
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Enabling Deep Learning Inference on Resource Constrained Devices

Permalink
https://escholarship.org/uc/item/7p92c7g9

Author
Kutukcu, Basar

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7p92c7g9
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Enabling Deep Learning Inference on Resource Constrained Devices

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Basar Kutukcu

Committee in charge:

Professor Sujit Dey, Chair
Professor Ryan Kastner
Professor Farinaz Koushanfar
Professor Tajana Rosing

2024



Copyright

Basar Kutukcu, 2024

All rights reserved.



The Dissertation of Basar Kutukcu is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1 Contention Grading and
Adaptive Model Selection for
Machine Vision in Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overview of our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Machine Vision Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Delay Accuracy Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Adaptive Model Selection At Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.4 Contention Grading and Defining Model Set . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Contention Grading, Model Set Generation and Adaptive Model Selection: Details 12
1.4.1 Contention Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Runtime Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.2 Contention Grading and Model Set Pruning Evaluation . . . . . . . . . . . . . . 21
1.5.3 Runtime Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.4 System Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.5 Comparison with Early Exit Based Method . . . . . . . . . . . . . . . . . . . . . . . . 33
1.5.6 Comparison with Slimmable Network Based Method . . . . . . . . . . . . . . . . 38

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 2 SLEXNet: Adaptive Inference Using Slimmable Early Exit Neural Networks 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iv



2.4.1 SLEXNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.2 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.3 Challenges for SLEXNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.1 Training and Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.2 Offline Performance Evaluation of SLEXNet . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.3 Online SLEXNet Performance with Adaptive Scheduling . . . . . . . . . . . . 70
2.5.4 Additional Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 3 Fast and Scalable Design Space Exploration for Deep Learning on Embed-
ded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3 Problem Formulation, Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Proposed Approach: DivCon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4.2 Advantages over other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.5.1 Search Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.5.2 Visualization of DivCon Working Mechanism . . . . . . . . . . . . . . . . . . . . . . 109
3.5.3 Comparison with other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

v



LIST OF FIGURES

Figure 1.1. Inference delays of different models under changing contention . . . . . . . . . 9

Figure 1.2. Pareto-optimal and Pareto-inferior of a hypothetical model set . . . . . . . . . . . . . . . 15

Figure 1.3. Hypothetical model set before transition pruning . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.4. Hypothetical model set before contention pruning . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.5. Overview of the proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 1.6. Inference delays under increasing contention and normalization . . . . . . . . . 20

Figure 1.7. Inference delays of CIP under system contention . . . . . . . . . . . . . . . . . . . . . 22

Figure 1.8. Inference delays of CIP under increasing ACU contention . . . . . . . . . . . . . . 23

Figure 1.9. Kernel density estimation of the system profile . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 1.10. Pareto pruning - Accuracy vs inference delay values of models . . . . . . . . . . 23

Figure 1.11. Transition pruning - Accuracy vs inference delay values of models . . . . . . 25

Figure 1.12. Inference delays of the transition pruned models under existing contention
levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 1.13. Temporal comparison of individual models, reactive methods and the
predictive method under varying contention . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 1.14. Temporal comparison of predictive method with model sets after each
pruning stage under varying contention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 1.15. Selection counts of models for each model set . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 1.16. System power measurement when model selection is running under varying
contention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 1.17. Performance comparison of early exit branches -(branch no, input size)
and corresponding individual models - i(model size)-input size . . . . . . . . . 35

Figure 1.18. Temporal comparison of the smallest individual model, early exit, individ-
ual model selection under varying contention . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 1.19. The effect of batch size on inference delays of switches of a slimmable
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



Figure 1.20. Accuracy - inference delay plots of individual models and slimmable
network switches under different batch sizes . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 1.21. Temporal comparison of slimmable model and individual model selection
under varying contention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2.1. The adaptability comparison of static models, their early exit and slimmed
versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 2.2. SLEXNet architecture implemented on EfficientNetB0 . . . . . . . . . . . . . . . . 52

Figure 2.3. The overview of adaptive execution system using SLEXNet and Runtime
Scheduling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 2.4. Simplified explanation of time estimation in runtime scheduling . . . . . . . . . 54

Figure 2.5. The effect of incoming data rate to the power consumption of a SLEXNet
option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 2.6. Example images from AIDER dataset [46] . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 2.7. The accuracies of SLEXNet branches with different early exit points and
slimming factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 2.8. Some failing SLEXNet options for varying FPS incoming data rates (Ac-
curacies of the SLEXNet options can be seen in Fig. 2.7) . . . . . . . . . . . . . . 67

Figure 2.9. Some working SLEXNet options for varying FPS incoming data rates
(Accuracies of the SLEXNet options can be seen in Fig. 2.7) . . . . . . . . . . . 67

Figure 2.10. Processing delay of each frame by their arrival numbers when SLEXNet
is used with our scheduling algorithm during increasing FPS scenario . . . . 72

Figure 2.11. Processing delay of each frame by their arrival numbers when batch size
and early exit are used during increasing FPS scenario . . . . . . . . . . . . . . . . 72

Figure 2.12. Processing delay of each frame by their arrival numbers when batch size
and slimming are used during increasing FPS scenario . . . . . . . . . . . . . . . . 73

Figure 2.13. Power consumption values of different architecture during increasing FPS
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 2.14. Processing delay of each frame by their execution batch numbers when
SLEXNet is used with our scheduling algorithm during random FPS
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



Figure 2.15. Processing time and power consumption values of different techniques
during changing FPS scenario - black line (—) is 0.12s processing time
and 18000mW power consumption thresholds . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 2.16. Processing delay of each frame by their execution batch numbers when
SLEXNet is used with our scheduling algorithm during variable power
threshold scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 2.17. Processing time and power consumption values of different techniques
during changing FPS and power threshold scenarios. The black line (—
) indicates 0.12s processing time deadline and the red line (—) shows
variable power consumption thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 2.18. Processing time and power consumption values of different techniques
during changing FPS, processing time and power thresholds scenarios. . . . 81

Figure 2.19. The processing time of each frame by their frame arrival number when
SLEXNet with flexible batch sizes is used . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 2.20. The running time of Runtime scheduling algorithm (Algorithm 2) . . . . . . . 83

Figure 2.21. Accuracies of SLEX MobileNetv2 and ResNet50v2 branches . . . . . . . . . . . 84

Figure 2.22. Processing delay of each frame by their frame arrival numbers when SLEX
MobileNetv2 is used with our scheduling algorithm during random FPS
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 2.23. Processing delay of each frame by their frame arrival numbers when SLEX
ResNet50v2 is used with our scheduling algorithm during random FPS
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 2.24. Power consumption of SLEX MobileNetv2 and SLEX ResNet50v2 during
random FPS scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 3.1. Bayesian Optimization summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 3.2. The effect of training set size for training Gaussian process . . . . . . . . . . . . . 95

Figure 3.3. Pareto-focused Bayesian Optimization summary . . . . . . . . . . . . . . . . . . . . . . 97

Figure 3.4. DivCon Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 3.5. Regions illustration in a hypothetical 2D output space . . . . . . . . . . . . . . . . . 100

Figure 3.6. Change of region weights by outer loop iterations for ic_ss and 16 regions 109

viii



Figure 3.7. The values of GPU frequency configuration variable in ic_ss show up in the
actual Pareto front in the region [1100mW-2475mW] - [0.135s-0.24s] and
DivCon sampler’s probability change for the GPU configuration variable
in the same region in 10 iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 3.8. The values of GPU frequency configuration variable in ic_ss show up in the
actual Pareto front in the region [2475mW-3850mW] - [0.03s-0.135s] and
DivCon sampler’s probability change for the GPU configuration variable
in the same region in 10 iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 3.9. Hypervolume calculation illustration in a hypothetical 2D output space . . . 113

Figure 3.10. The Hypervolume log difference results of search algorithms on search
space ic_ss. Each of the methods is run for 5 times. Solid line is the mean
of the 5 runs. Shaded area is 1 standard deviation. . . . . . . . . . . . . . . . . . . . . 114

Figure 3.11. The Hypervolume log difference by algorithm run time. The mean of 5 runs for
each algorithm is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ix



LIST OF TABLES

Table 1.1. Comparison of methods in a specific contention regime - Dataset: Ima-
geNetV2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 1.2. Model set comparison - Dataset: ImageNetV2 . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 1.3. Inference delays of 4 models when model switching is used . . . . . . . . . . . . . 33

Table 1.4. Early exit model and individual model set comparison - Dataset: ImageNetV2 38

Table 1.5. Slimmable model and individual model set comparison - Dataset: Ima-
geNetV2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 2.1. Summary of increasing data rate results using on-time accuracy (OTA), time
fail rate (TFR) and power fail rate (PFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 2.2. Summary of random data rate results using on-time accuracy (OTA), time
fail rate (TFR) and power fail rate (PFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 2.3. Summary of changing power threshold results under various processing
delay thresholds using on-time accuracy (OTA), time fail rate (TFR) and
power fail rate (PFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 2.4. Summary of changing both time and power thresholds using on-time accu-
racy (OTA), time fail rate (TFR) and power fail rate (PFR) . . . . . . . . . . . . . . 81

Table 2.5. Summary of random data rate results with flexible batch size using on-time
accuracy (OTA), time fail rate (TFR) and power fail rate (PFR) . . . . . . . . . . 82

Table 3.1. DivCon Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 3.2. The details of the used search spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Table 3.3. Comparison of the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

x



ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to my advisor, Professor Sujit Dey, for

his invaluable support and guidance throughout my Ph.D. journey. His visionary approach to

research and his passion for exploring the unknown have been a constant source of inspiration.

Under his mentorship, I have grown both academically and personally, gaining knowledge and

skills that will influence my career and life for years to come. Working with him has been

a transformative experience, and I will always cherish the lessons I have learned under his

guidance.

I would also like to thank the rest of my committee members, Professor Ryan Kast-

ner, Professor Farinaz Koushanfar, Professor Tajana Rosing for their valuable comments and

directions.

I would also like to sincerely thank Professor Sabur Baidya for his collaboration through-

out my Ph.D. journey. His insightful comments and innovative ideas during our discussions have

greatly enriched my understanding and played a significant role in shaping this dissertation. Also,

I would like to thank all members of the MESDAT Lab for their friendship and the insightful

discussions we shared.

Lastly, I would like to express my heartfelt gratitude to my family for their unwavering

support and love throughout my life. Even from the other side of the world, their constant

presence and encouragement have been a source of strength during every challenge I faced. This

thesis would not have been possible without their enduring support.

Chapter 1, in full, is a reprint of the material as it appears in ACM Transactions on

Embedded Computing Systems 2022, Basar Kutukcu, Sabur Baidya, Anand Raghunathan, Sujit

Dey. The dissertation author was the primary investigator and author of this paper.

Chapter 2, in full, is a reprint of the material as it appears in ACM Transactions on

Embedded Computing Systems 2024, Basar Kutukcu, Sabur Baidya, Sujit Dey. The dissertation

author was the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in IEEE Access 2024, Basar

xi



Kutukcu, Sabur Baidya, Sujit Dey. The dissertation author was the primary investigator and

author of this paper.

xii



VITA

2018 Bachelor of Science, Middle East Technical University

2020 Master of Science, Middle East Technical University

2020–2024 Research Assistant, University of California San Diego

2024 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

B. Kutukcu, S. Baidya, and S. Dey, "Fast and Scalable Design Space Exploration for Deep
Learning on Embedded Systems", IEEE Access, vol. 12, pp. 148254–148266, 2024.

B. Kutukcu, S. Baidya, and S. Dey, "SLEXNet: Adaptive Inference Using Slimmable Early Exit
Neural Networks", ACM Trans. Embed. Comput. Syst., vol. 23, no. 6, Sep. 2024.

B. Kutukcu, S. Baidya, A. Raghunathan, and S. Dey, "EvoSh: Evolutionary Search with Shaving
to Enable Power-Latency Tradeoff in Deep Learning Computing on Embedded Systems", in
2023 IEEE 36th International System-on-Chip Conference (SOCC), 2023, pp. 1–6.

B. Kutukcu, S. Baidya, A. Raghunathan, and S. Dey, "Contention Grading and Adaptive Model
Selection for Machine Vision in Embedded Systems", ACM Trans. Embed. Comput. Syst., vol.
21, no. 5, Oct. 2022.

B. Kutukcu, S. Baidya, A. Raghunathan, and S. Dey, "Contention-aware adaptive model selection
for machine vision in embedded systems", in 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS), 2021, pp. 1–4.

xiii



ABSTRACT OF THE DISSERTATION

Enabling Deep Learning Inference on Resource Constrained Devices

by

Basar Kutukcu

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2024

Professor Sujit Dey, Chair

This study aims to enable deep learning models on resource constrained devices consid-

ering system and application requirements. The proven success of deep learning models can be

extended into people’s life even more by using them on mobile systems since mobile systems are

ubiquitous in people’s lives. However, mobile systems are resource constrained by their nature.

The deep learning models require high computation power and resource constrained devices

do not have high computation power. This contradiction makes the research for enabling deep

learning models on resource constrained devices necessary.

In the first part of the study, we focus on the contention in a system and how it affects

our deep learning-based application. Since today’s systems are very complex and handle many

xiv



tasks at the same time, the tasks can create contention in different parts of the system. This

contention may create undesired and unpredictable effects on the applications. In this study, we

study the contention in the systems and create a model selection framework which makes deep

learning-based applications contention agnostic with limited accuracy cost.

In the second part of the study, we focus on dynamic neural network architectures. The

dynamic neural networks are very useful for mobile systems as their conditions and requirements

may change frequently. In this study, we develop slimmable early exit deep learning models and

an efficient branch selection algorithm. Our dynamic neural network architecture is shown to be

effective to adapt changing latency and power requirements.

In the third and last part of the study, we focus on scalable design space exploration

to find pareto optimal design configurations for deep learning models on embedded systems.

Finding the correct configurations for executing deep learning models on embedded systems is a

challenging problem since testing a configuration is costly in time and the design space is vast.

In this study, we develop a fast and scalable exploration algorithm that works well for extremely

large search spaces.

xv



Introduction

Deep learning has proven to be superior to the previous methods and been very successful

in various fields including, but not limited to, autonomous systems, generative models, and

reinforcement learning. The different deep learning architectures are used for different tasks.

These architectures include convolution based neural networks, transformer based large language

models, fully connected neural network-based reinforcement learning agents and many more.

Many of these architectures have been showing better performance compared to non-deep

learning-based methods. However, this superior performance comes with certain costs. The deep

learning models usually require a large computing power even for inference. While this is not an

issue for large servers, it makes it harder to use these models on mobile systems. However, using

these models on mobile systems would increase their impact on people’s lives. Therefore, it is

important to study how to use deep learning-based models efficiently on the resource constrained

mobile systems is needed.

In Chapter 1, we consider the contention caused by multiple tasks running on a resource

constrained system, its impact on deep learning-based applications, and how to mitigate this

impact through an application accuracy trade-off. The modern systems run complicated tasks

that include multiple stages with different sub-applications. These sub-applications may require

the same resource of the system at the same time, hence cause a contention in the system. This

contention creates unwanted and unpredictable effects on the applications on the system such

as delays in the latency and increase in power consumption. We develop a model selection

framework for deep learning-based applications to grade the contention on the system and pick a

suitable model to avoid the contention on the runtime. Our experiments show that our model

1



selection framework can achieve near contention agnostic deep learning model execution with

minimal application accuracy sacrifice.

In Chapter 2, we consider a dynamic neural network architecture and how it can be used

for adaptive execution on a resource constrained system with changing system requirements.

Many of the resource constrained mobile systems have unpredictable requirement changes due

their mobility. Therefore, a deep learning-based application needs to adapt to the system’s

changing requirements. We develop a dynamic neural network architecture that combines

slimming and early exit techniques to get each technique’s strengths. Moreover, we develop a

branch selection algorithm that considers the current state of the system and picks the branch of

our architecture that satisfies the requirements of the application and system. Our experiments

show that our architecture and branch selection algorithm achieve better results than just slimming

and just early exit techniques for adapting changing requirements and conditions on a mobile

system.

In Chapter 3, we consider a design space exploration problem for the software and

hardware configurations of running deep learning-based application on resource constrained

embedded systems. This is a very challenging problem since the design space is extremely

large, testing a sample configuration on the actual system takes long time and there’s no known

analytical form of the objective function that we are trying to optimize to find pareto optimal

configurations in the design space. The problems that carry the similar challenges are usually

solved by Bayesian Optimization and its variants. However, Bayesian Optimization is shown to

be not scalable for extremely large search spaces. We develop a sampling-based search algorithm

that can scale to search extremely large search spaces. Our experiments show that our search

algorithm shows superior performance to Bayesian Optimization-based methods in much shorter

time.

2



Chapter 1

Contention Grading and
Adaptive Model Selection for
Machine Vision in Embedded Systems

1.1 Introduction

Modern machine vision systems involve complex deep learning based algorithms [37, 53,

67, 75] that need significant computing resources to run under reasonable time limits. However,

this is very challenging when the algorithms need to be realized in a resource-constrained system.

Moreover, in many cases, the computing system running the machine vision application shares

resources with other coexisting computing loads. For example, connected and autonomous

vehicles process camera data together with RADAR and/or LiDAR data on the same computing

system for better fused perception in crowded areas or in the presence of obstacles [22, 38, 88].

In such scenarios, the machine vision workload can contend with the other workloads for the

computing system resources, further increasing the application latency. While increasing the

priority of certain tasks can improve their latency, it can cause a starvation for the other tasks

running on the same system. Instead, an alternative approach is to handle contention by adapting

the machine vision workload to best utilize the computing resources available in the presence of

contention. The machine vision is thus realized by choosing an appropriate model from a set

of neural network-based image classification models, fitting the available computing resources.

3



In this work, we examine the effects of contention on the image classification application, and

propose a contention-aware adaptive model selection framework that minimally compromises

the accuracy of the image classification application while satisfying the latency requirements.

Several previous efforts have explored reduced complexity models that fit within the

constrained capabilities of embedded systems [55, 101]. These approaches typically involve

a tradeoff between compute/storage requirements and model accuracy. However, contention-

impacted systems present a moving target, since the contention levels may vary over time,

effectively presenting different resource levels that we would like to fully utilize in order to

achieve the lowest impact on application accuracy. Thus, the major challenges in a real-time

system with contention are (i) to accurately predict the level of contention in the system, and

(ii) adapt the application accordingly maintaining the performance constraint of the application.

As many modern systems may not allow applications to access low-level system information

in real-time due to security concerns or complexity of the platform, herein, we infer the level

of contention from its impact on the application performance. We propose an application-level

data-driven predictive framework for contention-aware adaptive model selection that aims to

minimize the cost of system resources and overhead of our framework, while maintaining system

performance stability in presence of dynamic workload variations.

Now, as the model selection framework needs to load a number of pre-trained models

in memory and dynamically select a model at runtime, the length of the model set can not only

impact the memory overhead but also the model switching cost and stability. Hence, we also

propose a contention grading mechanism that intelligently selects the appropriate deep learning

models in the model-set used by the adaptive model selection framework.

The main contributions of this work are as follows:

• An application-level profiler for system contention and a methodology to automatically

regenerate the profiled system contention in a controlled environment.

• An offline model set pruning methodology that selects the optimal models for a given

4



system contention profile and specific user requirements.

• A runtime model selection mechanism for an image classification application that adapts

based on the system contention to stay below a predefined delay threshold.

We implement the framework on the Nvidia Jetson TX2 platform and show the advantage

of our adaptive model selection framework in dynamic contention scenarios. We empirically

show that our model pruning methodology improves the runtime model selection performance

resulting in better tradeoff between latency and accuracy, and also reduction in memory overhead.

The framework also shows the advantage of model selection from a set of independently trained

models compared to early exit techniques [79, 86].

1.2 Related work

The challenge of enabling deep learning models on resource constrained devices has been

extensively researched in previous efforts. One of the main techniques is designing ground-up

efficient models that require less resources than high accuracy models while sacrificing accuracy

as little as possible [36, 70, 80, 97]. In [36], a squeeze-and-expand architecture is created by

using 1x1 and 3x3 filters together. In [97], a channel shuffling operation is created after 1x1

group convolutions. In [70], linear bottlenecks and inverted residuals are used together with

depthwise convolutions. In [80], the DenseNet architecture [35] is modified to design an efficient

deep neural network. Unlike our framework, these approaches create a single efficient model

and do not consider dynamic changes in computing resources available due to contention in the

system. In the presence of contention, their inference delays will still increase unexpectedly.

Similarly, when there is no contention, they miss the opportunity to use the available resources

for higher accuracy since the design is fixed. These efforts are orthogonal to our work, and

our proposed approach and framework will apply to all neural network models, including these

compute-efficient models as well.

Another way of creating efficient deep learning models is to use quantization to come up

5



with efficient designs out of any neural network model. Quantization decreases the precision

of neural network weights and activations to improve efficiency. There are several efforts

addressing neural network quantization in the literature [28]. Quantization can be considered in

two categories, namely quantization-aware training [13,65,76,101] and post-training quantization

[4, 57]. Quantization is applied during training in the quantization-aware training methods.

In [13], the weights and activations are constrained to -1 and +1. In [101], quantization clusters

are learned during training together with weights. In [65], the weights and activations are

quantized to binary values to allow XNOR and bitcount implementation of expensive operations.

In [76], quantization is designed for graph neural networks. Quantization is applied after training

in post quantization methods. In [4], 3 post training techniques are defined and their combinations

are used for 4-bit quantization. In [57], the weights in different layers of a neural network are

scaled to decrease the error caused by quantization. These approaches do not consider contention

either. Therefore, their inference delays are vulnerable to dynamic system contention as well.

Pruning is another method that is similar to quantization in terms of its objectives and

design flow. The less important weights of neural networks are pruned to create efficient

neural network models. Pruning methods can be categorized into two main methods, namely

unstructured and structured pruning [7]. Unstructured pruning removes individual parameters

or neurons [29]. Structured pruning removes the coarse-grained structures such as filters or

channels [55]. The effect of contention on pruning methods is similar to the quantization. They

do not consider contention and their inference delays can be affected by contention.

All the previous related work is focused on creating one fixed efficient design with

minimal accuracy loss. However, multiple models can be used to find a balance point between

efficiency and accuracy. Real-time model selection is previously investigated in literature

for different scenarios. In [78], the authors measure the input image’s complexity before

classification and select the ideal model for the specific input image content. In [62], two models

are employed, one big and one little. Each image is classified by the little model first. Then, if

the classification is found unsuccessful, big model classifies the same image again. However,

6



the unsuccessful attempts in this method increase the latency, and hence, are not suitable for

real-time machine vision system. In [21], a CNN based multiplexer is trained to select the

optimal deep learning model for the given input image. The multiplexer considers the input

image’s complexity. In [23], the optimal model in a model set is selected or the current model

is adapted when a class skew is detected in the input. The model set is prepared by pruning

models by considering class skew. The aforementioned methods do not take the contention of

the underlying computing system into account for model selection. In [94], a model switching

methodology is developed to improve the performance for cloud servers which do not have strict

delay constraints like embedded systems. In this work fluctuating workloads are considered as

contention in the server environment.

Using early exit models can be an alternative to model switching. Defining early exit

points in a neural network creates incremental sub-models where a latency-accuracy tradeoff

occurs between these early exit points. In [79], this methodology is applied on multiple neural

networks and latency-accuracy tradeoff is demonstrated. In [93], a methodology is proposed

to convert any CNN to a multistage model. The stages of this multistage model are selected at

runtime. In [86], an early exit model is designed to be used during runtime. The input and the

contention are considered to select an approximate branch of the predefined early exit model.

The contention is determined by matching previous inference delays of approximate branches

and a look-up table that consists of benchmarks of each approximate branch. The runtime

part of our work is different in two aspects. First, instead of approximate branches, we use

multiple models that are specifically tuned to provide different accuracy-compute tradeoffs, e.g.,

selected from existing resource-efficient deep learning model designs. This results in a better

efficiency-accuracy tradeoff. Second, our contention measurement is embedded in regression

models instead of look-up tables. Also, our delay normalization mechanism allows us to use

different models’ inference delay to measure contention. This can be useful when contention

and therefore model selection change rapidly. In Section 1.5.5, we provide results demonstrating

the advantages of our approach over early exit based technique [86].

7



Slimmable neural networks [92] are dynamic neural networks like early exit models.

Slimming operation scales the model width by changing the number of channels in each layer.

Therefore, slimming creates sub-models as well where a latency-accuracy tradeoff occurs

between switches. In [91], slimmable networks are improved to be able to use arbitrary widths

instead of predefined widths. In [90], a width search strategy is proposed for the number of

channels instead of using predefined or arbitrary widths. Even though slimmable networks are

not experimented with switching when contention exists, it is possible to use them in that way.

Therefore, we compared our methodology with slimmable neural networks in Section 1.5.6.

In our previous work [43], we examined runtime model selection in the presence of

contention. However, this work was assuming the contention levels are known beforehand and

expecting a model set that is already tailored for the contention levels. In this work, we extended

our previous work by adding an application level profiler to determine the contention levels and

adding a model set pruning methodology to find optimal model set for the existing contention

levels from a given large number of models.

