCC}3|{SC}〈2 2 2〉, {2FCC}3|{BCC}〈2 2 2〉, {2BCC}3|{FCC}〈2 2 2〉 and

{2BCC}3|{SC}〈2 2 2〉
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2.3.3 Non-cubic trusses

An elementary non-cubic truss is constructed by applying an affine deformation

to an elementary cubic truss. (This procedure differs from first identifying a non-

cubic space lattice and then joining lattice points. In the latter scenario, joining only

nearest-neighbor points with struts would generally lead to a non-contiguous truss.)

Two examples are shown in Fig. 2.5. The first is simple orthorhombic {SO}. Here

the inter-axis angles are 90◦ and the edge lengths along the three principal directions

differ. It is derived from a {SC} truss through stretching/compressing operations in

two of the three principal directions, say y and z, e.g. 〈λx λy λz〉 = 〈1 1.2 1.5〉. This

particular truss is denoted {2SO}2〈11.21.5〉 and its structure type is {SO}〈λxλyλz〉.

Because an affine deformation does not alter truss topology, bo, jo and Zo are the

same as those of the parent {SC} truss. The relative density, being a characteristic

of geometry (not topology), differs. It is readily obtained from geometry.

The second is body-centered orthorhombic {BCO}, constructed by applying

two stretching/compressing operations to a {BCC} truss. If the stretch ratio vec-

tor is again taken to be 〈λx λy λz〉 = 〈1 1.2 1.5〉, the resulting truss would be

{2BCO}2〈1 1.2 1.5〉. Four other non-cubic structure types with orthogonal axes are

possible: face-centered orthorhombic, {FCO}, body-centered tetragonal, {BCT},
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simple tetragonal, {ST}, and face-centered tetragonal {FCT}. Here, again, bo, jo

and Zo are the same as those of the parent truss. Excluding trusses with non-

orthogonal axes, the preceding list of (six) elementary non-cubic structure types is

comprehensive.1

Elementary non-cubic trusses can be combined to form compound non-

cubic trusses. For example, combining the {2SO}2〈1 1.2 1.5〉 with the

{2BCO}2〈1 1.2 1.5〉 yields the truss shown in Fig. 2.5(c) and denoted

{2SO}2〈1 1.2 1.5〉|{2BCO}2〈1 1.2 1.5〉. The coordinate axes and the origins of the

two trusses are the same.

Elementary non-cubic trusses can also be combined to form compound non-

cubic supertrusses. For example, combining one {2BCO}2〈1 1.2 1.5〉 truss with one

{2SO}2〈2 2.4 3〉 truss yields {2BCO}2〈1 1.2 1.5〉|{2SO}2〈2 2.4 3〉 (Fig. 2.5(d)). Both

stretch vectors are referenced to the dimensions of the baseline cubic truss.

Other non-cubic trusses can be formed by applying affine shear deformations to

the preceding trusses. One example is the rhombohedral truss, {R}. The rhombo-

hedral truss is of interest for two reasons: (i) it can be readily made by the SPPC

process [26, 27, 28] and (ii) it forms the basis for the Kagome truss (described below).

1In comparing the list of elementary trusses that have orthogonal axes to the list of Bravais
space lattices that also have orthogonal axes, we find that one of the space lattices — notably,
base-centered orthorhombic — does not have a truss counterpart.
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Conceptually, it is formed by stretching a {SC} truss along the cube diagonal while

maintaining constant strut lengths. In doing so, the inter-axis angles decrease below

90◦. An example is shown in Fig. 2.5(e). The structure type is denoted {R}〈λ111〉

where 〈λ111〉 represents the stretch ratio along the body diagonal. When 〈λ111〉 =
√
2,

the three inter-axis angles are 60◦.

A compound rhombohedral truss can be constructed by combining two identi-

cal rhombohedral trusses with one rotated about the body diagonal by π/3. The

structure type could be denoted {R}〈λ111〉|{R}〈λ111〉(θ111 = π/3), where θ111 is the

rotation angle of the second constituent truss, or, more compactly, as {R(θ111 =

0, π/3)}〈λ111〉 (Fig. 2.5(f)). Here the truss type designation R is followed by the two

rotation angles, all contained within the { } brackets. Compound trusses of this kind

have previously been fabricated by SPPC [28].

Although many other non-cubic trusses could be constructed by applying shear

deformations to simpler trusses, the merits of doing so are presently unclear. In

most cases the resulting trusses would exhibit low degrees of symmetry and complex

shear/normal coupling of stresses and strains. Whether these can be exploited in a

useful way in load-bearing systems remains to be established.

Yet other types of compound non-cubic trusses can be constructed by combining

2D planar trusses with 3D trusses. Conceptually, 2D trusses are constructed by join-
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ing nearest neighbor points on a planar (rather than space) lattice with struts. For

example, the 2D analogs to {SC} and {ST} (3D) trusses are square {Sq} and rect-

angular {Re}, respectively. Two examples of compound 2D/3D trusses are shown in

Fig. 2.6. In the first, a {2BCC}3 truss (from Fig. 2.2(b)) is combined with two square

trusses, one on each of two opposing faces. The compound layered truss is denoted

{2Sq}2|{2BCC}3|{2Sq}2 and its structure type is {Sq}|{BCC}|{Sq} Although in

this case the two trusses share common edge lengths and coordinate systems, various

scalings, translations and rotations can also be employed. Trusses of this type, with

planar trusses on the two external faces of a 3D truss, have been considered for use

as stiff, lightweight “sandwich” panels: the 2D trusses serving as the panel faces and

the 3D truss as the core. A variant is produced by inserting a third square truss

along the mid-plane [64]. This yields a {2Sq}2|{2BCC}2|{2Sq}2|{2BCC}2|{2Sq}2

truss.

2.3.4 Complex trusses

More complex trusses can be constructed following one of two approaches. In the

first, two or more nodes are assigned to each point of a space lattice and struts are

then placed between nearest-neighbor nodal locations. (The analogy in crystallogra-

phy is the construction of a crystal structure by placing atom motifs at each point of
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a space lattice.) Two particular structures of this type have received attention over

the years: the diamond cubic truss [21, 31] and the Kagome truss [12].

The diamond cubic crystal structure is based upon an FCC space lattice with two

atoms at each lattice point: at ⌊000⌋ and ⌊1/4 1/4 1/4⌋ with respect to the origin of the

lattice and at corresponding points following face-centering translations. (Note the

use of ⌊ ⌋ brackets to denote atomic positions at a lattice point) Nodal locations of a

diamond cubic truss are defined in the same way. That is, two nodes are assigned to

each point of an FCC lattice, at ⌊000⌋ and ⌊1/41/41/4⌋. The truss is formed by joining

the nearest-neighbor nodes with struts. The resulting truss comprises tetrahedral-

like sub-units2 with four struts meeting at each node and each strut making an angle

of 109.5◦ to each of the other struts (Fig. 2.7(a)). The structure type is denoted

{FCC⌊0 0 0⌋⌊1/4 1/4
1/4⌋}. Here the space lattice designation, FCC, is followed by

the two nodal locations associated with each lattice point, all contained within the

{ } brackets. Its connectivity is Zo = 4 at all nodes: the minimum possible value for

a three-dimensional truss.

3D Kagome trusses are constructed in a similar way. This truss (Fig. 2.7(b)) is

2The tetrahedral designation comes from the fact that the four struts in each sub-unit are
normal to the faces of a regular tetrahedron centered on the nodal point. In other contexts [59],
the tetrahedral designation has been used to describe trusses in which the struts are coincident
with the edges of a regular tetrahedron. The two resulting structures are vastly different from one
another.
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based upon a rhombohedral space lattice in which the three inter-axis angles are 60◦;

the stretch ratio along the body diagonal needed to achieve this angle is λ111 =
√
2.

Four nodes are assigned to each lattice point, at ⌊000⌋, ⌊1/200⌋, ⌊01/20⌋ and ⌊001/2⌋.

Once again, the truss is constructed by joining the nearest-neighbor nodes with

struts. The resulting structure type is {R⌊000⌋⌊1/2 00⌋⌊0 1/2 0⌋⌊00 1/2⌋}〈λ111 =
√
2〉.

As with the preceding designation of the diamond cubic truss, the nodal locations

associated with each lattice point are contained within the { } brackets.

In the second approach to constructing complex trusses, a super-cell is first con-

structed from an assemblage of two or more elementary sub-cells and the super-cell

is then duplicated and tiled in three dimensions. (In this context, assemblage refers

to a collection of sub-cells that are joined on their faces; it differs from a compound

truss, wherein two or more constituent trusses are built on the same space lattice.)

An illustrative example is a truss based on the rhombic dodecahedron.

The rhombic dodecahedron consists of 12 congruent faces, each in the shape of a

rhombus in which the ratio of the long diagonal length to short diagonal length is
√
2.

It is of interest because it is one of the few polyhedra with congruent faces that can

be tiled to fill three-dimensional space. The truss is created by placing struts along

each of the edges of the reference polyhedron (Fig. 2.7(c)). The resulting structure

is equivalent to one-half of a {BCC} truss. Conceptually, it can be constructed by
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alternating one {BCC} cell with one vacant cubic cell in each of the three directions,

in a 3D checkerboard pattern. The full unit cell comprises a 2 × 2 × 2 array of

sub-cells: four {BCC} cells and four vacant cubes. The structure type is denoted

{BCC [0 0 0] [0 1 1] [1 0 1] [1 1 0]}. The four translation vectors within the {} brackets

imply four families of {BCC} trusses. Its packing density is ρo = (3
√
3π/2)(r/l)2.

Half of the nodes have connectivity Zo = 4 and the other half have Zo = 8; thus the

average value is Z̄o = 6.

2.4 Generalizations of designations of trusses and

structure types

Building upon the pattern established in the preceding examples, a generic ter-

minology is readily developed. As demonstrated in a subsequent section, the termi-

nology can be applied unambiguously to descriptions and classifications of periodic

trusses. A summary of the taxonomy is presented in Table 2.3.

An elementary truss consisting of a linear, square or cubic array of cells is ex-

pressed generically as {nA}β where A is the truss type (SC, BCC or FCC), n is

the number of unit cells in each row and β is the number of directions in which

the truss is tiled (1, 2 or 3). The structure type is simply {A}. When combined
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with the normalized strut radius r/a, the truss designation completely defines the

structure and the geometry of an elementary truss. With these, all other important

characteristics (b, j, Z, ρ) are known.

When the unit cells are arranged to form other types of rectangular (non-cubic)

prisms, the trusses are expressed as nx{ny{nzA}} where nx, ny and nz are the num-

bers of cells in the x, y and z directions, respectively. In cases where two of these

quantities are equal, say ny = nz, the notation can be contracted to nx{nyA}2.

An elementary non-cubic truss is expressed as {nA}β〈λx λy λz〉 where 〈λx λy λz〉

is the stretch vector required to transform the starting elementary cubic truss to

the non-cubic truss {A}. The structure type is {A}〈λx λy λz〉. Here, again, the

truss designation along with r/a fully define truss structure and geometry. Shearing

operations can also be applied; the pertinent strains would then be added to (or

replace) the stretch vector.

A compound truss is described by a list of constituent trusses and their rela-

tionships with one another. The first truss in the list is the parent; it defines the

size, shape and orientation of the system. The spatial extent of the trusses that

follow in the list is restricted to that of the first. Each truss designation is fol-

lowed, in order, by the stretch vector 〈λx λy λz〉, the translation vector [u v w],

and the rotations (θx θy θz) about the coordinate axes, all with respect to the cu-
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bic parent. Since the parent truss defines orientation and position, both [u v w] and

(θx θy θz) for the parent are (usually) identically zero; the stretch vector 〈λx λy λz〉

is present only if the parent is non-cubic. When terms are absent, their values

are implied to have no effect, e.g., stretch values of unity or rotations of zero.

This allows for short designations for simple trusses; additional details are pro-

vided only when necessary. In general, a compound truss designation would read as

{n(1)A(1)}β〈λ(1)
x λ

(1)
y λ

(1)
z 〉}|{n(2)A(2)}β〈λ(2)

x λ
(2)
y λ

(2)
z 〉

[

u(2) v(2) w(2)
]

(

θ
(2)
x θ

(2)
y θ

(2)
z

)

| . . .

where the superscripts (1), (2), . . . denote truss family types. If both trusses are

cubic, the structure type is {A(1)}|{A(2)}.

Compound cubic supertrusses are expressed as {2nA(1)}β|{nA(2)}β〈2 2 2〉. The

factor of 2 on the first truss indicates that the ratio of numbers of the two truss types

must be 2β; the stretch ratio 〈2 2 2〉 on the second truss indicates that the size ratio

of the two unit cells is two. The structure type is {2A(1)}|{A(2)}〈2 2 2〉. If deemed

to be important, other size and number ratios as well as translations and rotations

could be introduced.

More-complex trusses can be constructed by assigning multiple nodes to each

lattice point and joining the nearest-neighbor nodes by struts. The structure type is

{A⌊0 0 0⌋⌊p(2) q(2) r(2)⌋ . . . ⌊p(i) q(i) r(i)⌋} where ⌊p(i) q(i) r(i)⌋ represents the location

of the ith node at each lattice point. Alternatively, a super-cell can be made from an
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assemblage of elementary sub-cells and the super-cell duplicated and tiled in space.

If all of the sub-cells are the same (apart from vacant cells), the structure type would

be {A [0 0 0]
[

u(2) v(2) w(2)
]

. . .
[

u(i) v(i) w(i)
]

}.

2.5 Applications

The many disparate truss designations introduced in prior literature can be con-

cisely and unambiguously described using the present system of classification and

taxonomy. For example, a pyramidal truss, which contains struts aligned along the

four edges at which the triangular faces of a regular square pyramid intersect, is, in

general, of the structure type {BCT}〈1 1 λz〉, where the base of the {BCT} unit

cell coincides with the pyramid base. From geometry, the stretch ratio (measured

perpendicular to the pyramid base, or z-plane) is λz =
√
2 tan θ where θ is the angle

between the triangle edges and the square base. (This structure type reduces to a

{BCC} for the special case in which λz = 1 and hence θ = tan1(1/
√
2) ≈ 35.26◦).

Two specific versions of these trusses have been described as “two-layer pyramidal”

and “one-layer pyramidal” [24, 41]; they are, respectively, {nBCT}2〈1 1 λz〉 and

1/2{nBCT}2〈1 1 λz〉. This structure has also been described as “octahedral-type”

[28]. These and other structure types are summarized in Table 2.4.

32



Hierarchical truss designs based on the preceding structure have been syn-

thesized [15]. They comprise a single-layer pyramidal truss and a fine scale

“octahedral-type” truss. Despite the differing descriptions, both trusses are

of the type {BCT}〈1 1 λz〉. When combined, the two trusses form a su-

pertruss of the type {BCT}〈1 1 λz〉|{1/αBCT}〈α α αλz〉 where α is the size ra-

tio of the constituent trusses (large/small). The specific one reported in [15] is

5{10nBCT}2〈1 1 1λz〉|1/2{nBCT}2〈10 10 10λz〉 with λz ≈ 3.7. That is, it consists

of 5 layers of a 10n × 10n array of {BCT}〈1 1 1λz〉 cells and one half of the full

thickness of an n× n array of {BCT}〈10 10 10λz〉 cells.

A tetrahedral truss, which has struts aligned along three non-coplanar edges of

a regular tetrahedron, is of the type {R}〈λ111〉. When in the form of a single tetra-

hedral layer (typically used as cores within sandwich panels), the specific structure

is 1/3{nR}2〈λ111〉, i.e. one third of the full thickness of an n× n array of {R}〈λ111〉

cells.

The octet truss, comprising struts along the edges of regular octahedra and tetra-

hedral [12], is simply {FCC}.

One class of trusses made by SPPC has been described as “tetrahedral with three-

fold symmetry” [28]. This is also of the type {R}〈λ111〉. The specific designation

depends on the pattern of apertures used for guiding the UV light into the monomer
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bath and the axes of the three light beams. In the cases described by [26], the

apertures are in a hexagonal pattern, the projections of the light beams on the mask

are at 120◦ to one another, and each projection is aligned with one of the close-

packed directions of the aperture array. As noted earlier, the resulting structure

comprises three interlaced but not interconnected {R} trusses. Taking the long axis

of the rhombohedra to be aligned with the c-axis in a hexagonal coordinate system

and using the three-index Miller notation, the structure type would be described as

{R [0 0 0] [0 1 0] [1 0 0]}〈λ111〉.

A related class of trusses previously described as “tetrahedral with six-fold

symmetry” are made in a similar manner but now with six (rather than three)

light beams, each with its projection on the mask aligned with one of the

six close-packed directions of the aperture array [28]. It would be denoted

{R [0 0 0] [0 1 0] [1 0 0]}(θ111 = 0, π/3)〈λ111〉 where θ111 is the rotation about the body

diagonal. The two rotations, θ111 = 0 and π/3, imply two families of trusses, each

described in full by the contents in the preceding { } brackets and each subjected to

a stretch ratio λ111 along the body diagonal.

The structures being explored in the medical implant community are based on

variants of {SC} (e.g., “cross I symmetric”, “G6”), {BCC}|{Sq} compound trusses

(“G7”), or {BCC [0 0 0] [0 1 1] [1 0 1] [1 1 0]} (“dode thin” or “rhombic dodecahe-
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dral”).

Sandwich panels with planar trusses as “face sheets” and 3D trusses as cores

are also conveniently described as compound trusses. One example, previously de-

scribed as “single layer pyramidal” [29] consists of a pyramidal core, specifically

1/2{BCT}2〈1 1 λz〉, and square 2D trusses on each of the two faces. The structure

type is {Sq}|1/2{BCT}〈1 1 λz〉|{Sq}. The form of this designation, with planar

trusses “book-ending” a 3D truss, indicates the plate-like character of the structure.

Another sandwich panel was previously described as being an octet truss plate

[64]. It is, loosely, of the structure type {FCC}. But this designation alone is

incomplete; it lacks information about the orientation of the truss with respect to

the plane of the panel and does not explicitly acknowledge its plate-like charac-

ter. The structure is best described in terms of its constituent elements: (i) the

two faces, each comprising an equilateral triangular arrangement of struts, denoted

{Tr}; and (ii) the central core, which is a tetrahedral truss and is denoted here as

1/3{R}〈λ111 =
√
2. Combining, the structure type of the sandwich panel becomes

{Tr}|1/3{R}〈λ111 =
√
2〉|{Tr}. Here, as in the preceding example, the form of the

designation immediately marks the structure as being plate-like.