1.3 Overview of our Approach

1.3.1 Machine Vision Application

In this paper, we consider machine vision applications, specifically focusing on the

image classification block within them. There are two main metrics that define the performance

of image classification applications - inference delay and accuracy. In any machine vision

system, it is desirable to minimize the inference delay and maximize the accuracy of the image

classification task.

The presence of multiple, concurrently executing tasks in a computing system causes

contention for the specific system resources, eventually resulting in increased delay for the

completion of the tasks. These contentions and their impact are seen more frequently in resource-

constrained embedded systems. For demonstration of contention and its impact, we consider

8



Figure 1.1. Inference delays of different models under changing contention

sensor fusion in autonomous vehicles.

Sensor Fusion and Contention in Autonomous Vehicles: Autonomous vehicles operate in

a complex environment and therefore require a high level of perception that is achieved by

using multiple sensors and their fusion. Autonomous cars have three main sensors - Camera,

LiDAR, and RADAR. The fusion of these sensors can achieve better accuracy than using each

sensor individually. However, this performance improvement comes with a cost since using more

sensors requires more computation power. Further, the processing of each sensory modality

results in contention, whose effects are especially significant in resource-constrained settings.

There are different fusion approaches as reviewed in [88]. This work categorizes fusion

approaches into three levels, high-level [38], mid-level [49], and low-level [89]. All of these

fusion approaches incur a processing cost in addition to sensors’ individual processing costs. The

computation for the fusion task is also affected by the system contention as well as contributing

to it.

1.3.2 Delay Accuracy Trade-off

The trade-off between inference delay and accuracy is fundamental to image classification

systems as more complex image classification algorithms result in higher accuracy but also

require more time to compute those results. Since contention creates dynamic variations in the

9



available compute resources, a machine vision system needs to optimize its performance in

terms of delay and accuracy. Typical autonomous systems need to satisfy a delay constraint (e.g.,

operate under a certain frame rate), while maximizing accuracy. In order to achieve this objective,

we propose to use a set of N image classification models {Mi}, i = 1, ..,N with increasing

complexity. Depending on the available resources in presence of contention, the system must

choose the optimal model. For example, the inference delays of four different EfficientNet [77]

models under varying contention are shown in Figure 1.1. The contention is created by multiple

radar instances running on the same computing platform. The contention level graph at the

bottom of Figure 1.1 shows varying contention levels. Each model’s inference delay increases

proportionally under increasing contention. Figure 1.1 shows that if we have an inference delay

constraint, we can satisfy it by choosing an appropriate model for each contention level. For

example, all of the models satisfy the delay threshold around frame 500 since the contention

level is low. Therefore, the most complex model can be chosen at this contention level. However,

the contention level is very high around frame 1000. EfficientNetB6 and EfficientNetB4 do not

satisfy the delay threshold at this contention level. Therefore, the third most complex model,

EfficientNetB2, should be chosen at this contention level. Choosing the simpler model satisfies

the delay threshold, however it also results in accuracy loss.

1.3.3 Adaptive Model Selection At Runtime

For selection of an appropriate model, one needs to have a priori knowledge about the

contention level in the system when the model will be executed, and select the best model that

fits in the available resources. Since it is not possible to know future contention levels precisely,

one can estimate the contention level based on recent history, project the impact of contention on

different image classification models, and select the best model for the next image frame.

The proposed framework predicts the future inference delays of the model set {Mi} in

the presence of contention. Then, we find a subset of models {M j|D j < T}, j = 1, ..,L, L≤ N,

where D j is the predicted inference delay of model M j, T is a latency threshold of the system

10



and N is the total number of models in the model set during runtime. After that, we choose the

appropriate model Mk such that the accuracy Ak = max{A j}.

1.3.4 Contention Grading and Defining Model Set

The adaptive model selection framework works at runtime and requires a set of models to

be defined before runtime. Defining the model set is the other side of this problem and imposes

an important challenge. The optimal model set differs based on the aim of the models, the

system contention levels and the user requirements. There are usually a very large number of

models available across the entire latency-accuracy tradeoff space. Having a large number of

models to choose from can lead to the runtime framework incurring excessive overheads and/or

switching models more frequently than needed. Thus, it is important to define a model set that

is minimal in size, while still offering sufficient options to adapt to the observed contention

levels. The optimality of a model set depends on satisfying the inference delay constraint while

maximizing accuracy using minimum memory.

We find the optimal model set by measuring system contention and pruning a given

model set based on the effects of contention in the system. In order to measure system contention,

we profile the system using a specifically designed profiler. Then, we regenerate the system

contention in a controlled environment to prune our model set. We have 3 pruning stages where

we use independent notations in the following paragraphs. In the first stage, we remove Pareto-

inferior models in the model set. Given a model set {Mi}, i = 1, ..,N where N is the number

of models, for each model Mk, we find the subset of {Mi} as Mkt = {M j|D j ≤ Dk} where D j

is the inference delay of model M j. Then, let the Akt be the accuracy set of the model set Mkt .

If max(Akt) ̸= Ak, then we prune Mk from {Mi}. In the second stage, we remove models that

have small gains compared to their adjacent models. These models have small gains with high

cost where the cost includes inference delay and memory consumption. Given a model set {Mi},

i = 1, ..,N′, where all models are on Pareto frontier and N′ is the number of models, we find the

slopes of each adjacent model pair as S j =
A j+1−A j

D j+1−D j
where A j is the accuracy and D j is the

11



inference delay for M j. Then given a lower (Ll) and higher (Lh) limits for the slopes, we prune

the model M j if S j > Lh or M j+1 if S j < Ll . Whenever a pruning occurs, we recalculate all of

the slopes and restart pruning. In the last stage, we remove the models that have no use in the

contention levels of the system. In this step, the user requirements and the system contention

levels are considered. Given a model set {Mi}, i = 1, ..,N′′ where N′′ is the number of models,

Contention levels {C j}, j = 1, ..,P where P is the number of contention levels and the inference

delay threshold T, we run the all models on each contention level to find inference delays {Di j}.

Then we find the most accurate model Mk that satisfies the delay threshold for each contention

level j such that Ak = max(Ai|Di j < T ). Then we add Mk to the valid model set and prune the

rest of the models.

1.4 Contention Grading, Model Set Generation and Adap-
tive Model Selection: Details

Our system consists of offline contention grading and model set pruning, followed by a

runtime adaptive model selection. We discuss the details of each of these phases in this section.

1.4.1 Contention Grading

Contention grading and model set pruning comprises of three components. The first

component is profiling system contention on the target system during runtime. The second

component is mimicking the profiled system contention for detailed analysis of the model set.

The last component is model set pruning, which outputs the optimal subset of the input model

set.

Profiling System Contention

Profiling the contention in a system can be a very complex task because of two main

problems. The first one is - P1: the contention is created by overlapping execution of many dif-

ferent tasks. Therefore, the combination of these different tasks creates unpredictable contention

12



levels. The second one is - P2: the difficulty of detecting the contention point. There are many

modules (CPU, GPU, memory, bus etc.) in a computer system which can be requested by the

tasks at the same time, resulting in a contention in these modules.

As a result of complex contention scenarios, instead of profiling the system contention,

we decided to profile the impact of the contention to our application. In order to do that, we

run a sample of our application along with all other tasks and measure the performance of our

application. For example, since our application is a neural network based one, we run a sample

neural network on the system and measure its inference delays to understand different levels of

contention that are important to neural network based applications. We named this profiler as

Contention Impact Profiler (CIP). CIP should be run on the system for long enough to observe

all contention levels.

Using CIP solves the first problem (P1) because we observe the effect of contention and

see the root of contention as a black box which can be a single task or multiple of them. This

method also ignores the contention that has no effect on our application and therefore simplifies

the contention profiling. Using CIP solves the second problem (P2) of contention profiling since

it does not try to identify the contention point.

The CIP is needed for our framework for two aspects. The first one is the need of

knowing the specific contention levels in a system and regenerating them in a controlled offline

environment. These known and controlled contention levels are required and used in our model

set pruning methodology. If we do not have these known and controlled contention levels, we

cannot prune a model set for the target system with contention. The second one is the requirement

for the generalization. The model set pruning is designed to work for any system and requirement.

However, it requires system and contention specific information for each case. Measuring such

information for each system would require a significant amount of effort and would decrease the

value of our framework. The CIP covers this aspect by working as a black box in any system and

collecting the required system and contention specific information by model set pruning stage.

13



Mimicking Contention

Once we know the levels of contention, we mimic this contention in a controlled environ-

ment for the purpose of selecting a model set. We propose the use of Artificial Contention Units

(ACUs) for this purpose. An ACU is a dummy workload used for the purpose of producing a

specific level of contention. Different numbers of ACUs are used to generate different levels of

contention. An ACU is composed of dummy instructions including vector addition, vector multi-

plication and FFT operations. These operations are big and diverse enough to create contention

and small enough to give us a fine grained control over contention creation when multiple of

them are used.

We use the same CIP that is used to profile the system contention, to profile contention

synthetically created by ACUs. During this profiling, we increase the number of ACUs incre-

mentally and measure the inference delays of the CIP. This creates an inference delay trace of

the CIP under increasing ACU contention in addition to the inference delay trace of the CIP

under system contention as we obtained in 1.4.1. Note that both traces are measured on the same

hardware by the same CIP.

At this point, we get back to the inference delay trace of the CIP under system contention

and do some preprocessing. First, we take the moving average of the trace to remove noise.

Then, we apply kernel density estimation to data to find the contention levels. In the end, we

have the number and intensity of the contention levels in the system. At the last step, we match

the system contention levels and ACU contention levels with same intensity. As a result, we

have the set of ACU contention levels that can regenerate the system contention. Since we have

a complete control over using ACUs, we systematically use them to measure the performance of

all of our models and prune our model set.

Model Set Pruning

The aim of contention grading is to prune the model set and propose an optimal subset.

Profiling system contention and mimicking it are done to enable model set pruning. Subsequently,

14



Figure 1.2. Pareto-optimal and
Pareto-inferior of a hypothetical
model set

Figure 1.3. Hypothetical model
set before transition pruning

Figure 1.4. Hypothetical model
set before contention pruning

we prune the model set in three stages, which are described below.

Pareto Pruning: Pareto pruning is the first pruning stage. In this stage, we remove the models

that are not on the accuracy-inference delay Pareto frontier of the model set. This is because the

models that are not on the Pareto frontier should not be used in any application. If a model is

not on the Pareto frontier, there is at least one other model in the model set that performs better

with less cost. So, the models that are not on the Pareto frontier are either obsolete or poorly

designed for the image classification task at hand. Pareto-optimal and Pareto-inferior models of

a hypothetical model set are shown in Figure 1.2.

To construct the accuracy-inference delay, we use the average inference delay over all

the contention levels of the system in this stage. This enables us to consider the overall response

of models to system contention. If a model is on the Pareto frontier without contention, but the

inference delay of the model increases more than other models in the presence of contention,

then this model may lose its position on the Pareto frontier.

At the end of this stage, we have a model subset where each model presents a unique

tradeoff between accuracy and inference delay.

Transition Pruning: Pareto pruning creates a model subset where each model shows a non-zero

improvement in one metric with respect to models adjacent to it in the Pareto frontier. However,

some of those models might not be beneficial in practice. This is because Pareto optimality

considers any gain without evaluating the actual magnitude of the gain. There can be a very

small gain with very high cost or a very high gain with very small cost, leading to models that do

15



not get used in practice.

In our case, the gain is accuracy and the cost is inference delay or memory consumption.

We use inference delay as our cost for our pruning calculations. However, since the inference

delay and memory consumption are usually correlated (since both depend on the number of

parameters in the model), our pruning in this stage improves memory consumption as well.

A hypothetical model set is shown in Figure 1.3. All models are Pareto optimal in this

model set. However, two minimally useful transitions can be noticed. These transitions are

- model 1 to model 2, and model 4 to model 5. First, let’s consider the transition model 1 to

model 2. There is a very high accuracy improvement from model 1 to model 2. However, their

inference delays are almost the same. Therefore, the model 1 can be dropped from the model set.

The second transition has a similar problem but in the opposite direction. There is a very small

accuracy improvement from model 4 to model 5. However, model 5 requires significantly larger

time to achieve this accuracy. Therefore, model 5 is not useful in this model set. Removing

these models from the model set does not only simplify the model set but also improves the

performance of adaptive model selection by eliminating the use of these models, and hence the

associated overheads, at runtime.

When the given example is examined, a certain pattern can be noticed when there is an

inefficient transition. This pattern is the slope of the transition. If the slope is too low or too

high, it is an inefficient transition. We therefore use the slope to identify inefficient transitions

and eliminate them. The lower and higher threshold of the slope can change depending on the

problem and user requirements. Therefore, these values are hyperparameters in our methodology.

Contention Pruning: In this final stage of pruning, the model set is pruned considering specific

contention levels and user requirements. Our pre-deployment profiler (CIP) gives the specific

contention levels that can be observed in the system. The number of different contention levels is

important because it also limits the number of models in the model set. Given a contention level,

there can be only one best model, because only one model has the maximum accuracy among the

models that satisfy the inference delay threshold (user requirement) at a specific contention level.

16



Note that the vice versa is not true - one model can be the best model for multiple contention

levels. As a result, we can say that the total number of models must be less than or equal to

the total number of contention levels and we consider this rule in the contention pruning stage.

Before explaining this stage of pruning, note that Pareto pruning creates a model set

where accuracies and inference costs vary monotonically. Therefore, if a model has a higher

inference delay than another model, it is also more accurate than the other model. This property

is used to define the more accurate model by looking at the inference delay in contention pruning

stage.

Before contention pruning, we need to run all of our models under the contention levels

that we found in the previous steps. We use ACUs to mimic the system contention, run each

model under each contention level and save the average inference delays. The output of this part

can be observed in Figure 1.4 where a hypothetical model set is used for explanation purposes.

In the figure, there is an inference delay threshold which is shown as a black line. This is the user

requirement which basically defines the maximum acceptable inference delay. Therefore, we

want our models to perform under this threshold while being as much as accurate. The x-axis of

the figure shows the contention level. The increasing contention levels and the models’ responses

are shown from left to right. In each contention level, we find the model that is just below the

inference delay threshold and mark it as valid model. In the end, any model that is not in the

valid list is pruned. The valid model in each contention level is shown with a red circle around it.

When we examine the pruned models, we can see that they are not suitable for the user

requirement and contention profile of the system. For example, model 6 requires too much time

and is not suitable even in smallest contention level. The model 0, on the other hand, is always

below the inference delay threshold. However, the contention never increases up to a point where

using model 0 is the optimal choice. Another pruned model is the model 3. Model 3 is below

the threshold in some contention levels and above it in some other contention levels. So, it is

expected that model 3 should be optimal at one contention level. However, as we can see from

this example, the contention does not have to increase gradually at every level. A system may

17



Figure 1.5. Overview of the proposed framework

experience a jump in contention which eliminates the need for middle level models. We also

notice that model 4 is the optimal choice for two contention levels. This can happen when some

contention levels are close to each other.

In the end, 3 models are pruned in our hypothetical example. This leaves our model set

with 4 models (model 1, 2, 4, and 5) which is smaller than the number of measured contention

levels (5).

Figure 1.5 shows our proposed end-to-end framework, the top part of which shows the

components involved in contention grading and model-set pruning. As the figure indicates, this

phase is done before the runtime model selection starts at t = 0 when the pruned model set is

forwarded to the predictive model selection framework.

1.4.2 Runtime Model Selection

The overview of the proposed predictive model selection framework is shown in the

lower part of the Figure 1.5. The framework employs a set of image classification models

18



provided by the contention grading and model set pruning component. The framework chooses

the optimal model for the next frame’s classification while considering the current contention on

the system. The optimal model is determined by using historical information and a set of linear

regression models. The historical information comes from the previous frames’ normalized

inference delays. There is one regression model for each image classification model used in

the framework. The regression models are trained before runtime using their corresponding

image classification models on randomly changing contention level. All regression models take

the same input, the previous normalized inference delays, and output the predicted inference

delay for their corresponding image classification model. Then, the framework chooses the most

appropriate model based on the delay threshold constraint and maximum accuracy as mentioned

earlier.

Delay Normalization: Figure 1.6a shows the inference delays for EfficientNet-B0, B2, B4

and B6 [77] under increasing contention. It shows that the inference delay values depend on

two things - the system level contention, and the image classification model type. Since our

framework uses historical inference delay values to represent the impact of contention, we

remove the model type dependency by normalization shown in Equation 1.1. In this equation, x

is one inference delay of a model and X is a vector that consists of all inference delays of the

same model. If we consider EfficientNetB6 in Figure 1.6a, x is one red dot and X is the vector of

all red dots.

xnormalized =
x−min(X)

sqrt(var(X))
(1.1)

The result of normalization is shown in Figure 1.6b. The minimum and variance values

for each model is saved before runtime and used to normalize the inference delays of the models

during runtime.

Prediction and Selection: The training data is created by running each model under randomly

changing contention levels. As input, the normalized data is split into chunks of n consecutive

19



(a) Inference delays (b) Normalized inference delays

Figure 1.6. Inference delays under increasing contention and normalization

normalized inference delays. All of the regression models take the same input as they will be

predicting in parallel using the same input. As prediction output, non-normalized delays are

used. Each regression model has different output corresponding to its image classification model.

Hence, each regression model takes same input, n previous normalized inference delays, and

predicts its corresponding image classification model’s inference time for the next frame. After

this step, the framework has a predicted inference delay for each image classification model. The

image classification models are already ranked in terms of accuracy on static datasets before

runtime. Therefore, the framework chooses the model which has the highest rank and also a

predicted inference delay under the predefined threshold.

1.5 Experimental Results

1.5.1 Experimental Setup

We implemented the proposed framework on the Nvidia Jetson TX2 platform. We

used Tensorflow to train deep learning models that are used in Section 1.5.5. We used built-in

image classification models of Tensorflow for the rest of the experiments. These built-in models

are EfficientNets [77], ResNetV2 [32], InceptionV3 [75], DenseNets [35], MobileNetV1 [33],

MobileNetV2 [70], and NasNets [103]. These built-in models come with pre-trained weights on

the ImageNet dataset [69]. Since the validation set of ImageNet is available for hyperparameter

20



tuning, we decided to use the ImageNetV2 dataset [66] for our test set. Therefore, all of the

reported test results in this section are using ImageNetV2 dataset. Also, we resized images using

the bi-linear method without cropping before inference for all of the models. We standardized

the test set and resizing-cropping technique to make a fair comparison. Therefore, the reported

accuracies may be different from the original ImageNet validation set accuracies that are reported

in the original papers of the models. Since we focus on the relative accuracies, this is not an issue

for our experiments. When we trained custom models, we used the original ImageNet dataset.

1.5.2 Contention Grading and Model Set Pruning Evaluation

We consider contention scenarios imposed by multiple autonomous vehicle applications

including RADAR processing (FFT based), LiDAR processing (Deep neural network based)

and sensor fusion (clustering based). We run the deep neural network based image classification

application concurrently with these other applications on the target system. These coexisting

applications create different contention patterns in the system, e.g., the radar processes and sensor

fusion run on the CPU while the LiDAR processes run on the GPU, thus creating contentions

with the parts of the image classification algorithm sharing those system resources.

Contention Grading Evaluation

System Profiling with CIP: We generate a random number of threads for each of our contending

applications. Then we use the CIP to profile this system. In the core of the CIP, we used an

application based on EfficientNetB2 image classification model and measured its inference

delays to profile the impact of the contention on the system. The inference delays of the CIP and

the number of threads of applications creating contention are presented in Figure 1.7. Note that,

the information about applications that create contention is not used by the CIP. We only provide

the number of threads of contention applications for better understanding of CIP behavior. We

generated 15 contention combinations by changing the number of threads of each contention

application. 12 of them are unique combinations. In any system, same combination of threads

21



Figure 1.7. Inference delays of CIP under system contention

can repeat over time or different combinations of threads can result in the same contention level.

We can see examples of both of these scenarios in our system profile.

Mimicking Contention with ACU: The same EfficientNetB2 based CIP is used to profile

the incrementally increasing ACU contention. We increased the number of ACU threads by 2

threads at every 400 frames. The inference delays of the CIP are shown in Figure 1.8. This fine

grained contention steps will be used to regenerate the system contention at model pruning step.

However, in order to do that, we need to know the system contention levels that match to specific

steps of ACU contention.

We use kernel density estimation with Gaussian kernel to find the contention levels in

the system. We selected the Gaussian kernel because the distribution of inference delays show

a similar pattern to Gaussian distribution at every specific contention level. When we apply

kernel density estimation on the inference delay axis, we remove the position information of the

inference delay samples. Therefore, we automatically combine repeating or similar contention

22



Figure 1.8. Inference delays of CIP under
increasing ACU contention

Figure 1.9. Kernel density estimation of the
system profile

(a) All models (b) Pareto pruned models

Figure 1.10. Pareto pruning - Accuracy vs inference delay values of models

levels in time, which can be caused by repeating same contention combination or completely

different combinations with same effects. The kernel density estimation is shown in Figure 1.9.

The peaks of this plot are the means of the estimated Gaussian kernels. Therefore, the peaks are

the specific contention levels that exist in our system contention. The inference delay values of

these peaks are matched to inference delay values at ACU profile to find required the number of

ACU threads to regenerate each contention level. In this specific example, the number of ACU

threads are found to be 2, 8, 16 and 20.

Model Set Pruning Evaluation

Once we have the required number of ACUs to regenerate the system contention, we

benchmark our input set of models under the artificial contention that is generated by ACUs. After

23



this benchmarking step, the accuracy and average inference delay across all contention levels

of each model is calculated. These values for our specific example are shown in Figure 1.10a.

The abbreviations in the legend of the figure and their corresponding models are as following:

eb0 to eb7 are for EfficientNet models, r50V2 and r101v2 are for ResNetV2 models, iv3 is for

InceptionNetV3, d121 to d201 are for DenseNet models, mnet is for MobileNet, mnet2 is for

MobileNetV2, nasm is for NasNetMobile, and nasl is for NasNetLarge. This plot clearly shows

that some models have no advantage at all compared to others. For example whole families of

ResNetv2 and DenseNet architectures are performing with less accuracy using more inference

time compared to other models. Therefore, we calculate the accuracy-inference delay Pareto

frontier of the models to remove these bad performing models from consideration for our task.

The Pareto pruned model set is shown in Figure 1.10b.

Each model in Pareto pruned model set is guaranteed to give best accuracy at its inference

delay or below. However, this theoretical result does not correspond to the equally good practical

result when these models are used in an application on an embedded system. A model can still

be on the Pareto frontier if it improves accuracy very slightly but requires a lot more time and

memory for inference. Using such models harms the performance of our application as they

do not provide significant advantage while still requiring the cost. Therefore, we remove these

models from our model set as well. In order to remove these models, we check the slope of

every consecutive models. If the slope is too big, we remove the model with smaller accuracy. If

the slope is too small, we remove the model with higher accuracy. In our specific example, we

define the slope thresholds as 0.25 and 1.5. The slopes that violate these thresholds are shown in

Figure 1.11a. The pruned models are pointed by a red arrow. The resulting model set is shown in

Figure 1.11b.

We can consider some of the prunings to understand how this stage can save memory. For

example, eb4 (EfficientNetB4) requires 79.1 MB while eb6 (EfficientNetB6) requires 174.8 MB.

Even if eb6 would satisfy the user requirements, it would require more than 2 times larger

memory than eb4 without providing significant advantage.

24



(a) Pareto pruned models and violating slopes (b) Transition pruned models

Figure 1.11. Transition pruning - Accuracy vs inference delay values of models

Figure 1.12. Inference delays of the transition pruned models under existing contention levels

In the final step of pruning, the contention levels and the user requirement are considered.

The user requirement is the inference delay threshold. The application’s inference delay for one

frame should not exceed this inference delay threshold in any contention levels. The remaining

models’ inference delays are considered under the existing contention levels as in Figure 1.12.

In this figure, every model is run for 250 frames for each of the contention levels. Note that, the

previous steps of pruning guaranteed that a model with higher inference delay has also better

accuracy with a decent margin. In this step, we select the best performing model that satisfies

the inference delay threshold in each contention level. Note that, we do not need to select one

unique model for each contention level. In first two contention levels, eb4 (EfficientNetB4) is the

optimal model. In the third level, iv3 (InceptionNetv3) is the optimal model. eb3 (EfficientNetB3)

25



satisfies the delay threshold at contention level 2 but violates it at contention level 3. Since

it is not selected at contention level 2 and there is no intermediate contention level between

levels 2 and 3, eb3 is pruned in this step. Similarly, mnet (MobileNetv1) satisfies the inference

delay threshold at all of the contention levels. However, there is always at least one model

that satisfies the delay threshold and performs better than mnet. Therefore, mnet is also pruned

from the model set. In the contention level 4, the optimal model is mnet2 (MobileNetv2). As a

final result, the optimal model set for this contention scenario consists of eb4 (EfficientNetB4),

iv3 (InceptionNetv3) and mnet2 (MobileNetv2). Our contention grading and model pruning

methods decreased the number of model from 18 to 3 for a contention scenario where 12 unique

combinations of 3 real applications are running on the system.

1.5.3 Runtime Performance Evaluation

After we obtain a pruned model set, we run our contention-aware adaptive model selection

framework. First we show the performance of our predictive model selection method and then

also show how the prior contention grading stage positively contributed to the model selection

performance.

Predictive Model Selection Performance

We compare our predictive model selection with two reactive model selection approaches.

The first one is called 1-step reactive model selection which checks the last frame’s inference

and then selects 1-step stronger model if the last frame’s inference is below threshold. Otherwise,

it selects the next (1-step) weaker model. The second reactive approach is called N-step reactive

model selection. This approach similarly checks the last frame’s inference delay and selects

1-step stronger model if the last frame’s inference is below the threshold. However, if the last

frame’s inference is above the threshold, it conservatively selects the weakest model for the next

frame to satisfy the delay threshold.

The temporal plots for 6000 frames under a specific contention regime are shown in

26



Figure 1.13. Temporal comparison of individual models, reactive methods and the predictive
method under varying contention

Figure 1.13. This contention regime is generated by randomly sampling real system contention

applications that are shown in Figure 1.7. The inference delay and the selected model’s index

are given for three different model selection methods. The individual models’ inference delays

are also plotted for comparison purposes. The inference delays are averaged over 10 frames to

smooth the plots. The delay plots for individual models in Figure 1.13a show that using a single

model under varying contention is not optimal. The individual plots also suggest the best model

27



Table 1.1. Comparison of methods in a specific contention regime - Dataset: ImageNetV2

.

Model Accuracy (%) Delay Violations (%)
MobileNetV2 (mnet2) 57.50 0.05
InceptionNetV3 (iv3) 63.93 29.75
EfficientNet-B4 (eb4) 70.00 65.50

Average-(mnet2, iv3, eb4) 63.81 31.76
1-step Reactive Model Selection 65.93 34.61
N-step Reactive Model Selection 64.86 27.40

Predictive Model Selection 64.60 11.66

under a specific contention regime, e.g., around the frames 900,1900,3900, the ideal models are

mnet2, iv3, eb4 respectively. It can be seen that the predictive method can successfully select

the optimal model most of the time in Figure 1.13d. It can also choose multiple models under

the same contention region. One example of this can be seen just after frame 2000. In this

region, predictive model selection selects eb4 and iv3 frequently. This happens when contention

corresponds to the middle of two models, i.e contention is high for iv3 and is low for eb4. In

this case, predictive model selection changes the optimal model selection between eb4 and iv3

frequently to satisfy inference delay threshold and maximize the accuracy. 1-step reactive model

selection and N-step reactive model selection frequently fail to satisfy delay threshold as shown

in Figure 1.13b and Figure 1.13c, respectively.

Table 1.1 shows the summary of data for Figure 1.13 in terms of average performance

of different schemes. If a frame classification takes more time than predefined threshold, we

consider it as delay violation. The delay violation is a way to measure wrong selections. The

table shows that all of the model selection methods have an accuracy around the middle of

individual models. However, the reactive methods have large delay violations as well. On the

other hand, the predictive method has only 11.66% delay violation.

The Effect of Contention Grading on Runtime

In this section, we consider the effect of contention grading on runtime with respect to

accuracy and delay violation. There are 3 stages of pruning which are Pareto pruning, transition

28



Figure 1.14. Temporal comparison of predictive method with model sets after each pruning
stage under varying contention

pruning and contention pruning. These are applied one after another in this order. Therefore, we

will compare 3 model sets on runtime using the same predictive model selection method. The

Pareto pruned model set has 9 models which are shown in Figure 1.10b, the transition pruned

model set has 5 models which are shown in Figure 1.11b, full pruned model set has 3 models

which are MobileNetV2, InceptionNetV3, and EfficientNetB4.

The temporal comparison of three model sets using the predictive method is shown

in Figure 1.14. When the number of models increase in a model set, the number of model

switching also increases which harms the performance since there is only one optimal model in

29



Figure 1.15. Selection counts of models for each model set

Table 1.2. Model set comparison - Dataset: ImageNetV2

.

Model Accuracy (%) Delay Violations (%) Memory Consumption (MB)
Pareto-pruned 65.91 31.35 4290

Transition-pruned 64.91 12.46 3650
Final 64.60 11.66 3460

one contention level. When we examined the selected indexes of Pareto pruned and transition

pruned model sets, we see that mnet and eb7 are almost never selected. Therefore, they occupy

memory without providing any gain to system. We plotted the selection counts of models for

each model set in Figure 1.15. This plot shows the most frequently used models in each model

set. The most frequently used models are similar in most cases (mnet2, iv3, eb4). The only

exception is eb0 in Pareto pruned model set where it is used more than mnet2. eb0 is pruned

in transition pruning since it requires more than 1.5x memory of mnet2 while it does not give

significant accuracy gain over mnet2. Our model set pruning stage finds these frequently selected

models (mnet2, iv3, eb4) before runtime.

We examined the overall performance of these model sets in Table 1.2. The Pareto-

pruned model set has a large delay violation percentage at 31.35%. Transition pruning achieves

a decrease in delay violation significantly from 31.35% to 12.46% with 1.0% absolute accuracy

loss. The final pruning achieves the smallest delay violation percentage at 11.66% with another

0.31% absolute accuracy loss. Furthermore, the final pruning achieves the smallest memory

consumption. The provided memory measurements include base Tensorflow cost which is around

30



3GB. This is a one time cost and independent from the number of loaded models. Therefore,

another comparison can be made without including this base cost. Then memory consumption

values are 1240MB, 600MB, 410MB for Pareto-pruned, transition-pruned and final model sets,

respectively. Considering these results, the final pruning achieves the best memory efficiency by

occupying 0.33 of what Pareto pruned model set occupies and 0.68 of transition pruned model

set occupies.

1.5.4 System Implementation Details

Our framework works with neural network based applications. Therefore, we decided to

use Jetson TX2 which has a GPU for neural network loads. EfficientNetB0, a neural network

that is extensively used in our experiments, runs in 34.9 ms on Jetson TX2 GPU and in 61.1 ms

on Jetson TX2 CPU. Therefore, Jetson TX2 GPU gives a speedup of 1.75 over a mobile CPU.

Moreover, our framework is designed for real time applications and Jetson TX2 is a good fit

since it is an embedded system. Lastly, we are using Tensorflow for neural network applications

and Jetson TX2 is running Linux with Tensorflow support.

The power consumption corresponding to Figure 1.14c is shown in Figure 1.16a. The

details of applications that create contention are also given in Figure 1.16b. The RADAR and

Fusion applications run on CPU, the LiDAR application runs on GPU. The power is measured

by the built-in power sensor of Jetson TX2 which provides the average of the last 512 samples

from continuously probed data when it is called. The peak power is 12170.0 mW.

The inference delays and the power consumption are not changing in parallel, which

would be the expected behavior in single threaded applications. However, since our system is

multi-threaded and uses both CPU and GPU, the behavior is different. This is because the power

usages of GPU and CPU are different. The behavior can be understood by comparing the first

three regions. In region 400-600, the contention is very small and limited to CPU and therefore

the inference delay of our application is small. However, power consumption is high. This is

because the GPU is used extensively all the time. On the other hand, in the region 200-400, the

31



Figure 1.16. System power measurement when model selection is running under varying
contention

contention is high and heavily focused on CPU. Therefore, the inference delay of our application

is high which is compensated by choosing a smaller model. This is because the CPU is being

used heavily and becomes a bottleneck in the system. However, since the CPU does not consume

as much power as the GPU, the power consumption (average of 512 samples from Jetson TX2

sensor) is low. The contention of region 0-200 is similar to region 400-600. However, there is

one more GPU application in region 0-200. Therefore, the power consumption is bigger.

We also measured temperature values of GPU, CPU and the board. Once the system

is used for a while and stabilizes, the temperature does not change much. GPU and CPU

temperature stay between 38C and 40C, and the board temperature stays around 35C. Jetson

TX2 has a fan and therefore active cooling results in stable temperature values for our workload.

The average running time cost for one frame of our predictive framework is 0.29ms

which is approximately 690 times smaller than average inference delay for one frame. Therefore,

we can say that the time cost of the framework is insignificant. This only includes the selection

logic which is a relatively light calculation. A matrix multiplication is used for linear regression

models and an iteration is used for model selection. Overall, model selection takes too little time

to trigger any measurement hardware and we do not see any unusual pattern in general power

and temperature measurements. Therefore, the power consumption and temperature overhead of

32



Table 1.3. Inference delays of 4 models when model switching is used

Model M

Average of first
inference delays right after

switch to Model M (s)

Average of all
inference delays when

the Model M is used (s)
Difference

in percentage
EfficientNetB0 0.03431 0.03324 3.21%
EfficientNetB2 0.04663 0.04683 -0.41%
EfficientNetB3 0.05318 0.05261 1.09%
EfficientNetB4 0.06495 0.06426 1.07%

model selection is negligible.

All of our models are stored in RAM during runtime. To measure switching overhead, we

loaded 4 models in RAM, ran 1 model for 100 frames, then switched to another model and kept

this cycle for 10000 frames. The Table 1.3 shows the difference between first inference delays

right after switch and mean of all inference delays for each model. The table shows that there is

no significant difference between the first inference delay and the rest. Sometimes, the average

of first inference delay is even faster than the average of the rest as in the case of EfficientNetB2.

Note that these values are average. Therefore, in many switch cases the other models also are

faster in their first inference delay compared to the rest. As a result, we can say that we do not

observe any perceivable switching overhead.

1.5.5 Comparison with Early Exit Based Method

Early exit networks present an alternative approach to adapting neural network based

applications to contention [86]. An early exit network consists of different exit points that are

typically derived by adding classifier layers to different intermediate features in a neural network

to generate the final class predictions. Different early exit branches are selected as a response to

changing contention levels. Since this work is closely related to the runtime part of our work, we

compare the contention-aware early exit methodology with our work in this section.

We designed an early exit model to adapt to changing contention levels based on the

methodology presented in [86]. We used EfficientNetB0 architecture as the backbone of our

early exit model. All of the EfficientNet architectures consist of 7 blocks. These blocks are

33



scaled in terms of width and depth to create heavier models, while the number of blocks stays

constant throughout all EfficientNet architectures. Therefore, we decided to use these blocks

as our early exit paths. We created 5 early exit branches from the output of block 3 to the

output of 7. For each exit, we built a classifier top that is similar to the original EfficientNet top.

This classifier top includes a 1x1 convolution layer to set channel sizes of the features to some

constant value (1280), a global average pooling to remove spatial size dependency and a fully

connected layer to generate predictions. This top design makes the early exit branches input

size agnostic. Moreover, we created 4 different input sizes as (128x128, 160x160, 192x192,

224x224) by following a similar practice to [86]. In the end, our early exit model supports 20

different combinations of early exit branches and input sizes.

We also designed 4 individual models to compare with the early exit model. Since the

early exit model is trained from scratch, we also trained individual models from scratch under

the same conditions to make fair accuracy comparisons. Therefore, we did not use pre-trained

models as in the previous section. We used the same intermediate points as the early exit

branches to design individual models. For example, the smallest individual model starts as an

EfficientNetB0 model but stops at block 4 and ends with a classifier top. Similarly, the other

models stop at blocks 5,6, and 7. As a result, our individual models are directly comparable with

the corresponding early exit branches in terms of architecture.

The training is done on the ImageNet training dataset. The ImageNet validation dataset

is used for monitoring improvement and early stopping. The ImageNetV2 test set is used for

reporting the test accuracies. The Adam optimizer [41] is used to train the parameters. Random

cropping, random horizontal flipping and random contrast (factor 0.8-1.2) are used as data

augmentation techniques.

Multi Objective Optimization and Impact on Accuracy

The training of early exit model is a multi objective optimization. During forward

propagation, the same data is fed to the network and each early exit branch makes a prediction.

34



Figure 1.17. Performance comparison of early exit branches -(branch no, input size) and
corresponding individual models - i(model size)-input size

An error is calculated at each early exit branch. Hence, during back propagation, multiple

gradients are propagated backwards. This results in multiple objective optimization of the shared

parameters. For example, a convolution layer in block 3 needs to learn both low level features for

early exit branch 7 and high level features for early exit branch 3. This results in longer training

times and also inferior accuracy.

In [79], it is shown that the early exit method can have regularization effect since it makes

it harder to train the neural network. However, this effect is only applicable when the data is

too small or the network is too high capacity for the data. Also, there are other regularization

techniques that are widely adopted in the neural network design such as dropout [73] or data

augmentation [14].

The inference delays and accuracies of early exit branches and corresponding individual

models are shown in Figure 1.17. The early exit branches in the legend are indicated as (branch

number, image size). The individual models in the legend are indicated as i(model size)-image

size. Note that branch number and model size are directly comparable as explained previously.

This similarity is shown with colors in the plot. The individual models outperform the early exit

branches in terms of inference delay and accuracy. Moreover, the early exit model has a time

35



Figure 1.18. Temporal comparison of the smallest individual model, early exit, individual model
selection under varying contention

overhead due to control logic. For example, early exit branch (7.0, 224) and individual model

i7-224 are completely same in terms of architecture and input size. However, individual model

runs slightly faster than the early exit branch. The same difference can be observed for the other

individual models and their corresponding early exit branches.

36



Runtime Performance Comparison

We tested the early exit model and the individual model set on runtime with the contention

profile in previous section. We used our regression model based selection methodology for early

exit runtime branch selection and individual model set runtime model selection. The temporal

comparison and the numerical results for the early exit, individual model set and the smallest

individual model are shown in Figure 1.18 and Table 1.4. The individual model set has almost

absolute 9% higher accuracy than the early exit model. Moreover, the delay violation of the

individual model set is slightly less than the early exit model.

There are 20 early exit and input size combinations in the early exit model. However, this

granularity is not used completely even though a large variety of contention levels (12 unique

contention combinations as in Figure 1.7) are experienced. This is because one early exit-input

size combination can be the optimal choice for more than one contention level, as in the case of

individual models. On the other hand, this individual model set of 4 models can achieve slightly

less delay violation and much better accuracy than the early exit model. Therefore, we can say

that the high level of granularity of early exit networks is not helpful even in the presence of

frequently changing contention. The accuracy of early exit model is only comparable to the

smallest individual model which has a significantly lower delay violation of 5.91%.

In the early exit architecture, convolution layer parameters are shared among early exit

branches. Therefore, the architecture aims to achieve less parameters than the total parameters

of multiple individual models. However, a large part of the parameters in convolutional neural

networks are coming from the fully connected layers at the classifier. The recent and successful

EfficientNet architectures can be example for this. EfficientNetB0 has 5,330,571 parameters in

total of which 1,281,000 parameters are from the fully connected layer at the classifier. Therefore,

whenever we add a branch, we add a fully connected layer and a large number of parameters. As

a result, the size of the early exit model is 44 MB, whereas the total size of our individual models

is 55 MB (7+9+18+21). The early exit model, of course, would have much less parameters

37



Table 1.4. Early exit model and individual model set comparison - Dataset: ImageNetV2

.

Model Accuracy (%) Delay Violations (%) Memory Consumption (MB)
i4-128 34.60 05.91 3070

Early exit model 37.03 21.90 3300
Individual models 45.87 20.81 3390

compared to the total of 20 individual models which correspond to each early exit branch-input

size combination. However, as we discussed earlier, we do not need that many models for

effectively adapting to contention. Moreover, our contention grading and model set pruning

framework allows us to decrease the total number of models by intelligently selecting optimal

models for the system contention and user requirement.

One drawback of using early exit models at runtime is the switching cost of the branches.

Whenever the output of the model is changed to a different early exit branch, an additional

time is required for the execution graph. We examined these switch costs. Some switching

combinations take more time than the other ones but we did not observe a certain pattern. The

average switching cost is 5.58 ms. The inference delays of early exit branches are ranging from

18 ms to 35 ms under no contention. Therefore, the average switching cost can be up to 31% of

the inference delay whenever a switching occurs.

In summary, we believe that the proposed approach, which comprises of selecting

individual models for contention adaptation is more effective in terms of accuracy, inference

latency and runtime overheads compared to early exit based methods.

1.5.6 Comparison with Slimmable Network Based Method

Even though the original work of slimmable networks [92] does not consider runtime in

the presence of contention, it is possible to use them in this context. Slimmable networks use

less parameters to create sub-networks in the same backbone architecture. Since slimming is

similar to early exit in the sense that they are both dynamic neural network methods and utilize

weight sharing, we implement a slimmable neural network and compare our method with it.

38



We designed a slimmable neural network with 4 switches (0.25x, 0.50x, 0.75x, 1.0x)

where the backbone architecture is EfficientNetB0. We use the same individual models that are

used in the previous section. Therefore, the architectures of our biggest individual model and

1.0x switch of our slimmable network are exactly the same. The same training configuration is

used as specified in the previous section.

The Effect of Batch Size on Slimmable Networks

Slimming operation is basically using less number of filter channels in convolution

operations. Therefore, slimming reduces the FLOPs. However, this does not always translate to

speedup. Every operation has an arithmetic intensity value which can be calculated by the ratio of

number of FLOPS to number of byte accesses. Similarly, every processor has an ops to byte ratio

that can be calculated by the ratio of math bandwidth to memory bandwidth. If the arithmetic

intensity of an operation is smaller than the ops to byte ratio of the processor, the operation is

limited by the memory. Conversely, if the arithmetic intensity of an operation is larger than

the ops to byte ratio of the processor, the operation is limited by math (arithmetic). Finally,

if neither of the math and memory pipelines of the processor are saturated by the operation,

the operation is limited by the latency. The latency limitation happens when parallelism of the

operation is not enough to saturate the processor’s capabilities. While it is possible to calculate

the arithmetic intensity of each operation in a neural network, it is not practical to do so since we

are using very deep neural networks. Moreover, theoretical arithmetic intensity calculation is

only a first-order approximation. Therefore, we provided empirical results with different batch

sizes in Figure 1.19 to show the saturation points of GPU pipelines where the slimming operation

becomes useful. It is important to note that these results are specific to a given combination

of neural network and GPU. Using a better GPU in all aspects or using a neural network with

smaller width would result in requiring larger batch size to make slimming useful. Figure 1.19

shows that the minimum batch size of 8 is required to achieve a speedup at every slimming point.

However, using batch inferences in embedded systems is not useful. Since embedded systems

39



are usually used in real-time applications, waiting for new data for batches and then running

batch inference may not be practical. Moreover, since embedded systems are already resource

constrained systems, running inference with large batch size takes too much time and results in

missing deadlines of many points in the batch data.

Even if we find a very specific scenario where inference with large batch size in an

embedded system is required, our proposed method using individual models is still superior

compared to the use of slimmable network switches in terms of accuracy. This is because training

a slimmable network is a multi objective optimization like early exit since the weights of a

slimmable network are shared among different switches. The comparison of individual models

and slimmable networks for different batch sizes are shown in Figure 1.20. Slimmable network

switches do not provide a tradeoff in batch size 1 and provide only a partial tradeoff in batch

size 4. It starts to provide a tradeoff in batch size 8. However, the individual models provide a

tradeoff in all batch sizes and have better accuracy than slimmable network switches. Note that

i7-224 individual model and 1.0x slimmable network switch have the exact same architecture.

The other individual models do not have the exact same architectures with slimmable switches

but since they have similar inference delays for high batch sizes, their accuracies can be fairly

compared.

All models in our experiments are implemented in graph execution instead of eager

execution. The graph execution requires models to be statically compiled. As a result, it is much

faster than eager execution. Since the slimmable networks are dynamic networks, implementing

them in graph mode requires different approaches and additional logic. We noticed these

implementation differences result in 1-4 ms deviation in inference delay. However, when the

batch size is increased, this deviation becomes negligible.

Runtime Performance Comparison

Even though our framework is designed for real-time systems and large batch sizes are

not preferred in real-time systems, we compare our methodology with slimmable networks by

40



Figure 1.19. The effect of batch size on inference delays of switches of a slimmable network

(a) Batch size 1 (b) Batch size 4 (c) Batch size 8

Figure 1.20. Accuracy - inference delay plots of individual models and slimmable network
switches under different batch sizes

41



Figure 1.21. Temporal comparison of slimmable model and individual model selection under
varying contention

Table 1.5. Slimmable model and individual model set comparison - Dataset: ImageNetV2.

Model Accuracy (%) Delay Violations (%)
Slimmable model 44.12 42.44
Individual models 51.25 16.55

increasing batch size for the sake of comparison. We used a batch size of 8 and decreased the

intensity of contention compared to previous sections in order to keep the inference delays in

a reasonable range. Therefore, the metrics in this section are not comparable to the ones in

previous sections.

The temporal comparison and the numerical results for the slimmable model and indi-

vidual model set are shown in Figure 1.21 and Table 1.5. The threshold is determined by the

maximum delay of the heaviest model under no contention. This is a fair selection of threshold

since the heaviest model is the same in both methods. Table 1.5 shows the accuracy achieved

by our proposed individual model selection method is better than using the slimmable model

as expected from previous analysis. The delay violation of the individual model set is also

significantly better than slimmable model. These results are expected since the individual model

42



set provides a better tradeoff than the slimmable model.

The slimmable networks are similar to the early exit networks in the sense that they share

weights for different switches. Therefore, they use less memory compared to individual model

set that has same number of models as the switches in the slimmable network. However, as we

discussed in the previous sections, our model set pruning technique reduces the number of models

for a given system and applications, and therefore achieves efficient memory consumption.

In the end, we believe our proposed approach is more effective in terms of accuracy and

inference latency than the slimmable neural network based method. Moreover, our approach does

not have limitations such as minimum batch size depending on the neural network architecture

and the hardware as slimmable neural networks do.

1.6 Conclusion

In this paper, we proposed a two stage framework to enable contention-aware adaptive

image classification model selection. Our framework takes a deep learning model set, a user

requirement and the system with contention and creates a contention-aware application that runs

on the system. In the first stage, we define Contention Impact Profiler (CIP) that can profile

system contention effect to our application. Then we analyze the profile with kernel density

estimation to find the system contention levels. We define Artificial Contention Units (ACU)

to regenerate these contention level in a controlled environment. Then, we run 3-stage model

pruning on the given model set to select optimal models for the system contention and the user

requirement. In the second stage, we define a runtime framework to use previously found models

to adapt to changing contention. Our runtime framework employs linear regression models to

predict future inference of the models and selects the optimal model for the existing contention.

The experimental results show that our predictive model selection outperforms the average of

individual models in both accuracy and inference delay violation. Predictive model selection

also outperforms the reactive model selection methods and early exit method. We demonstrated

43



our technique using image classification while the contention is created by fusion, RADAR and

LiDAR tasks to model an autonomous car environment. However, our framework can work

with any neural network based primary application along with any contention applications. For

example, the primary application can be object detection while contention can be created by

data communication and data encryption. Alternatively, the primary application can be neural

network based speech processing and video game graphics can create contention in a mobile

system.

Chapter 1, in full, is a reprint of the material as it appears in ACM Transactions on

Embedded Computing Systems 2022, Basar Kutukcu, Sabur Baidya, Anand Raghunathan, Sujit

Dey. The dissertation author was the primary investigator and author of this paper.

44



Chapter 2

SLEXNet: Adaptive Inference Using
Slimmable Early Exit Neural Networks

2.1 Introduction

Deep learning has transformed many research areas including computer vision [10],

natural language processing [99], speech recognition [63] and many more. However, deep

learning’s superior performance comes with a cost, which is its dependency on high computation

power. The training of a deep learning model requires more computation power compared

to just using it for the inference. But the inference cost of a deep learning model is still

considerably significant for resource constrained systems. Therefore, there have been many

research efforts in recent times to enable efficient deep learning inference on resource constrained

systems. Additionally, over the years, the use of resource constrained embedded systems have

exponentially increased with the rapid emergence of cyber-physical systems in the era of the

Internet-of-Things (IoT) applications [72]. For this reason, the resource constrained systems

have a variable performance demands as they frequently interact with external factors such as

people and physical environment, unlike servers which work in an isolated environment with

well-defined workloads most of the time. As a result, implementing efficient inference of deep

learning models is extremely challenging for resource constrained systems where a number of

variable external factors exist.

The research on dynamic neural network architectures has garnered significant attention

45



in recent years, as it can create multiple models to support various system requirements and

enable adaptive inference of deep learning models [30]. Many techniques are developed to

create dynamic neural networks including early exiting [79], layer skipping [82], slimming

[92], dynamic routing [58] and many more. Each of these methods has its advantages and

disadvantages for different tasks. However, the advantage of being dynamic usually comes with

a tradeoff between accuracy and complexity of the dynamic neural networks. Moreover, it is

harder to train these models as they require custom training strategies. Additionally, it takes

longer time to train these models as they are trained for multiple sub-architectures within one

main architecture.

In this paper, we propose a new dynamic neural network architecture, SLEXNet that is

designed for resource constrained systems with dynamic external factors. SLEXNet combines

early exiting and slimming to create more sub-architectures than each of these techniques

individually can offer. Moreover, early exiting and slimming have their own advantages in

different situations. SLEXNet not only utilizes the advantages from these techniques, but

also outperforms them due to using the combination of the techniques which provides more

optimization knobs that the dynamic model can tune to. We also propose a scheduling algorithm

that searches and finds out the best SLEXNet sub-architecture given the external factors and

requirements.