The final example comes from a recent theoretical study of the truss structure

that yields the maximum stiffness while retaining isotropic elastic properties. The
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truss is based on the regular truncated octahedron (also known as the Kelvin cell)

[22]. This polyhedron has six square faces and eight regular hexagonal faces. The

corresponding truss comprises 14 struts emanating from the center, each normal to

one of the 14 faces. The structure can be broken down into two interlaced {SC}

trusses and one {BCC} truss (Fig. 2.3(b)). It is equivalent to the compound truss

{nBCC}3|{nSC}3|{(n−1)SC}3 [1/2 1/2
1/2], introduced in Section 3.2. This structure

type, {BCC}|{SC}|{SC} [1/2 1/2
1/2], has also been referred to as “reinforced body-

centered cubic” [43].

2.6 Merits of compounding trusses

To illustrate the merits of compound trusses, we compare the elastic properties

of two truss types: {nFCC}3 and {nBCC}3|{nSC}3. The latter consists of two

elementary trusses that, on their own, act as mechanisms, but together produce a

stiff structure.

The elastic properties were computed by finite element (FE) analysis. The FE

mesh was created using linear Euler-Bernoulli beam elements, suitable for small-

strain analyses with small rotations. The strut slenderness ratio, l/2r, was selected

to be 25, the linear number of unit cells was n = 25, and the constituent elastic
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properties were taken to be: Young’s modulus, Eo = 200 GPa, and shear modulus,

Go = 80 GPa. The strut connections at the nodes were taken to be rigid. Nodal

displacements were applied in two configurations, subjecting the trusses to a state of

uniaxial compression parallel to one of the principal truss directions (denoted 1) or

pure shear (in the 1-2 plane). The reaction forces needed to maintain the prescribed

nodal displacements on the external faces were computed and used to determine

the global elastic constants: Young’s modulus E1, Poisson’s ratio ν12, and shear

modulus G12, as well as the elastic anisotropy parameter ω ≡ 2G12(1 + ν12)/E1 [39].

The results are summarized in Table 2.5. The FE results were also used to construct

polar plots of the Young’s modulus for all possible uniaxial loadings. Sections through

these plots along (011) planes are shown in Fig. 2.8. (This plane contains directions

along the body edge, the face diagonal and the body diagonal.) For reference, the

theoretical upper bound (E/ρEo = 1/6 ≈ 0.167) for isotropic trusses is also shown.

By comparison to the properties of the {nFCC}3 truss, the Young’s modulus

of the compound truss is greater, its shear modulus is only slightly lower, and its

anisotropy parameter ω is closer to unity. The higher degree of isotropy of the

compound truss is also evident in the polar plot in Fig. 2.8; the Young’s modulus of

the compound truss falls in the narrow range of 0.161–0.170 (consistently close to the

upper bound) whereas that of the {nFCC}3 truss varies over the range 0.111–0.200.
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Thus, for applications in which both high specific stiffness and isotropy are sought,

the compound truss would be the preferred choice.

2.7 Concluding discussion

We have presented a system for classification and taxonomy of periodic truss

structures. The system employs concepts from crystallography and geometry to de-

scribe nodal locations and connectivity of struts. The conventions and terminology

yield concise yet unambiguous descriptions of structure types and of specific truss

structures. The system captures a broad range of trusses that have been studied in

various science and engineering fields and could be expanded to include structures

with even greater complexity, going beyond the cases considered here. Additionally,

the FE results demonstrate that the {nBCC}3|{nSC}3 compound truss exhibits

elastic properties that rival those of {nFCC}3, especially when isotropy is a deter-

mining factor.

Numerous trusses that have been studied in recent years do not appear to be par-

ticularly well-suited for use as stiff and strong lightweight structures on their own.

Specifically, those based on the elementary structure types {SC}, {BCC}, {BCT},

{ST} and {R} exhibit mechanisms and would not be expected to be significantly
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better than comparable stochastic foams. However, when combined with other struc-

tural elements, such as face sheets to make a sandwich panel, the additional con-

straints may, in some cases, suppress collapse modes and render the trusses stiff and

strong. Examples include sandwich panels with truss cores of 1/2{nBCT}2〈1 1 λz〉

(single-layered pyramidal) or 1/3{nR}2〈1 1 λz〉 (tetrahedral). Their performance is

attributable in part to the fact that all struts are affixed to both face sheets without

any intervening nodes. By introducing additional nodes, the cores become progres-

sively weaker, especially in the near-edge regions of the panels where the constraints

are low. This would occur, for example, if a 1/2{nBCT}2〈1 1 λz〉 core were re-

placed with a 5{nBCT}2〈1 1 λz〉 core (with a proportionate ten-fold reduction in

strut dimensions to preserve core thickness).

Finally, although the principal motivation for studying the elastic properties of

the {nBCC}3|{nSC}3 truss was to ascertain the extent to which the deficiencies in

the two constituent elementary trusses could be mitigated by compounding, we find

that the compound truss is (coincidentally) closely related to the one that Gurtner

and Durand [22] recently identified as the stiffest isotropic truss. In our terminology,

the latter structure type is {BCC}|{SC}|{SC} [1/2 1/2
1/2]. It is a compound truss

that naturally emerged from our classification system; a specific example is shown

in Fig. 2.3(b). Interestingly, the somewhat simpler compound truss for which elas-
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tic properties were calculated in the present study proves to be essentially as good

as the stiffest isotropic truss, as evidenced by the polar plot of Young’s modulus in

Fig. 2.8. In light of these observations, one might expect that, by systematically step-

ping through and analyzing the finite number of structure types identified through

the present classification system, optimal structures for prescribed mechanical and

functional requirements could be ascertained in an expeditious manner.
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Table 2.1: The language of truss structure.

Lexicon: smallest meaningful elements

Operators:
{ }: truss designation; 〈 〉: stretch vector; [ ]: translational shift;
|: separation between trusses; ( ) rotational transformation; ⌊ ⌋ nodal location

Variables:
λ: stretch ratio; u, v, w: translations; θ: rotation angle;
p, q, r: nodes at lattice point; x, y, z: coordinate axes

Lattices:

SC: simple cubic; BCC: body-centered cubic; FCC: face-centered cubic;
SO: simple orthorhombic; BCO: body-centered orthorhombic; ST : simple tetragonal;
FCO: face-centered orthorhombic; BCT : body-centered tetragonal;
FCT : face-centered tetragonal; R: rhombohedral

Grammar: Elementary trusses formed by combining smallest meaningful elements
Cubic {A} where A = SC, BCC or FCC

Non-cubic: {A}〈λx λy λz〉 where A = SO, BCO, FCO, BCT or FCT

Arrays: {nA}3, nx{nyA}2, nx{ny{nzA}} where n is the number of cells

Syntax: Rules on ordering in defining compound and complex structure types
Compound cubic

truss:
{A(1)}|{A(2)} (without translation/rotation)

{A(1)}|{A(2)}
[

u(2) v(2) w(2)
]

(

θ
(2)
x θ

(2)
y θ

(2)
z

)

(with translation/rotation)

Compound cubic
supertruss:

{2A(1)}|{A(2)}〈2 2 2〉 (without translation/rotation)

{2A(1)}|{A(2)}〈2 2 2〉
[

u(2) v(2) w(2)
]

(

θ
(2)
x θ

(2)
y θ

(2)
z

)

(with translation/rotation)

Compound non-cubic
truss:

{A(1)}〈λ(1)
x λ

(1)
y λ

(1)
z 〉|{A(2)}〈λ(2)

x λ
(2)
y λ

(2)
z 〉 (without translation/rotation)

{A(1)}〈λ(1)
x λ

(1)
y λ

(1)
z 〉|{A(2)}〈λ(2)

x λ
(2)
y λ

(2)
z 〉

[

u(2) v(2) w(2)
]

(

θ
(2)
x θ

(2)
y θ

(2)
z

)

(with translation/rotation)

Compound non-cubic
supertruss:

{2A(1)}〈λx λy λz〉|{A(2)}〈2λx 2λy 2λz〉 (without translation/rotation)

{2A(1)}〈λx λy λz〉|{A(2)}〈2λx 2λy 2λz〉
[

u(2) v(2) w(2)
]

(

θ
(2)
x θ

(2)
y θ

(2)
z

)

(with translation/rotation)

i translations of
same truss type:

{A [0 0 0]
[

u(2) v(2) w(2)
]

. . .
[

u(i) v(i) w(i)
]

}

i nodes at
lattice points:

{A⌊0 0 0⌋
[

p(2) q(2) r(2)
]

. . .
[

p(i) q(i) r(i)
]

}
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Table 2.2: Geometric characteristics of linear, square and cubic arrays of elementary
trusses of finite size.

{SC} {BCC} {FCC}

Linear array of
n cells

b = 8n+ 4 b = 8n b = 32n+ 4
j = 4n+ 4 j = 5n+ 4 j = 9n+ 5

ρ = π
(

r
a

)2 (
8 + 4

n

)

ρ = 4
√
3π

(

r
a

)2
ρ = π

√

2

(

r
a

)2 (
32 + 4

n

)

Square n× n
array

b = 5n2 + 6n+ 1 b = 8n2 28n2 + 8n

j = 2 (1 + n)
2

j = 3n3 + 4n+ 2 j = 6n2 + 6n+ 2

ρ = π
(

r
a

)2 (
5 + 6

n
+ 1

n2

)

ρ = 4
√
3π

(

r
a

)2
ρ = π

√

2

(

r
a

)2 (
28 + 8

n

)

Cubic n× n× n
array

b = 3n (1 + n)
2

b = 8n3 b = 12n2 (1 + 2n)

j = (1 + n)
3

j = (1 + 2n)
(

1 + n+ n2
)

j = (1 + n)
(

1 + 2n+ 4n2
)

ρ = π
(

r
a

)2 (
3 + 6

n
+ 3

n2

)

ρ = 4
√
3π

(

r
a

)2
ρ = π

√

2

(

r
a

)2 (
24 + 12

n

)
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Table 2.3: A summary of structure types.
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Table 2.4: Designations of previously-studied trusses.

Reported description Structure type Comments

“G6” [9, 34, 37, 38]; “Or-
thotropic with cubic cells”
[2]

{SC}

“Octahedral-type” [26, 27, 28]
“Pyramidal” [24, 41]

{BCC} or {BCT}〈1 1 λz〉
Truss type dictated by strut
angle
Two-layered: {BCT}〈1 1 λz〉
One-layered: 1/2{BCT}〈11λz〉

“Octet truss” [12] {FCC}

“Cross I symmetric” [9, 34,
37, 38]

{SC}
[

1/2
1/2

1/2
]

Same as G6, except for origin
translation

“Hatched” [34, 37, 38] {ST}〈1 1 λz〉 λz ≈ 1.5

“Tetrahedral” [48, 59] 1/3{R}〈λ111〉

“G7” [9, 34, 37, 38] {BCC}|{Sq}

“Body centered cubic” [43] {BCC}|{SC}

“Orthotropic with cubic
cells and global diagonal
bracing” (design A) [2]

{2SC}|{FCC}〈2 2 2〉 Specific truss tested:
{4SC}3|{2FCC}3〈2 2 2〉

“Dode thin” [9, 34, 37, 38] {BCC [0 0 0] [0 1 1] [1 0 1] [1 1 0]} Also called rhombic
dodecahedral

“Tetrahedral with three-
fold symmetry” [26, 27, 28]

{R [0 0 0] [0 1 0] [1 0 0]}〈λ111〉 Based on reported angles
λ111 ≈ 2. Translations are in
the hexagonal coordinate sys-
tem using three-index Miller
notation.

“Tetrahedral with six-fold
symmetry” [26, 27, 28]

{R [0 0 0] [0 1 0] [1 0 0]}
(θ111 = 0, π/3)〈λ111〉 Based on reported angles

λ111 ≈ 2. Superposition of the
two {R} trusses lead to strut
intersections.

“Regular truncated octa-
hedron” [22], “Reinforced
body centered cubic” [43]

{BCC}|{SC}|{SC}
[

1/2
1/2

1/2
]

Hierarchical “single-layer
pyramidal truss and
octahedral-type truss” [15]

{BCT}〈11λz〉|{1/αBCT}〈αααλz〉 α is the size ratio

“Single-layer pyramidal”
[29]

{Sq}|1/2{BCT}〈1 1 λz〉|{Sq} Sandwich panel

“Octet panel” [64] {Tr}|1/3{R}〈λ111 =
√
3〉|{Tr} Sandwich panel
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Table 2.5: Elastic properties

E1/ρEo ν12 G12/ρEo ω ≡ 2G12(1 + ν12)/E1

{nBCC}3|{nSC}3 0.162 0.257 0.069 1.05

{nFCC}3 0.111 0.333 0.083 2.00
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Figure 2.1: Schematic representation of the structure classification system and its
conceptual evolution: from elementary cubic trusses (at the center) to more com-
plex structures with non-cubic symmetries and with multiple constituent trusses in
compound systems.

Figure 2.2: Examples of the three elementary cubic trusses. (Unit cells highlighted
by darker colors.)
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Figure 2.3: Compound cubic trusses. Unit cells are highlighted by darker col-
ors. (Movies of trusses in (a) and (b) available as Supplementary Material at
doi.org/10.1016/j.jmps.2016.07.007)
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Figure 2.4: Single unit cells of compound cubic supertrusses. (Movies
of trusses in (a), (e) and (f) available as Supplementary material at
doi.org/10.1016/j.jmps.2016.07.007.)
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Figure 2.5: Examples of elementary and compound non-cubic trusses.
(A movie of the truss in (e) available as Supplementary material at
doi.org/10.1016/j.jmps.2016.07.007.)
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Figure 2.6: Examples of 2D/3D compound trusses.
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Figure 2.7: Examples of complex trusses: (a) diamond cubic, (b) Kagome and (c)
rhombic dodecahedral. Unit cells are highlighted by darker colors. (Movies of all
trusses available as Supplementary material at doi.org/10.1016/j.jmps.2016.07.007.)
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Figure 2.8: Planar sections through polar plots of Young’s modulus along the (011)
plane for the elementary {nFCC}3 and the compound {nBCC}3|{nSC}3 trusses.
The abscissa is aligned with one of the body edges. Because of symmetry, results for
only one quadrant are presented. Results are based on FEA for n = 25.
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Chapter 3

Design and mechanical properties
of elastically isotropic trusses

3.1 Introduction

As discussed previously, periodic truss structures can be designed to have high

specific strength and specific stiffness in combination with other desirable attributes.

Most truss topologies, however, exhibit strongly anisotropic mechanical properties:

an undesirable characteristic when trusses are used in applications in which the

directions of loading are not known a priori. The present study addresses the design

This chapter is adapted from a peer-reviewed publication: Ryan M Latture, Matthew R Begley,
and Frank W Zok. Design and mechanical properties of elastically isotropic trusses. Journal of

Materials Research, 33(3):249–263, 2018. Available at: https://doi.org/10.1557/jmr.2018.2
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of lightweight (low relative density) truss structures that are elastically isotropic and

that also exhibit high strength. The designs are based principally on compound

trusses comprising two or more elementary cubic trusses that, on their own, are

highly anisotropic.

Truss design can follow one of two broad approaches. In the first, computational

algorithms based on finite elements are used for shape and topology optimization

[1, 4, 23, 54]. For structural problems, the entire allowable spatial domain is dis-

cretized by elements; the properties of the elements form the design variables. An

optimization problem is formulated from an objective function and a set of con-

straints, the latter including mechanical equilibrium of the structure and allowable

material volume. Using this approach, elastic moduli have been maximized under

constraints of elastic isotropy and fixed relative density [8, 40]. Moduli were calcu-

lated from the response of trial structures to various applied test fields. Gradient-

based optimization methods were used to find (local) optima. The moduli of resulting

topologies have been shown to approach the Hashin-Shtrikman upper bound. How-

ever, in general, the topologies are complex and the structures would be difficult

to fabricate, even with current additive manufacturing techniques. An additional

drawback of this “top-down” approach is that it rarely yields insights into general

design principles with broad application.

54



The second approach (employed here) follows a “bottom-up” path. Notably, el-

ementary truss structures are combined in judicious ways to create trusses in which

the positive attributes of the constituent trusses are exploited while their shortcom-

ings are ameliorated. In essence, the topology is fixed at the outset while certain

geometric parameters are systematically varied. The resulting design space is much

smaller than that in the more general topology optimization approach.

The principal goal of the study is to identify designs of trusses that are: (i)

elastically isotropic, (ii) exhibit high specific stiffness, and (iii) have potential for high

strength under various loading scenarios, including compression, tension and shear.

Preliminary insights into the design strategy are obtained from examination of the

topology of elementary cubic trusses. Because of the alignment of struts along the

edges of its unit cell, the {SC} truss is stiff along the body edges but highly compliant

in other loading directions, e.g., along the face diagonal or the body diagonal. In

contrast, the {BCC} truss is stiff along the body diagonal and compliant in other

directions.1 Since the two trusses exhibit high stiffness along different directions,

we expect that combining {SC} and {BCC} trusses on to a common space lattice

1From a structural mechanics perspective, {SC} and {BCC} trusses are mechanisms, not struc-
tures. If pin-jointed, they would collapse under infinitesimal loads. If the joints were rendered rigid,
collapse would be resisted by the bending stiffness and strength of the struts. These are therefore
classified as bending-dominated trusses. In contrast, {FCC} trusses are structures. If pin-jointed,
they could support finite loads in any arbitrary direction; the loads would be transmitted by axial
tension or compression in the struts. These are classified as stretching-dominated trusses.

55



should yield a compound truss with a higher degree of isotropy than those of the

constituent elementary trusses. The {FCC} truss is stiffest along the body diagonal

and most compliant along the body edge: the ratio of minimum to maximum stiffness

being 5/9 [12]. Although this truss is the most isotropic of the three, we expect that

its low stiffness along the body edges might be mediated by the addition of a {SC}

truss. Since both {FCC} and {BCC} trusses are stiff along the body diagonal and

more compliant along the body edges, a compound truss comprising these two would

not be expected to yield improved isotropy.

To provide context for subsequent analyses of buckling failure (the mode that

invariably dominates when the relative density is sufficiently low), we find it useful

to couch the discussion in terms of three distinct factors governing failure:

(i) The average axial strut strain ǫa relative to the global (applied) strain ǫ in each

of the constituent strut populations;

(ii) The strut slenderness ratio l/r, where l is strut length and r is its radius

(assuming circular cross-sections); and

(iii) The constraints imposed on the strut ends by adjoining struts, characterized

by the effective length factor K in Euler buckling theory.

As we show in due course, the macroscopic failure strain of trusses that fail by
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buckling is proportional to
(

ǫ
ǫa

)

(

r
Kl

)2
.

An additional implicit factor in truss failure is the nodal connectivity, Z. All

other factors held constant, high values of Z lead to increased constraints on the

strut ends and increased buckling resistance, as manifested in low K. Nodal con-

nectivity is also indirectly related to strut slenderness. That is, if relative density is

kept constant, an increase in connectivity must be accompanied by a higher num-

ber density of struts which, in turn, must be accommodated by lower strut radius

and hence higher slenderness ratio. The preceding two effects act in opposition: the

former inhibiting buckling and the latter promoting buckling as Z increases. When

Z is sufficiently small (say < 12), truss deformation is dominated by strut bending

and the average axial strut strains are negligible [5]. Instead, deformation is accom-

modated by changes in strut curvature and failure occurs by mechanisms other than

buckling (i.e. yielding or fracture).

The article is laid out in the following way. Truss topologies, finite element models

and solution methods are described in Section 3.2. Elastic properties of the trusses

of interest are presented in Section 3.3. The axial strut strains and their spatial

variations are considered in Section 3.4. Inelastic (buckling) responses are addressed

in Section 3.5. Effects of truss size, characterized by the number of unit cells in a

cubic array of such cells, are also explored.
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3.2 Methods

3.2.1 Topologies, geometry and models

Finite element (FE) computations were used to ascertain the mechan-

ical properties of, specifically: (i) the elementary cubic trusses {nSC}3,

{nFCC}3 and {nBCC}3, (ii) the binary compounds {nFCC}3|{nSC}3 and

{nBCC}3|{nSC}3, and (iii) the ternary compounds {nFCC}3|{nBCC}3|{nSC}3

and {nBCC}3|{nSC}3|{(n− 1)SC}3 [1/2 1/2
1/2] (the latter being the isotropic truss

identified by Gurtner and Durand [22]). Here n was varied from 1 to 11. Structures

were discretized using three-dimensional Timoshenko beam elements with circular

cross-section. Strut dimensions were selected to yield a relative density of ρ = 0.01.

(Other FE simulations, with ρ ranging from 0.001 to 0.05, yielded virtually identi-

cal results when normalized by relative density accordingly). The properties of the

parent material were taken to be: Young’s modulus Eo = 200GPa, shear modulus

Go = 80GPa, and mass density ρo = 7800 kgm−3. Strut intersections were mod-

eled as rigid joints. In compound trusses, all struts of a specific constituent truss

were assigned the same cross-sectional area, dictated by the total volume fraction

of material allocated to that truss type. The proportions of volumes allocated to

each constituent truss within the compounds were varied from 0 to 1 in increments
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of 0.01. Models were processed using the commercial package Abaqus (Version 6.13-

EF4, Dassault Systèmes).

3.2.2 Elastic properties

Elastic properties were computed for uniaxial normal loading (compression or

tension) along one of the principal directions (denoted 1) and in pure shear (in the

1-2 plane) using Abaqus/Standard. A state of uniaxial compression was obtained by

prescribing displacements of lattice points on opposing faces of the model: u = ǫ1L

at x = L and u = 0 at x = 0, where u is nodal displacement along the 1-axis, x is the

position on the 1-axis, ǫ1 is the strain in the 1-direction and L is the length of the truss

along the principal directions. Here lattice points are defined by the space lattice

before discretizing struts into beam elements. Rigid body motion of the model was

prevented by pinning the lattice point at the origin, i.e. u = v = w = 0 at (0, 0, 0)

where v and w are nodal displacements along the 2- and 3-axes, respectively, and

assigning w = 0 for the lattice point at (0, L, 0). Analogously, a state of pure shear

was obtained by prescribing nodal displacements on the 1- and 2-faces: v = ǫ12L/2

at x = L, v = −ǫ12L/2 at x = 0, u = ǫ21L/2 at y = na, and u = −ǫ21L/2

at y = 0. Rigid body motion was constrained in shear by imposing w = 0 at

(0, 0, 0) and (0, L, L). In all cases, the global engineering strains were 0.02, i.e.
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ǫ1 = 0.02 for uniaxial compression and γ12 = ǫ12+ǫ21 = 0.02 for pure shear. From the

corresponding computed reaction forces, the Young’s modulus, E1, shear modulus,

G12, and Poisson ratio, ν12, were computed.

The degree of elastic anisotropy was ascertained from the variation in axial stiff-

ness with loading direction. The stiffness along a vector 〈ijk〉 is related to the elastic

constants via [39]:

1

E〈ijk〉
=

1

E1

− 2
(

α2β2 + β2γ2 + α2γ2
)

(

1

E1

− 1

2G12

− ν12
E1

)

(3.1)

where α, β and γ are the direction cosines between 〈ijk〉 and the principal coordinate

axes. The results are presented as polar plots of E〈ijk〉.

Based on symmetries in loading and truss topologies, struts are grouped in the fol-

lowing way. In {FCC}, type I struts comprise [110] and [11̄0], type II comprise [101]

and [101̄], and type III comprise [011] and [011̄]. Type I and II struts are oriented at

45 degrees to the compression direction whereas type III struts are perpendicular to

the compression direction. Additionally, type I and II struts are loaded in opposite

directions under an applied shear strain, γ12. In {SC}, type IV are [100] (parallel

to the compression direction) and type V comprise [010] and [001]. In {BCC}, type

VI struts comprise [111] and [1̄11] and type VII comprise [11̄1] and [111̄]. The latter

two are loaded in opposite directions under an applied shear strain.
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3.2.3 Strut strains

Axial strut strains, ǫa, resulting from application of either uniaxial compression,

ǫ1, or pure shear, γ12, in an infinite truss (n = ∞) were calculated using the direct

stiffness method. For this purpose, a single unit cell was modeled using periodic

boundary conditions. The boundary conditions were adapted from a method outlined

in [62] whereby nodal displacements on opposing faces of the model are linked via

linear multi-point constraints. This method assumes that faces remain planar and

does not consider rotational degrees of freedom. The omission of the latter is valid

in stretch-dominated trusses provided struts have not buckled (in which case nodal

rotations are negligible). In their analysis, Wallash and Gibson reported errors due

to the neglect of bending moments in reaction forces of approximately 1.4%. We

expect to get similar errors in the present analysis. The cross-sectional area of struts

shared between adjacent cells was properly adjusted to avoid over counting. Results

are presented for each unique strut population for a given type of loading.

To ascertain the strain amplifications due to external boundaries, axial strut

strains resulting from application of uniaxial compression were also calculated for

struts in finite trusses. The results were sorted in two ways: (i) by strut type (I–VII)

and (ii) by strut location, characterized by the distance δ from the strut centroid to

the nearest external free boundary.
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3.2.4 Inelastic response

The inelastic responses for uniaxial compression, pure shear and uniaxial tension

were computed for finite trusses using Abaqus/Explicit. Boundary conditions were

analogous to those employed for the elastic simulations, except that nodal velocities

(rather than displacements) were prescribed, e.g. velocity, ẋ = dx/dt = ǫ̇L at x = L

for uniaxial compression. Velocities were selected to yield quasi-static strain rates

(|ǫ̇| ≤ 10−3 s−1). The resulting ratio of kinetic to potential energy was less than 10−3

for all time steps in each simulation, confirming quasi-static loading. The equations

of motion were integrated using explicit central differences with fixed timestep until

reaching a global strain of 2%. To smoothly traverse bifurcation (buckling) phenom-

ena in the solution path, imperfections consistent with the first three buckling modes

were superimposed according to the geometric sequence:

∆x = n
3

∑

i=1

B(p)i−1φi (3.2)

where ∆x is the resultant vector of nodal displacements applied to the original nodal

coordinates, n is the lineal number of unit cells, B is the amplitude applied to the

first buckling mode, r is the ratio of geometric progression, and φi contains the set

of nodal displacements of the ith mode shape normalized such that the maximum

displacement is equal to 1.0. Here, B was taken to be 0.001, and p was 1/2.
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Imperfections of this type do not affect the ultimate truss strength. In the trusses

of present interest, failure is governed by elastic buckling of families of struts that are,

on average, equally strained. Here the macroscopic truss strength is dictated by the

volume-averaged strut stress once all struts have buckled. Because the stress needed

for continued strut buckling is constant (i.e. the strut response is effectively elastic,

perfectly-plastic), a premature buckling event caused by a structural imperfection

does not significantly affect the ultimate strength.

Interestingly, without imperfections, the buckled solution can still be found; nu-

merical integration of the equations of motion introduces errors into nodal displace-

ments that serve the same purpose as artificial imperfections. But, since the inte-

gration errors and the resulting imperfections are small, buckling causes intense high

frequency oscillations. Seeding structural imperfections dramatically reduces these

effects. Even with structural imperfections, weak high frequency oscillations are still

obtained. As a result, a small amount of damping was introduced in the form of

linear bulk viscosity. It generates a pressure,

p = ζρocdleǫ̇vol (3.3)

where ζ is a damping coefficient, ρo is the material density, cd is the dilatational wave

speed, le is the length of the element and ǫ̇vol is the volumetric strain rate. For all

simulations, ζ = 0.06. Linear bulk viscosity of this form is included by default in
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Abaqus/Explicit.

3.2.5 Buckling strengths

The preceding results were interpreted in the context of Euler buckling theory.

For reference, the critical load Pc for strut buckling is given by Pc = π2EI/ (Kl)2

where E is Young’s modulus; I is the second moment of area of the strut cross sec-

tion; l is its length; and K is the non-dimensional effective-length factor, dictated by

the degree of constraint at the strut ends. For example, if transverse displacements

and rotations were fully-constrained at both ends, K = 1/2; this condition yields the

highest buckling load. In contrast, if both strut ends were pin-jointed and displace-

ments of the endpoints were only allowed along the strut axis, K = 1. Yet higher

values of K would be obtained as the number of degrees of freedom of the strut ends

is increased.

In the current study, values of K for each strut population were inferred from

the average axial strut strain ǭa at the point of buckling of the respective strut

population, via K = πr/2l
√
ǭa. The results were further combined to compute three

buckling metrics, defined by βc =
(

ǫ1
ǫa

)

(

r
Kl

)2
in compression, βt = −

(

ǫ1
ǫa

)

(

r
Kl

)2
in

tension and βs = −
(

γ12
ǫa

)

(

r
Kl

)2
in shear, for each strut population. The values of

the metrics provide quantitative measures of the resistance of the struts to buckling
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for each truss type, taking into account strut slenderness (summarized in Table 3.1),

axial strut strain (Tables 3.2–3.4), and constraints at the nodes, the latter governed

by the number and nature of struts passing through the nodes.

3.3 Elastic properties

3.3.1 Elementary cubic trusses

The three elementary cubic trusses exhibit a wide range of elastic properties and

anisotropy. (Polar plots of their axial stiffness for large n are shown in Figure 3.1.)

For reference, the maximal stiffness for strut-based isotropic trusses is E/Eoρ = 1/6

[22]. Both the {SC} and {BCC} trusses are mechanisms; they exhibit high stiffness

only along directions parallel to strut directions and are highly compliant in other

directions. Specifically, the maximum stiffness of {SC} is E/Eoρ = 1/3, along 〈100〉-

type directions, whereas the maximum stiffness of {BCC} is E/Eoρ = 1/9, along

〈111〉-type directions. On their own, these trusses do not make useful structures.

Among the elementary trusses, the {FCC} truss is closest to isotropic. Its stiffness

is E/Eoρ = 1/9 and 1/5 along 〈100〉- and 〈111〉-type directions, respectively.

The elastic properties of the elementary cubic trusses are essentially indepen-
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dent of n (Figure 3.2). One exception is the shear modulus of the {BCC} truss;

the average nodal connectivity decreases from 8 when n = ∞ to 1.7 when n = 1.

Consequently, its shear modulus goes to 0 as n goes to 1.

3.3.2 Binary compound trusses

Stiff isotropic trusses are obtained for select combinations of elementary trusses.

Variations in the elastic constants with volume fraction of the constituent trusses in

the binary compounds are plotted in Fig. 3.3 for n = 11. Also shown are the values

based on rule-of-mixtures predictions. The latter predictions tacitly assume that

the constituent trusses behave independently of each other, i.e. without mechanical

coupling. Representative polar plots of the axial stiffness are also included as insets.

Videos showing the evolution of axial stiffness and elastic moduli are provided in

Supplementary Information at doi.org/10.1557/jmr.2018.2 (Vid. S1 and S2). The

key observations follow.

The compound trusses 80% {FCC}|20% {SC} and 60% {BCC}|40% {SC} are

isotropic.2 Their Young’s moduli are slightly higher than rule-of-mixtures prediction.

This is because type V struts, which are perpendicular to the loading axis and stress-

free in the elementary structure, are placed into tension in the compound truss,

2Composition denotes the relative percent of total material volume allocated to each truss.
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thereby constraining the lateral node displacements. In shear, the {SC} struts (type

IV and V) are not loaded and do not contribute to the shear modulus. Thus the

shear modulus is well represented by the rule-of-mixtures, in this case given by the

product of the volume fraction and modulus of the constituent {FCC} or {BCC}

sub-trusses.

Here again the elastic properties are insensitive to n. Variations of the elastic

constants with n for the isotropic 60% {BCC}|40% {SC} truss are shown in Fig-

ure 3.2. Reported properties of isotropic trusses that are maximally stiff are also

shown: E1/Eoρ = 1/6, G12/Eoρ = 1/15 and ν12 = 1/4 [22]. Young’s modulus and

Poisson’s ratio of the compound truss are virtually independent of n and are equiv-

alent to those of the predicted maximal value. A reduction in shear modulus for

the compound truss is observed below n = 3. Similar to the response of {BCC} in

shear, the reduction of average nodal connectivity that accompanies the reduction in

n leads to a more compliant truss. Variations in the elastic properties of the isotropic

{FCC}|{SC} truss are not shown; by design its properties are identical to those of

the {BCC}|{SC} truss (at least at large n).
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3.3.3 Ternary compound trusses

Stiff isotropic trusses are also obtained with certain ternary

{FCC}|{BCC}|{SC} compound trusses. Their elastic properties are shown

in Figure 3.4. Each property is presented within a Gibbs triangle; each corner

represents one of the three elementary trusses, each edge corresponds to one of the

three binaries, and the interior regions correspond to the ternaries. Contours show

compositions at which the properties are of constant value. Contours highlighting

compositions that exhibit elastic properties of isotropic maximally-stiff trusses are

also shown. The latter compositions follow straight lines joining the two isotropic

binary trusses, namely 80% {FCC}|20% {SC} and 60% {BCC}|40% {SC}. All

trusses along this line are isotropic and exhibit the highest possible stiffness. Notably

absent from the latter are binary combinations of {FCC} and {BCC}. As noted

previously, since each of these trusses on its own exhibits high compliance along the

body edges, combinations of the two do not ameliorate their inherent anisotropy.

Gurtner and Durand [22] identified another maximally stiff isotropic ternary

truss, of the type {BCC}|{SC}|{SC} [1/2 1/2
1/2]. In their treatment, the cross-

sectional areas of struts in the two {SC} trusses were taken to be equal to one

another. The ratio of cross-sectional areas, s, of the {BCC} struts and the {SC}

struts for maximal isotropic stiffness is sBCC/sSC = 3
√
3/4. This equates to approx-
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imately 60% of {BCC} and 20% of each of the two {SC} trusses. As we show below,

the analogous binary truss (with equivalent elastic properties) is more robust in the

post-buckling domain.

3.4 Strut strains

3.4.1 Infinite trusses

As a prelude to the non-linear buckling responses of the trusses of interest, we

present results for the axial strut strains when the trusses are loaded elastically in

compression, in tension and in shear. The trusses of interest are the (anisotropic)

{FCC} truss, the isotropic binary trusses {FCC}|{SC} and {BCC}|{SC}, and

the isotropic ternary truss {BCC}|{SC}|{SC} [1/2 1/2
1/2]. The axial strut strains

ǫa, normalized by the respective applied strains, ǫ1 or γ12, for infinite trusses are

summarized in Tables 3.2–3.4.

When the {FCC} truss is loaded in compression, the axial strain in type I and

II struts (inclined at 45 degrees to the loading direction) is ǫa/ǫ1 = 1/3 while that in

type III struts (perpendicular to the loading direction) is ǫa/ǫ1 = −1/3. The axial

strains in the {FCC} struts within the isotropic {FCC}|{SC} truss differ slightly:
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ǫa/ǫ1 = 3/8 for types I and II and ǫa/ǫ1 = −1/4 for type III. The differences arise

because of the constraints imposed by the {SC} struts. The strains in type IV and

V struts within the binary truss are ǫa/ǫ1 = 1 and −1/4, respectively. (The ratio of

the latter two strains emerges naturally from the fact that the Poisson’s ratio for the

isotropic maximally-stiff truss is 1/4 [22]). The difference in the axial strains in the

compressed struts in the elementary and compound trusses (1/3 vs. 3/8) suggests a

slightly higher propensity for strut buckling in the compound truss at a prescribed

macroscopic strain. The results for strut strains for tensile loading are the same

except for a sign change.

For shear loading, the axial strut strains in the {FCC} truss are ǫa/γ12 = 1/2,

−1/2 and 0 in type I, II and III struts, respectively. The same results are obtained

for the {FCC} struts within the binary {FCC}|{SC} truss. Here the {SC} struts

experience no axial strain and therefore have no effect on the elastic response of the

{FCC} sub-truss (apart from the reduction in the diameter of the {FCC} struts,

to maintain constant relative density).

When compound isotropic trusses (both binary and ternary) containing {BCC}

struts are loaded in compression, all such struts experience the same axial strain:

ǫa/ǫ1 = 1/6. (On its own, the elementary {BCC} truss is entirely bend-dominated

and thus the struts experience negligible axial strain.) Again the strains in type IV
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and V struts within the {SC} truss are ǫa/ǫ1 = 1 and −1/4. For shear loading, the

strains in the {BCC} sub-truss are ǫa/γ12 = 1/3 and −1/3 while the constituent

{SC} struts experience no axial strain.

3.4.2 Boundary effects in finite trusses

Strut strains differ in near-boundary regions because of local differences in connec-

tivity and constraint. Effects of boundaries on strut strains for compressive loading

of trusses with n = 11 are shown in Figure 3.5. Strains are plotted against the

normalized distance δ/a from the centroid of a strut to the nearest external free

boundary. Data points are labeled by truss type and solid lines indicate predicted

strains in infinite trusses. In all cases, some of the near-boundary struts experience

a strain that is significantly greater or less than the average value.