The main contributions of this work are as follows:

• A new dynamic neural network architecture, called SLEXNet that combines early exiting

and slimming to create a wide range of speed-power-accuracy characteristics in one

architecture.

• A runtime scheduling algorithm that evaluates the current external factors and requirements,

and searches within the SLEXNet sub-architectures efficiently in constant time to find the

best sub-architecture that satisfies the given requirements.

• Demonstration of the performance of the SLEXNet and the Runtime Scheduling on a wide

46



range of experiments and comparison with other dynamic neural network techniques such

as early exiting and slimming.

We implement SLEXNet with TensorFlow and conduct the experiments on Nvidia Jetson

Orin. We investigate SLEXNet’s capability in terms of adapting varying data rate and power

consumption, considering processing time deadline and power budget as thresholds. We compare

our algorithm with early exiting and slimming and show advantages of SLEXNet.

2.2 Related Work

Efficient and Scalable Neural Network Architectures: Some works have proposed efficient

and scalable neural network architectures to satisfy different efficiency requirements. In [77],

an efficient neural network architecture is proposed. This architecture is scaled in terms of

depth, width and resolution to create bigger architectures step by step. Even though each of

these models provide a different point in complexity, they are all individual models and do not

have the dynamic network capacity. In [9], one efficient and scalable architecture is proposed.

In this work, one model is trained and many sub-models are made available for deployment.

Unlike our work, the runtime switching is not examined. There are ways to create more efficient

models using the existing neural network architectures, such as quantization [28] and pruning [7].

Quantization can be done during training [13, 76] or after training [4, 57]. Pruning can be

unstructured [29] or structured [55]. However, all the quantization and pruning methods are used

to make an existing neural network more efficient. They do not target to make them dynamic.

Dynamic Neural Network Architectures: There are many works focusing on dynamic neural

networks [30]. One main way to achieve a dynamic architecture is using multiple neural networks

and activating some of them based on a logic. In [62], two different sized models are used. The

big one is executed based on the softmax results of the little one. In [8], more than 2 models

are used, and an additional logic is implemented to decide to use which model is enough for

the given input. In [34], multiple models are created to use for inputs with different resolutions.

47



These works [8, 34, 62] do not modify the neural network architecture as our work does.

Another way to achieve a dynamic architecture is early exiting. In [79], one main network

is created where multiple classifiers are added to intermediate positions in the main network.

In [93], a methodology is proposed to convert the static models to dynamic models. In [82],

instead of early exiting, a layer skipping idea is proposed. In [56], early exiting strategies are

examined. These works are different from ours since they do not examine slimming and also

runtime scheduling with power consumption as our work does.

Early exiting creates a dynamic depth in an architecture. It is also possible to create dy-

namic width by modifying the number of channels in convolution layers. In [92], a convolutional

neural network architecture with 4 different levels of dynamic width is proposed. In [91], the

previous architecture is extended to have an arbitrary level of width instead of 4 levels. In [11],

an additional neural network is developed to activate the selected channels of convolution layers

in the main prediction neural network. In [47], a gate module is used to activate the number of

channels in each stage of a neural network. These works do not consider dynamic depth of the

architecture.

Instead of creating flexibility with dynamic width and depth, some works defined various

subnetworks and used dynamic routing, where the routing decisions are taken by reinforcement

learning agents [52, 58]. The architecture of these works are different from ours.

Some works [5,83,85] have developed architectures to combine dynamic depth and width

through gating. Unlike our work, gating requires additional computation to calculate which

layers/block/channels will be skipped.

Dynamic Inference: The goal of having a dynamic architecture is to use it in dynamic inference.

In [86], an early exit architecture is proposed and its response to contention in runtime is

examined. This work do not consider dynamic width. In [44], a set of models are used to satisfy

dynamic requirements of the applications with contention. In [78], a model is selected among a

set of model by considering the complexity of the input on runtime. These works [44, 78] do not

modify the neural network architecture. Instead, they use a set of models. One advantage of using

48



one dynamic neural network architecture (as in our work) instead of model selection is that only

one model’s weights need to be saved in the device compared to saving many different models’

weights. This is especially important when resource constrained devices are used. Another

advantage of our work is that it can create many fine-grained steps in terms of accuracy, latency

and power consumption, whereas it is hard to find many models that form fine-grained steps in

terms of these metrics. Moreover, [78] considers only input complexity while selecting a model

for inference. Our work, on the contrary, considers latency and power consumption requirements

while trying to maximize accuracy.

2.3 Background and Motivation

There have been a significant ongoing research effort on the dynamic networks, because

of their useful features such as efficiency, representation power, adaptiveness, compatibility, and

generality as stated in [30]. The adaptiveness becomes especially important when we consider

dynamic environments and resource constrained systems. Modern cyber-physical systems like

drones, autonomous cars, and mobile phones can be shown as examples for such dynamic

environments since they can have varying requirements depending on the external factors. These

systems usually have constrained resources since they run on a battery, require being small, or

cannot get too hot. In the end, dynamic neural networks are great tools for such systems because

of their adaptability that static models lack.

Another source of dynamism in the cyber-physical system can be introduced by different

rates of incoming data. For example, as shown in [48], drones can employ multiple cameras

which can be enabled/disabled depending on the application. This can create a varying data

rate for the neural network architecture. Such varying data rate problem can be solved by the

adaptability of the neural network architecture. There can also be dynamic requirements for the

neural network application. One example for a dynamic requirement is the power budget. As

investigated in [59], the wind has an effect on drones’ energy consumption, which can create

49



Figure 2.1. The adaptability comparison of static models, their early exit and slimmed versions

a dynamic power budget. Another example for dynamic requirements is processing time for

neural network application. The drone communications have many factors that affect end-to-end

latency [24, 31] which might require adaptability in time for other tasks on the drone.

The static models are not good candidates for dynamic environments, since they cannot

adapt to varying conditions. A comparison of static models, along with their early exit and

slimmed versions are given in Fig. 2.1 in terms of processing time and power consumption. In

this example, the incoming data rate is changed every 100 frames. It starts with 10 FPS (Frame

Per Second) and end with 90 FPS. The aim of the all models is to execute the incoming data

without exceeding the delay threshold which is defined as 0.15 s in this particular example. The

used static model is EfficientNetB0 [77]. When we examine the full model with batch size 1,

we see that it can execute the incoming data with 10 and 30 FPS without any issues. However,

after that point, it cannot keep up with the incoming data rate. This results in a queuing delay

and therefore increased processing times for the following data. If we use the full model with

batch size 8, we see high processing times in the slower incoming data rates. This happens since

the model waits for batch to fill up. As a result, we see many delay threshold violations for this

50



model too.

Different dynamic architectures can provide adaptability to different conditions. Early

exit [79] and slimming [92] techniques and their advantages can be seen in Fig. 2.1. The full

model with batch size 1 starts to build a queuing delay after 60 FPS incoming data rate. On

the other hand, the earlier exit version of this model can keep up with 60 FPS. Even though its

buildup speed is less than the full model, it also starts to build a queuing delay after 90 FPS.

When we compare the full model with batch size 8 and its slimmer version, processing times are

similar. As explained in [44], slimming is not always effective in speeding up when small batch

sizes are used in execution using GPUs. However, We notice a significant difference in power

consumption. The slimmer version consumes much less power. This is useful when there is an

adaptation requirement in power budget.

In this paper we present SLEXNet which combines the slimming and early exit techniques.

It not only harnesses the advantages of each technique in one architecture, but also makes an

improvement over each individual technique because of the hybrid approach. As a result, we

achieve a hybrid architecture that can adapt to the conditions that early exit and slimming dynamic

networks cannot. Moreover, we introduce a novel runtime scheduling algorithm that enables

us to utilize the full potential of SLEXNet considering time and power constraints. Further

explanations and comparisons are provided in section 2.5 with a wide range of experiments.

2.4 Methodology

2.4.1 SLEXNet

As mentioned earlier, the idea of SLEXNet is to combine early exiting and slimming

in one architecture to create a more dynamic model. The early exiting method makes a model

dynamic by changing the ‘depth’ of the model. On the other hand, the slimming method makes a

model dynamic by changing the ‘width’ of the model. SLEXNet combines these two methods to

create a more dynamic model with higher degree of adaptability.

51



Figure 2.2. SLEXNet architecture implemented on EfficientNetB0

Architecture: We implement SLEXNet on EfficientNetB0 [77] architecture. The general

overview of the SLEXNet architecture based on EfficientNetB0 is given in Fig. 2.2. Efficient-

NetB0 has 7 blocks, where each block can have sub-blocks. We replace the convolution and

batch normalization layers with slimmable versions of them in each block. We use four slimming

coefficients, which are 0.25x, 0.50x, 0.75x, 1.00x as described in [92]. We add three early

exit blocks after blocks 3, 5, and 7. These early exit blocks are classifiers with another set of

slimmable convolution and batch normalization, followed by global average pooling and fully

connected layer.

Training: Since SLEXNet is a highly customized model, we use a customized training method,

which is explained in Algorithm 1. We calculate and save the gradients for each early exit and

slimming combination. Once we have all the gradients, we apply updates to the model for all

gradients and then move to the next batch.

Knobs of SLEXNet for Adaptive Execution: In addition to the early exiting and slimming, we

use batch execution as a knob in our runtime. Combining early exit and slimming with batch

size enhances our ability to adapt to different runtime requirements and situations. Moreover, it

creates more fine-grained steps to choose from.

52



Algorithm 1. Training of SLEXNet
1: model← initialize SLEXNet
2: gradientList← empty list
3: for epoch = 1,2,3 . . . ,TotalNumberO f E pochs do
4: for Each batch in training set do
5: for ee = 3,5,7 do
6: for s = 0.25,0.50,0.75,1.00 do
7: model.setEarlyExit(ee)
8: model.setSlimming(s)
9: logits← model(batch)

10: loss← calculateLoss(logits)
11: gradients← calculateGradient(loss)
12: add gradients to gradientList
13: end for
14: end for
15: end for
16: for Each gradients in gradientList do
17: apply gradients to model
18: end for
19: gradientList← empty list
20: end for

2.4.2 Runtime

SLEXNet is capable of satisfying various delay and power requirements by adjusting its

knobs, however finding which knobs to use under different and varying conditions is another

challenging task. In order to solve this, we developed a Runtime Scheduling algorithm which

is used together with SLEXNet to provide an adaptive neural network execution system as

illustrated in the Fig. 2.3. The runtime scheduler peeks at the data in the input queue and

configures the SLEXNet for the next execution step using the previously benchmarked data,

delay and power thresholds. In such systems, there is a constant flow of frames that are placed

in input queue when they arrive. We execute the Runtime Scheduling algorithm before each

execution of SLEXNet and put the results to the output queue.

The runtime scheduling algorithm is explained in Algorithm 2. It starts with calculating

the average time difference (avgTimeGap) between arrival times of the frames that wait in the

53



Figure 2.3. The overview of adaptive execution system using SLEXNet and Runtime Scheduling
algorithm

Figure 2.4. Simplified explanation of time estimation in runtime scheduling

54



Algorithm 2. Runtime scheduling of SLEXNet
Inputs: SLEXNetDelays, SLEXNetPowerCoe f f s, SLEXNetMaxPowers, delayT hreshold,
powerT hreshold, inputQueue, SubNetworks, numO fWaitingFrames : number of frames that
wait in inputQueue
Output: scheduledSLEXNetOption

1: avgTimeGap←Mean of differences of arrival times of frames in inputQueue
2: residualDelay← currentTime − latest input’s arrivalTime in inputQueue (if there’s any)
3: for each (s,e) ∈ SubNetworks do ▷ SubNetworks has (slimming, early exit) tuples sorted

by accuracy in decreasing order
4: for bs = 1,4,8 do
5: if bs≥ numO fWaitingFrames then
6: SLEXNetOpt← (bs,s,e)
7: f illU pTime← (bs−1)∗avgTimeGap
8: in f erenceTime← SLEXNetDelays[SLEXNetOpt]
9: totalTime← f illU pTime+ in f erenceTime+ residualDelay

10: if totalTime < delayT hreshold then
11: powerCoe f f icient← SLEXNetPowerCoe f f s[SLEXNetOpt]
12: maxPower← SLEXNetMaxPowers[SLEXNetOpt]
13: powerConsumption← powerCoe f f icient/avgTimeGap
14: powerConsumption← min(powerConsumption,maxPower)
15: if powerConsumption < powerT hreshold then
16: Schedule SLEXNetOpt
17: f ound← True
18: Break from all loops
19: end if
20: end if
21: end if
22: end for
23: end for
24: if not f ound then
25: bs = highest batch size that is smaller than numO fWaitingFrames
26: s = the slimmest factor
27: e = the earliest exit
28: SLEXNetOpt← (bs,s,e)
29: Schedule SLEXNetOpt
30: end if
31: if scheduled batch size > numO fWaitingFrames then
32: wait scheduled batch size to fill up
33: end if

55



input queue (Line 1). This value is used to estimate the total execution time later on. Then

residualDelay is calculated. It is the waiting time of the latest frame in the input queue before

the runtime scheduling and execution start. It is also used in the total execution time estimation.

Then we iterate over the SLEXNet options, starting from the heaviest option. We do this by

iterating SubNetworks which has (slimming factor, early exit point) tuples. These tuples are

sorted by decreasing validation accuracy that is computed before the runtime algorithm. For

example, the first element of SubNetworks is (1.00, 7) because it is the full network in terms of

both the width and the depth. Similarly, the last element of SubNetworks is (0.25, 3) because it

is the smallest capacity network among all the options and therefore has the worst validation

accuracy. During consideration of each SLEXNet option, we first check if the batch size is equal

to or larger than the number of inputs waiting in the input queue currently. Because if we pick

a SLEXNet option that has a batch size smaller than the number of inputs waiting in the input

queue, we leave some frames behind for this round of execution, which causes an increased

residualDelay for the next cycle and consequently a hard case for finding a suitable SLEXNet

option for the next cycle. If the batch size is larger than the number of inputs waiting in the input

queue, we estimate the processing delay of the oldest frame in the input queue. A simplified

example for this estimation is illustrated in Fig. 2.4. We first calculate the "fill up time" which is

caused by the time difference between arrival times of the frames. In order to calculate this, we

multiply (batch size - 1) with avgTimeGap that we calculate earlier. Then we get the inference

time of the related SLEXNet option using our saved benchmark data. Then we add these two

with residualDelay we calculate earlier to find the total time. This total time corresponds to the

processing time of the oldest frame in the input queue if we use the related SLEXNet option.

It is important to note that we can use a batch size that is larger than the number of inputs

waiting in the input queue. If we decide to use such a batch size, the runtime algorithm waits

for new frames to come after scheduling. This waiting time is actually projected in fill up time

calculation. So we assume that the average time gap that current inputs have will remain similar

for the incoming new frames. If the total time is less than the delay threshold, we move on to the

56



power consumption estimation.

The power consumption estimation requires some pre-runtime processing to extract

"power coefficients". The average power consumption depends on two factors: The used

SLEXNet option and the incoming data rate. The used SLEXNet option defines the maximum

power, as it is directly related to how much of the available resources the system is using at a

given execution time. The incoming data rate scales the maximum power of a SLEXNet option.

Because if the incoming data rate is less than the current SLEXNet option’s capability, the system

stays idle while waiting for new data to come. It can be explained using the duty cycle idea

as illustrated in Fig. 2.5. In this example, let 100 FPS be the maximum data rate the related

SLEXNet option can handle. In other words, if the data comes with 100 FPS, the system executes

the incoming data batch after batch without staying idle in between. In this case, the SLEXNet

option consumes its maximum power. If the data comes with 10 FPS, then the average power

consumption from execution drops to 10% of the maximum power, since the system waits idle

90% of the time in this case. So there’s no execution for the 90% of the time. Similarly, when

the data comes with 50 FPS, the average power consumption from execution drops to 50% of the

maximum power. The duty cycle plot can be interpreted as following: it is 1 when the SLEXNet

option executes the data with its maximum instantaneous power. It is 0 when it waits in idle state

for new data to arrive (0 SLEXNet option power consumption). When the data comes faster than

the SLEXNet option can handle (120 FPS in the figure), the power consumption does not change

since the system is still executing data continuously, as in 100 FPS case. In this case, the data

starts to queue up, however this does not change the power consumption of the system.

When we remove the base power from the measured power consumption, there’s actually

a constant power consumption to data rate ratio for each SLEXNet option. In other words, the

ratio of average power consumption of any SLEXNet option under data rate of X FPS to X is

constant for all X . We can define this ratio as power coefficient which is represented as the

57



following:

powerCoe f f icient =
powerX

FPSX

where X is a data rate smaller than the maximum capability of the given SLEXNet option.

For example, this coefficient corresponds to p/100 in our example in Fig. 2.5. So, this SLEXNet

option’s power consumption would be 2p/10 when the data comes with 20 FPS.

Since we calculate the avgTimeGap at the start of our algorithm, we actually have an

estimate of incoming data rate in FPS, which is 1/avgTimeGap. We can use this number to

estimate the power consumption as following:

estimatedPower = powerCoe f f icient ∗FPS =
powerCoe f f icient

avgTimeGap

To be able to use this method, we need to calculate power coefficients for all SLEXNet

options before runtime. In order to do that, we run all SLEXNet options under a small FPS

(20 FPS is used in our case) and measure the power consumption. Then we remove the base

power value from these numbers. Base power is measured when no execution is happening on

the system. Then we divide these power consumption values to 20 (the used FPS) to calculate

power coefficients. Since this ratio (powerCoe f f icient) only holds when the power consumption

is equal to or less than the maximum power consumption, we also measure the maximum power

consumption of all SLEXNet options to handle these cases.

Power estimation during runtime is also described in Algorithm 2. We load power

coefficient and maximum power of the related SLEXNet option at lines 12 and 13, respectively.

Then we estimate the power consumption using power coefficient and the average time gap at

line 14. Lastly, we check if the estimated power is larger than the maximum power and if this is

the case, we use the maximum power as the power consumption as power coefficient method is

only for estimating power consumption that is less than the maximum power.

If the runtime algorithm cannot find a feasible SLEXNet option to schedule after iterating

58



Figure 2.5. The effect of incoming data rate to the power consumption of a SLEXNet option

over all SLEXNet options, it still needs to schedule a SLEXNet option to keep executing

incoming data. Since there’s no feasible SLEXNet option, the scheduled one will fail the time

threshold and/or the power consumption threshold. This means the system is in a state where

the threshold failure is inevitable. This case is handled at line 26 in Algorithm 2. The algorithm

schedules the lightest SLEXNet option (the slimmest and the earliest exit) to quickly get out of

this state so that future inputs can be processed within the time and power thresholds. It also

uses the highest possible batch size since batch execution is efficient and therefore provides a

better chance to leave this state quickly. The system can get into this state due to queued data

and can leave this state only if it executes the queued data faster than the incoming data rate. The

fastest way of doing this is the SLEXNet option of the highest batch size, the slimmest factor

and the earliest exit.

2.4.3 Challenges for SLEXNet

Architectural challenges

Implementing a slimmable early exit method on neural networks comes with certain

challenges. We explain these challenges and how we approach them in this section.

Deciding on early exit points and slimming coefficients: The early exit points and slimming

59



coefficients are the main factors that define the performance of SLEXNet. In theory, an early exit

point can be after any layer in the neural network and a slimming coefficient can be anything

between 0 and 1. However, the following constraints need to be addressed.

1. A key constraint is the number of early exit point-slimming coefficient combinations,

depending on the accuracy and runtime requirements. The subnetworks defined by early

exit points and slimming coefficients are sharing the weights which are limited by the

backbone architecture. That means, if too many early exit points and slimming coefficients

are used, the accuracy of all subnetworks drops. On the other hand, if very small numbers

of early exit points and slimming coefficients are used, there will be fewer options to pick

from during runtime, which will result in worse runtime accuracy, and more time and

power requirement failures. Therefore, it is important to find a middle ground depending

on the backbone architecture and the runtime task.

2. Another additional constraint is the range and sparsity of early exit point and slimming

coefficient parameters. If we define these parameters too close to their neighbors (i.e.

slimming coefficients 0.20 and 0.25), we cannot see any significant difference in accuracy,

time and power consumption between SLEXNet options. In the end, we decide to use

evenly spaced parameters for early exit points and slimming coefficients, while ensuring

an adequate space in between parameters.

3. Another one of these constraints is the backbone architecture. Most of the modern

convolutional neural network architectures are based on building blocks that are repeated

[32, 70, 77]. When defining an early exit, it is important to not cut these building blocks.

Because if an early exit point cuts a building block, the defined subnetwork consists of an

incomplete block, resulting in bad performance. Therefore, we define early exit points at

the end of building blocks. However, this is not the only backbone architecture constraint

to decide on early exit points. The effect of slimming coefficients on the backbone

architecture needs to be considered to pick early exit points as well. The combination

60



of early exit points and slimming coefficients define the subnetworks of the backbone

architecture. If the smaller subnetworks don’t have enough parameters to learn the features

of the dataset, they do not provide viable subnetwork options and unnecessarily hurt the

performance of other subnetworks due to weight sharing.

Slimmable early exit classifiers: The size of a slimmable convolutional kernel is determined by

the slimming coefficient. The full size of the convolution kernel is

[kernelsize,

kernelsize,

(inputChannelNumber)× (slimmingCoe f f icient),

(out putChannelNumber)× (slimmingCoe f f icient)]

This means the channel number of output tensors of a slimmable convolutional layer

depends on the slimming coefficient. The early exit classifiers need to be slimmable as well,

since the sizes of tensors from intermediate blocks change based on the slimming coefficient.

The early exit classifiers consist of a slimmable convolution layer, a global pooling layer and

a final fully connected layer. A fully connected layer expects a constant input size. Most

modern neural network architectures handle this by using global pooling layers [32, 70, 77]

before the fully connected layer. Global pooling layer gets the input tensor with size (batch

size, spatial size, spatial size, channel number) and decreases it to a tensor with size (batch

size, channel number). This is a constant size for neural networks without slimming, since the

channel numbers of convolution filters without slimming are constant. However, if we use a

slimmable convolution layer before the global pooling layer, the channel number is scaled by

the slimming coefficient which cannot be handled by the last fully connected layer. Therefore,

we use "half" slimmable convolutional layer in the slimmable early exit classifiers. These

layers have filters that are slimmable in the input but constant in the output. The full size

of the convolution kernel of these layers is [kernelsize, kernelsize, (inputChannelNumber) x

61



(slimmingCoe f f icient), (out putChannelNumber)]. So the output tensors of these layers have a

constant number of channels and are independent of the slimming coefficient, and therefore can

be used by the final fully connected layers. The output size of these slimmable convolutional

layers is an architectural choice and potentially affects the performance of SLEXNet.

SLEXNet also introduces some new parameters to the backbone architecture due to

the additional classifiers (at early exit 3 and early exit 5 for our implementation shown in Fig.

2.2). Note that early exit 7 is the normal output of the backbone architecture. The introduced

parameters come from the slimmable convolution layer and the fully connected layer at the early

exit classifiers. The filter size of the slimmable convolution layer is (kernel size, kernel size, input

channel number, 4 x input channel number). The weight size of the fully connected layer is (4 x

input channel number) x (number of output classes). Kernel sizes are 1 in the convolution layer

in the early exit classifiers. The input channel numbers are 40 and 112 for early exit classifiers 3

and 5, respectively. So, the total number of parameters of early exit classifier 3 is (1 x 1 x 40 x

160) + (160 x 5) = 7200. Similarly, the total number of parameters of early exit classifier 5 is

(1 x 1 x 112 x 448) + (448 x 5) = 52416. The total number of parameters of EfficientNetB0 is

5.3M [77]. Therefore, the parameters introduced by SLEXNet is around 1.2% of the backbone

architecture.

Training of SLEXNet

SLEXNet consists of many subnetworks which are defined by early exit points and

slimming factors. For example, early exit point 3 and slimming factor 0.75 define a subnetwork

(=Subnetwork(3, 0.75)) together. Similarly, early exit 7 and slimming factor 0.25 define another

one (=Subnetwork(7, 0.25)). All the subnetworks share the weights of the backbone architecture.

This means the same set of weights has different purposes for different subnetworks. For example,

the weights of block 2 in Fig. 2.2 works as high level feature extraction for Subnetwork(3, 0.75)

because it is close to the early exit 3 classifier. However, the same weights of block 2 work as

low level feature extraction for Subnetwork(7, 0.25) because block 2 is positioned in the initial

62



part of the 7-block subnetwork. Therefore, the weights of block 2 need to learn different features

for different subnetworks. The training needs to be done in a way that all the subnetworks

are trained equally and none of them is given a precedence over another subnetwork. If some

subnetworks are trained before the other ones in each batch, it might make convergence harder

for the subnetworks that are trained later due to shared weights. Therefore, we run forward

(line 9 in Algorithm 1) and backward (line 11) passes for all subnetworks and calculate the

gradients for each subnetwork. However, we apply the gradients to the weights after gradients of

all subnetworks are calculated (line 17).