The maximum strain amplification in type I and II struts in the {FCC} truss

is about 35%; the amplification persists over distances of about δ/a = 2 into the

truss interior. Type III struts in this truss experience a maximum (tensile) strain

of ǫa/ǫ1 = −1/2: 50% greater than the average value for that strut population.

The most heavily strained struts are ones that intersect the truss edges (see Video

S3 in Supplementary Information at doi.org/10.1557/jmr.2018.2). In the two binary

trusses, the strain amplification within {SC} struts is negligible. In contrast, {BCC}

71

https://doi.org/10.1557/jmr.2018.2


and {FCC} struts in the two binary trusses experience strain amplifications as high

as 80% and 35%, respectively. Even higher amplifications are obtained in the near-

surface {BCC} struts in the ternary truss. In these cases the effects also persist to

depths of δ/a ≈ 2.

The magnitude of strain amplification does not change appreciably with truss

size. Distributions in axial strut strains for n = 2 − 11 are shown in Figure 3.6.

Within a given strut type, the minimum and maximum strains are virtually inde-

pendent of n. The middle two quartiles of data shrink as n increases because an

increasing fraction of struts is located away from external boundaries. Strain ampli-

fications for struts of the same type can be highly dependent on truss type. Type

III struts of the elementary {FCC} truss (Fig. 3.6(a)) on average experience greater

strain amplification than that for struts in the compound truss (Fig. 3.6(b)). The

most significant changes between corresponding struts of different trusses are seen

when comparing the strut strains of the ternary truss to that of the binaries. Type

IV struts, which experience little variation in axial strain in either binary truss, ex-

perience large strain amplifications in the ternary truss. Additionally, the maximum

axial strain in {BCC} struts (type VI and VII) in the ternary truss is roughly twice

that of the {BCC}|{SC} truss, despite the fact that the {BCC} struts are identical

in both structures.
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3.5 Nonlinear response and strength

3.5.1 Compression (n=11)

The stress-strain responses of the four trusses of interest in compression are

shown in Figure 3.7(a), all for truss size n = 11. Videos showing truss deformation

are provided in Supplementary Information at doi.org/10.1557/jmr.2018.2. Stress

is normalized by Eoρ
2 and strain is normalized by ρ. These normalizations yield

the expected scalings in properties, notably stiffness proportional to Eoρ and buck-

ling strength proportional to Eoρ
2. Provided ρ is sufficiently small and failure is

buckling-dominated (that is, neither yielding nor fracture intervene), the results in

this form are, to a very good approximation, independent of ρ and Eo. This feature

is illustrated in Figure 3.8.

The {FCC} truss exhibits the lowest modulus but highest initial buckling stress

(Fig. 3.7(a)). Buckling occurs within 2/3 of the struts (types I and II); the remainder

(type III) experience tension. Buckling initiates and proceeds at a stress σ1/Eoρ
2 ≈

0.057. This yields essentially elastic, perfectly-plastic behavior.

Although the addition of the {SC} truss to the {FCC} truss is required to

produce an elastically isotropic (binary) truss, the addition has a detrimental effect on

strength. In the {FCC}|{SC} truss, type IV struts within the {SC} sub-truss buckle
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first, at a stress σ1/Eoρ
2 ≈ 0.03. As buckling of these struts proceeds, the tangent

modulus decreases only slightly, because the {FCC} struts remain unbuckled. The

latter struts subsequently buckle, at a stress σ1/Eoρ
2 ≈ 0.048: about 20% lower than

that of the elementary {FCC} truss. At this point essentially all of the load is borne

by the {FCC} struts.

The binary {BCC}|{SC} exhibits a similar sequence of buckling events, albeit at

higher stresses; the {SC} and {BCC} struts buckle at stresses σ1/Eoρ
2 ≈ 0.041 and

0.062, respectively. The latter exceeds the strength of the elementary {FCC} truss

by about 10%. This effect could be exploited in practice only if the strut material

were to have sufficiently high yield and fracture strains, thereby allowing the struts

to remain elastic up to the second buckling event. The ternary {BCC}|{SC}|{SC}

truss exhibits the lowest buckle-initiation stress.

3.5.2 Tension (n=11)

All trusses undergo compressive strut buckling when the applied load is tensile

(Figure 3.7(b)). The {FCC} truss exhibits the lowest modulus and the lowest buck-

ling stress. Buckling initiates and proceeds at σ1/Eoρ
2 ≈ 0.079: 40% greater in

magnitude than the corresponding compressive strength. The strength differential is

attributable to the fraction of buckling struts: 1/3 in tension (type III) and 2/3 in
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compression (strut types I and II). The balance of struts — 2/3 in tension and 1/3

in compression — provides stabilization against buckling.

Strut buckling in the compound trusses leads to only a modest reduction in tan-

gent modulus and a bilinear stress-strain response. The secondary tangent modulus is

governed by the struts that are aligned with the loading direction and that bear most

of the load. Buckling begins in the {FCC}|{SC} truss at essentially the same strain

as that of the elementary {FCC} . But, because the stiffness of the compound truss

is higher (by about 15%), the buckling stress is higher by a proportionate amount

(also 15%).

The {BCC}|{SC} truss exhibits the highest strength, governed by buckling of

type V {SC} struts. By comparison to the {SC} struts in the {FCC}|{SC} and

the {BCC}|{SC}|{SC} [1/2 1/2
1/2] trusses, type V {SC} struts have the lowest slen-

derness ratio.

3.5.3 Shear (n=11)

The responses in shear are plotted in Figure 3.7(c). Here the same normalizations

are used for stress and strain: Eoρ
2 and ρ, respectively. (Note that when stretch-

dominated trusses are loaded in shear, the struts experience only axial loads, and
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hence their stresses are dictated by Eo, not Go.)

The {FCC} truss exhibits the highest initial stiffness and the highest buckling

stress (Figure 3.7(c)). Buckling initiates in type III struts at τ12/Eoρ
2 ≈ 0.046.

Thereafter, the tangent modulus decreases by about 80% and the stress continues

to increase as the type I struts are stretched further. In the {FCC}|{SC} truss,

the modulus and the buckling strain are each reduced by 20% relative to those of

the elementary FCC truss. As a result, the {FCC} struts in the compound truss

buckle at an applied stress that is about 64% that of the {FCC} truss. Here again

the addition of {SC} to {FCC} to produce an isotropic binary truss comes at the

expense of a significantly reduced strength.

The {BCC}|{SC} and the {BCC}|{SC}|{SC} [1/2 1/2
1/2] trusses buckle at the

same stress: τ12/Eoρ
2 ≈ 0.043. This is because the {BCC} sub-trusses in the

two compound trusses are equivalent. Here the {SC} struts make no significant

contribution to the response prior to buckling. Only after the {BCC} struts buckle

do the {SC} struts engage and the curves for the two trusses begin to diverge.
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3.5.4 Effects of truss size on strength

In light of the nonlinear behavior obtained in the post-buckling domain, truss

strengths are characterized using offset stresses at two strains: 0.02% and 1%. Effects

of truss size are shown in Figure 3.9. Here the strengths are plotted against 1/n.

(Although this selection was based in part on the observation that the fraction of

struts at the free boundaries is proportional to 1/n, the effects of n on strength are not

due entirely to boundary effects, as discussed below.) In this form the strengths vary

essentially linearly with 1/n. Linear extrapolation to 1/n = 0 yields the expected

strengths of infinitely large trusses.

The offset stresses for the {FCC} truss in tension and compression are the same

at both the 0.02% and 1% levels, a result of the elastic, perfectly-plastic behavior in

these two loadings. In shear the two differ slightly, because of the hardening caused

by stretching of type I struts after type II struts have buckled.

The behaviors of the compound trusses in compression are more nuanced. Here

there are two distinct buckling events in the constituent sub-trusses; the 0.02% offset

captures the first whereas the 1% offset captures the second. With the hardening that

occurs between the two buckling events, the 1% offset strengths for the compound

trusses become comparable to those for the {FCC} truss. Indeed, for large trusses,
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the {BCC}|{SC} is slightly stronger than the {FCC} (by about 10%).

Although the linear dependence of strength on 1/n appears to coincide with the

scaling of the fraction of struts that are affected by boundaries, the size-dependence

is due at least in part (perhaps largely) to the variations in strut slenderness ratio

with n. That is, in order to have circular struts along the truss faces and edges while

maintaining a constant relative density, the strut slenderness must be adjusted to

reflect changes in n. For example, l/r in the {FCC} truss goes from about 63 to 52

as n goes from 1 to infinity. Analogous adjustments must be made to maintain the

same volume fractions in the compound trusses. For example, the slenderness ratio

of the {SC} struts in the {BCC}|{SC} truss goes from 97 to 49 as n goes from 1

to infinity. The slenderness ratio of the {BCC} struts in this truss remain constant

throughout, since these struts are contained entirely within the truss interior. The

increase in slenderness ratio with decreasing nmust play a central role in the reported

dependence of strength on truss size.

3.5.5 Effective-length factors and buckling metrics

Effective-length factors K (inferred from truss strength, strut strain and strut

slenderness ratio) are, to a very good approximation, independent of n when n > 5

(Figure 3.10). Values of K in this domain for each strut population are summarized
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in Tables 3.2–3.4.

In uniaxial compression,K is lowest for type IV {SC} struts within the compound

trusses and falls in the narrow range of 0.53-0.60. Being close to 1/2, these values

indicate that the end conditions on the struts resemble those of a strut that is fully

constrained at both ends. Values ofK for other struts are somewhat higher, falling in

the range 0.7-0.8. Specific values depend on the fraction of struts that are undergoing

buckling and the fraction of struts that experience tension.

In the elementary {FCC} truss, K = 0.72, 0.61 and 0.58 in compression, tension

and shear, respectively. The differences are attributable to the lower fraction of

struts that buckle in shear and tension relative to that in compression: only 1/3 in

shear (strut type I) and in tension (type III), and 2/3 in compression (strut types I

and II). The balance of struts — 2/3 in shear and tension and 1/3 in compression

— provides stabilization against buckling. Comparable differences are obtained in

the {FCC} sub-truss within the compound trusses. Here again the differences are

attributable to the fractions of buckling struts.

Similar trends are obtained in the {BCC} sub-truss within the two compound

trusses. For example, in the {BCC}|{SC} binary, K is higher in compression (0.76)

than in shear (0.65), again reflecting the fraction of buckling struts: 100% in com-

pression and 50% in shear.
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Finally, examination of the buckling metrics (Tables 3.2–3.4) provides addi-

tional insights into the sequence of buckling events and their manifestations in the

stress-strain responses. In compression, for example, the ranking of stresses and

strains at the 0.02% offset follow in accordance with the buckling metric βc: the

lowest values associated with buckling of the {SC} struts in the {FCC}|{SC},

{BCC}|{SC}|{SC} and {BCC}|{SC} trusses (βc = 0.07ρ, 0.08ρ, and 0.12ρ, re-

spectively), followed by buckling in the elementary {FCC} truss (βc = 0.22ρ).

Whereas all struts in the {FCC} buckle simultaneously and hence lead to a con-

stant buckling stress, the compound trusses continue to “harden”, until the second

population of compressed struts buckles (βc = 0.38ρ and 0.35ρ in {BCC}|{SC}

and {BCC}|{SC}|{SC}, respectively). Similar correlations are evident upon ex-

amination of the buckling sequences under tensile and shear loading (Figures

3.7(c) and 3.7(b)) along with the metrics βt and βs (Tables 3.3 and 3.4).

3.6 Summary and conclusions

Families of stiff isotropic compound trusses based on binary and ternary combi-

nations of elementary cubic trusses have been identified. Each exhibits the maximal

axial stiffness for isotropic trusses [22]. The stiffnesses of some of these trusses are not
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simply the additive sums of the contributions from the constituent sub-trusses. In-

stead, mechanical coupling between the constituent elementary trusses enables more

efficient strut loading and leads to increased stiffness. This behavior is best exem-

plified by the 60% {BCC}| 40% {SC} truss, wherein the Young’s modulus is over

20% greater than the rule-of-mixtures prediction.

The effects of truss topology and geometry on buckling strength can lead to three

distinct effects: (i) the axial strains within buckling struts, (ii) the slenderness ratio

of buckling struts, and (iii) the buckling constraints at the strut ends, manifested in

the effective length factors. The three factors are combined into buckling metrics for

the three loading scenarios. This partitioning of effects yields new insights into the

connections between truss topology and truss strength. Based solely on geometric

complexity, binary compound trusses are preferable over ternaries. Binary trusses are

also superior to ternaries in terms of their inelastic response. The latter differences

stem from the fact that, in order to maintain a fixed relative density, the slenderness

ratio of some of the struts must be increased when expanding the design from binary

to ternary trusses. The increase in nodal connectivity associated with the third truss

does not provide sufficient benefit to offset the detrimental effects of higher strut

slenderness ratios.

Boundary effects persist roughly two unit cell lengths into the truss from the
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surface. There, reduced nodal constraint leads to a dispersion in strut strain. It

is in these regions that strut buckling initiates. Although boundary effects do not

play a dominant role in the buckling strengths of the present trusses, they would

naturally affect other failure modes. That is, if failure were to occur by strut yielding

or fracture, strain amplifications in the near-boundary regions could reduce truss

strengths substantially relative to those expected on the basis of average strut strains

in the bulk of the truss.

The {BCC}|{SC} truss is competitive with the {FCC} truss in several respects.

In addition to being isotropic with maximal stiffness, it exhibits compressive and

shear strengths that are comparable to those of the {FCC} for large offset strains,

as well as higher strength in tension. Achieving the higher strengths is predicated,

however, on the material having sufficiently high yield and tensile fracture strain;

otherwise, strut yield or fracture would govern strength.
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Table 3.1: Values of slenderness ratio for each strut type in the elementary
(anisotropic) {FCC} truss and in three isotropic compound trusses.

Slenderness ratio*, l/r
{SC} {BCC} {FCC}

{FCC} — — 23/4
√
3π√

ρ
≈ 5.16√

ρ

80% {FCC}|20% {SC}
√
15π√
ρ

≈ 6.87√
ρ

—
√
15π

21/4
√
ρ
≈ 5.77√

ρ

60% {BCC}|40% {SC}
√
15π√
2ρ

≈ 4.85√
ρ

31/4
√
5π√

ρ
≈ 5.22√

ρ
—

60% {BCC}|20% {SC}
|20% {SC} [1/2 1/2

1/2]

√
15π√
ρ

≈ 6.87√
ρ

31/4
√
5π√

ρ
≈ 5.22√

ρ
—

* Neglects overlapping volume at nodes.
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Table 3.2: Strut strains, buckling metrics, and truss strengths for compressive loading.

{SC} {BCC} {FCC}

Strut type ǫa
ǫ1

K
(

ǫ1
ǫa

)

(

r
Kl

)2
Strut type ǫa

ǫ1
K

(

ǫ1
ǫa

)

(

r
Kl

)2
Strut type ǫa

ǫ1
K

(

ǫ1
ǫa

)

(

r
Kl

)2

{FCC} — — — — — — —
I, II 1

3 0.72 0.22ρ

III − 1
3 — —

80% {FCC}|20% {SC}
IV 1 0.56 0.07ρ

— — — —
I, II 3

8 0.70 0.16ρ

V − 1
4 — — III − 1

4 — —

60% {BCC}|40% {SC}
IV 1 0.60 0.12ρ

VI,
VII

1
6 0.76 0.38ρ — — — —

V − 1
4 — —

60% {BCC}|20% {SC}
|20% {SC}

[

1/2
1/2

1/2
]

IV 1 0.53 0.08ρ
VI,
VII

1
6 0.80 0.35ρ — — — —

V − 1
4 — —
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Table 3.3: Strut strains, buckling metrics, and truss strengths for tensile loading.

{SC} {BCC} {FCC}

Strut type ǫa
ǫ1

K -
(

ǫ1
ǫa

)

(

r
Kl

)2
Strut type ǫa

ǫ1
K -

(

ǫ1
ǫa

)

(

r
Kl

)2
Strut type ǫa

ǫ1
K -

(

ǫ1
ǫa

)

(

r
Kl

)2

{FCC} — — — — — — —
I, II 1

3 — —

III − 1
3 0.61 0.30ρ

80% {FCC}|20% {SC}
IV 1 — —

— — — —
I, II 3

8 — —

V − 1
4 0.62 0.22ρ III − 1

4 0.59 0.34ρ

60% {BCC}|40% {SC}
IV 1 — —

VI,
VII

1
6 — — — — — —

V − 1
4 0.68 0.37ρ

60% {BCC}|20% {SC}
|20% {SC}

[

1/2
1/2

1/2
]

IV 1 — —
VI,
VII

1
6 — — — — — —

V − 1
4 0.75 0.15ρ
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Table 3.4: Strut strains, buckling metrics, and truss strengths for shear loading.

{SC} {BCC} {FCC}

Strut type ǫa
γ12

K -
(

γ12

ǫa

)

(

r
Kl

)2
Strut type ǫa

γ12

K -
(

γ12

ǫa

)

(

r
Kl

)2
Strut type ǫa

γ12

K -
(

γ12

ǫa

)

(

r
Kl

)2

{FCC} — — — — — — — —

I 1
2 — —

II − 1
2 0.58 0.23ρ

III 0 — —

80% {FCC}|20% {SC} IV,
V

0 — — — — — —

I 1
2 — —

II − 1
2 0.56 0.19ρ

III 0 — —

60% {BCC}|40% {SC} IV,
V

0 — —
VI 1

3 — —
— — — —

VII − 1
3 0.65 -0.26ρ

60% {BCC}|20% {SC}
|20% {SC}

[

1/2
1/2

1/2
]

IV,
V

0 — —
VI 1

3 — —
— — — —

VII − 1
3 0.65 -0.26ρ
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Figure 3.1: Polar surfaces of axial stiffness for elementary cubic trusses.
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Figure 3.2: Elastic properties of cubic truss structures with finite size normalized by
Youngs modulus of the parent material and relative density of the truss. The Young’s
modulus of the {nBCC}3 truss and the shear modulus of the {nSC}3 truss are 0.0006
and 0.0002, respectively: both close to but not identically zero, a consequence of rigid
connections at the nodes.
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Figure 3.3: Young’s and shear moduli for binary trusses comprising {SC} and
either (a) {FCC} or (b) {BCC} trusses. Insets are polar plots of axial stiffness. (See
also Videos S1 and S2 in Supplementary Information at doi.org/10.1557/jmr.2018.2.)
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Figure 3.4: (a) Young’s modulus, (b) shear modulus and (c) Poisson’s ratio for
ternary combinations of {SC}, {FCC} and {BCC} trusses.
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Figure 3.5: Variations in axial strut strains with distance from the nearest external
free boundary.
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Figure 3.6: Summary or axial strut strains at a compressive strain of 0.01. Central
lines represent means, boxes contain the middle two quartiles of data, and outlying
hash marks represent minimum and maximum values.
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Figure 3.7: Stress-strain responses of trusses subjected to (a) uniaxial compression,
(b) uniaxial tension, and (c) pure shear. (See also Videos S3-S6 in Supplementary
Information at doi.org/10.1557/jmr.2018.2.)
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Figure 3.8: Stress-strain responses of trusses subjected to uniaxial compression at
relative densities of 0.001, 0.01 and 0.05.
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Figure 3.9: Strengths of trusses, defined at 0.02% and 1% offset strains.
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Figure 3.10: Effective length factors of various strut populations when trusses are
loaded in (a) uniaxial compression, (b) uniaxial tension and (c) pure shear.
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Chapter 4

Effects of nodal fillets and external
boundaries on compressive
response of an octet truss

4.1 Introduction

Analyses of truss properties (e.g. stiffness, strength, toughness) have largely fo-

cused on effects of topology in notional truss materials : aggregates of many struts

with dimensions much smaller than macroscopic scales of interest. A tacit assump-

tion is that the response of the material can be addressed by considering a small

This chapter is adapted from a peer-reviewed publication: Ryan M Latture, Ricardo X
Rodriguez, Larry R Holmes, and Frank W Zok. Effects of nodal fillets and external bound-
aries on compressive response of an octet truss. Acta Materialia, 2018. Available at: https:

//doi.org/10.1016/j.actamat.2017.12.060
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representative volume element, typically one unit cell. Although this approach is

useful in identifying broad trends in behavior and establishing baseline properties, it

fails to capture important effects that come into play in real (finite) truss structures.

The current study focuses on two such effects: (i) the presence of external boundaries

and (ii) the geometry of nodal regions at which struts intersect.

Little attention has been focused on the effects of node geometry on truss prop-

erties. A cursory inspection of the intersection of struts reveals the issue: the axial

loads transmitted through the struts must be transmitted through nodes at which the

load bearing area is lower because of the overlapping strut volume. One consequence

is that, if no provision is made for the area reduction, yielding (when it dominates)

initiates within the nodal regions, not within the struts themselves [24, 50]. Under

compressive loads, this localized plasticity may be stable, leading to lateral expan-

sion of the nodes under progressively increasing load and to eventual yielding of the

struts [24]. In contrast, under tensile loading, local yielding within the nodes is likely

to lead to strain localization before global strut yielding (except in cases where the

work hardening rate of the constituent material is unusually high).

Effects of node geometry may be more nuanced in cases in which the strut slen-

derness ratio is particularly high. Absent yielding, the conditions for strut buckling

under macroscopic compression depend on the (elastic) stiffness of the nodal region.
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(The effect can be couched in terms of the effective-length factor in Euler buckling

theory; a topic we return to in due course.) If node yielding precedes buckling, the

constraints acting on the strut ends are reduced and thus the buckling strength is

also reduced.

In addition to the effects of reduced cross-sectional area associated with strut

intersections, changes in cross-section invariably lead to local stress concentrations.

These concentrations may become important in cases in which the struts are loaded

in tension and in which the strut material has low tensile ductility. Established

design principles for stress concentration reduction employing gradual transitions in

area [45], such as those obtained with the use of fillets, are expected to mitigate the

problem to some extent.

The principal goal of the present study is to address the effects of nodal fillets

and external boundaries on the compressive response of octet trusses made from a

hard thermoplastic. The article is structured as follows. Materials and test methods

for the experimental study are described in Section 4.2. The structure of a finite

element (FE) computational model is presented in Section 4.3. Experimental and

computational results of macroscopic stress-strain response and of strut strains and

nodal rotations are presented in Section 4.4. This is followed by a discussion of the

results and the implications for truss design and failure prediction, in Section 4.5.
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4.2 Materials and test methods

Specimens of the specific octet truss {2FCC}2, i.e. a 2 × 2 × 1 tiling of face-

centered cubic unit cells following the truss taxonomy outlined in [68], were fabricated

both with and without rounded fillets (Fig. 4.1). The struts were designed to have a

circular cross-section with radius r = 1mm, length l = 20mm and slenderness ratio

ℓ/r = 20. Fillets (when employed) were designed with a constant radius of 2mm.

The average relative densities, ρ̄, were approximately 0.082 and 0.090 for trusses with

and without fillets, respectively.

The trusses were printed using a production-level, through-vat stereolithography

machine (ProJet 6000, 3D Systems). Print resolution is 50 µm in the build direction

(z ) and 75 µm in the two transverse directions (x and y). The material used in this

study is VisiJet SL Clear, a hard polycarbonate-like material with a reported ultimate

tensile strength σo = 52MPa, Young’s modulus Eo = 2.56GPa and an elongation

at break ǫf = 6%. Auxiliary support structures were automatically generated in

3DManageTM (3D Systems) with an angle constraint of 36◦. Upon completion of

the build, the fabricated parts were immersed in a bath of isopropyl alcohol (IPA)

for 10 minutes. Auxiliary support structures were then manually removed and the

parts were re-immersed in the IPA bath for an additional 10 minutes. Following
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extraction from the bath, the parts were placed in an ultra-violet finishing chamber

for 30 minutes. Photographs of the trusses, including comparisons of the nodal

regions in the computer models and in the printed parts, are shown in Figure 4.1.

These comparisons attest to the high printing fidelity. Nodal regions of both sample

types are accurately reproduced in the finished parts. Surface steps due to the layer-

by-layer build process are on the order of the layer thickness (50 µm).

Uniaxial compression tests were performed perpendicular to the build direction

at a nominal strain rate of 10−4 s−1. Full-field displacement measurements were

obtained using 3D digital image correlation (DIC) (Vic-3D, Correlated Solutions,

Columbia, SC). Prior to testing, random speckles with a diameter of approximately

0.1mm were applied to the struts in the near surface regions using an airbrush. Im-

ages were taken using a pair of digital cameras (Point Grey Research Grasshopper),

each with a CCD resolution of 2448×2048 pixels, at a magnification of 32 pixels/mm.

With this magnification, the area of the entire sample (≈1800 pixels2) could be mon-

itored during testing while maintaining a minimum of 3 pixels/subset in subsequent

analyses, as recommended for accurate correlation [56]. The data were analyzed us-

ing incremental correlation with a subset size of 23 pixels and step size of 2 pixels.

In total, about 56 struts were imaged and analyzed for each test specimen. The

macroscopic compressive strain was obtained from the DIC data using virtual exten-
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someters spanning the entire specimen height. The stress was computed from the

measured load and the projected area of the entire truss perpendicular to the loading

direction. Three specimens of each of the two truss types (with and without fillets)

were tested.

Three local deformation metrics were computed from the DIC data: (i) axial

strut strains, ǫa, (ii) bending strut strains, ǫb, and (iii) nodal rotations, θr. Axial

and bending strut strains were computed from the displacements of 50 sample points

along the centerline of each strut. Axial strains were calculated from the total length

of the line segments joining the sample points in deformed and undeformed config-

urations, neglecting segments within one strut diameter of a node. To determine

bending strains, first a three-dimensional parametric curve, f(t), was fit to the 50

sample points, i.e. f(t) = (x(t), y(t), z(t)) where t is a non-dimensional position

coordinate between the strut endpoints (0 ≤ t ≤ 1). Strut curvature, defined by

κ = ||f ′×f ′′||
||f ′||3 (primes denoting derivatives with respect to t), was computed and av-

eraged over the range 0.1 ≤ t ≤ 0.9. Bending strains were calculated as the product

of mean strut curvature and strut radius. The two strains were further combined to

obtain the strut-averaged maximum and minimum principal strains: ǫmax = ǫa + ǫb

and ǫmin = ǫa − ǫb. Finally, nodal rotations were calculated for all nodes on the

external surface (plane perpendicular to the viewing direction), from vectors joining
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material points about 2mm on either side of each node.

The struts were subsequently sorted in two ways: (i) by orientation with respect

to loading direction (x ) and build direction (z ), and (ii) by proximity to faces, edges

and corners. On the basis of orientation, three unique strut types exist: (i) those

along [110] directions, denoted type I, (ii) [101], denoted type II, and (iii) [011],

denoted type III. The first two are at 45 degrees to the loading direction whereas

the third is perpendicular. With respect to location, distinctions are made between

corner struts (those that have one end at a truss corner), edge struts (one end at a

truss edge), face struts (fully contained on an external face) and bulk struts. The

struts are distinguished by the nodal connectivities at their two ends: 3 and 8 for

corner struts, 5 and 8 for edge struts, 8 and 8 for face struts, and 8 and 12 for bulk

struts. (Because there is only one unit cell in the build direction, all bulk struts have

one end on a face. For larger trusses, nodal connectivity for bulk struts would be 12

at both ends.)

4.3 Finite element analysis

The macroscopic response of the trusses was simulated using the commercial

finite element code Abaqus/Explicit. The principal goal was to identify the effects
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of external boundaries (edges, corners and faces) on strut strains, strut buckling and

truss failure. A secondary objective was to probe the effects of nodal stiffness on

truss response.

For these purposes, the truss was discretized using Timoshenko beam elements

with circular cross-section. Each strut consisted of 40 elements. Strut dimensions

were selected to yield a strut slenderness ratio equal to that in the tested trusses,

i.e. l/r = 20. The parent material was assumed to be linear-elastic with Young’s

modulus Eo = 2.56GPa, shear modulus Go = 0.93GPa and mass density ρo =

1170 kg/m3. Finite element simulations of compressive response were performed for

three scenarios, distinguished by the assumed character of the nodal regions. These

include: (i) pinned nodes, (ii) locally rigid nodes, i.e. without relative movement of

the strut ends that meet at the node, and (iii) locally rigid nodes with rigid strut

segments within one strut radius of the nodes (to account for finite material at the

nodes). In the latter case, the slenderness ratio of the deformable strut segments is

reduced to (l − 2r)/r = 18.

Geometric imperfections, based on the first three buckling modes, were intro-

duced in according to the geometric sequence defined by Equation 3.2. Here, B was

taken to be 0.001. This amplitude was chosen such that the maximum imperfection

was approximately equal to the printing resolution of the machine used to fabricate
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the test specimens.

Uniaxial compression was simulated by prescribing nodal velocities along the

loading (x) direction on one face of the FE model, i.e. velocity, u̇ = du/dt = lxǫ̇

at x = lx where lx is the truss length along the x -axis. Velocities were selected

to yield quasi-static strain rates (|ǫ̇| ≤ 10−3 s−1). The resulting ratio of kinetic to

potential energy was less than 10−3 for all time steps in each simulation, confirming

quasi-static loading. The equations of motion were integrated using explicit central

differences with fixed timestep until reaching a compressive strain, ǫ1, of 0.05. Rigid

body motion was prevented by setting w = 0 for the node at (0, ly, 0) and fixing

translational degrees of freedom of a single node at the origin, i.e. u = v = w = 0

at (0, 0, 0) (v and w being displacements along y- and z-axes, respectively). The

FE calculations were used to ascertain the macroscopic stress-strain response, the

average axial and bending strains in individual struts, and the nodal rotations.

To assess the generality of the boundary effects operative in the specific truss

{2FCC}2, additional FE calculations were performed for cubic arrays of the unit

cell, designated {nFCC}3, with rigid nodes, a strut slenderness ratio of 20, and n

varying from 2 to 11. Uniaxial compression was simulated in a manner analogous to

that used for the {2FCC}2 truss.
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4.4 Experimental and computational results

4.4.1 Macroscopic response of {2FCC}2 trusses

Figure 4.2 shows the measured compressive stress-strain curves and those ob-

tained from FE calculations. (Corresponding videos are provided in Supplemen-

tary Information at doi.org/10.1016/j.actamat.2017.12.060.) The measured curves

for each of the two truss types exhibit minimal variation up to the stress maxi-

mum. Moreover, the Young’s moduli for both truss types are virtually identical:

E = 27MPa. In normalized form, the modulus is E/ρ̄Eo ≈ 0.13. By compari-

son, the theoretical value, obtained from a statics analysis of a truss with periodic

boundary conditions and infinitesimal nodes, is E/ρ̄Eo = 1/9 ≈ 0.11 [12]. The slight

difference is attributable to the finite sizes of nodes and thus the slightly-reduced

effective strut lengths in the current test specimens.

The stress-strain curves for specimens with and without filleted nodes begin to

diverge at a compressive strain of about 0.01. At larger strains, specimens without

filleted nodes exhibit a progressive reduction in tangent modulus. In contrast, spec-

imens with filleted nodes continue to exhibit linear response up to a strain of about

0.02. Thereafter a progressive reduction in tangent modulus is obtained. In both

cases, the tangent modulus gradually and smoothly approaches zero. As described
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later, this response is attributable to bending and buckling of certain struts. At or

very near the stress maximum, strut fracture begins, at a strain ǫ1 ≈ 0.038. But,

because of greater softening in the trusses without filleted nodes, these trusses expe-

rience a peak stress about 20% lower than that of the filleted trusses. In both cases

it appears that the conditions for large-scale strut buckling and for onset of tensile

strut fracture are nearly coincident.

By comparison, the pinned-node FE result displays non-linearity and large-scale

buckling at a strain of about 0.02 and attains a plateau stress of about 0.4 MPa: only

half of the peak for the filleted truss. In contrast, the rigid-node FE result for the

same geometry (l/r = 20) initially follows the same response but reaches a plateau

stress that is roughly twice that of the pin-noded truss and in good agreement with

that measured on the filleted truss. Introducing rigid strut segments in the near-

node regions has the effect of increasing the initial tangent modulus; this modulus

closely matches the measured values for the filleted trusses. Buckling in the latter

simulations begins at a strain of about 0.035; at slightly higher strains, a plateau

stress of about 1MPa is attained. The FE results for pin-noded trusses and for trusses

with rigid nodes and rigid strut segments near the nodes neatly bound the two sets

of experimental results. Overall, the FE result for rigid nodes and struts that are

elastic everywhere most closely resembles the shapes of the measured stress-strain
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curves.

4.4.2 Strains, rotations and failure locations in {2FCC}2

trusses

Variations in axial and bending strut strains with applied compressive strain ǫ1

are plotted in Figures 4.3 and 4.4, respectively. The results are sorted by strut

types (I, II and III in top, middle and bottom rows) and by strut location (color-

coded lines). The three columns in each figure, from left to right, correspond to

measured strains for specimens without and with fillets and those from rigid-node

FE calculations. (These FE results are very similar to those obtained for the case

of rigid nodes and short rigid strut segments near the nodes; thus the latter are not

presented here.) Figure 4.3 also contains lines representing the analytic predictions

for a truss with periodic boundary conditions and infinitesimal nodes: ǫa/ǫ1 = −1/3

for type I and II struts and ǫa/ǫ1 = 1/3 for type III struts [32]. Three-dimensional

renderings of the computed axial strut strains at select strain levels are shown in

Figure 4.5. Finally, a summary of maximum and minimum principal strut strains at

macroscopic compressive strains ǫ1 = 0.02 and 0.038 are presented in the form of a

box-and-whisker chart in Figure 4.6.
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At small strains (ǫ1 ≤ 0.02), the measured axial strut strains, on average, follow

the trend predicted by the analytic predictions: ǫa/ǫ1 = −1/3 for type I and II

struts and ǫa/ǫ1 = 1/3 for type III struts. But, because of the varied proximities

of struts to corners, edges and faces, the axial strains vary from strut to strut, by

factors of 2 to 3 from minimum to maximum. The FE results show analogous (but

slightly smaller) variations. At larger applied strains, the variations increase, with

some struts undergoing more rapid and others less rapid increases in strain. Despite

the variations, the axial strains in individual struts from the FE calculations reach a

plateau level once the struts begin to buckle, at a compressive strain of about 0.032.

Among type III struts, those situated along the mid-plane (indicated by arrows in

Figure 4.3) experience the highest tensile strains, reaching values of about twice the

analytic prediction: ǫa/ǫ1 ≈ 2/3. Indeed, these are the struts that usually fracture

first (Figure 4.7), at the stress maximum. The peak axial strut strains differ only

very slightly in the two truss types: 0.024-0.026 in unfilleted struts and 0.023-0.031

in filleted struts.

The FE results similarly show that these type III struts experience the largest

strains (shown in Figure 4.5). Prior to buckling, the computed strut strain in the

most critical regions is ǫa/ǫ1 = 1/2: 50% greater than the nominal value for bulk

struts. The predicted peak axial strain in type III struts (ǫa ≈ 0.018) at the onset of
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buckling of type I and II struts is only slightly lower than that measured experimen-

tally (ǫa ≈ 0.025). The bending strains in type III struts (first column in Figure 4.4)

are the lowest among the three strut types. The edge struts on the mid-plane in

particular experience negligible bending.

The measured bending strains in type I and II struts in the unfilleted struts are

the greatest and span the largest range (by almost an order of magnitude, from

about 0.002 to 0.02). The peak values are obtained in corner struts (indicated by

arrows in top row of Figure 4.4). These are also the struts with the lowest nodal

connectivity (3 and 8). Filleted type I and II struts also experience bending, but

with peak values only about half those obtained in the unfilleted struts. Moreover,

the bending strains for the filleted struts are in closer agreement with the rigid-node

FE predictions. These results indicate that filleted nodes are stiffer than unfilleted

nodes and therefore reduce somewhat the degree of bending.

Effects of node geometry and external boundaries on truss deformation are also

manifested in the transverse strut displacements, illustrated in Figure 4.8. Notably,

type I and II corner struts experience the greatest transverse displacements; in the

examples in Figure 4.8(a), the maximum displacement of a corner strut (AB) is

typically about twice that of the adjoining co-linear face strut (BC). Moreover, the

peak displacements of these two struts in the unfilleted struts are about twice those
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obtained in the filleted struts. Similar trends are obtained from the FE results

for rigid-node trusses (Figure 4.8(b)). Nodal rotations on the external truss face,

plotted on Figure 4.9, exhibit similar trends: greatest at the corner nodes and, in

the unfilleted nodes, about twice those in the filleted nodes.

Closer examinations of the tested trusses reveal the locations of strut fracture

(Figure 4.10). In the unfilleted trusses, strut fracture occurs at the nodes and, in

some instances, leads to shattering of the nodes and some of the adjoining struts. In

contrast, in the filleted trusses, strut fracture occurs at some distance from the node

itself, near the end of the fillet.