Runtime scheduling

The runtime scheduling problem is very challenging to solve optimally due to two main

reasons. The first reason is that the search space is too big to solve during runtime before each

execution. In the first glance, it may seem as if search space is small and constant since there

are only 36 options (3 batch sizes * 3 earl exits points * 4 slimming coefficients) to pick at a

given time. However, search space grows quickly based on the number of inputs in the input

queue. Let’s take a specific example where there are 6 frames in the input queue, and we want to

execute them optimally. Optimal execution is maximizing accuracy while satisfying processing

delay and power thresholds for all the frames. Our available batch sizes are 1,4,8 and we have

12 subnetworks (3 early exits * 4 slimming coefficients). In one batch execution scenario, 6

frames can be executed in 3 batches. We can execute 4 of them first, then we can execute the

remaining frames one by one. This means execution batches will be 4-1-1. Each of these batch

executions can use one of the 12 subnetworks. Since there are 3 batch executions, there are

123 options just for 4-1-1 execution order. Alternative batch execution scenarios can be 1-4-1

(123 total options) or 1-1-4 (123 total options) or 1-1-1-1-1-1 (126 total options). Each batch

execution has an effect on the inputs that are waiting in the input queue. Because those inputs

have a smaller time window to satisfy the processing delay threshold since they spend time in

the input queue waiting for their execution. This means the first execution option has an effect

63



on the last input waiting in the input queue. These numbers are only for 6 frames waiting in

the input queue. If there are, for example, 7 frames in the input queue, the search space grows

exponentially. Solving this problem during runtime takes long and more importantly unknown

time since it depends on the number of inputs in the input queue.

The second reason for the diffulty in solving the runtime scheduling algorithm is that

the environment is dynamic. This means frames keep coming to the input queue while we try to

solve the scheduling problem. For example, while we are solving the 6-input case, another input

can arrive in the input queue. In the end, our solution for the 6-input case might cause the 7th

input to miss its processing delay threshold. This would make the solution suboptimal.

Our average time gap idea estimates the incoming data rate, which makes the problem

solvable in almost constant and very short time. It is also used to accurately estimate end to

end processing delay and power consumption. Therefore, it enables us to pick the most suitable

SLEXNet option. This method is practical and highly effective. Therefore, it introduces a novelty

to this kind of search problem where the environment is dynamic, and a fast solution is required.

2.5 Experiments

We use a specific notation to denote the SLEXNet options in the figures throughout this

section. As explained in the previous section, the knobs of SLEXNet are the batch size, the

slimming factor and the early exit point. We use the naming convention of bsX_sY _eeZ where

X is the used batch size, Y is the slimming factor and Z is the early exit point. For example,

bs4_s0.25_ee5 means batch size 4, slimming factor 0.25, early exit 5.

The runtime experiments are conducted on Nvidia Jetson Orin platform.

2.5.1 Training and Dataset Details

We train SLEXNet on AIDER dataset [46]. It is an aerial image dataset for emergency

response applications. It includes images of emergency situations such as fire, collapsed buildings,

floods, traffic incidents as well as normal images captured by drones. An example of each

64



Figure 2.6. Example images from AIDER dataset [46]

category in the dataset can be seen in Fig. 2.6. This dataset is relevant to our use case since it

can be used in resource constrained systems such as drones where various runtime constraints

can be imposed depending on the external conditions.

In addition to the customized training of SLEXNet shown in Algorithm 1, we use some

general image based training methodologies. We first resize all the images to 224 by 224 pixels.

Then, we use image augmentation provided by imgaug library [40]. The imgaug library applies

random image augmentation techniques to each image in the training pipeline. We use Adam

optimizer [41] with 0.01 learning rate. We use a batch size of 128 during training.

We split the dataset into a training set (∼80%), validation set (∼10%) and test set (∼10%).

We check the validation accuracy at every epoch during the training set and stop the training

when there is no improvement for 50 epochs. Then we save the best validation accuracy model

and use it in our runtime experiments in the following sections. The test set is used in our runtime

experiments. The test accuracies of the SLEXNet branches after training are given in Fig. 2.7.

2.5.2 Offline Performance Evaluation of SLEXNet

In this section, we manually impose various runtime requirements on a real-time image

classification problem and showcase SLEXNet’s adaptability. This manual and offline evaluation

shows SLEXNet’s capabilities in full extent and is also helpful to understand the other experi-

ments in the following sections. In this section, we consider two main metrics as requirements

– speed and power. We use a different set of requirements for each of the metrics and use

SLEXNet’s adaptability to satisfy each of these requirements.

65



Figure 2.7. The accuracies of SLEXNet branches with different early exit points and slimming
factors

Our aim is to find and select a SLEXNet option (combination of batch size, slimming

factor and early exit branch) that satisfies the speed and power requirements best, while also

sacrificing the accuracy least. Changing slimming factor and early exit branch results in the

change in accuracy as shown in Fig. 2.7. For example, a slimmer model is less accurate.

Similarly, if we use an earlier branch to exit, the model is less accurate. The other SLEXNet

option is the batch size which however, does not have any effect on accuracy. But it has combined

effects with other SLEXNet options, and also it is required for certain requirement cases.

Since, in this offline evaluation, we keep the incoming FPS constant for each experiment,

in section, we add the incoming FPS to the legend naming. So we also add _ fW to our general

naming convention. f means the frame rate and W is the placeholder for the frame rate value in

FPS. For example, bs4_s0.25_ee5_f60 means batch size 4, slimming factor 0.25, early exit 5

under 60 FPS incoming data.

We change the incoming data FPS (Frames per second) rate and use different SLEXNet

options to keep up with the incoming data. In the plots, we use the term ‘processing delay’ which

is defined as an input’s serving time that includes the queuing delay and SLEXNet’s inference

delay. An input is captured with the defined FPS rate and put into the SLEXNet’s input queue,

then its queuing delay starts. The queuing delay ends when the input is taken from input queue

by SLEXNet and the inference delay starts. When the input is processed by SLEXNet and put to

66



(a) 60 FPS (b) 120 FPS (c) 150 FPS

Figure 2.8. Some failing SLEXNet options for varying FPS incoming data rates (Accuracies of
the SLEXNet options can be seen in Fig. 2.7)

(a) 30 FPS - time (b) 30 FPS - power (c) 60 FPS - time (d) 60 FPS - power

(e) 120 FPS - time (f) 120 FPS - power (g) 150 FPS - time (h) 150 FPS - power

Figure 2.9. Some working SLEXNet options for varying FPS incoming data rates (Accuracies
of the SLEXNet options can be seen in Fig. 2.7)

67



the output queue, the inference delay ends. In the end, the processing delay is the sum of the

queuing delay and the inference delay for each of the inputs.

Now, as the typical camera data can be of 30 FPS or 60 FPS and there can be multiple

of them simultaneously stream the data, we may get even higher frame rates that are multiple

of 30 FPS. Herein, we consider individual cases of different frame rates and show their offline

performance below.

1) 30 FPS incoming data case:

30 FPS incoming data is slow enough to be satisfied (i.e., processing delay is below

1/30 s) by using batch size 1. However, when we do not use batches in execution, slimming is

not effective in terms of speed-up. Therefore, we only demonstrate the early exit variations of

the none slimmed (slimming factor 1.0) model in this use case in Fig. 2.9a. As we can see from

the figure, all the used SLEXNet options can satisfy 30 FPS speed requirements, i.e. there is

no increasing queuing delay that violates the processing delay requirement, while the inputs

keep coming. However, early exiting still affects the processing delay of each input. When we

consider the power consumption numbers in Fig. 2.9b, we can see that early exiting affects power.

For example, if we don’t have a power consumption requirement, we can select the SLEXNet

option – {batch size 1, slimming factor 1.0, early exit point 7}, since it can catch up with the

speed requirement and has the better accuracy compared to others which can be seen in Fig. 2.7.

However, if we have a power consumption requirement of 15000 mW, we have to select {batch

size 1, slimming factor 1.0, early exit point 3} among the three options because it can keep up

with the speed requirement and also satisfies the power requirement.

2) 60 FPS incoming data case:

When we increase the incoming data speed to 60 FPS, it starts to be too fast for some

SLEXNet options. For example, when we use the batch size of 1, the early exit 7 and 5 cannot

keep up with the incoming data and a queuing delay is accumulated as shown in Fig. 2.8a. In

this case, if we want to keep up with the incoming data, we can decrease the early exit parameter

even further to early exit point 3. However, using early exit point 3 also decreases the accuracy as

68



seen in Fig. 2.7. If we want to keep the accuracy high while satisfying the speed the requirement,

we can use batch sizes greater than 1. In this case, using a batch size of 4 allows us to select

the SLEXNet option (early exit 7 and slimming 1.00) that yields the maximum accuracy while

satisfying the speed requirement. The processing delay comparison of some working SLEXNet

options is shown in Fig. 2.9c. As we can see from the figure, using batch size 1 and early exit

3 is the fastest. Using batch size 4 increases the minimum processing delay and also shows

a 4-step processing delay pattern since 4 consecutive inputs are executed together and put to

the output queue at the same time. Using an earlier exit on batch size 4 case still gives an

improvement on speed. In the end, all three SLEXNet options can satisfy the speed requirement

of this case. When we examine the power numbers shown in Fig. 2.9d, we see that all options

are close to each other in terms of power consumption. When we compare bs1_s1.00_ee3_f60

and bs4_s1.00_ee7_f60, we see that the increase in batch size and decrease in early exiting

balanced each other in terms of power consumption. On the other hand, bs4_s1.00_ee3_f60 has

a considerably lower power consumption compared to the other two options. Therefore, if there

would be a power consumption requirement around 17000 mW, bs4_s1.00_ee3_f60 would be

the only feasible option among these three.

3) 120 FPS incoming data case:

If we increase the incoming data rate to 120 FPS, batch size 1 becomes infeasible even

with the most efficient SLEXNet options as shown by monotonic increase in processing delay in

Fig. 2.8b. Therefore, we have to use SLEXNet options with higher batch sizes to keep up with

this incoming data rate. If we use batch size 4, we can keep up with the incoming data. Then we

can still change other parameters to tradeoff accuracy with speed, as shown in Fig. 2.9e. In the

power comparison plot in Fig. 2.9f, we see a similar pattern to the 30 FPS case. Depending on

the power consumption requirement and accuracy preference, different SLEXNet options can be

selected among these options.

4) 150 FPS incoming data case:

In the extreme speed requirements, even batch size 4 options become infeasible, as

69



shown in Fig. 2.8c. In this case, using batch size 8 with different combinations can keep up

with data while providing different speed and power characteristics. 3 different SLEXNet

options that can keep up with the incoming data rate are shown in Fig. 2.9g. Examining the

plot, we see that bs8_s1.00_ee7_f150 has the largest processing delay, and the other two are

similar. Decreasing slimming factor from 1.00 to 0.25 and decreasing exiting point from 7 to

3 seem to have similar effects on processing delay. However, there are significant differences

in power consumption, shown in Fig. 2.9h. As expected, bs8_s1.00_ee7_f150 has the largest

power consumption. However, bs8_s0.25_ee7_f150 has significantly less power consumption

compared to bs8_s1.00_ee3_f150. Therefore, we can reach to a conclusion that slimming is

more power efficient than early exiting when everything else remains the same and relatively

large batch sizes are used.

2.5.3 Online SLEXNet Performance with Adaptive Scheduling

As shown in the previous section, some SLEXNet options are not feasible, or not optimal

for a given power threshold and incoming data rate. In this section, we demonstrate how

SLEXNet can adapt by switching options during runtime, which means selecting the right

SLEXNet option for a given the current condition of the system and the requirements. We also

compare SLEXNet with early exit and slimming methods to emphasize the advantages of our

architecture.

Performance Metrics: In the experiments, we impose two requirements, one is the processing

delay threshold and the other one is power consumption threshold. We measure the performance

of the different techniques (architecture and scheduling algorithm) by their compliance with

these thresholds in different scenarios. In addition to the various plots showcasing the delay and

power performance on temporal scale, we use 3 main metrics to summarize and compare the

performance of different techniques. These are named as on-time accuracy (OTA), time fail

rate (TFR), and power fail rate (PFR). On-time accuracy is defined as the accuracy of the model

when it satisfies the processing delay threshold. If the technique fails to satisfy the processing

70



delay threshold for some inputs, they are classified as false prediction. In other words, the

true predictions are the ones that are predicted correctly by the model and processed under the

processing delay threshold. Time fail rate is the ratio of the number of frames that violated the

delay threshold to total number of frames. Power fail rate (PFR) is the ratio of the number of

measurement points that violate the power threshold to the total number of points. These three

metrics give a good idea about the performance of the different architectures and scheduling

algorithms under different requirements.

Increasing FPS Scenario

In this section, we use a constant power threshold and increase the incoming data rate

gradually in steps, and observe the response of SLEXNet and our switching algorithm. We start

the data rate at 30 FPS and increase it by 5 after every 200 data points, until we reach 125 FPS.

We put a processing delay threshold of 0.15 s and power consumption threshold of 18000 mW

for the detailed experiment in this section. However, we also share the summary of results for

combinations of processing delay threshold and power consumption threshold.

The processing delay of each frame and the used SLEXNet option to execute that frame

can be seen in Fig. 2.10 when SLEXNet with our scheduling algorithm is used. This plot is

useful to observe the adaptability of our methods. Since it is an increasing data rate scenario, it

starts using batch size 1 and then moves to higher batch sizes to support the higher data rates. It

also uses its other adaptive parameters to adapt to the increasing data rate. It starts using early

exit 7 which is the full model and then switches to earlier exit points such as 5 and 3. Similarly,

it starts to use slimming factor 1.0 which is the full model and then switches to slimmer versions.

As a result, it can stay below the processing delay threshold all the time. Furthermore, it also

satisfies the power threshold all the time, as shown in Fig. 2.13a.

To understand the scheduling mechanism better, we can examine the SLEXNet options

that are rejected by our scheduling algorithm before it selects the current one. For example,

let’s take frame #1500 where bs4_s0.75_ee5 is used. When the scheduling algorithm starts

71



Figure 2.10. Processing delay of each frame by their arrival numbers when SLEXNet is used
with our scheduling algorithm during increasing FPS scenario

Figure 2.11. Processing delay of each frame by their arrival numbers when batch size and early
exit are used during increasing FPS scenario

to search the SLEXNet options to schedule, there were already 2 frames waiting in the input

queue. Therefore, it rejects all bs1 options. The rejected options in the rejection order and

their reasons are as follows: bs1_s1.00_ee7 - bs is smaller than the backlog, bs4_s1.00_ee7 -

power is estimated to be larger than power threshold (18903mW > 18000mW), bs8_s1.00_ee7

- delay is estimated to be larger than delay threshold (0.1547 > 0.15), bs1_s1.00_ee5 - batch

size, bs4_s1.00_ee5 - power estimation (18194mW), bs8_s1.00_ee5 - time estimation (0.1533),

bs1_s0.75_ee7 - batch size, bs4_s0.75_ee7 - power estimation (18580mW), bs8_s0.75_ee7 -

time estimation (0.1544), bs1_s0.75_ee5 - batch size. Then it selects the option bs4_s0.75_ee5

eventually.

We also compare the performance of SLEXNet with the early exit and slimming tech-

72



Figure 2.12. Processing delay of each frame by their arrival numbers when batch size and
slimming are used during increasing FPS scenario

niques. The processing delay plot of early exit and slimming can be seen in Fig. 2.11 and Fig.

2.12, respectively. Neither of them can keep up with the increasing FPS after a point. As a result,

they violate the delay threshold. Moreover, we can see the power consumption values for these

techniques in Fig. 2.13b and Fig. 2.13c, respectively. Both of the techniques violate the power

threshold at some points. Since slimming is a more power efficient method, its violation is rarer.

SLEXNet has many more options to select from compared to early exit and slimming.

As a result, we can see that SLEXNet is using many options and combine them in different

incoming data rate conditions. If we look at the legends of processing time plots, we see that

SLEXNet is using 13 different options, while early exit and slimming are using only 6 and 5

options, respectively. Therefore, SLEXNet’s increased flexibility is actually put in use in the

adaptive scheduling.

These temporal plots were only based on two requirements, a constant processing delay

threshold of 0.15 s and a power threshold of 18000 mW. Here we run SLEXNet with our

scheduling algorithm under a range of time and power requirements and summarize the results

in terms of the defined metrics in the Table 2.1. We also compare SLEXNet with early exit and

slimming in the table. The table shows that SLEXNet has better on-time accuracy than early exit

and slimming methods in all combinations of time and power requirements. Because SLEXNet

violates the delay threshold less than other methods. Furthermore, it has more options to select

73



(a) SLEXNet (b) Early exit (c) Slimming

Figure 2.13. Power consumption values of different architecture during increasing FPS scenario

Table 2.1. Summary of increasing data rate results using on-time accuracy (OTA), time fail rate
(TFR) and power fail rate (PFR)

Processing
delay
threshold(s)

Technique
Power threshold (mW)

18000 20000 22000
OTA(%) TFR(%) PFR(%) OTA(%) TFR(%) PFR(%) OTA(%) TFR(%) PFR(%)

0.10
SLEXNet 86.4 5.5 0 88.2 4.4 0 88.5 3.5 0
Early Exit 77.2 16.5 32.4 78.8 15.1 11.8 79.8 14.1 0
Slimming 70.7 23.6 0 72.9 21.3 0 71.7 22.7 0

0.15
SLEXNet 91.8 0 0 92.5 0 0 92.3 0 0
Early Exit 87 6 30.9 86.9 6.4 11.6 87.4 5.8 0
Slimming 83.8 9.2 1.5 85.7 7.4 0 85.3 7.9 0

0.20
SLEXNet 91.9 0 1.5 92.5 0.1 0 92.2 0.1 0
Early Exit 90 2.8 30.4 89.8 3.3 12.9 91.9 0.9 0
Slimming 88.1 4.7 8.6 89.4 3.6 0 89.5 3.4 0

from, and therefore it can tradeoff accuracy less than the other methods when it is applicable.

We also notice that on-time accuracy decreases for all techniques when we impose more strict

requirements. This happens because of two reasons. The first one is that when we impose a lower

processing delay threshold, it is naturally harder to satisfy it. Since the classification of frames

that do not satisfy the processing delay are considered false in on-time accuracy, the overall

on-time accuracy decreases. The second reason is that when we impose lower processing delay

and power thresholds, we limit the SLEXNet options that Runtime Scheduling algorithm can

choose from. Runtime Scheduling algorithm is forced to select less accurate SLEXNet options

to satisfy lower thresholds. In the end, the on-time accuracy drops again.

74



Randomly Varying FPS Scenario

Although increasing data rate scenario is a good way to examine the step by step response

of the SLEXNet and Runtime Scheduling algorithm, in practical use cases, it is expected to see

both increasing and decreasing data rate variations. Therefore, we evaluate the SLEXNet using

randomly changing data rate and duration in this section. Additionally, similar to the previous

section, we also compare SLEXNet with early exit and slimming.

The same random FPS scenario is used for SLEXNet, early exit and slimming. The

processing delay results for SLEXNet are shown in Fig. 2.14 in detail. In this figure, we use

the batch execution number instead of arrival number. All frames in the same batch executed

together get the same batch execution number, but they have different arrival numbers. We

decide to use batch execution number since it looks similar to the original plot, but it is easier

to examine when there are many frames since the x-axis is smaller compared to arrival number

plot. In these detailed results, we can see that SLEXNet is using various options to achieve

the processing delay under the threshold which is 0.12 s while power consumption threshold of

18000 mW is imposed.

In this and the following section, we combined processing times and power consumption

in one plot for each technique, as shown in Fig. 2.15. These results are for the case of processing

delay threshold 0.12 s and power consumption threshold 18000 mW. So, Fig. 2.14 is the detailed

version of the time trace of Fig. 2.15a. The used options are not shown in these figures to

simplify it so that other aspects can be focused on better. In Fig. 2.15, the black horizontal

line is the threshold for both processing time and power consumption. It is aligned at 0.12 s

in the processing time axis and at 18000 mW in the power axis. The dark yellow trace is the

processing time and the blue trace is the power consumption. The background is colored red

whenever a processing time or power consumption violation happens. The results are similar to

the increasing FPS scenario as SLEXNet achieves to stay below the processing delay threshold

under changing conditions, while the early exit and slimming techniques violate the processing

75



Figure 2.14. Processing delay of each frame by their execution batch numbers when SLEXNet
is used with our scheduling algorithm during random FPS scenario

delay threshold frequently. In some high data rate regions, even though early exit is failing to

satisfy the processing delay threshold, it is still better than slimming since slimming fails to

satisfy the processing delay threshold for more number of frames in the same regions. On the

other hand, the early exit case struggles to stay below power threshold. Whenever the incoming

data rate increases, early exit starts exceeding the power threshold and stays there until incoming

data rate drops to a level that early exit can manage. So we can say that early exit cannot adapt to

increased data rate in respect to power consumption. Early exit’s power consumption depends on

the external factors such as incoming data rate because early exit method is not capable enough

to decrease the power consumption when it is necessary. Slimming performs better than early

exit. We can see that when the incoming data rate increases, the slimming’s power consumption

goes over the threshold slightly. But, since slimming technique is capable of decreasing the

power consumption, it can recover from these points. In the end, slimming has much less power

consumption fail rate than early exit, but still has some. SLEXNet is clearly better than the

other two methods in terms of staying under the power threshold. When we examine the red

highlighted background to investigate the combined performance in terms of processing time

and power consumption, we can see that SLEXNet can satisfy both thresholds almost all the

time and outperforms the other two methods.

The summary of results is presented in Table 2.2 with different processing delay threshold

76



(a) SLEXNet (b) Early exit (c) Slimming

Figure 2.15. Processing time and power consumption values of different techniques during
changing FPS scenario - black line (—) is 0.12s processing time and 18000mW power consump-
tion thresholds

Table 2.2. Summary of random data rate results using on-time accuracy (OTA), time fail rate
(TFR) and power fail rate (PFR)

Processing
delay
threshold(s)

Technique
Power threshold (mW)

18000 20000 22000
OTA(%) TFR(%) PFR(%) OTA(%) TFR(%) PFR(%) OTA(%) TFR(%) PFR(%)

0.10
SLEXNet 86.8 3.8 3.2 85.8 6.5 0 87.3 4.4 0
Early Exit 69.8 24.6 54 71.9 22.8 17.2 73.9 20 0
Slimming 55.6 40.2 7.9 58.7 36.8 0 63.7 31.3 0

0.12
SLEXNet 90.1 0.5 3.1 91 0.5 0 91.4 0.3 0
Early Exit 85.3 7.8 52.4 85.3 8 14.1 86.2 7.1 0
Slimming 77.4 16.5 6.3 72.1 22.3 0 77.7 16.4 0

0.15
SLEXNet 90.8 0.5 1.5 92.7 0.2 0 92.6 0 0
Early Exit 90.2 2.6 50.7 92.6 0 14.1 92.7 0.1 0
Slimming 91.3 1.4 14.9 91.2 1.5 0 90 3.1 0

and power threshold combinations. Similar to the previous section, we see that SLEXNet

outperforms early exit and slimming in all combinations. As we discussed earlier, early exit

is better than slimming in terms of satisfying time requirements and slimming is better than

early exit in terms of satisfying power consumption requirements. SLEXNet is better than

both techniques in terms of satisfying time and power requirements. Because even though one

technique is worse than the other for a task, it still creates some steps in that task. For example,

even though early exit is worse than slimming for managing power consumption, it can still

provide options with different power consumption. Similarly, slimming can provide options with

different inference delays. When the two techniques are combined, SLEXNet has more options

with fine-grained time and power profiles than the two techniques alone.

77



Figure 2.16. Processing delay of each frame by their execution batch numbers when SLEXNet
is used with our scheduling algorithm during variable power threshold scenario

(a) SLEXNet (b) Early exit (c) Slimming

Figure 2.17. Processing time and power consumption values of different techniques during
changing FPS and power threshold scenarios. The black line (—) indicates 0.12s processing
time deadline and the red line (—) shows variable power consumption thresholds

Simultaneously Varying Power threshold and Data rate

In the previous sections, we show the response of SLEXNet under constant power

threshold and changing data rate. SLEXNet and the scheduling algorithm can work with varying

power threshold as well. In this section, we define a varying power threshold scenario on top of

the previous randomly changing FPS scenario. We change power threshold from 22000 mW to

17000 mW by decreasing it 1000 mW every 10 seconds.

We share and discuss the detailed results and plots for 0.12 s processing delay threshold.

The detailed processing delay plot is shown for SLEXNet in Fig 2.16. The combined processing

78



delay and power consumption plots are given in Fig. 2.17. In these figures, the black line is the

time threshold and the variable red line is the power consumption threshold. As in the previous

sections, SLEXNet achieves to stay under the processing delay threshold while incoming data

rate and power threshold are varying throughout the experiment. On the other hand, we see that

both early exit and slimming techniques violate the processing delay threshold in many occasions.

Moreover, SLEXNet perfectly adapts to changing power threshold and achieves to stay under

the requirement almost all time. However, early exit technique cannot satisfy the lower power

thresholds as the model itself is not capable to perform for those levels of power threshold.