4.4.3 {nFCC}3 trusses

FE results for cubic arrays of the octet truss, notably {nFCC}3 (with n=2 to

11), are presented in Figures 4.11–4.14. The macroscopic compressive stress-strain

curves are essentially independent of n; only minor variations are observed in the

transition from the linear-elastic domain to the buckling domain (Figure 4.11).

Distributions in the minimum and maximum principal strains for n = 2 – 11 and

the locations of struts with minimum and maximum strains for n = 5, all in the

linear-elastic domain, are shown in Figure 4.13. These results are also essentially
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independent of n. Although the maximum principal strains in type III struts are,

on average, the same as the analytic prediction (ǫmax/ǫ1 = 1/3), the values obtained

in the edge struts reach ǫmax/ǫ1 ≈ 0.50: the same as those in the {2FCC}2 truss.

This is further evidenced by the 3-dimensional renderings of the axial strut strains in

Figure 4.12. In contrast, the minimum principal strains in type I and II struts are,

on average, of greater magnitude than the analytic prediction (ǫmin/ǫ1 = −1/3), a

consequence of slight strut bending. Their peak values, ǫmin/ǫ1 ≈ −0.57, are obtained

at the truss edges (as indicated in Figure 4.13(b)) and are the same as those in the

{2FCC}2 truss.

The evolution of axial and bending strains in representative struts that experi-

ence the minimum and maximum principal strains as well as those in the bulk of the

{5FCC}3 truss are plotted in Figure 4.14. These results are quantitatively compa-

rable to those obtained for the {2FCC}2 truss (the latter shown in Figures 4.3(c)

and 4.4(c)).
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4.5 Discussion

4.5.1 Synopsis of key findings

The main role of fillets in the current truss system is to enhance the nodal stiffness

and, in turn, reduce the degree of softening due to bending of type I and II struts. In

both truss types, the peak compressive stress is approached smoothly, consistent with

the progressive nature of strut buckling. However, large-scale buckling is preceded

by tensile fracture of type III struts intersecting the truss edges. Interestingly, the

peak axial strains in these type III struts at the onset of strut fracture appear to be

insensitive to the presence of fillets. Evidently either the fillets employed here play

only a minor role in alleviating the stress concentrations at the nodes at which tensile

fracture occurs or the failure strain is insensitive to these stress concentrations. A

further possibility is that the stress concentrations of surface steps resulting from the

manufacturing process may control the strut failure strain.

Strut strains at external boundaries generally differ from those in the bulk. Type

I corner struts, with nodal connectivities of only 3 and 8, experience the greatest

amount of bending and are most prone to buckling. Type III edge struts, with nodal

connectivities of 5 and 8, experience the greatest axial (tensile) strains. Prior to

buckling, they are 50–100% greater than the nominal value and are usually the first
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to break.

Further analyses of these results and discussion of their implications in the context

of competing failure modes follow.

4.5.2 Failure by buckling

Buckling strengths can be interpeted in the context of Euler buckling thoery.

Here the axial strut strain for buckling is predicted to be proportional to E and

(r/ℓ)2, through a proportionality constant that depends on the effective-length factor,

K. The theoretical prediction for the octet truss can be couched in terms of a

normalized macroscopic buckling stress: σc/Eo = π3(r/ℓ)4/K2
√
2. For pinned nodes,

the effective-length factor is K = 1 [12] and thus the buckling stress reduces to

σc/Eo = π3(r/ℓ)4/
√
2. For ℓ/r = 20 and Eo = 2.56GPa, the critical stress is

σc = 0.35MPa. By comparison, the buckling stress obtained in the present FE

calculations for pinned nodes is σc ≈ 0.38MPa (essentially the same as the analytic

prediction).

The preceding analysis can be further used to infer the volume-averaged effective-

length factor for rigid-node trusses. Since the strength is proportional to 1/K2 and

the strength ratio of rigid and pinned trusses from Figure 4.2 is about 2, the inferred
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effective-length factor for the struts within the rigid-node truss is K = 1/
√
2 ≈

0.71. By comparison, if the nodes were globally rigid – with zero rotation and zero

displacements transverse to the strut axis – the effective-length factor would be

K = 0.5. Even with the addition of short rigid strut sections in the nodal region (to

represent constraints of a finite node volume), the nodes are still free to rotate and,

as a result, the inferred effective-length factor is only moderately lower: K ≈ 0.63.

Evidently, although the nodes (and in some instances portions of the strut) are

treated as being locally rigid in the FE calculations, the nodes behave in a more

compliant fashion globally, as manifested in an increase in the inferred value of K.

Nevertheless, the value of K remains well below that for pin-noded trusses (1.0).

The measured buckling strengths can be interpreted in a similar fashion (assum-

ing that the peaks are indeed close to the plateau buckling stress). Comparing these

strengths with the predicted buckling stresses for pinned trusses (wherein K = 1),

the inferred effective-length factors are K ≈ 0.66 and K ≈ 0.73 for trusses with and

without fillets, respectively. These lie near the mean of the values for globally rigid

nodes and pinned nodes (0.5 and 1.0).

External boundaries and truss size do not play significant roles in the buckling

process. Despite some strain differences in type I and II struts in the boundary

regions relative to those in the bulk as well as slight differences in the transition
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from the linear-elastic domain to the buckling domain, the plateau buckling stress

remains the same.

4.5.3 Failure by strut fracture or yielding

External boundaries play a more significant role in tensile strut fracture (espe-

cially in brittle polymers). As previously noted, the peak axial strut strains are

50–100% greater than nominal values. In small truss structures, a single fracture

event may lead to a cascade of further fractures and global failure (as observed in

the current truss system). Larger structures may tolerate a greater number of frac-

ture events before catastrophic fracture. The absence of fillets would exacerbate

these effects.

If, instead, failure were to initiate by yielding or by combined yielding and sub-

sequent buckling, the pertinent strut metric would be the minimum principal strain

in type I and II struts; as evidenced in Figure 4.6, its magnitude is greater than the

maximum principal strain in type III struts. This arises from the bending strains

in these struts which, on average, are ǫb/ǫ1 ≈ 1/9. (Although usually neglected in

the analysis of octet trusses, bending strains are not altogether insignificant in com-

parison to axial strains (|ǫb/ǫa| ≈ 1/3), especially in the context of yield initiation.

They would therefore also be relevant to low cycle fatigue failure.) The computed
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peak value at small applied strains is ǫmin/ǫ1 = −0.55 (in type II struts). The

measured values are somewhat greater, reaching ǫmin/ǫ1 = −0.72 in type I struts.

Once the struts begin to bend appreciably, at higher applied strains, the computed

peak values are ǫmin/ǫ1 = −0.60 and those measured experimentally are as great as

ǫmin/ǫ1 = −1.1 (about 3 times the nominal value). Depending on the sensitivity of

the subsequent structural response (especially strut buckling) to the onset of yielding

in the most critically-strained struts, the load-bearing capacity of finite trusses may

be lower than that expected of an infinite truss.

4.6 Conclusions and implications

The key conclusions follow:

(i) Circular nodal fillets in octet trusses enhance the bending stiffness of the strut

ends. In turn, the degree of softening due to strut bending is reduced and the

stress for buckling is increased (by about 20%).

(ii) The axial strut strain for tensile rupture in the material used in the current

study does not appear to be affected significantly by the presence of fillets.

Whether this result is a general one, applicable to other classes of materials

used in AM, remains to be established.
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(iii) Boundary effects in octet trusses lead to elevations in local strut strains, a result

of reduced local nodal connectivity. Most importantly, the peak tensile strains

in type III struts are elevated almost 2-fold relative to nominal values.

(iv) Boundary effects persist to depths comparable to the unit cell size. This result

is consistent with previous findings [19, 32, 35].

In light of the findings regarding tensile strut fracture and effects of external

boundaries, two potential strategies for enhancing the performance of the current

truss system are envisioned. One would involve modifications to truss geometry in

the near-boundary region, especially along the truss edges. These could include in-

creases in the diameter of type III struts and the fillet radii. A second strategy would

involve changes in local truss topology. For example, the octet truss could be locally

augmented by layers or columns of simple cubic (SC) trusses, interlaced with the

octet truss and sharing the same nodes. In effect this would comprise a local com-

pound truss of the form {FCC}|{SC}. Assessment of the efficacy of these strategies

would require consideration of the increased mass of near-boundary enhancements.

For example, if modifications were made at constant mass, the strut diameter in the

truss interior would need to be reduced to offset the additional mass allocated to

the near-boundary regions. A problem of this nature would likely lend itself well

to established optimization algorithms. Additionally, additive manufacturing would
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enable these designs to be readily put into practice.
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Figure 4.1: (a-d) Photographs of printed trusses with and without filleted nodes
viewed in two orientations. (e,f) Higher magnification views of the nodal regions in
computer models (left image in each pair) and in the printed parts (right image in
each pair).
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Figure 4.2: Compressive stress-strain responses of trusses with and without fil-
leted nodes and from FE calculations. Dotted and dashed lines represent mea-
sured responses of individual test specimens whereas the solid colored lines rep-
resent averages. (See also Videos 1 and 2 in Supplementary information at at
doi.org/10.1016/j.actamat.2017.12.060.)
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Figure 4.3: Evolution of measured axial strut strains in the three strut types (I,
II and III) in trusses with and without filleted nodes as well as results from FE
calculations (assuming rigid nodes). Results are further sorted on the basis of strut
locations relative to free boundaries. Line colors correspond to strut colors in insets
in (a). Dotted lines (with slopes of 1/3 and −1/3) represent analytic predictions
for periodic boundary conditions and infinitesimal nodes. Arrows in bottom row
indicate type III edge struts that experience the greatest axial strain and are the
ones that rupture first.
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Figure 4.4: Evolution of measured bending strut strains in the three strut types
(I, II and III) in trusses with and without filleted nodes as well as results from FE
calculations. Line colors correspond to strut colors in insets in (a). Arrows in top
row show strut that experience the greatest bending strain and are most prone to
buckling.
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Figure 4.5: Three-dimensional renderings of the computed axial strut strains in the
{2FCC}2 truss at the macroscopic compressive strains indicated. (See also Video 3
in Supplementary information at doi.org/10.1016/j.actamat.2017.12.060.)

Figure 4.6: Summary of maximum and minimum principal strut strains at macro-
scopic compressive strains of 0.02 and 0.038. Central lines represent means, boxes
contain the middle two quartiles of data, and outlying hash marks represent mini-
mum and maximum values.
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Figure 4.7: Images of trusses (a-c) without and (d-f) with fillets, essentially at the
load maximum, immediately before and after strut rupture begins. In both cases,
fracture of an edge type III strut leads to secondary fractures, a consequence of the
dynamic nature of the fracture process. Close-up views (c, f) show strut fracture
locations (arrows) and struts that had been ejected (indicated by dashed lines).
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Figure 4.8: Transverse displacement profiles of two co-linear struts emanating from
the bottom left corner of the truss: (a) experimental results and (b) finite element
simulations. Each corresponds to the respective maximum stress for that truss.
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Figure 4.9: a, b) Nodal rotations on the external faces in the two truss at their
respective peak stress and (c) those obtained from rigid-node FE calculations. Line
colors correspond to node colors in the inset in (a).

Figure 4.10: Images of specimens after compression tests. Fracture locations in-
dicated by arrows in (c) and (d). In the specimen without filleted nodes, fracture
occurs at the nodes; in contrast, in the specimen with filleted nodes, fracture occurs
a short distance from the nodes, close to the end of the node fillet.
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Figure 4.11: Compressive stress-strain response of the {nFCC}3 truss for n = 2,
5 and 11.

Figure 4.12: Three-dimensional renderings of the computed axial strut strains in
the {5FCC}3 truss at the macroscopic compressive strains indicated. (See also Video
4 in Supplementary information at doi.org/10.1016/j.actamat.2017.12.060.)
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Figure 4.13: Effects of truss size on macroscopic response and strut strains in
{nFCC}3 trusses. (a) Minimum and maximum strut strains prior to strut buckling
(at ǫ1 = 0.01). Central lines represent means, boxes contain the middle two quartiles
of data, and outlying hash marks represent minimum and maximum values. (b)
Locations of struts with minimum and maximum principal strains (also at ǫ1 = 0.01).
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Figure 4.14: Axial and bending strains for struts with the maximum and minimum
strut strains within each strut type as well as struts in the bulk of the {5FCC}3
truss. Dotted lines (with slopes of 1/3 and −1/3) represent analytic predictions for
periodic boundary conditions and infinitesimal nodes.
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Chapter 5

Defect Sensitivity of Truss
Strength

5.1 Introduction

The present chapter addresses one specific aspect of truss performance: that of

defect sensitivity of compressive strength. It is motivated by numerous studies show-

ing that truss properties often fall short of theoretical predictions, a consequence of

defects and imperfections introduced during manufacturing. In one study, effects of

strut waviness in woven metal trusses were found to produce a knock-down in com-

pressive stiffness and compressive strength of about 20% relative to those obtained in

corresponding structures with straight struts [46]. Such effects are well-predicted by

analytical and finite element models that account for deviations in strut orientations

relative to their ideal values and the resulting axial and bending stresses produced

131



within these struts. In another, variations in strut geometry in hollow-microtube

truss structures were measured and the results used to build a stochastic model of

geometric imperfections [52]. In turn, through Monte Carlo simulations and finite

element analyses, the critical buckling loads were computed for many instantiations

of strut geometry. The results were used to rationalize large deviations in strength

from the theoretical values for perfectly uniform trusses as well as large statistical

strength variations from sample to sample. Yet other studies have found imperfec-

tions in the form of progressive changes in strut diameter and local strut properties

in polymeric trusses made by a self-propagating photocuring method [50, 51]. Anal-

ogous effects of geometric imperfections on the elastic response of solid-strut Ti-alloy

trusses fabricated by selective electron beam melting have also been reported [6]. In

another computional study, the stiffness and yield strength of an octet-truss panel

were found to decrease approximately linearly with the fraction of struts removed

from the truss [63]. Similar results have been reported for the effects of missing wall

members on the modulus, elastic buckling strength and plastic collapse strength of

hexagonal honeycombs [55].

Defect sensitivity of truss properties may also be affected by the predominant de-

formation mode: that is, whether the truss is stretch-dominated or bend-dominated.

For example, the elastic moduli of 2-dimensional triangular trusses are minimally af-
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fected by random removal of struts [57]. This is because the starting truss is stretch-

dominated and, in the presence of a small number of defects, remains essentially

stretch-dominated for all loading states. In contrast, the behavior of 2-dimensional

hexagonal trusses depends on the nature of the macroscopic stress state. When

loaded in shear, the truss is bend-dominated and therefore its shear modulus is ex-

tremely low; removing struts only reduces the shear modulus slightly [57]. But, when

loaded hydrostatically, it deforms entirely by strut stretching. Here, removal of even

a small number of struts triggers a transition from stretch- to bend-dominated defor-

mation and a precipitous drop in the bulk modulus. For example, when 10% of struts

are randomly removed from such a truss, the computed bulk modulus decreases by

nearly three orders of magnitude [57].

Viewed from a different perspective, the extent to which defects affect truss prop-

erties may be influenced by the nature of the failure mechanism. For example, if the

load-bearing capacity is dictated by elastic strut buckling, the presence of a small

number of missing struts should not significantly affect truss strength. Although

missing struts may cause strain elevations in neighboring struts and lead to prema-

ture buckling of the affected struts, eventually all remaining compressive struts also

buckle, each supporting nominally the same load. In this case, the truss strength

is reduced by an amount proportional to the fraction of missing struts [63]. In con-
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trast, if failure occurs by brittle fracture of struts that experience tensile stresses, the

strain elevations around a single missing strut may initiate fracture of neighboring

struts, possibly leading to a cascade of further strut fractures and ultimately com-

plete truss failure. Here, the load-bearing capacity of the truss would be determined

by extreme values of tensile stresses within the struts and would follow weakest link

scaling laws. Failure via plastic strut yielding is likely to exhibit an intermediate sen-

sitivity to strut defects. That is, local strain elevations may trigger strut yielding in

regions adjacent to strut defects which, in turn, may lead to plastic buckling before

the remaining struts have yielded. Because of the strain softening inherent to plastic

buckling, the process is likely not as benign as elastic buckling (where buckled struts

sustain essentially a constant load); but it is likely to spread in a more progressive

manner relative to that associated with strut fracture (where failed struts have no

load-bearing capacity).

Free surfaces of trusses are, themselves, defects. Because of reduced nodal con-

nectivity at surfaces, strut strains may be elevated relative to those in the bulk [19].

Finite element simulations for the {FCC} (octet) truss have shown that struts ori-

ented perpendicular to the loading direction and situated along the edges experience

strains that are as much as 50% greater than those of equivalent struts in the bulk

[32, 35]. These strain elevations have been confirmed by experimental measurements
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of strut strains using digital image correlation [33]. These measurements also con-

firm that the strains in the affected tensile struts are almost entirely due to axial

deformation; the contributions from bending are negligible, as predicted by the sim-

ulations. They further show that the strains in compressive struts situated at the

truss corners experience significant bending, with bending strains comprising up to

50% of the peak principal strut strains.

The goal of the present study is to determine the effects of individual strut defects

and free surfaces, both separately and together, on strains in neighboring struts

and the effects of strain elevations on the strength of three elastic-brittle, stretch-

dominated truss structures. The article is organized in the following way. The truss

topologies and defect types are described in Section 5.2. Finite element (FE) models

are described in Section 5.3. Results for strut strain distributions in the elastic (pre-

buckling) domain are summarized in Section 5.4. The nonlinear responses of the

trusses, wherein struts buckle and/or fail in tension, are presented in Section 5.5.

The implications for truss design and topology selection are noted in Section 5.6.
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5.2 Truss topologies and defect types

The three truss structures of present interest are: (i) the octet truss, denoted

{nFCC}3, (ii) the binary truss 60% {nBCC}3 | 40% {nSC}3; and (iii) the binary

truss 80% {nFCC}3 | 20% {nSC}3. Examples of the three trusses, each with n = 2,

are shown in Figure 5.1. The two binary trusses are elastically isotropic and exhibit

the maximal possible stiffness for strut-based trusses. (See Chapter 3 for a detailed

analysis.) Their elastic properties are E/Eoρ = 1/6, G/Eoρ = 1/15 and ν = 1/4,

where ρ is relative density, E is Young’s modulus, G is shear modulus, ν is Poisson’s

ratio, and Eo is the Young’s modulus of the parent material [22, 32]. In contrast,

the {nFCC}3 truss is elastically anisotropic, with Young’s moduli varying from a

low of E/Eoρ = 1/9 in [100]-type directions to a high of E/Eoρ = 1/5 in [111]-type

directions [12].

Strut types are denoted according to the system laid out in Section 3.2.2. In

{FCC} trusses, type I struts are aligned with [110] and [11̄0] directions, type II are

aligned with [101] and [101̄] directions, and type III are aligned with [011] and [011̄]

directions. Under compressive loading along the [100] direction, both type I and

type II struts are oriented at 45 degrees to the compression direction and experience

equivalent compressive strains. (The distinction between type I and type II struts is
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only necessary when considering shear loading, wherein the two strut types are loaded

in opposite directions: one in compression and the other in tension. For compressive

loading, both are treated as type I struts.) Type III struts are perpendicular to the

compression direction and experience axial tension. In {SC} trusses, type IV struts

are aligned with the [100] (loading) direction while type V struts are aligned with

the [010] and [001] directions: the latter being loaded in tension when the truss is

loaded in compression along the [100] direction. In {BCC} trusses, type VI struts

are aligned with [111] and [1̄11] directions while type VII are aligned with [11̄1] and

[111̄] directions. (Here again the distinction between the two strut types is only

necessary for shear loading. In compression the two are identical and are treated

here as type VI struts.) Table 3.2 shows struts of each type and their axial strains

in an infinite truss (n = ∞) [32].

Defect types are similarly denoted by the type of missing strut (I, III, IV, V and

VI). Defects are further distinguished by their locations: bulk defects being in the

truss interior (far from the free surfaces), surface defects on one of the external faces

parallel to the loading direction, edge defects at the intersections of two external

faces, and corner defects at one of the 8 truss corners. In the subsequent analyses,

surface defects are placed at the center of one of the external faces and edge defects

are placed along the mid-point of an edge. Locations of surface, corner and edge
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defects are shown in Figure 5.2.

5.3 Finite element methods

Finite element models were developed in a manner analogous to that of Sec-

tion 3.2. Trusses were discretized using Timoshenko beam elements with circular

cross-section. All struts of each elementary truss were assigned equal cross-sectional

area, determined by the volume fractions of the constituent trusses. Simulations

were performed for trusses with relative densities ρ = 0.01 or 0.05, although the

normalizations introduced below allow the results to be generalized for other values

of relative density. Defects were introduced by removing individual struts of the

designated type. Compressive loads were applied along the [100] direction, hereafter

denoted as the 1-axis. Models were processed using the commercial package Abaqus

(Version 6.13-EF4, Dassault Systèmes, Providence, Rhode Island).

Both linear and non-linear simulations were performed. For the linear simu-

lations, nodal displacements were prescribed on opposing faces of the model in a

manner identical to that described in Section 3.2.2: u = ǫ1L at x = L and u = 0 at

x = 0, where u is nodal displacement along the 1-axis, x is the position on the 1-axis,

ǫ1 is the strain in the 1-direction and L is the length of the truss along the principal
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directions. This yields uniaxial compressive loading along the [100] direction.

For the nonlinear simulations (incorporating effects of elastic strut buckling),

nodal velocities (instead of displacements) were prescribed on one face using the

boundary conditions detailed in Section 3.2.4: u̇ = ǫ̇L at x = L where the dots

represent derivatives with respect to time. The opposing face was fixed (u = 0

at x = 0). Rigid body motion was prevented by pinning the node at the origin,

i.e. u = v = w = 0 at (0, 0, 0) where v and w are nodal displacements in the

2- and 3-directions, respectively, and by assigning w = 0 to the node at (0, L, 0).

Velocities were selected to yield quasi-static strain rates (|ǫ̇| = 10−3s−1). To reduce

computation time, the mass density in the nonlinear simulations was artificially

increased by a factor of 10. To minimize oscillations following tensile failure, damping

was introduced according to Equation 3.3. Here, ξ = 0.48. To confirm that the

loading was quasi-static (prior to strut failure), the ratio of kinetic energy to potential

energy was computed at each time step and found to be less than 10−2.

Two truss sizes were studied. The first, with n = 11, was used to assess the effects

of bulk defects in essentially infinite trusses. Here strut defects were placed at the

truss center. Using linear simulations, the principal strains in all struts in both the

pristine and the defect-containing trusses were calculated from the strain components

derived from axial, bending and torsional deformation modes on the strut surfaces.
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We find, however, that maximum principal strains in the linear elastic domain are

dominated by axial strains; bending and torsional modes contribute minimally. The

size of the affected region around the bulk defects was characterized by the distance

from the centroid of the defect to the centroid of the farthest strut in which the

principal strains differ by at least 5% relative to that in the same strut within a

pristine truss.

A second set of linear simulations was performed for n = 5. In this case, defects

were placed on either bulk, surface, edge or corner sites. Here again the principal

strains were computed for all struts in both pristine and defect-containing trusses.

The objective of these simulations was to ascertain, both separately and together,

the effects of free surfaces and strut defects on local strut strains. Because of reduced

nodal connectivity of struts at free surfaces, such struts also experience strain eleva-

tions. In this context, surfaces themselves serve as defects, competing with missing

struts to determine which ultimately dictates strength.

Results for peak values of maximum and minimum principal strains, ǫmax and

ǫmin, respectively, are couched in two normalized forms. For tensile struts they are

kmax ≡ ǫmax/ǫ
o
max and ǫmax/ǫ1 = kmaxǫ

o
max/ǫ1 where ǫomax is the maximum strain

that would be obtained in an equivalent strut in the absence of a defect, ǫ1 is the

macroscopic axial strain, and kmax is the strain concentration factor; for the com-
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pressive struts they are kmin ≡ ǫmin/ǫ
o
min and ǫmin/ǫ1 = kminǫ

o
min/ǫ1 where ǫomin is

the largest minimum principal strain that would be obtained in an equivalent strut

in the absence of a defect and kmin is the corresponding strain concentration fac-

tor. Although the former of each pair (the strain concentration factors) represent

the relative effects of defects on the neighboring fields, the latter of each pair, when

compared to values for other struts in the same truss, provide a more informative

indicator of which defects are likely to dominate failure.

To determine the separate effects of free surfaces and strut defects, strut strains

are also couched in terms of minimum and maximum principal strains due to free

surfaces, ǫedgemin and ǫedgemax, and those due to a single strut defect, ǫdefectmin and ǫdefectmax .

When ǫdefectmax /ǫedgemax < 1, bulk strut defects are not expected to be strength-limiting.

All nonlinear simulations were performed for n = 5 (larger truss sizes being

somewhat prohibitive in terms of computation time). Although the size of the truss

is smaller than that of the linear simulations, strain amplification due to free surface

effects are nearly equivalent to those of the larger truss [32]. The goal of these

simulations was to to determine the effects of defects on both buckling of struts in

compression and fracture of struts in tension. Tensile fracture was assumed to occur

when the maximum principal strain in the tensile struts exceeds a critical value at

any point in an element. The broken element was then removed from the model.
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To accurately determine the sequence of strut fractures, the nonlinear simulations

were performed in two steps. In the first, the state of the system was recorded at 100

equally-spaced time increments, up to a macroscopic strain of 1%. From this data,

the increment of time (usually within a single time step) over which most failures

occurred was identified. The simulations were then repeated, in this case with the

state of the system being saved in 1000 equally-spaced time increments within the

interval in which the failure events occurred.

In order to probe transitions from buckling-dominated to fracture-dominated

domains, the tensile failure strains selected for this study were based on the expected

strains required for strut buckling, using the {FCC} truss as a baseline, in the

following way. In the {FCC} truss, type I struts buckle at an axial strut strain

ǫa = ρ/6, essentially independent of truss size [32]. Within the bulk of a large truss,

the axial tensile strains in type III struts are of equal magnitude (ǫa = ρ/6). At free

surfaces, however, the reduced nodal connectivity leads to a 50% elevation in strut

strain, yielding ǫa = ρ/4 [33]. Neglecting bending strains, the expectation therefore

is that, when the tensile failure strain is ǫf = ρ/4, buckling of type I struts and tensile

failure of near-surface type III struts should occur simultaneously. Accordingly, most

simulations were performed using one of four tensile failure strains: two below and

two above the expected critical value, notably ǫf/ρ = 0.048, 0.24, 0.48 or 0.96. The
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same values of fracture strains were employed for all truss types. To capture the

transition from fracture- to buckling-dominated failure in each truss, additional FE

simulations were performed with ǫf/ρ ranging from 0.097 to 1.34. For comparison,

simulations were also performed without a prescribed failure strain, i.e. for a purely

linear-elastic material.

The results are couched in terms of stress normalized by Eoρ
2 and strain normal-

ized by ρ [32]. These normalizations yield the expected scalings in properties, notably

stiffness proportional to Eoρ and buckling strength proportional to Eoρ
2. Provided

ρ is sufficiently small and failure is buckling-dominated (that is, neither yielding

nor fracture intervene), the results in this form are, to a very good approximation,

independent of ρ and Eo.

5.4 Elastic strain concentrations

5.4.1 Role of free surfaces

The maximum tensile strains in the {FCC} truss (absent defects) are obtained

in type III struts located along the truss edges (arrows in Fig. 5.3(a)). Here the peak

strains and strain concentrations are ǫmax/ǫ1 = −0.51 and kmax = 1.53 (Table 5.2).
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But the effects are highly localized; neighboring struts experience only slight strain

elevations while those more than 2 strut lengths from the defect location are almost

unaffected.

The maximum tensile strains in the {FCC}|{SC} truss also occur in type III

struts located near the truss edges, but offset by a distance of one strut length

from the edge itself (arrows in Fig. 5.3(b)). Here the peak strains are considerably

smaller: ǫmax/ǫ1 = −0.36 (Table 5.2). Strain elevations are also obtained in the

type V struts within the {SC} sub-truss located along the free surfaces, although

their magnitudes are even smaller (ǫmax/ǫ1 = −0.28). In the {BCC}|{SC} truss,

the peak tensile strains are obtained in type V struts located at the free surface and

oriented perpendicular to those surfaces (ǫmax/ǫ1 = −0.29, Fig. 5.3(c), Table 5.2).

5.4.2 Bulk defects in infinite trusses

As we show presently, elevations in the minimum principal strains around strut

defects do not affect the buckling response and thus the following discussion focuses

on tensile struts alone. (Notwithstanding, the minimum principal strains may be

relevant to scenarios in which failure involves strut yielding and are therefore included

for completion, in Table 5.1 and Table 5.2.)
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Bulk defects are most benign in the {FCC} truss (Table 5.1, Table 5.2). The

maximum tensile strains in type III struts increase by 25% and 12% around type I

and type III defects, respectively. The strain elevations persist over distances of 2

strut lengths (or 1.4 unit cell lengths). Most importantly, the strain elevations are

smaller than those in struts located at the free surfaces. The inference is that, when

truss failure is fracture dominated, bulk defects should play almost no role in truss

strength.

In the binary trusses, only type IV defects (within the {SC} truss) result in peak

tensile strains that exceed those due to free surfaces. In the {FCC}|{SC} truss,

peak tensile strains (in type III struts) increase by 50% around a type IV defect,

exceeding the maximum tensile strain at the edges by 5%. In the {BCC}|{SC}

truss, the peak tensile strains due to a type IV defect exceed those due to the free

surfaces by about 15%.

5.4.3 Defects in finite trusses

The effects of defects in finite trusses depend on defect location (Figure 5.4). In

the {5FCC}3 truss, the effects of a center defect are identical to those at the center

of the larger ({11FCC}3) truss (Table 5.1, Table 5.3): both yielding peak strains

lower than those at the free surfaces. Defects at corners, edges and surfaces are
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similarly benign.

In the {BCC}|{SC} truss, type IV defects have the greatest effect, with the

strains in surrounding struts being greater than that due to the surfaces for all

defect locations (Figure 5.5). Among the possible locations, the edge site is most

deleterious; the local strut strain there is about 19% greater than that at the free

surfaces in the absence of defects. In the {FCC}|{SC} truss, type I and type IV

defects also yield local strains exceeding those of the free surfaces. The most extreme

case is that of a type IV edge defect; the local strains there are 59% greater than

those due to the free surfaces alone.

5.5 Inelastic response of finite trusses

Coupled effects of defect type, defect location and tensile failure strain on the

compressive stress-strain response of the three trusses are shown in Figure 5.6. Two

combinations of defect type and defect location were considered for each truss type.

The selected combinations produce the greatest tensile strain elevations (Table 5.3).

The variation in truss strength with failure strain (absent strut defects) is plotted

on Figure 5.7.
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5.5.1 {FCC} truss

The intrinsic response of the {FCC} truss is essentially elastic-“perfectly plas-

tic”. That is, buckling occurs in all compressive struts over a narrow strain range;

thereafter, the stress needed for continued buckling remains constant. When the ma-

terial failure strain is taken as ǫf/ρ = 0.24, strut failure initiates essentially at the

point of incipient buckling, where the stress-strain curve just begins to display slight

non-linearity. Once buckling initiates, bending of the most critically-loaded struts

leads to strut fracture. Failure initiates in tensile struts near the corners and then

proceeds diagonally along a (111)-type plane (Vid. S4). Corner defects do not alter

the failure response, except that the failure initiation site is shifted slightly towards

the defect (Vid. S5–S6).

Doubling the material failure strain (to ǫf/ρ = 0.48) increases the truss failure

strain by only a small amount. This is because, once large-scale buckling occurs,

bending strains in the tensile members increase rapidly, bringing those struts to

criticality with only small amounts of additional applied strain (Fig. 5.8). Here

again the failure sequence initiates at the corner and proceeds along type III struts

within (111)-type planes (Vid. S7). Somewhat larger (though not proportionate)

gains in truss failure strain are made when the material failure strain is doubled

again (to ǫf/ρ = 0.96). In this case, failure occurs well within the plateau associated
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with large-scale buckling.

In contrast, when the material failure strain is reduced five-fold from the baseline

value (that is, from ǫf/ρ = 0.24 to ǫf/ρ = 0.048), both the failure strain and the

failure stress of the truss decrease proportionately. In this domain, failure occurs

while the tensile struts experience only axial strains (with minimal bending); since

these strains are proportional to the applied strain, it follows that truss strength

varies linearly with the material failure strain. Since truss fracture occurs almost

immediately after the first strut failure, the ultimate strength is expected to follow

in accordance with

σf/Eoρ
2 = (E/Eoρ)(ǫ1/ǫakmax)(ǫf/ρ) (5.1)

where, for the {FCC} truss, E/Eoρ = 1/9, ǫa/ǫ1 = 1/3 and kmax = 1.5. This pre-

diction, superimposed on Figure 5.7, agrees very well with the computed strengths.

The preceding behavioral transition (at a critical material failure strain) is also

manifested as the relative density is varied. The latter transition is shown in a plot of

strength vs. relative density (Figure 5.9). At low values of ρ, the strength is buckling-

dominated and proportional to ρ2. In contrast, at high values of ρ, the strength is

fracture-dominated and proportional to ρ. The transition occurs at a critical value of

ρ that depends on material failure strain. From Eqn. 5.1 and the computed buckling

strength (σf/Eoρ
2 = 0.056), the transition is expected at ǫf/ρ = 0.25.
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Strut defects, even when located in the most deleterious locations, have remark-

ably small effects on strength of the {FCC} truss (typically ≤ 5%). This is because

strain concentrations associated with the surfaces are generally greater than those

around strut defects.

5.5.2 Binary trusses

The behaviors of the two binary trusses differ from that of the {FCC} truss in

three ways. First, the intrinsic responses of the binaries involve two sets of buckling

events: one each for the {SC} and either the {FCC} or {BCC} constituent trusses.

The limit stress for the {FCC}|{SC} truss is about 20% lower than that of the

{FCC} truss. This reflects the volume fraction of material allocated to the {SC}

truss, the latter bearing minimal load after buckling. Additionally, the material

failure strain needed to reach the limit stress is considerably higher than that in

the {FCC} truss. This is because buckling of the first set of struts (within the

{SC} truss) induces bending in the tensile struts and therefore accelerates failure.

The limit stress for the {BCC}|{SC} truss is marginally greater than that of the

{FCC} truss. But here again buckling of the {SC} truss (at about 70% of the limit

stress) induces bending in the tensile struts. Attaining the full strength potential

therefore requires materials with higher failure strains (by a factor of about 5 relative
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to that needed for the {FCC} truss).

Second, in the domain in which the material failure strain is small, the strength

is again proportional to the material failure strain, in accordance with Eqn. 5.1;

here E/Eoρ = 1/6 for both binary trusses, and ǫa/ǫ1 = −0.35 and −0.32 for the

{FCC}|{SC} and the {BCC}|{SC} trusses, respectively. Here the {BCC}|{SC}

truss emerges as the best choice; the combination of high stiffness and low strains

in the constituent tensile struts render it the strongest (more than twice that of the

{FCC} truss).

Third, the strengths of the binary trusses exhibit a stronger defect sensitivity

when the material failure strain is low. In this domain, a type IV corner defect reduces

the compressive strength of the {FCC}|{SC} truss by 25%. Fracture initiates at

the flaw location. In contrast, in the pristine truss, failure initiates in the type III

struts at the truss corners and edges, indicated in Figure 5.3. In the {BCC}|{SC}

truss, type IV edge and corner defects reduce compressive strength by roughly 13 and

16%, respectively. The reductions in strength agree with strain amplifications due to

these defects (Table 5.3). In both defective trusses, tensile failure initiates near the

defects. [Details of failure sequences are provided in Supplementary Material (Vid.

S8-S12).]
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5.5.3 Stochastic failure

Although the present study has focused on cases in which the material failure

strain and hence strength are deterministic material properties, some insights into

defect sensitivity when failure is stochastic can also be gleaned. Assuming that

truss failure occurs when the first tensile strut breaks — an assumption consistent

with the FE simulations — the truss strength distribution can be written in terms

of the strut strength distribution coupled with strut stress distribution. Here the

survival probability of the truss is simply the product of survival probabilities of all

individual struts. If the strength of the struts follows a Weibull distribution with

reference strength σo for a reference volume equal to strut volume and with a Weibull

modulus (or dispersion index) m, the survival probability Ps can be expressed as [67]

lnPs = −
N
∑

i=1

(kiσn/σo)
m (5.2)

where σn is the nominal tensile strut stress in an infinite truss, ki is the stress (or

strain) concentration on strut i, and N is the total number of tensile struts. It follows

that the ratio of the median strength (corresponding to Ps = 1/2) of a finite truss

in which surface effects are operative to that of a notional truss of the same size but

without surface effects is 〈km
i 〉−1/m where 〈 〉 denotes a mean value.