Slimming performs well in terms of satisfying the power threshold, but its performance in terms

of satisfying the processing delay is worse than early exit technique. The summary of the results

with different processing delay thresholds is given in Table 2.3. By looking at the summary of

the results and the plots, we can see that SLEXNet gets the advantage of each technique and in

the end performs better than both early exit and slimming. Early exit technique fails the power

threshold around 30% for all processing delay thresholds. Even though slimming’s power fail

rate is changing between 3% to 6.2%, its time fail rate is getting as high as 37%. On the other

hand, SLEXNet achieves the minimal fail rate for both time and power. We can also see these

results visually by examining the red background coloring in Fig. 2.17. As explained in the

previous section, the red background coloring is done whenever a threshold (time or power) is

violated.

We can also examine the SLEXNet’s response to the additional varying power threshold

by comparing Fig. 2.14 and Fig. 2.16. In both of these experiments, the same random data rate

scenario is used. However, the power threshold is kept constant at 18000 mW in the first one and

the power threshold is varied in the second one. For example, we can look at the last section in

both of these plots. In Fig. 2.14, Runtime Scheduling algorithm selects the option {batch size 4,

slimming factor 1.00x, early exit point 3}. This option is picked because it is estimated to satisfy

the 0.12 s processing delay threshold and, 18000 mW power threshold. However, in Fig. 2.16,

a different option is picked for the same last region. In that region, the processing delay is the

79



Table 2.3. Summary of changing power threshold results under various processing delay
thresholds using on-time accuracy (OTA), time fail rate (TFR) and power fail rate (PFR)

Processing delay threshold(s) Technique OTA(%) TFR(%) PFR(%)

0.10
SLEXNet 85.1 6.3 1.5
Early Exit 76.7 17.4 31.2
Slimming 58.3 37 6.2

0.12
SLEXNet 90.5 0.4 1.6
Early Exit 87.3 5.8 29.2
Slimming 72.1 22 4.5

0.15
SLEXNet 92.2 0.1 1.5
Early Exit 89.8 3 32.8
Slimming 86.2 7 3

same as 0.12 s, but the power threshold is changed to 17000 mW. So the difference between the

two experiments is the power threshold. Runtime Scheduling algorithm selects {batch size 4,

slimming factor 0.25x, early exit point 5} for the lower power threshold case. So it decreased

the slimming factor to satisfy the power threshold. As we found out earlier, the slimming is

much more efficient to reduce the power consumption compared to early exit technique. We

can also see this in our fail logs, where each SLEXNet option that is not scheduled is logged

with its fail reason. In the variable power scenario, the SLEXNet option {batch size 4, slimming

factor 1.00x, early exit point 3} is estimated to consume 17697 mW, which is higher than the

17000 mW power threshold at that section. Therefore, it is not picked for execution at that region

where it is okay to use it with 18000 mW power threshold as in Fig. 2.14. When the slimming

factor is decreased to 0.25x from 1.00x, early exit is increased to 5 from 3. Because the reduction

in slimming factor caused a decrease in both power consumption and processing delay. So there

was more room in processing delay to select a heavier model.

Simultaneously Varying Processing Delay Threshold, Power Threshold and Data rate

In this section, we vary the processing delay threshold on top of the experiment settings

discussed in the previous section. The processing delay and power thresholds are randomly

changed every 10 seconds. We use the random FPS scenario that is used in previous sections.

80



(a) SLEXNet (b) Early exit (c) Slimming

Figure 2.18. Processing time and power consumption values of different techniques during
changing FPS, processing time and power thresholds scenarios.

Table 2.4. Summary of changing both time and power thresholds using on-time accuracy (OTA),
time fail rate (TFR) and power fail rate (PFR)

Technique OTA(%) TFR(%) PFR(%)
SLEXNet 90.6 0.4 4.9
Early Exit 81.0 8.2 33.9
Slimming 72.6 14.1 11.7

The time and power consumption values of SLEXNet, early exit and slimming methods are

shared in Fig. 2.18. SLEXNet shows superior performance over early exit and slimming in this

experiment as well. It minimizes the violation by using a correct SLEXNet option for different

processing delay and power thresholds. The On-time accuracy, time fail rate and power fail rate

values are also shared in Table 2.4 where SLEXNet achieves the highest on-time accuracy while

achieving the smallest fail rates in terms of time and power.

2.5.4 Additional Analyses

Flexible Batch Size Analysis

In our experiments, we limit the runtime scheduling algorithm to select a batch size from

a predefined constrained set. However, our algorithm is capable of selecting any batch size by

evaluating the existing conditions and requirements. This can be done simply by changing the

batch size set at line 4 of Algorithm 2. The batch size set can be changed to [1 to max_batch_size]

81



Figure 2.19. The processing time of each frame by their frame arrival number when SLEXNet
with flexible batch sizes is used

Table 2.5. Summary of random data rate results with flexible batch size using on-time accuracy
(OTA), time fail rate (TFR) and power fail rate (PFR)

Processing delay and power thresholds Technique OTA(%) TFR(%) PFR(%)

0.12s - 18000mW
SLEXNet 90.5 0 0
Early Exit 89 3.9 55
Slimming 76.8 17.2 6.6

where max_batch_size is the maximum batch size allowed. Even though this number can be any

large integer number, it is unlikely that our runtime scheduling algorithm picks a large number

for a batch size due to large f illU pTime (line 7 at Algorithm 2) would violate delayT hreshold

(line 10 at Algorithm 2). In this section, we set the available batch sizes from 1 to 8 and run the

random FPS experiment that we used in Section 2.5.3.

We share the processing time results in Fig. 2.19 when processing delay and power

thresholds are set to 0.12s and 18000mW, respectively. The runtime scheduling algorithm makes

use of the flexible batch sizes and picks every batch size up until 7 at some point throughout the

experiment. Flexible batch size actually slightly improves the performance of SLEXNet, while it

deteriorates hurts the performance of the individual early exit and slimming techniques as shown

in Table 2.5.

82



Figure 2.20. The running time of Runtime scheduling algorithm (Algorithm 2)

Runtime Scheduling Algorithm Time Analysis

The runtime scheduling algorithm (shown in Algorithm 2) needs to be fast and efficient

since it is run for every execution batch. Therefore, it is important to analyze the overhead

introduced by the runtime scheduling algorithm. We track its running time based on the ex-

periment shown in Fig. 2.10, since in this experiment the FPS is increased regularly and it

makes analyzing the runtime scheduling algorithm’s running time clearer. The execution time of

the runtime scheduling algorithm for every batch is shown in Fig. 2.20. It takes less time for

more accurate subnetworks which have higher slimming coefficient and bigger early exit points.

It also takes less time for smaller batch sizes. These numbers are aligned with Algorithm 2.

Because the runtime scheduling algorithm iterates the SLEXNet options starting with the highest

accuracy subnetwork and smallest batch size. For example, bs1_s1.00_ee7 takes the least time to

be found by the algorithm, as it is the first option in the loops. Similarly, bs8_s0.25_ee3 takes

the most time to be found by the algorithm, as it is the last option in the loops. In overall, the

execution times are ranging between 30us and 160us. These numbers are very small and clearly

negligible in our total processing delays, which are ranging between 0.1s to 0.2s. Therefore, we

can conclude that the execution time of runtime scheduling algorithm is insignificant.

83



(a) SLEX MobileNetv2 (b) SLEX ResNet50v2

Figure 2.21. Accuracies of SLEX MobileNetv2 and ResNet50v2 branches

Scalability and Portability Analysis

Since our prototype SLEXNet is implemented on EfficientNetB0 backbone architecture,

it is important to show its scalability and portability across models. To this aim, we implement

SLEXNet on two more architectures to show scalability and portability of slimmable early exit

models. We use MobileNetv2 [70] and ResNet50v2 [32] architectures as backbone in the new

implementations.

MobileNetv2 consists of 16 inverted residual bottleneck blocks. We define the early

exit points after 5th, 9th, 12th and 16th blocks. So this model has 4 early exit points, differing

from EfficientNetB0 based one, which has 3 early exit points. We use the same 4 slimming

coefficients which are 0.25, 0.50, 0.75 and 1.00. ResNetv2 consists of 5 stacked residual blocks

where we define the early exits after the 3rd, 4th and 5th residual block. Here, we again use the

same slimming coefficients. We train the new SLEXNets on the AIDER dataset. The accuracies

of SLEXNet branches of these architectures can be seen in Fig. 2.21. This figure shows that

slimmable early exit technique can be applied to different models with different architectures.

We also implement the runtime algorithm for these models. We use the same random

FPS scenario which is used in section 2.5.3. We use the processing delay threshold 0.12s and

18000mW. The results of processing time by frame arrival number for SLEX MobileNetv2 and

84



Figure 2.22. Processing delay of each frame by their frame arrival numbers when SLEX
MobileNetv2 is used with our scheduling algorithm during random FPS scenario

Figure 2.23. Processing delay of each frame by their frame arrival numbers when SLEX
ResNet50v2 is used with our scheduling algorithm during random FPS scenario

(a) SLEX MobileNetv2 (b) SLEX ResNet50v2

Figure 2.24. Power consumption of SLEX MobileNetv2 and SLEX ResNet50v2 during random
FPS scenario

85



SLEX ResNet50v2 can be seen in Fig. 2.22 and Fig. 2.23, respectively. We also measure Time

fail rates (TFR) of SLEX MobileNetv2 and ResNet50v2 as 1.0% and 1.1%, respectively. The

power consumption values for these experiments can be seen in Fig. 2.24. It can be noticed that

the power fail rates (PFR) are 0% for both architectures. These results show that slimmable early

exit technique is not architecture dependent and can scale across different models.

2.6 Conclusion

In this paper, we proposed a dynamic neural network architecture – SLEXNet, and a

Runtime Scheduling algorithm which enables utilizing SLEXNet with its full capacity during

dynamic runtime environments. SLEXNet combines dynamic depth and width to adapt to

varying time and power conditions better than the architectures that individually use each

of these techniques. Runtime Scheduling algorithm estimates the inference time and power

consumption of SLEXNet options accurately in different conditions. Then, it selects the most

suitable SLEXNet option using these estimations. SLEXNet is implemented on Nvidia Jetson

Orin and the experiments are conducted using an aerial drone image data. The dataset includes

aerial images that require emergency response such as fire, flood and traffic incidents. We did

a wide range of experiments by varying incoming FPS rates, processing delay thresholds, and

power thresholds. We showed that SLEXNet outperforms early exit and slimming techniques in

these experiments.

Chapter 2, in full, is a reprint of the material as it appears in ACM Transactions on

Embedded Computing Systems 2024, Basar Kutukcu, Sabur Baidya, Sujit Dey. The dissertation

author was the primary investigator and author of this paper.

86



Chapter 3

Fast and Scalable Design Space Explo-
ration for Deep Learning on Embedded
Systems

3.1 Introduction

Deep learning algorithms continue to grow their impacts on engineering, with substantial

success in various fields including computer vision [10], natural language processing [99], speech

recognition [63]. For real-world implementation of these algorithms on various mobile systems,

embedded devices are essential. However, running the computation heavy algorithms such as

deep learning inference on embedded devices has significant challenges [98]. Since embedded

devices have small form factor and often need to be mobile, they have limited resources such

as computation capacity and power supply. These resource constraints can significantly impact

the application performance, e.g., latency, power consumption, application accuracy, memory

consumption running etc. running on those embedded systems. Essentially, these performance

metrics always form a tradeoff which is shaped by hardware knobs of the system and software

knobs of the application. The combination of all these knobs can create an extremely large search

space which makes it infeasible to exhaustively search and identify the Pareto frontier of these

metrics. For efficient operation, using any set of configuration that is not on the Pareto frontier is

undesirable, since it makes the systems perform less than its potential in one or more metrics.

87



Therefore, it is very important for the algorithms to identify the points that are on or close to the

Pareto frontier within feasible search budget.

While the complexity of the computing systems has been rapidly increasing, more experts

and their time are required to find close to optimal configurations. The design solutions found

by experts could be good enough in some problems, However, it requires valuable engineering

time. Moreover, the same engineering effort is required for every new problem even if design

space is slightly changed. The engineering effort is limited by the expert’s working hours, human

introduced bugs, and a particular expert’s capability. On the other hand, automation of the design

space exploration does not have these drawbacks. It can work all the time; it is not limited by the

working hours. Once developed as stable, no new bugs can be introduced, and it is not limited by

a particular expert’s capability. Therefore, we can justify the development of automation tools in

design space exploration. However, an automation tool can be driven even by a random search

which would result in relatively bad design solutions. Therefore, improving the accuracy of the

search algorithms that drive the design space exploration is necessary. Therefore, we can say that

it is important and necessary to develop design space exploration tools that are automatic and

accurate in terms of finding close to optimal design solutions. Our proposed search algorithm is

an effort to develop an automated, fast, and accurate design space exploration tool.

In search algorithms, the size of the total search space is an important factor for the

algorithm design. Some search spaces are small enough for the algorithms to sample about

5%− 30% of the all search space [27, 104]. Scalability might not be an important design

requirement for these algorithms. However, in this paper, our considered problem setting

generates enormously large search spaces which we need to explore to solve the desired Pareto

frontier, and thus, requires a scalable approach. In other words, approaches that require more

resources with increasing number of iterations are not scalable and therefore bound to find

suboptimal results in extremely large search spaces. To reinforce this premise, we explain how

previous methods fail to scale for solving extremely large search spaces, and herein, propose a

fast, accurate and scalable search algorithm that can efficiently find points close to the Pareto

88



frontier.

We experiment with a wide range of software applications including image classification,

object detection, and large language models. We also use different hardware boards including

Nvidia Jetson TX2, Nvidia Jetson Xavier and Nvidia Jetson Orin. We show that our algorithm

outperforms the previous search algorithms both in terms of search time and search performance.

The main contributions of the paper are as follows:

• We introduce a novel region based search algorithm, called DivCon that can learn different

structures in different regions in the same search space.

• We propose a search algorithm that is scalable, and therefore, can search extremely large

search spaces without having time bottlenecks that the existing methods suffer from while

performing the search.

• We address the complex search problems in real-world embedded systems, e.g., design

space exploration by simultaneously considering the hardware and software parameters.

We solve the problem of finding the optimal parameters for the Pareto frontier of perfor-

mance, and demonstrate the advantage of our algorithm in solving such large-scale search

problems.

The remainder of the paper is organized as follows. The related work is explained in

Section 3.2. Then, the background for the problem, the shortcomings of the previous methods

and our motivation is explained in Section 3.3. This is followed by the detailed explanation of

DivCon in Section 3.4. Then, we show the experiments and results of comparing our method

with other state-of-the-art methods in Section 3.5. Lastly, we conclude the paper in Section 3.6.

3.2 Related work

Bayesian optimization [25] has been a powerful tool to optimize problems with expensive

objective functions. There are many works built on top of it. In [27], a model selection

89



algorithm is designed for the surrogate model in Bayesian optimization to solve FPGA synthesis

problems. In [2], Bayesian optimization with a custom acquisition function and expert knowledge

initialization is used to search microarchitecture parameters for RISC-V CPU. In [96], a new

acquisition function is proposed to enable asynchronous batch evaluation during Bayesian

optimization for solving analog circuit synthesis. In [74], search space is pruned within the

Bayesian optimization for solving the FPGA design problems. All these works try to solve

hardware design problems which are different from our problem. Also, they don’t use the region

based search as we do.

Excepted hypervolume improvement is a common choice of acquisition functions for

Bayesian optimization methods that try to find Pareto front [12, 87]. Some works [15, 16]

improved hypervolume calculation to speed up Bayesian optimization iterations. Our work

differs from these, as our algorithm does not use hypervolume in the sampling process.

In [104, 105], an active learning methodology is used to sample points close to the Pareto

front while discarding points that are not likely to be on the Pareto front. These works are

different from our work as they are not scalable.

Many evolutionary algorithms are proposed to solve multi objective optimization prob-

lems [17, 60, 95]. In [1], a genetic algorithm is parallelized to accelerate its convergence for

searching FPGA problems. In [45], the problem of mapping different neural network operations

to different computation units is solved using an evolutionary algorithm. This work also focuses

on searching hardware configurations to satisfy user requirements. Evolutionary algorithms use

different sampling methods from our approach.

[71] also identified scalability issue of Gaussian Processes in Bayesian optimization and

proposed to use deep neural networks instead of Gaussian Processes, allowing a higher degree

of parallelization. Another work [20] that focuses on scalable Bayesian Optimization proposes

to use local regions that move considering the best solution so far. This work’s use of regions

is different from ours. Moreover, this work focuses on the single optimal solution but not the

Pareto frontier.

90



In [100], the input space is partitioned based on dominance number of each point, which

is the number of points they Pareto-dominate in the output space. After partitioning, the sampling

is done from the regions that are closer to the Pareto front. This work is different from ours as

we use the regions in the output space, and we have a unique sampling methodology. [81] also

use partitioning in the search but focuses on single optimal solutions but not Pareto frontier.

Some methods try to learn Pareto front instead of trying to find points on the pareto

front [50, 51, 68]. In [51], the work of [95] is generalized to use models and learn the Pareto

frontier.

Scalarization is also a common method in multi-objective optimization [42,61]. Multiple

objectives are combined with a secularization and optimized as if it is a single objective problem.

We use each objective separately in the output space, hence scalarization is not used in our work.

3.3 Problem Formulation, Background and Motivation

3.3.1 Problem Formulation

In context of our considered problem, we want to search the Pareto frontier through all

possible combinations of the hardware configurations of the embedded system. We can then

define the component of the search space as follows:

Configuration Variables: Let ci be a configuration variable that can take ni different values,

such that

ci ∈ {1,2, ...,ni} (3.1)

and let there are m different configuration variables in a system such that

i ∈ {1,2, ...,m} (3.2)

Configurations: Let x be the configuration, which is the collection of all configuration variables.

91



x can be written as

x = (c1,c2, ...,cm)

Configuration Search Space: Let X be the search space, a set of vectors, which contains

configurations (vectors). Since there are m different configuration variables and each can have ni

different values, the total size of the configuration search space can be calculated as

s =
m

∏
i=1

ni

Therefore, X can be defined as

X = {x1,x2, ...,xs}

This space is also called input space throughout the paper.

Metrics: We can test a given configuration on a system and measure the output metrics. Let

g(x) be the function of configuration to output transformation. If there are p different metrics to

measure in the system, there is a transformation function for each of them such that

g(x) = (g1(x),g2(x), ...,gp(x))

The space created by the metrics is also called output space throughout the paper.

Pareto Optimality: In the search space X, only a subset of X is useful in terms of the best

performance tradeoff, and all the other configurations in X are inferior to the configurations in

this subset. The configurations in this set are called Pareto optimal. A configuration is considered

as Pareto optimal if it has at least one metric that is optimal given constraints are satisfied in

other metrics. If a configuration is Pareto optimal, then it is the best configuration for at least

some requirements in the performance metric space. Therefore, for fast and accurate search, it is

important to identify the Pareto optimal subset of X. Our goal is to efficiently identify a subset

92



of X that is as close as possible to the Pareto optimal subset of X.

We can give examples from one of our search spaces to explain the theoretical definitions

given in this section better. For example, there are 4 hardware parameters that can have different

values in one of our search spaces. These hardware parameters are # of CPU cores, CPU

frequency, GPU frequency and EMC frequency. In our notation, each of these are considered

as a "configuration variable". For example, GPU frequency is a configuration variable and can

have 14 different values ranging from 114 MHz to 1.4 GHz. A tuple of values of configuration

variables is called a "configuration". For example, # of CPU cores is 4, CPU frequency is the

2 (the number indicates index 2 in the list of actual values of CPU frequencies, ranging from

115 MHz to 2.3 GHz); similarly, GPU frequency is 5 and EMC frequency is 3. Hence, this tuple

of (4,2,5,3) is a configuration. The collection of all configurations is called "configuration search

space" or "input space". When we test a configuration on an actual system, we measure outcomes

such as latency and power which are the "metrics".

3.3.2 Background and Motivation

Searching the best configurations for embedded systems that execute deep learning

algorithms imposes multiple challenges. These challenges put certain optimization methods

practically realizable, whereas make some other methods infeasible. The first challenge is that

there is no analytical form of the function g(x) that we are trying to optimize. This prevents

us from using many optimization algorithms that rely on derivatives of the objective function.

The second challenge is that evaluating a point in the search space takes relatively long time,

because there is no analytical form of the objective function and we can only evaluate an

input configuration by actually running it on a real computing board. Now, running with one

configuration on actual hardware can take up to a minute depending on the specific configuration.

This limits the realization of these traditional optimization algorithms that relies on empirical

measurements, as the extremely large search space with large measurement time can explode the

optimization latency.

93



Figure 3.1. Bayesian Optimization summary

These challenges naturally point to certain optimization algorithms, e.g., Bayesian

Optimization and Evolutionary algorithms which are suitable in tackling similar problems.

However, they have their own drawbacks. In this section, we categorize these algorithms into 3

main methods. We explain how they work and describe their drawbacks in solving problems that

we are focusing on in this paper.

Bayesian Optimization

Due to the aforementioned challenges of optimizing the function g(x) that finds the best

configuration of the system, Bayesian optimization uses a surrogate model to model g(x). Let this

94



(a) Time (b) Memory

Figure 3.2. The effect of training set size for training Gaussian process

surrogate model be f(x). While f(x) cannot model g(x) perfectly, it has a known analytical form,

and therefore it can be evaluated quickly and optimized. The goal of the Bayesian optimization is

to improve the accuracy of f(x) and find configurations that yield close to optimal results. It still

needs to use g(x) that essentially increases the number of training points and hence, improves

the accuracy of f(x), and it also checks for the optimality of the results. In the end, an iterative

optimization framework is defined where f(x) is used to select the next best data point, g(x) is

used to evaluate this data point, and then the evaluated results are used to improve the accuracy

of f(x). An acquisition function, a(f) is used to select the next best data point from f(x). There

are many different acquisition functions [84]. This iteration based optimization is illustrated in

Figure 3.1.

The surrogate model is initialized and trained with some initial configurations. Then, the

selected acquisition function is created based on the surrogate model. The acquisition function is

optimized to decide on the next sample to test on the system. The next sample is then executed,

and the results together with previous configurations and results, are used to retrain the surrogate

model. However, this retraining process, shown as red in Figure 3.1, is not very scalable [20, 71].

Especially, when this optimization runs for larger iterations, the training set becomes larger and

the retrain process takes longer time and therefore becomes infeasible. Gaussian processes [64]

95



are common choices for the surrogate model in Bayesian optimization due to their capability to

work on different data and provide uncertainty in estimates. In Figure 3.2, we show the required

resources in terms of time and memory for training Gaussian processes with increasing training

set size. Both the required time and memory increase rapidly. This shows that training the

surrogate model is not scalable.

[15, 16] are examples of this technique.

Pareto-focused Bayesian Optimization

Pareto-focused Bayesian optimization is actually a subcategory of the Bayesian optimiza-

tion but it can have further advantages and disadvantages compared to the traditional Bayesian

optimization. Similar to the traditional Bayesian optimization, it uses a surrogate model to

estimate the actual system’s function. The summary of the optimization loop of Pareto-focused

Bayesian optimization is shown in Figure 3.3. First, the surrogate model is initialized and trained

with some initial samples. Then the surrogate model is used to estimate all search space. The

estimations, together with uncertainty values provided by the surrogate model, are used to select

the next samples. There are different algorithms to decide how to select the next samples. The

next sample is tested on the system and added to the collection of tested samples, which are used

to retrain the surrogate model.

Since Pareto-focused Bayesian optimization is a subcategory of the Bayesian optimiza-

tion, it inherits some disadvantages of Bayesian optimization. Retraining the surrogate model is

the same process, and therefore it is still an obstacle for higher number of iterations. Furthermore,

if the search space is extremely large, estimating results of every point in the search space and

running an algorithm on all of these results to select a new sample are time-consuming. These 3

processes are shown in red in Figure 3.3.

[27, 104, 105] are examples of this technique.

96



Figure 3.3. Pareto-focused Bayesian Optimization summary

97



Evolutionary Algorithms

Evolutionary algorithms have been very successful when applied on various search

problems. There are many different versions of it, but the general framework usually follows the

same principles. The algorithm maintains a population that is selected from the search space,

consisting of individuals that are configurations. The individuals in the population enters a

tournament where their results are compared and the winners are used to create new individuals.

The creation of new individuals includes crossing over the features of the parents and mutations.

The new individuals are then added to the population and the oldest individuals are removed

from the population to encourage exploration.

The evolutionary algorithms are extremely fast to propose the next sample. Therefore,

they don’t have bottlenecks that previous methods have. However, they are heuristic based and

considered sample inefficient compared to the Bayesian optimization methods [100]. As shown

in [54], evolutionary algorithms may converge to suboptimal results compared to Bayesian

optimization algorithms.

[17, 45, 60] are examples of this technique.

As explained in the previous sections, each group of methods has drawbacks for searching

large search spaces. Therefore, to solve similar problems as ours, we need a more efficient search

method that can quickly and accurately search large search spaces.