Distributions of ki (shown in Figure 5.10) range from 0.6 to 1.5 in the {FCC}
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truss and 0.6 to 1.25 in the {BCC}|{SC} truss. The computed ratios of median

strengths (in Figure 5.11) show that: (i) as m → ∞, the ratio of median strengths

approaches 1/kmax, and (ii) for Weibull moduli typical of structural ceramics (m =

5− 10), the ratios of median strengths are close to unity. (For example, for m = 5,

the ratios are 0.98 and 0.97 for the {FCC} and {BCC}|{SC} trusses, respectively.)

The inference is that the small number of affected struts in a large truss made from

a brittle material with even a modestly wide strength dispersion should have little

effect on average strength.

5.6 Conclusions

The key conclusions from this study follow.

1. Among the three trusses studied here, {FCC} is the most defect-tolerant.

This is because the strain elevations around bulk strut defects (distant from

the free surfaces) are smaller than those at free surfaces. Even when defects

are located at a free surface and the strain elevations from the defects are

conflated with those due to the surface itself, their effects on local strut strains

and compressive truss strength are remarkably small (≤ 5%).

2. Somewhat greater strength reductions are obtained in the binary trusses when
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defects are situated at the corners (by about 20-25%), a result of the higher

strain elevations around these defects.

3. The full strength potential of the {FCC} truss, dictated by large-scale strut

buckling, is only attained when the material failure strain exceeds a critical

value of ǫf/ρ ≈ 0.25. This condition is conceivably attainable with hard ther-

moplastics; a failure strain of ǫf = 0.05 would satisfy this condition for relative

densities up to ρ = 0.2. In contrast, if the truss were made of a high-strength

ceramic, where the failure strain (optimistically) may be ǫf = 0.01, the condi-

tion would only be satisfied for relative densities up to ρ = 0.04.

4. When the condition for large-scale buckling is satisfied and the maximum pos-

sible strength is attained, the {FCC} truss is preferred over the two binary

trusses, since it attains its peak strength at the lowest level of material fail-

ure strain. Although in principle the binary {BCC}|{SC} truss can achieve a

slightly higher strength, this requires materials with much higher failure strains

(by almost an order of magnitude). Because of the additional constraints on

material properties and the greater geometrical complexity of this truss topol-

ogy, the marginal strength gains would not likely warrant selection of this truss

topology, unless the design necessarily required elastic isotropy in combination

with high strength.
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5. In cases in which the material failure strain falls well below that required to

attain large-scale strut buckling, say ǫf/ρ < 0.1, as it might in low relative

density ceramic trusses, the {BCC}|{SC} truss would be preferred, since it

exhibits the highest strength, more than twice that of the {FCC} truss. This

is a consequence of the higher truss stiffness and the lower tensile strains gen-

erated in the {BCC}|{SC} truss.
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Table 5.1: Struts with at least a 5% change in principal strain due to the presence of a defect (shown in
black). Colors of intact struts represent minimum or maximum principal strut strains.

Defect type
I III IV V VI

{FCC}

{FCC}|{SC}

{BCC}|{SC}
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Table 5.2: Effects of bulk defects on principal strut strains.

Strut Type
I, II III IV V VI, VII

Truss Defect type ǫmin

ǫ1

ǫ
defect
min

ǫ
edge
min

ǫmax

ǫ1

ǫdefect
max

ǫ
edge
max

ǫmin

ǫ1

ǫ
defect
min

ǫ
edge
min

ǫmax

ǫ1

ǫdefect
max

ǫ
edge
max

ǫmin

ǫ1

ǫ
defect
min

ǫ
edge
min

{FCC}
— 0.509 -0.505

I, II 0.468 0.919 -0.416 0.825
III 0.466 0.917 -0.372 0.737

{FCC}|{SC}

— 0.559 -0.356 1.061 -0.274
I, II 0.501 0.896 -0.332 0.933 1.067 1.006 -0.303 1.108
III 0.475 0.849 -0.276 0.775 1.022 0.963 -0.296 1.083
IV 0.656 1.173 -0.375 1.053 1.027 0.968 -0.288 1.053
V 0.475 0.850 -0.316 0.887 1.022 0.963 -0.264 0.963

{BCC}|{SC}
— 1.052 -0.293 0.358
IV 1.077 1.024 -0.335 1.145 0.446 1.246
V 1.035 0.984 -0.279 0.951 0.278 0.776

VI, VII 1.039 0.988 -0.291 0.995 0.258 0.722

Shaded numbers are those most relevant to discussion in the text.
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Table 5.3: Effects of defects on tensile strut strains in finite trusses.

Truss ǫedgemax/ǫ1 Defect type Defect location ǫdefectmax /ǫ1 ǫdefectmax /ǫedgemax

{5FCC}3 -0.50

I

corner -0.49 0.99
edge -0.47 0.94

surface -0.44 0.88
center -0.44 0.88

III

corner -0.49 0.99
edge -0.39 0.78

surface -0.38 0.75
center -0.39 0.78

{5FCC}3|{5SC}3 -0.35

I

corner -0.43 1.25
edge -0.42 1.22

surface -0.42 1.19
center -0.35 0.99

III

corner -0.33 0.94
edge -0.28 0.79

surface -0.26 0.75
center -0.31 0.89

IV

corner -0.48 1.39
edge -0.55 1.59

surface -0.47 1.36
center -0.38 1.08

V

corner -0.35 1.00
edge -0.33 0.94

surface -0.27 0.78
center -0.32 0.92

{5BCC}3|{5SC}3 -0.32

IV

corner -0.36 1.13
edge -0.38 1.19

surface -0.35 1.12
center -0.35 1.11

V

corner -0.28 0.90
edge -0.29 0.92

surface -0.29 0.90
center -0.29 0.92

VI

corner -0.28 0.90
edge -0.29 0.92

surface -0.31 0.98
center -0.32 1.01

Shaded numbers are those most relevant to discussion in the text.
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Figure 5.1: Cubic truss structures at a relative density ρ = 0.05. Unit cells are
indicated by darker colors.

Figure 5.2: Locations of surface, edge and corner defects in (a) {5FCC}3, (b)
{5SC}3 and (c) {5BCC}3 trusses.
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Figure 5.3: (a) The greatest strain concentrations in tensile struts within the
{FCC} truss are largely confined to the edge struts (shown here in cross-sections
transverse to the loading directions, at two distances from one of the loaded faces:
x/a = 1 and 5). (b, c) The greatest strain concentrations in the two binary trusses are
similarly obtained at the truss edges, but their magnitudes are somewhat smaller.
Arrows indicate struts with the maximum strain concentration factor within each
plane. Due to the cubic symmetry of the trusses, only one quadrant of each cross-
section is shown. Thick dashed lines indicate lines of symmetry. [Videos showing
sections at distances that, in totality, comprise data for all tensile members in the
truss can be found in Supplementary Information (Vid. S1-S3).]
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Figure 5.4: Strain elevations around type I strut defects in the {FCC} truss depend
on defect location, the maximum occurring when the defect is at a truss corner. The
effects persist over distances of about two strut lengths. Only struts that experience
a strain change ≥ 5% are shown. Arrows indicate missing struts.
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Figure 5.5: Strain elevations around type IV strut defects in the {5BCC}3|{5SC}3
truss depend on defect location. Although the strain concentrations are modest,
they persist over lengths approaching (in this case) the entire truss. Only struts that
experience a strain change ≥ 5% are shown. Arrows indicate missing struts.
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Figure 5.6: Stress-strain responses of the three trusses exhibit varying degrees
of non-linearity, dependent on truss topology and material failure strain; the pres-
ence of strut defects and their locations within the truss play secondary roles. (a)
The {5FCC}3 truss undergoes a single buckling event at essentially a single stress,
thereby producing effectively elastic-”perfectly plastic” response. (b, c) The two
binary trusses undergo two buckling events, each associated with one of the two
compressive strut populations.
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Figure 5.7: Compressive strengths of the three trusses transition from being
fracture-dominated to buckling-dominated as the material failure strain increases.
In the former domain, truss strength is linear with failure strain (indicated by in-
clined dashed lines, from Eqn. 5.1); in the latter, it is independent of failure strain
(indicated by horizontal dashed lines). In the {FCC} truss, the transition occurs
over a relatively narrow range of failure strains (ǫf/ρ = 0.25 to 0.5.). In contrast, the
transitions in the two binary trusses are gradual, spanning a range of failure strains
of about an order of magnitude (roughly, from ǫf/ρ = 0.1 to 1). In the {BCC}|{SC}
truss in particular, the failure strain needed to attain the full strength is ǫf/ρ = 1.5.
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Figure 5.8: TThe principal strain in the first tensile strut to fail in the {FCC}
truss is initially due entirely to axial deformation. Once the neighboring compressive
struts buckle, the axial strain in the tensile strut remains constant; further increases
in the maximum principal strain are due to nodal rotations resulting from buckling
and, in turn, to strut bending. The curves terminate once the strut strain reaches
its failure strain which, in this case, is ǫf/ρ = 0.48.

164



Figure 5.9: The compressive failure mode of the {FCC} truss transitions from
buckling of the compressive struts to fracture of the tensile struts at a critical point
dictated by relative density and material failure strain. Accompanying the transition
is a change in the sensitivity of strength to relative density, from quadratic to linear.
(Dashed lines are analytical predictions, from Eqn 5.1; symbols are from FEA.)
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Figure 5.10: (a) The maximum principal strain concentrations in the {5FCC}3
truss fall in the range of 0.6 to 1.5, although the number density of struts at the high
end of this range is exceedingly small. (b) The {5BCC}3|{5SC}3 trusses exhibit
a somewhat narrower range. Although the peak value is lower (about 1.25), the
number density of struts with the highest strains is considerably greater than that
in the {5FCC}3 truss.
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Figure 5.11: When strut strength is stochastic, small numbers of highly-strained
tensile struts have little effect on median truss strength. For representative values of
Weibull moduli of ceramics (say m = 5− 10), the median strength would be reduced
by less than 5%.

167



Chapter 6

Summary and future work

The design of lightweight trusses that are stiff, strong and defect-tolerant has been

investigated using finite element models and experimental tests. The designs are

based on a newly-developed system for classification of truss structure that borrows

concepts from crystallography and geometry to describe nodal locations and their

connectivity. Together, the classification system fully and unambiguously defines

truss topology. Within this framework, isotropic trusses are formed by combining

two or more elementary cubic trusses in appropriate proportions. This method of

forming compound trusses has been used to identify two isotropic binary compound

trusses and many isotropic ternary trusses, all with elastic properties equal to the

theoretical upper bound for isotropic trusses [22]. While the objective here was to

identify trusses with isotropic elastic properties, analogous methods could be used

to meet other objectives, e.g. maximizing the ratio of bulk to shear moduli or
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minimizing Poissons ratio.

In addition to achieving high stiffness, compound trusses can exhibit high

strength. When tensile failure precedes large-scale buckling, the isotropic

{BCC}|{SC} truss exhibits a compressive strength about twice that of the {FCC}

truss, a consequence of the higher truss stiffness and the lower tensile strains gen-

erated in the compound truss. In another regime, where strength is controlled by

strut buckling, the {BCC}|{SC} truss exhibits a strength that exceeds that of the

{FCC} truss by only a small margin. Moreover, its strength is predicated on the

material response remaining elastic after compressive members buckle.

The full strength potential of the trusses is achieved only when elastic buckling

of all compressive members precedes tensile failure. For the {FCC} truss, this

condition is met when the material failure strain exceeds ǫf/ρ ≈ 0.25. Attaining the

full strength of the isotropic {BCC}|{SC} truss requires a material failure strain

that is roughly 5 times higher (ǫf/ρ ≈ 1.5). This is because the {SC} struts of the

compound truss buckle early and the subsequent bending of the buckled struts leads

to large material strains before the struts within the {BCC} truss begin to buckle.

In pristine trusses, strut strains near the surfaces are elevated by as much as

50% compared to those of equivalent struts in the bulk. Strain elevations due to

missing struts in the bulk are lower than or comparable to the elevations already
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present at the surface and thus do not affect the mechanical performance of the truss.

Missing struts in regions of low nodal connectivity (i.e. near surfaces, edges and

corners) cause the highest strain amplifications. However, their effects on strength

are negligible in or near the buckling-dominated domain.

The study of defect sensitivity has been restricted to trusses containing to in-

dividual missing struts. Future work is needed to determine the effects of multiple

defects and other defect types, e.g. strut waviness and variations in strut radii, to

determine how property degradation scales with defect type and defect density.

For fixed topology, the mechanical performance of trusses can be improved with

the addition of fillets in the node regions. Their addition can increase the buckling

strength (by about 20% for the geometries tested) with only a small amount of added

mass. In the present study, only one fillet geometry was considered; there are likely

more weight-efficient designs that could be explored through the use of 3D finite

element simulations. Recent advances in AM technologies, especially improved print

resolutions, would enabled the implementation of fillets with optimized geometries.

The present study has addressed the performance of only a very small fraction

of the entire universe of truss topologies. Additional work is needed to evaluate the

performance of more complex trusses. For example, non-cubic trusses could be of

interest for applications where isotropy is not required. In those applications, non-
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cubic topologies with anisotropic strength may be preferable over the cubic trusses

studied here.

In light of the effects of free surfaces that have been identified here, opportunities

may exist for hybrid 2D/3D trusses. For example, 2D surface trusses (acting essen-

tially as face sheets) could be combined with 3D trusses to reduce high strains near

the edges and improve overall performance. Recognizing that such designs would

require re-distribution of material mass from the bulk to the surface, optimization

algorithms could be used to identify optimal truss geometries.

Other advancements in AM allow printing in two or more materials. This could

be used, for example, to fabricate {FCC} trusses in which compressive members are

made from a hard, stiff thermoplastic (to avoid buckling or yielding) while tensile

members are made from a softer (elastomeric) material. This could lead to trusses

with improved energy absorption capacity relative to those of single-material trusses.

Rather than tailoring the properties of stretching-dominated trusses for high en-

ergy absorption efficiency, an alternative approach might seek to improve the per-

formance of bending-dominated trusses. The constant crushing stress of bending-

dominated trusses leads to desirable energy absorption characteristics. One topology

of interest in this regard is the diamond cubic truss ({FCC⌊000⌋⌊1/4 1/4
1/4⌋}). This

structure has the lowest nodal connectivity and hence lowest strut aspect ratio at
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fixed relative density of all 3D periodic trusses. Designs based on this topology have

been used to create trusses with unique mechanical properties, including pentamode

materials. (In pentamode materials, 5 of the 6 elements of the diagonalized elasticity

tensor are zero [36].) To optimize for strength and energy absorption, its deforma-

tion characteristics could be tuned by varying the strut cross-section along the strut

length.
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C. Eberl, M. Thiel, and M. Wegener. Tailored 3d mechanical metamaterials

made by dip-in direct-laser-writing optical lithography. Advanced Materials,

24(20):2710–2714, 2012.

[4] T. Buhl, C. B. Pedersen, and O. Sigmund. Stiffness design of geometrically non-

173



linear structures using topology optimization. Structural and Multidisciplinary

Optimization, 19(2):93–104, 2000.

[5] G. A. Buxton and N. Clarke. bending to stretching transition in disordered

networks. Physical review letters, 98(23):238103, 2007.

[6] G. Campoli, M. Borleffs, S. A. Yavari, R. Wauthle, H. Weinans, and A. A.

Zadpoor. Mechanical properties of open-cell metallic biomaterials manufactured

using additive manufacturing. Materials & Design, 49:957–965, 2013.

[7] H. D. Carlton, J. Lind, M. C. Messner, N. A. Volkoff-Shoemaker, H. S. Barnard,

N. R. Barton, and M. Kumar. Mapping local deformation behavior in single cell

metal lattice structures. Acta Materialia, 129:239–250, 2017.

[8] V. Challis, A. Roberts, and A. Wilkins. Design of three dimensional isotropic

microstructures for maximized stiffness and conductivity. International Journal

of Solids and Structures, 45(14):4130–4146, 2008.

[9] X. Cheng, S. Li, L. Murr, Z. Zhang, Y. Hao, R. Yang, F. Medina, and R. Wicker.

Compression deformation behavior of ti–6al–4v alloy with cellular structures

fabricated by electron beam melting. j=Journal of the mechanical behavior of

biomedical materials, 16:153–162, 2012.

174



[10] S. Chiras, D. Mumm, A. Evans, N. Wicks, J. Hutchinson, K. Dharmasena,

H. Wadley, and S. Fichter. The structural performance of near-optimized truss

core panels. International Journal of Solids and Structures, 39(15):4093–4115,

2002.

[11] V. Deshpande, M. Ashby, and N. Fleck. Foam topology: bending versus stretch-

ing dominated architectures. Acta materialia, 49(6):1035–1040, 2001.

[12] V. S. Deshpande, N. A. Fleck, and M. F. Ashby. Effective properties of the

octet-truss lattice material. Journal of the Mechanics and Physics of Solids,

49(8):1747–1769, 2001.

[13] L. Dong, V. Deshpande, and H. Wadley. Mechanical response of ti–6al–4v

octet-truss lattice structures. International Journal of Solids and Structures,

60:107–124, 2015.

[14] L. Dong and H. Wadley. Mechanical properties of carbon fiber composite octet-

truss lattice structures. Composites Science and Technology, 119:26–33, 2015.

[15] R. E. Doty, J. A. Kolodziejska, and A. J. Jacobsen. Hierarchical polymer mi-

crolattice structures. Advanced Engineering Materials, 14(7):503–507, 2012.

[16] S. d. S. e Lucato, J. Wang, P. Maxwell, R. McMeeking, and A. Evans. Design

175



and demonstration of a high authority shape morphing structure. International

journal of solids and structures, 41(13):3521–3543, 2004.

[17] Z. C. Eckel, C. Zhou, J. H. Martin, A. J. Jacobsen, W. B. Carter, and

T. A. Schaedler. Additive manufacturing of polymer-derived ceramics. Science,

351(6268):58–62, 2016.

[18] A. G. Evans, J. W. Hutchinson, N. A. Fleck, M. Ashby, and H. Wadley. The

topological design of multifunctional cellular metals. Progress in Materials Sci-

ence, 46(3-4):309–327, 2001.

[19] N. A. Fleck and X. Qiu. The damage tolerance of elastic–brittle, two-dimensional

isotropic lattices. Journal of the Mechanics and Physics of Solids, 55(3):562–588,

2007.

[20] L. J. Gibson and M. F. Ashby. Cellular solids: structure and properties. Cam-

bridge university press, 1999.

[21] J. J. Gilman. Tetrahedral truss, May 8 1984. US Patent 4,446,666.

[22] G. Gurtner and M. Durand. Stiffest elastic networks. In Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences,

volume 470, page 20130611. The Royal Society, 2014.

176
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