3.4 Proposed Approach: DivCon

To mitigate the shortcomings of the aforementioned approaches, we propose an efficient

search algorithm, called DivCon , which is based on dividing the output space into regions, and

then converging to the global results. In this section, we explain DivCon algorithm in detail and

explain how it overcomes the limitations that the previous methods have, and therefore is much

faster and scalable compared to them.

98



Figure 3.4. DivCon Overview

3.4.1 The Algorithm

The detailed overview of DivCon can be seen in Figure 3.4. In summary, DivCon divides

the output space into regions. Each region has a set of samplers that are used to sample a sub

search space. There’s a sampler for each configuration variable in each region. The sampled

sub-search space is searched for its own Pareto frontier in the inner loop. Then the results of the

inner loop is used to update the sampler probabilities and the region weights in order to sample a

better sub search space in the next outer loop iteration. The goal of the outer loop is to sample a

sub-search space that is closer to the global Pareto frontier.

Each block in Figure 3.4 is labeled with yellow boxes on the right bottom corner. We

explain in each stage of our algorithm using the same labels below.

1. Initialization: In this starting phase, first, the regions are created. Each region has region

bounds, a region weight, and a set of samplers. The total number of regions (k in the Figure 3.4),

is inferred from the hyperparameters of the DivCon which are shown in Table 3.1. For the ease

of explanation, let us consider the 2D output space of a hypothetical problem shown in Figure

99



Table 3.1. DivCon Hyperparameters

Hyperparameter name
Metric limits (for each metric)

Metric space divider (for each metric)
bs (Batch size)

ssb (Sub search budget)
β (region weight update strength)

α (probability update strength)
Number of outer loop iterations

Figure 3.5. Regions illustration in a hypothetical 2D output space

3.5 that create a tradeoff space between two performance metrics. The value of metric 1 ranges

between 0 and 10 and that of metric 2 ranges between 0 and 4. Also, let us assume that the

range of metric 1 and 2 can be divided into 4 and 2 regions, respectively. As a result, there are 8

regions for these hyperparameters for this output space. The region bounds are also calculated

from these parameters. For example, the region bounds for the region 7 in the Figure 3.5 are

5.0 to 7.5 in metric 1 space and 2 to 4 in metric 2 space. The value of the region weight rw is

determined using the total number of regions (k). It is set to 1/k for all regions at the start. The

sum of all region weights is always 1 such that

k

∑
j=1

rw j = 1 (3.3)

100



The use of regions and region weights is explained in the latter part of this section. The

last component of the region is the set of samplers. A set of samplers includes a sampler for

each configuration variable. Since there are m configuration variables as shown in Equation

3.2, there are exactly m samplers in the set of samplers as shown in Figure 3.4. Each sampler

is used to sample a configuration variable, and the outputs of all samplers are collected to

create a configuration. The samplers’ probability distribution is initialized as a discrete uniform

distribution where the ith sampler’s probability mass function (PMF) is 1/ni following the

Equation 3.1. These probability distributions are updated in later stages of the algorithm to

sample the points closer to the Pareto frontier.

2. Sampling: The sampling is a probabilistic process. For example, if a sampler has a available

values set such as {1,2,3,4}, the sum of sampling probabilities for the values in this set is 1. For

example, the probabilities can be {0.1, 0.2, 0.5, 0.2}. This means 50% of the time, this sampler

samples the value 3.

The sampling process for one region happens in the following way. Each sampler samples

a value for its corresponding configuration variable. So, Sampler 1 samples a value from the

configuration variable 1 values set. Similarly, Sampler 2 samples a value from the configuration

variable 2 values set. When all samplers sample a value for their corresponding configuration

variable, the sampled points are combined, and it becomes a configuration. The number of

configurations that are going to be sampled by a set of samplers of a region is determined by

bs∗ rw where bs is the batch size and rw is the region weight. So, the region with a higher region

weight samples more configuration than a region with lower region weight. Since the sum of

region weights is always 1 (Equation 3.3), the sum of the all sampled points is always equal to

bs which is a hyperparameter as shown in Table 3.1. After each region samples configurations in

the amount of their corresponding size, the configurations are collected in a sub-search space,

which is shown as Xsub in Figure 3.4.

3. Inner loop: This is where DivCon estimates the Pareto front of the sub-search space. DivCon

works in iterations, where one configuration is proposed to test on the system at every cycle. The

101



number of iterations is determined by a hyperparameter which is called ssb (sub search budget)

as shown in Table 3.1.

3a. Training the surrogate model: DivCon uses Gaussian Process for the surrogate

model. The surrogate model is trained on the training set in this stage. When the inner loop

starts its iterations, the training set is the estimated Pareto frontier from the previous iteration

of the outer loop. For the very first iteration of the outer loop, then the training set is chosen

as a random set of configurations. The training set gets bigger at every inner loop iteration, so

training of the surrogate model becomes more accurate at every inner loop cycle.

3b. Estimating sub search space with the surrogate model: In this stage, the surrogate

model is used to estimate the results of all sub search space. It estimates the metrics together

with the uncertainty values.

3c. Calculating the Pareto front of the estimations: In this stage, the Pareto front

of the Xsub is calculated based on the estimations provided by the previous stage. The points

found in this stage are not the true Pareto front of the Xsub, since they are calculated based on the

estimations of the metrics. The estimated Pareto front gets closer to the real Pareto front when

we have a more accurate surrogate model.

3d. Picking the new sample: DivCon picks a new sample to test on the actual system at

every iteration of the inner loop. DivCon picks the configuration that has the highest uncertainty

among the points that are on the estimated Pareto front.

3e. Testing the new sample: The new sample is tested on the system and ground truth

metrics are collected for the new sample. Then, the new sample and its ground truth metrics are

added to the training set.

3f. Ending the inner loop: Once the number of iterations of the inner loop reaches ssb,

the inner loop is terminated. As the last operation, we calculate the actual Pareto frontier of

Xtrain. Since every point in Xtrain is actually tested on the system, all the metrics are ground

truth values. Therefore, Xep is the actual Pareto front of Xtrain. However, it is still the estimated

Pareto front of Xsub since we do not test every configuration in the sub search space.

102



4. Region update: In this stage, the regions are updated so that the sampling stage at the next

outer loop iteration can sample a sub search space closer to the global Pareto front.

4a. Updating the region weights: In this stage, DivCon updates the region weights using

Xep. Each configuration falls in one of the regions, depending on the results of the configuration

and region bounds. For example, if a configuration has the value of 8 and 1 in metric 1 and 2,

respectively, then this configuration belongs to the region 4 for the hypothetical problem shown

in Figure 3.5. Once DivCon puts every configuration to the regions they belong to, it counts the

number of configurations in each region. Let cc j be the number of counted configurations in

region j. Then we divide all of these numbers by the sum of them to normalize, such that

normcc j =
cc j

∑
k
i=1 cci

∀ j ∈ 1,2, ...,k (3.4)

This results in all normcc j being between 0 and 1. Also, their sum is 1 as

k

∑
j=1

normcc j = 1 (3.5)

Then, we update the region weights using the following formula

rw j = rw j +β ∗ (normcc j− rw j) ∀ j ∈ 1,2, ...,k (3.6)

In Equation 3.6, the idea is that if a region has more Pareto optimal points in it, we should

increase its region weight so that its samplers are used more in the sampling stage in the next

iteration. Similarly, if there are not many Pareto optimal points in a region, its region weight

should be decreased. β is called region weight update strength parameter. It is a hyperparameter

that determines how aggressive the updates are. It can have any number between 0 and 1. If it is

0, no updates are made. If it is 1, the region weights are updated to the normcc values so they

completely reflect the configurations in the Xep in this iteration.

4b. Counting occurrences: In this stage, DivCon counts the occurrences of values for

103



each configuration variable in the estimated Pareto front Xep for each region. Xep is already

divided into regions in the previous stage. For the ease of explanation, let us consider a

configuration variable that can have the values in the set {1,2,3,4}. DivCon checks every

configuration from Xep in a region and counts the occurrences of the values {1,2,3,4}. For

example, let’s say there are 10 configurations put into region 4 in Figure 3.5. So if five of them

has the value 1, one of them has the value 2, four of them has the value 3, and none of them

has the value 4 for this configuration variable. The counts for this configuration variable for the

region 4 will be {5,1,4,0}. Since there are m different configuration variables (Equation 3.2) and

k different regions in the system, this process will be done for m∗ k times. In other words, we

will have the counts for each configuration variable in each region.

4c. Updating the sampler probabilities: There is a sampler for each configuration in

each region, as shown in Figure 3.4. We use the counts found in the previous stage to update

the sampler probabilities. Updating the sampler probabilities follow a logic that is similar to the

updating the region weight. Let probi, j be the set of probabilities of the sampler i in region j.

This sampler is used to sample configuration variable i for region j. Let countsi, j be the count

of occurrences for the configuration variable i in region j that are found in the previous stage.

Both probi, j and countsi, j are vectors with the length ni from Equation 3.1. ni is the number of

different values that ith configuration variable can get. We start the probability updating process

by dividing countsi, j by the sum of the counts as

normcountsi, j =
countsi, j

sum(countsi, j)

∀i ∈ 1,2, ...,m,

∀ j ∈ 1,2, ...,k
(3.7)

All elements of normcountsi, j are between 0 and 1. Their sum also equals to 1. Then,

we use normcountsi, j to update samplers’ probabilities as following:

104



probi, j = probi, j +α ∗ (normcountsi, j−probi, j)

∀i ∈ 1,2, ...,m,

∀ j ∈ 1,2, ...,k

(3.8)

In Equation 3.8, the aim is that if configurations with certain values of a configuration

variable dominates the other configurations on the Pareto front, we should increase the probabili-

ties for sampling these values for that configuration variable. α , similar to β , is a hyperparameter

as shown in Table 3.1. It is called probability update strength parameter. It can have values

between 0 and 1. If it is 0, no updates are made to probabilities. If it is 1, the probabilities are

updated to the probability distribution created by the occurrence counts.

Equation 3.8 updates the probabilities of the samplers in a way that samplers tend to

sample configuration variables and hence configurations that are close to the estimated Pareto

front. If the Pareto front is estimated accurately, it is close to the global Pareto front and therefore

the samplers essentially tend to sample configurations close to the global Pareto front.

3.4.2 Advantages over other methods

Unlike previously described methods in Figure 3.1 and Figure 3.3, DivCon does not take

more time for larger iterations. The common latency bottleneck for approaches in Figure 3.1 and

Figure 3.3 is due to the time-consuming retraining of the surrogate model. Hence, if the training

set becomes too large, the training of the surrogate model takes a long time. Although DivCon

has the same process of retraining the surrogate model at 3a (see Figure 3.4) and Xtrain gets

bigger at every iteration of the inner loop, however, once the inner loop reaches ssb iterations

and terminates, most of the configurations in Xtrain are shaved off in 3f since they are not Pareto

optimal. In the next cycle of the outer loop, once DivCon enters the inner loop, the surrogate

model starts training with Xep which does not have many configurations. So, our surrogate

model only learns the features of Pareto optimal configurations. In summary, unlike previous

methods, the training set does not accumulate training points at every iteration and therefore,

105



retraining the surrogate model is always efficient and fast.

106



Ta
bl

e
3.

2.
T

he
de

ta
ils

of
th

e
us

ed
se

ar
ch

sp
ac

es

Se
ar

ch
sp

ac
e

C
on

fig
ur

at
io

n
va

ri
ab

le
s

To
ta

ls
ea

rc
h

sp
ac

e
si

ze
M

et
ri

cs
N

am
es

D
ow

ns
iz

ed
#

of
va

lu
es

(r
an

ge
)

Fu
ll

#
of

va
lu

es
(r

an
ge

)
D

ow
ns

iz
ed

R
an

ge
Fu

ll
ra

ng
e

ic
_s

s

#
of

C
PU

co
re

s
-C

lu
st

er
1

4
(1

-4
)

4
(1

-4
)

11
9,

80
8

11
9,

80
8

L
at

en
cy

Po
w

er

#
of

C
PU

co
re

s
-C

lu
st

er
2

2
(1

-2
)

2
(1

-2
)

C
lu

st
er

1
C

PU
fr

eq
ue

nc
y

12
(3

45
M

H
z-

2G
H

z)
12

(3
45

M
H

z-
2G

H
z)

C
lu

st
er

2
C

PU
fr

eq
ue

nc
y

12
(3

45
M

H
z-

2G
H

z)
12

(3
45

M
H

z-
2G

H
z)

G
PU

fr
eq

ue
nc

y
13

(1
14

M
H

z-
1.

3G
H

z)
13

(1
14

M
H

z-
1.

3G
H

z)
E

M
C

fr
eq

ue
nc

y
8

(4
0M

H
z-

1.
9G

H
z)

8
(4

0M
H

z-
1.

9G
H

z)

od
_s

s

#
of

C
PU

co
re

s
8

(1
-8

)
8

(1
-8

)

6,
91

2
16

,2
40

C
PU

Fr
eq

ue
nc

y
24

(1
15

M
H

z-
2.

3G
H

z)
29

(1
15

M
H

z-
2.

3G
H

z)
G

PU
fr

eq
ue

nc
y

9
(1

14
M

H
z-

1.
4G

H
z)

14
(1

14
M

H
z-

1.
4G

H
z)

E
M

C
fr

eq
ue

nc
y

4
(8

00
M

H
z-

2.
1G

H
z)

5
(2

04
M

H
z-

2.
1G

H
z)

llm
_s

s

#
of

C
PU

co
re

s
-C

lu
st

er
1

2
(1

-2
)

4
(1

-4
)

20
,0

00
68

,6
79

,4
24

#
of

C
PU

co
re

s
-C

lu
st

er
2

2
(1

-2
)

4
(1

-4
)

#
of

C
PU

co
re

s
-C

lu
st

er
3

2
(1

-2
)

4
(1

-4
)

C
lu

st
er

1
C

PU
fr

eq
ue

nc
y

5
(4

22
M

H
z-

2.
2G

H
z)

29
(1

15
M

H
z-

2.
2G

H
z)

C
lu

st
er

2
C

PU
fr

eq
ue

nc
y

5
(4

22
M

H
z-

2.
2G

H
z)

29
(1

15
M

H
z-

2.
2G

H
z)

C
lu

st
er

3
C

PU
fr

eq
ue

nc
y

5
(4

22
M

H
z-

2.
2G

H
z)

29
(1

15
M

H
z-

2.
2G

H
z)

G
PU

fr
eq

ue
nc

y
5

(3
06

M
H

z-
1.

3G
H

z)
11

(3
06

M
H

z-
1.

3G
H

z)
E

M
C

fr
eq

ue
nc

y
4

(2
04

M
H

z-
3.

2G
H

z)
4

(2
04

M
H

z-
3.

2G
H

z)

m
ul

tim
od

el

L
L

M
m

od
el

ar
ch

ite
ct

ur
e

4
(1

-4
)

4
(1

-4
)

20
,7

36
1,

09
8,

87
0,

78
4

L
at

en
cy

Po
w

er
A

cc
ur

ac
y

M
em

or
y

L
L

M
m

od
el

pr
ec

is
io

n
4

(1
-4

)
4

(1
-4

)
#

of
C

PU
co

re
s

-C
lu

st
er

1
2

(1
-2

)
4

(1
-4

)
#

of
C

PU
co

re
s

-C
lu

st
er

2
2

(1
-2

)
4

(1
-4

)
#

of
C

PU
co

re
s

-C
lu

st
er

3
2

(1
-2

)
4

(1
-4

)
C

lu
st

er
1

C
PU

fr
eq

ue
nc

y
3

(4
22

M
H

z-
2.

2G
H

z)
29

(1
15

M
H

z-
2.

2G
H

z)
C

lu
st

er
2

C
PU

fr
eq

ue
nc

y
3

(4
22

M
H

z-
2.

2G
H

z)
29

(1
15

M
H

z-
2.

2G
H

z)
C

lu
st

er
3

C
PU

fr
eq

ue
nc

y
3

(4
22

M
H

z-
2.

2G
H

z)
29

(1
15

M
H

z-
2.

2G
H

z)
G

PU
fr

eq
ue

nc
y

3
(3

06
M

H
z-

1.
3G

H
z)

11
(3

06
M

H
z-

1.
3G

H
z)

E
M

C
fr

eq
ue

nc
y

2
(2

.1
G

H
z-

3.
2G

H
z)

4
(2

04
M

H
z-

3.
2G

H
z)

107



Other bottlenecks for Pareto-focused Bayesian optimization (Figure 3.3) include estimat-

ing all search space and using the estimations to select a new sample. Although DivCon also has

similar operations, it estimates only Xsub which has a constant size of bs (batch size) at every

iteration. bs is only a fraction of the all search space. Therefore, both the estimations and using

estimations to pick a new sample does not take long time.

3.5 Experiments

3.5.1 Search Spaces

We have tested DivCon extensively on a wide range of search spaces. We have 4 search

spaces that are combinations of different software applications and different hardware systems.

The details of each search space can be seen in Table 3.2. Some of the search spaces are

downsized so that we can find the actual Pareto front to compare performances of the algorithms

in terms of how close they are estimating the actual Pareto front.

Image classification application: The first search space, ic_ss, is for image classification model

EfficientNetB0 [77] running on Nvidia Jetson TX2. This search space has 6 configuration

variables. When we combine all possible values of all configuration variables, there are 119,808

configurations in the search space. The output space include 2 metrics, namely latency and

power.

Object detection application: The following search space, od_ss, is for object detection model

YoloV8s [39] running on Nvidia Jetson Xavier. This search space has 4 configuration variables.

However, we have downsized the ranges of the configuration variables. For example, there are

29 available CPU frequencies on the system, but we limited the search to use only 24 of them.

The downsized search space size is 6,912. The full and downsized ranges of the configuration

variables of each search space are shown in Table 3.2.

Large language model application: This search space, llm_ss, is for large language model

Pythia 70m [6] running on Nvidia Jetson Orin. This search space has 8 configuration variables

108



Figure 3.6. Change of region weights by outer loop iterations for ic_ss and 16 regions

yielding 68,679,424 configurations. We have downsized the configuration variables of this search

space to have 20,000 configurations.

Multimodel large language model application: The last search space, multimodel_ss, is for

searching LLM models, model precisions and Nvidia Orin hardware parameters. There are 4

Pythia models [6], namely Pythia 70m, Pythia 160m, Pythia 410m, and Pythia 1b. There are also

4 model precisions for these models including fp32, fp16, int8 and fp4. The quantization is done

by using [19]. There are 10 configuration variables yielding 1,098,870,784 configurations. The

downsized search space has 20,736 configurations. The output space is 4D where the metrics

are latency, power, accuracy, and memory consumption. The accuracies of LLM models are

benchmarked using multiple datasets available at [26].

3.5.2 Visualization of DivCon Working Mechanism

In this section, we provide visualizations and explanations to give insights about how

DivCon works. The visualizations are based on the search of DivCon on ic_ss. Power and

latency values of all configurations of ic_ss are shown in Figure 3.6. 16 regions are initialized,

where the search space is divided equally by regions. The change of region weights are shown

in Figure 3.6. The regions are used to find out which parts of the output space contain Pareto

optimal points. The weights of the regions that contain Pareto optimal points increase, and the

weights of those that do not contain Pareto optimal points decrease in every iteration. Since the

sum of the region weights needs to be 1 all the time, the weights of the regions with more Pareto

optimal points increase more compared to regions with less Pareto optimal points. We can see

109



(a) Counts for actual Pareto front (b) Probability change

Figure 3.7. The values of GPU frequency configuration variable in ic_ss show up in the actual
Pareto front in the region [1100mW-2475mW] - [0.135s-0.24s] and DivCon sampler’s probability
change for the GPU configuration variable in the same region in 10 iterations

110



(a) Counts for actual Pareto front (b) Probability change

Figure 3.8. The values of GPU frequency configuration variable in ic_ss show up in the actual
Pareto front in the region [2475mW-3850mW] - [0.03s-0.135s] and DivCon sampler’s probability
change for the GPU configuration variable in the same region in 10 iterations

this process in Figure 3.6. The weights of all regions are the same at the start. At iteration 5, we

see that the regions that do not contain any Pareto optimal points have decreased weights. On the

other hand, the regions at the bottom left have increased weights. The weights of the regions that

contain the other parts of the Pareto front are smaller than the bottom left part but higher than

the non-Pareto regions. This is because most of the Pareto optimal points lie in the regions at

the bottom left. At Iteration 10, we see that these weights get even further from each other. As

a result, DivCon promotes exploration and learning in earlier iterations and exploitation of the

information in the later iterations, since these weights are used to decide how many points are

sampled by each region’s samplers.

We can examine the change of the sampler probabilities following the regions shown in

111



3.6. Let us consider the configuration variable GPU frequency. This configuration variable has

13 values that it can take, as shown in Table 3.2. The values of GPU frequency that show up in

on the Pareto front in the region with region bounds [1100mW-2475mW] - [0.135s-0.24s] are

shown in 3.7a. Since this region is a low power one, we see lower GPU frequency values more

commonly on the Pareto front. The most common values are 2 and 1 which are followed by

4,3,5. The change of probabilities of the sampler for GPU frequency in this region is shown in

3.7b. The sampler is initialized with uniform probability. At each iteration, it learns to increase

the probabilities of the values 1 to 5 and decrease the probability of sampling the other values.

As a result, it samples configurations with GPU frequency value 1 to 5 more. Similarly, if we

look at the region with region bounds [2475mW-3850mW] - [0.03s-0.135s], we see different

values for the same configuration variable as shown in 3.8. Since this region is a higher power

one, the higher values for the GPU frequency are observed on the Pareto front. The values 5 and

4 are the most common ones and 6,3,2 follow them as shown in Figure 3.8a. DivCon learns to

increase the probabilities of sampling these points in later iterations as shown in Figure 3.8b.

The regions and samplers work together to learn the structure of the search space. The

regions learn the output space while samplers learn the input space. Combining the two connects

the information of the input and output spaces.

3.5.3 Comparison with other methods

In this section, we compare our algorithm with a quasi-random (Sobol sequence) method,

EHVI [16] and ParEGO [42]. These algorithms are implemented using Ax (version 0.4.0) which

is a software package built on BoTorch [3].

The execution time of search algorithms collected on a server with 11th Gen Intel

i7-11700 with 16GB of RAM and Nvidia GeForce GTX 1660 Ti.

We use two metrics to compare the algorithms’ performances. The first metric of the

comparison is the hypervolume. Hypervolume is the enclosed area between a set of Pareto

optimal points and a reference point. An example of calculating the hypervolume for a 2D space

112



Figure 3.9. Hypervolume calculation illustration in a hypothetical 2D output space

is shown in Figure 3.9. If the global Pareto front is known, hypervolume log difference is defined

as

HV log di f f erence = log10(HV (GPF)−HV (EPF))

where GPF is global Pareto front and EPF is estimated Pareto front. HV log difference

is commonly used in multi-objective optimization community to compare algorithms. The lower

the value of HV log difference, the better the algorithm is for estimating the Pareto frontier. We

also use it for comparisons in this section.

The other metric of the comparison is the AUC (Area under the curve) for hypervolume

log difference during search. Each algorithm proposes a configuration to test on the real system

at every iteration. Therefore, the hypervolume is either improved or stayed at the same value at

every iteration. AUC is a good way to understand the convergence speed of the algorithms. Since

it adds up all the hypervolume log differences throughout the iterations, the lower is better. If an

113



Figure 3.10. The Hypervolume log difference results of search algorithms on search space ic_ss.
Each of the methods is run for 5 times. Solid line is the mean of the 5 runs. Shaded area is 1
standard deviation.

Table 3.3. Comparison of the methods

Search space Method
Best HV log diff AUC
Val Ratio Val Ratio

ic_ss

Sobol 1.54 x1.00 1755.20 x1.00
ParEGO 1.45 x0.95 1621.80 x0.92
EHVI 1.35 x0.88 1560.05 x0.89

DivCon 1.16 x0.76 1502.74 x0.86

od_ss

Sobol 1.88 x1.00 834.42 x1.00
ParEGO 1.38 x0.73 623.19 x0.75
EHVI 1.24 x0.66 560.93 x0.67

DivCon 0.86 x0.46 547.62 x0.66

llm_ss

Sobol 1.48 x1.00 1599.24 x1.00
ParEGO 1.44 x0.97 1541.32 x0.96
EHVI 1.43 x0.96 1530.20 x0.96

DivCon 1.24 x0.84 1476.21 x0.92

multimodel_ss

Sobol 5.76 x1.00 2362.22 x1.00
ParEGO 5.84 x1.01 2393.45 x1.01
EHVI 5.82 x1.01 2356.15 x1.00

DivCon 5.46 x0.95 2335.27 x0.99

algorithm quickly gets to a low value, it has a smaller AUC value. On the other hand, if another

algorithm gets to the same low value but only in late iterations, it has a larger AUC value.

114



(a) ic_ss (b) od_ss

(c) llm_ss (d) multimodel_ss

Figure 3.11. The Hypervolume log difference by algorithm run time. The mean of 5 runs for each
algorithm is shown.

We show the hypervolume log difference results of DivCon and other algorithms for

search space ic_ss in Figure 3.10. In this figure, we can see that Sobol, being the baseline

algorithm, achieves the worst result. EHVI is a successful algorithm in terms of achieving

low hypervolume log difference and therefore beats Sobol and ParEGO, expectedly. We can

clearly see that DivCon outperforms other methods and reaches a set of configurations that yield

lower hypervolume log difference compared to other methods at the end of the search. AUC for

DivCon is also smaller than other algorithms, since it converges quickly. The best hypervolume

log difference and AUC values for each search space are shown in Table 3.3. We also show

the ratio to Sobol baseline of the best hypervolume log difference and AUC. Each algorithm

is allowed to sample the same number of configurations in each search for a fair comparison.

A budget of 1000 samples is allowed for the search spaces ic_ss and llm_ss. A budget of 400

samples is allowed for od_ss and multimodel_ss. The reason for reduced budget for od_ss is

115



that it has a smaller search space as shown in Figure 3.2. The reason for reduced budget for

multimodel_ss is that higher number of iterations are not feasible in terms of time for EHVI due

to higher dimensions of output space. The summary of the results in Table 3.3 shows that the

ranking between the algorithms stay more or less similar both in terms of best hypervolume log

difference and AUC while DivCon achieves significantly better results than other algorithms in

all the search spaces.

These comparisons are made by considering the number of samples each algorithm

inquiries. So these comparisons do not reflect the time required by the algorithms. However,

as explained earlier, the algorithm speed is the main motivation point for developing DivCon

. Therefore, we also show the hypervolume log difference with wall clock time for all search

spaces in Figure 3.11. Wall clock time includes the time that algorithm requires to decide its next

sample and the time that is required to run the sample on the system for each iteration. In these

plots, we also show the zoomed in versions, considering the time DivCon finishes sampling.

It can be clearly seen that DivCon finishes the search extremely quickly compared to other

methods. Depending on the search space and the number of iterations, DivCon ’s search time

can vary 3 to 8 hours, while other algorithms require significantly more time. Even though

Bayesian optimization methods such has EHVI [16] is better than other previous methods in

terms of finding a better Pareto front, they become infeasible in terms of required time when the

dimension of output space increases, as shown in Figure 3.11d. DivCon can find better Pareto

front in much less time compared to what other algorithms take.

DivCon outperforms other methods in hypervolume log difference and AUC considering

both number of samples and algorithm run time as shown in Table 3.3 and Figure 3.11.

3.6 Conclusion and Future Work

In this paper, we proposed a fast and scalable search algorithm for Pareto optimal

design space exploration for deep learning algorithms on embedded systems. Our approach

116



learns the structure of the data because of our proposed region based search technique, and

regional samplers. It does not have the bottlenecks which the Bayesian optimization methods

suffer from. Our algorithm is especially superior in problems where testing a specific sample

configuration is not very expensive but still it is impossible to exhaustively search through all

possible configuration combinations. For example our multimodel_ss search space has 1B data

point. Even though, testing a point takes 30 seconds, exhaustive search still requires very large

time and in more complex setup becomes practically infeasible.

It is critical for efficient running of deep learning algorithms on embedded systems, to

find the Pareto frontier of performance metric by actually running those applications. Hence, our

proposed method can provide an efficient and scalable solution for this kind of search problem

which is highly essential for implementing those on real-world systems. The experimental results

on real-world embedded systems and applications, reinforces the advantage of our proposed

approach over other existing methods.

DivCon currently works with integer input space, since our target problem is the hardware

and software configurations of deep learning models on embedded systems. In the future, we

plan to enable continuous input space for DivCon and evaluate our algorithm with synthetic

problems such as ZDT [102] and DTLZ [18] which are popular benchmarks in multi objective

optimization community.

Chapter 3, in full, is a reprint of the material as it appears in IEEE Access 2024, Basar

Kutukcu, Sabur Baidya, Sujit Dey. The dissertation author was the primary investigator and

author of this paper.

117



Chapter 4

Conclusion

This thesis has presented several methodologies to address problems and bottlenecks of

enabling deep learning models on resource constrained devices. The presented methodologies

addressed challenges in the impact of contention in the system, adapting to the changing

conditions and requirements during runtime, and exploring vast search spaces of configurations

for deep learning models and resource constrained systems.

Chapter 1 has presented a model selection framework that makes a deep learning ap-

plication contention agnostic. In other words, the aim of the framework is to deliver results

within a known and acceptable time, independent of the contention on the system. To achieve

this, the framework grades the contention in the system and prepares a set of deep learning

models. Then, using the selection algorithm, it picks the appropriate model from the model set

considering the contention and requirements at the time. Our framework has advantages such as

rapid model switching and flexibility of choosing different range of models. Analysis based on

our experiments shows that our framework can achieve to mitigate the impact of the contention

by sacrificing the accuracy minimally.

Chapter 2 has presented a dynamic neural network architecture and a branch selection

algorithm to adapt the changing conditions and requirements of a resource constrained mobile

system. Dynamic neural networks are useful tools since they contain only one set of weights,

however, can improve latency by sacrificing accuracy by changing architecture. We have

118



presented a neural network architecture that combines slimming and early exit techniques to

create a new architecture that carries the strength of both. Our analysis shows that our hybrid

architecture overperforms both slimming and early exit techniques. Moreover, we have presented

a branch selection algorithm that is fast and accurate. The accuracy of the branch selection

algorithm is verified with the extensive experiments showing the high satisfaction rate for both

time and power requirements,

Chapter 3 has presented a design space exploration algorithm for deep learning models

on resource constrained devices. This problem is proven to be difficult due to vast search space

size, the challenges of testing a sample and the lack of the analytical form of the objective

function. Our algorithm uses a sampling-based approach to mitigate the scalability problem of

Bayesian Optimization. The extensive analysis, including multiple deep learning architectures

and hardware, showed that our approach can find better Pareto frontier in much less time

compared to existing state-of-the-art Bayesian Optimization based methods.

119



Bibliography

[1] Rizwan A. Ashraf, Francis Luna, Damian Dechev, and Ronald F. DeMara. Designing
digital circuits for fpgas using parallel genetic algorithms (wip). In Proceedings of the
2012 Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S Sym-
posium, TMS/DEVS ’12, San Diego, CA, USA, 2012. Society for Computer Simulation
International.

[2] Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin D.F. Wong. Boom-
explorer: Risc-v boom microarchitecture design space exploration framework. In 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–9,
2021.

[3] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-
Carlo Bayesian Optimization. In Advances in Neural Information Processing Systems 33,
2020.

[4] Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of
convolutional networks for rapid-deployment. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 7948–7956, 2019.

[5] Ali Ehteshami Bejnordi and Ralf Krestel. Dynamic channel and layer gating in convolu-
tional neural networks. In Ute Schmid, Franziska Klügl, and Diedrich Wolter, editors, KI
2020: Advances in Artificial Intelligence - 43rd German Conference on AI, Bamberg, Ger-
many, September 21-25, 2020, Proceedings, volume 12325 of Lecture Notes in Computer
Science, pages 33–45. Springer, 2020.

[6] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for
analyzing large language models across training and scaling, 2023.

[7] Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V. Guttag. What
is the state of neural network pruning? In Inderjit S. Dhillon, Dimitris S. Papailiopoulos,

120



and Vivienne Sze, editors, Proceedings of Machine Learning and Systems 2020, MLSys
2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020.

[8] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural
networks for efficient inference. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pages 527–536. PMLR, 2017.

[9] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train
one network and specialize it for efficient deployment. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[10] Junyi Chai, Hao Zeng, Anming Li, and Eric W.T. Ngai. Deep learning in computer vision:
A critical review of emerging techniques and application scenarios. Machine Learning
with Applications, 6:100134, 2021.

[11] Zhourong Chen, Yang Li, Samy Bengio, and Si Si. You look twice: Gaternet for dynamic
filter selection in cnns. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 9172–9180. Computer
Vision Foundation / IEEE, 2019.

[12] Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. Fast calculation of multiobjective
probability of improvement and expected improvement criteria for pareto optimization. J.
Glob. Optim., 60(3):575–594, 2014.

[13] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks
with weights and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

[14] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Au-
toaugment: Learning augmentation strategies from data. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 113–123. Computer Vision Foundation / IEEE, 2019.

[15] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected
hypervolume improvement for parallel multi-objective bayesian optimization. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[16] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel bayesian optimization
of multiple noisy objectives with expected hypervolume improvement. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman

121



Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 2187–2200, 2021.

[17] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In
Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan
Julián Merelo Guervós, and Hans-Paul Schwefel, editors, Parallel Problem Solving
from Nature - PPSN VI, 6th International Conference, Paris, France, September 18-20,
2000, Proceedings, volume 1917 of Lecture Notes in Computer Science, pages 849–858.
Springer, 2000.

[18] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable multi-
objective optimization test problems. In Proceedings of the 2002 Congress on Evolutionary
Computation, CEC 2002, Honolulu, HI, USA, May 12-17, 2002, pages 825–830. IEEE,
2002.

[19] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36,
2024.

[20] David Eriksson, Michael Pearce, Jacob R Gardner, Ryan Turner, and Matthias Poloczek.
Scalable global optimization via local Bayesian optimization. Curran Associates Inc.,
Red Hook, NY, USA, 2019.

[21] Amir Erfan Eshratifar and Massoud Pedram. Runtime deep model multiplexing for
reduced latency and energy consumption inference. In 38th IEEE International Conference
on Computer Design, ICCD 2020, Hartford, CT, USA, October 18-21, 2020, pages 263–
270. IEEE, 2020.

[22] Jamil Fayyad, Mohammad A. Jaradat, Dominique Gruyer, and Homayoun Najjaran. Deep
learning sensor fusion for autonomous vehicle perception and localization: A review.
Sensors, 20(15):4220, 2020.

[23] Boyuan Feng, Kun Wan, Shu Yang, and Yufei Ding. SECS: efficient deep stream process-
ing via class skew dichotomy. CoRR, abs/1809.06691, 2018.

[24] Rostand A. K. Fezeu, Eman Ramadan, Wei Ye, Benjamin Minneci, Jack Xie, Arvind
Narayanan, Ahmad Hassan, Feng Qian, Zhi-Li Zhang, Jaideep Chandrashekar, and
Myungjin Lee. An in-depth measurement analysis of 5g mmwave PHY latency and its
impact on end-to-end delay. In Anna Brunström, Marcel Flores, and Marco Fiore, editors,
Passive and Active Measurement - 24th International Conference, PAM 2023, Virtual
Event, March 21-23, 2023, Proceedings, volume 13882 of Lecture Notes in Computer
Science, pages 284–312. Springer, 2023.

[25] Peter I. Frazier. A tutorial on bayesian optimization. CoRR, abs/1807.02811, 2018.

122



[26] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi,
Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle
McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin
Wang, and Andy Zou. A framework for few-shot language model evaluation, 12 2023.

[27] Quentin Gautier, Alric Althoff, Christopher L. Crutchfield, and Ryan Kastner. Sherlock:
A multi-objective design space exploration framework. ACM Trans. Des. Autom. Electron.
Syst., 27(4), mar 2022.

[28] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt
Keutzer. A survey of quantization methods for efficient neural network inference. CoRR,
abs/2103.13630, 2021.

[29] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and
connections for efficient neural network. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 1135–1143, 2015.

[30] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dy-
namic neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):7436–7456, 2022.

[31] Vikas Hassija, Vinay Chamola, Adhar Agrawal, Adit Goyal, Nguyen Cong Luong, Dusit
Niyato, Fei Richard Yu, and Mohsen Guizani. Fast, reliable, and secure drone com-
munication: A comprehensive survey. IEEE Communications Surveys & Tutorials,
23(4):2802–2832, 2021.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors,
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, volume 9908 of Lecture Notes in Computer
Science, pages 630–645. Springer, 2016.

[33] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[34] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q.
Weinberger. Multi-scale dense networks for resource efficient image classification. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[35] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer Vision and

123



Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261–2269.
IEEE Computer Society, 2017.

[36] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. CoRR, abs/1602.07360, 2016.

[37] Forrest N. Iandola, Matthew W. Moskewicz, Sergey Karayev, Ross B. Girshick, Trevor
Darrell, and Kurt Keutzer. Densenet: Implementing efficient convnet descriptor pyramids.
CoRR, abs/1404.1869, 2014.

[38] Babak Shahian Jahromi, Theja Tulabandhula, and Sabri Cetin. Real-time hybrid multi-
sensor fusion framework for perception in autonomous vehicles. Sensors, 19(20):4357,
2019.

[39] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLO, jan 2023.

[40] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving, Christoph
Reinders, Sarthak Yadav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Zheng Rui, Jirka
Borovec, Christian Vallentin, Semen Zhydenko, Kilian Pfeiffer, Ben Cook, Ismael Fer-
nández, François-Michel De Rainville, Chi-Hung Weng, Abner Ayala-Acevedo, Raphael
Meudec, Matias Laporte, et al. imgaug. https://github.com/aleju/imgaug, 2020. Online;
accessed 01-Feb-2020.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[42] J. Knowles. Parego: a hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computa-
tion, 10(1):50–66, 2006.

[43] Basar Kutukcu, Sabur Baidya, Anand Raghunathan, and Sujit Dey. Contention-aware adap-
tive model selection for machine vision in embedded systems. In 3rd IEEE International
Conference on Artificial Intelligence Circuits and Systems, AICAS 2021, Washington, DC,
USA, June 6-9, 2021, pages 1–4. IEEE, 2021.

[44] Basar Kutukcu, Sabur Baidya, Anand Raghunathan, and Sujit Dey. Contention grading
and adaptive model selection for machine vision in embedded systems. ACM Trans.
Embed. Comput. Syst., 21(5):55:1–55:29, 2022.

[45] Basar Kutukcu, Sabur Baidya, Anand Raghunathan, and Sujit Dey. Evosh: Evolutionary
search with shaving to enable power-latency tradeoff in deep learning computing on
embedded systems. In 2023 IEEE 36th International System-on-Chip Conference (SOCC),
pages 1–6, 2023.

124

https://github.com/aleju/imgaug


[46] Christos Kyrkou and Theocharis Theocharides. Emergencynet: Efficient aerial image
classification for drone-based emergency monitoring using atrous convolutional feature
fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 13:1687–1699, 2020.

[47] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang.
Dynamic slimmable network. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 8607–8617. Computer Vision
Foundation / IEEE, 2021.

[48] Shun Li, Linhan Qiao, Youmin Zhang, and Jun Yan. An early forest fire detection
system based on dji m300 drone and h20t camera. In 2022 International Conference on
Unmanned Aircraft Systems (ICUAS), pages 932–937, 2022.

[49] Yue Li, Devesh K. Jha, Asok Ray, and Thomas A. Wettergren. Feature level sensor fusion
for target detection in dynamic environments. In American Control Conference, ACC
2015, Chicago, IL, USA, July 1-3, 2015, pages 2433–2438. IEEE, 2015.

[50] Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Kwong. Controllable pareto multi-task
learning. CoRR, abs/2010.06313, 2020.

[51] Xi Lin, Zhiyuan Yang, Xiaoyuan Zhang, and Qingfu Zhang. Pareto set learning for
expensive multi-objective optimization. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

[52] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency
trade-offs by selective execution. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 3675–3682. AAAI Press, 2018.

[53] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-
Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. In Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part I, volume 9905 of Lecture Notes in Computer Science, pages 21–37. Springer, 2016.

[54] Andre K.Y. Low, Eleonore Vissol-Gaudin, Yee-Fun Lim, and Kedar Hippalgaonkar. Map-
ping pareto fronts for efficient multi-objective materials discovery. Journal of Materials
Informatics, 3(2), 2023.

[55] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method
for deep neural network compression. In IEEE International Conference on Computer

125



Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 5068–5076. IEEE Computer
Society, 2017.

[56] Mason McGill and Pietro Perona. Deciding how to decide: Dynamic routing in artificial
neural networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pages 2363–2372.
PMLR, 2017.

[57] Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grobman. Same, same but
different: Recovering neural network quantization error through weight factorization.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages
4486–4495. PMLR, 2019.

[58] Augustus Odena, Dieterich Lawson, and Christopher Olah. Changing model behavior at
test-time using reinforcement learning. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net, 2017.

[59] Lorenzo Palazzetti. Routing drones being aware of wind conditions: a case study. In 2021
17th International Conference on Distributed Computing in Sensor Systems (DCOSS),
pages 343–350, 2021.

[60] Annibale Panichella. An adaptive evolutionary algorithm based on non-euclidean geometry
for many-objective optimization. In Anne Auger and Thomas Stützle, editors, Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech
Republic, July 13-17, 2019, pages 595–603. ACM, 2019.

[61] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for
multi-objective bayesian optimization using random scalarizations. In Amir Globerson
and Ricardo Silva, editors, Proceedings of the Thirty-Fifth Conference on Uncertainty
in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, volume 115 of
Proceedings of Machine Learning Research, pages 766–776. AUAI Press, 2019.

[62] Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok Kim, Gunhee Kim, Sungroh
Yoon, and Sungjoo Yoo. Big/little deep neural network for ultra low power inference.
In Gabriela Nicolescu and Andreas Gerstlauer, editors, 2015 International Conference
on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2015, Amsterdam,
Netherlands, October 4-9, 2015, pages 124–132. IEEE, 2015.

[63] Rohit Prabhavalkar, Takaaki Hori, Tara N Sainath, Ralf Schlüter, and Shinji Watanabe.
End-to-end speech recognition: A survey. arXiv preprint arXiv:2303.03329, 2023.

[64] Carl Edward Rasmussen. Gaussian processes in machine learning. In Olivier Bousquet,
Ulrike von Luxburg, and Gunnar Rätsch, editors, Advanced Lectures on Machine Learning,

126



ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany,
August 4-16, 2003, Revised Lectures, volume 3176 of Lecture Notes in Computer Science,
pages 63–71. Springer, 2003.

[65] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. In Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision - ECCV 2016 - 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part IV, volume 9908 of Lecture Notes in Computer Science, pages 525–542. Springer,
2016.

[66] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 5389–5400. PMLR, 2019.

[67] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR,
abs/1804.02767, 2018.

[68] Michael Ruchte and Josif Grabocka. Scalable pareto front approximation for deep multi-
objective learning. In James Bailey, Pauli Miettinen, Yun Sing Koh, Dacheng Tao, and
Xindong Wu, editors, IEEE International Conference on Data Mining, ICDM 2021,
Auckland, New Zealand, December 7-10, 2021, pages 1306–1311. IEEE, 2021.

[69] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C.
Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. Int. J. Comput.
Vis., 115(3):211–252, 2015.

[70] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 4510–4520. Computer Vision Foundation / IEEE Computer Society,
2018.

[71] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable bayesian
optimization using deep neural networks, 2015.

[72] Elijah Spicer and Sabur Baidya. Performance tradeoff in dnn-based coexisting applications
in resource-constrained cyber-physical systems. In 2023 IEEE International Conference
on Smart Computing (SMARTCOMP), pages 219–221. IEEE, 2023.

[73] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res., 15(1):1929–1958, 2014.

127



[74] Qi Sun, Tinghuan Chen, Siting Liu, Jin Miao, Jianli Chen, Hao Yu, and Bei Yu. Correlated
multi-objective multi-fidelity optimization for hls directives design. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 46–51, 2021.

[75] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 2818–2826. IEEE Computer Society, 2016.

[76] Shyam Anil Tailor, Javier Fernández-Marqués, and Nicholas Donald Lane. Degree-
quant: Quantization-aware training for graph neural networks. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021.

[77] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 6105–6114. PMLR, 2019.

[78] Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang. Adaptive
deep learning model selection on embedded systems. In Zheng Zhang and Christophe
Dubach, editors, Proceedings of the 19th ACM SIGPLAN/SIGBED International Confer-
ence on Languages, Compilers, and Tools for Embedded Systems, LCTES 2018, Philadel-
phia, PA, USA, June 19-20, 2018, pages 31–43. ACM, 2018.

[79] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 23rd International Conference on Pattern
Recognition, ICPR 2016, Cancún, Mexico, December 4-8, 2016, pages 2464–2469. IEEE,
2016.

[80] Jun Wang, Tanner A. Bohn, and Charles X. Ling. Pelee: A real-time object detection
system on mobile devices. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 1967–1976,
2018.

[81] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for
black-box optimization using monte carlo tree search. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[82] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. Skipnet:
Learning dynamic routing in convolutional networks. In Vittorio Ferrari, Martial Hebert,

128



Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part XIII,
volume 11217 of Lecture Notes in Computer Science, pages 420–436. Springer, 2018.

[83] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan M. Nguyen, Richard G.
Baraniuk, Zhangyang Wang, and Yingyan Lin. Dual dynamic inference: Enabling more
efficient, adaptive, and controllable deep inference. IEEE J. Sel. Top. Signal Process.,
14(4):623–633, 2020.

[84] James T. Wilson, Frank Hutter, and Marc Peter Deisenroth. Maximizing acquisition
functions for bayesian optimization. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, page 9906–9917, Red Hook, NY,
USA, 2018. Curran Associates Inc.

[85] Wenhan Xia, Hongxu Yin, Xiaoliang Dai, and Niraj K. Jha. Fully dynamic inference with
deep neural networks. IEEE Trans. Emerg. Top. Comput., 10(2):962–972, 2022.

[86] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Ganga Maghanath, and
Saurabh Bagchi. Approxnet: Content and contention aware video analytics system for the
edge. CoRR, abs/1909.02068, 2019.

[87] Kaifeng Yang, Michael Emmerich, André H. Deutz, and Thomas Bäck. Multi-objective
bayesian global optimization using expected hypervolume improvement gradient. Swarm
Evol. Comput., 44:945–956, 2019.

[88] De Jong Yeong, Gustavo Adolfo Velasco-Hernández, John Barry, and Joseph Walsh. Sen-
sor and sensor fusion technology in autonomous vehicles: A review. Sensors, 21(6):2140,
2021.

[89] Jin Hyeok Yoo, Yecheol Kim, Ji Song Kim, and Jun Won Choi. 3d-cvf: Generating joint
camera and lidar features using cross-view spatial feature fusion for 3d object detection. In
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer
Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XXVII, volume 12372 of Lecture Notes in Computer Science, pages
720–736. Springer, 2020.

[90] Jiahui Yu and Thomas S. Huang. Network slimming by slimmable networks: Towards
one-shot architecture search for channel numbers. CoRR, abs/1903.11728, 2019.

[91] Jiahui Yu and Thomas S. Huang. Universally slimmable networks and improved training
techniques. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019, pages 1803–1811. IEEE, 2019.

[92] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas S. Huang. Slimmable neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

129



[93] Zhihang Yuan, Bingzhe Wu, Guangyu Sun, Zheng Liang, Shiwan Zhao, and Weichen Bi.
S2DNAS: transforming static CNN model for dynamic inference via neural architecture
search. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part II, volume 12347 of Lecture Notes in Computer Science, pages
175–192. Springer, 2020.

[94] Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Siddharth Garg. Model-
switching: Dealing with fluctuating workloads in machine-learning-as-a-service systems.
In Amar Phanishayee and Ryan Stutsman, editors, 12th USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud 2020, July 13-14, 2020. USENIX Association, 2020.

[95] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

[96] Shuhan Zhang, Fan Yang, Dian Zhou, and Xuan Zeng. An efficient asynchronous batch
bayesian optimization approach for analog circuit synthesis. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, 2020.

[97] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 6848–6856. Computer Vision Foundation / IEEE Computer Society,
2018.

[98] Tianming Zhao, Yucheng Xie, Yan Wang, Jerry Cheng, Xiaonan Guo, Bin Hu, and
Yingying Chen. A survey of deep learning on mobile devices: Applications, optimizations,
challenges, and research opportunities. Proceedings of the IEEE, 110(3):334–354, 2022.

[99] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen,
Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu
Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of large language models. CoRR,
abs/2303.18223, 2023.

[100] Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian.
Multi-objective optimization by learning space partitions. CoRR, abs/2110.03173, 2021.

[101] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[102] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolu-
tionary algorithms: Empirical results. Evol. Comput., 8(2):173–195, 2000.

[103] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable
architectures for scalable image recognition. In 2018 IEEE Conference on Computer

130



Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 8697–8710. Computer Vision Foundation / IEEE Computer Society, 2018.

[104] Marcela Zuluaga, Andreas Krause, and Markus Püschel. e-pal: An active learning
approach to the multi-objective optimization problem. Journal of Machine Learning
Research, 17(104):1–32, 2016.

[105] Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Püschel. Active
learning for multi-objective optimization. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
volume 28 of JMLR Workshop and Conference Proceedings, pages 462–470. JMLR.org,
2013.

131


	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Contention Grading and Adaptive Model Selection for Machine Vision in Embedded Systems
	Introduction
	Related work
	Overview of our Approach
	Machine Vision Application
	Delay Accuracy Trade-off
	Adaptive Model Selection At Runtime
	Contention Grading and Defining Model Set

	Contention Grading, Model Set Generation and Adaptive Model Selection: Details
	Contention Grading
	Runtime Model Selection

	Experimental Results
	Experimental Setup
	Contention Grading and Model Set Pruning Evaluation
	Runtime Performance Evaluation
	System Implementation Details
	Comparison with Early Exit Based Method
	Comparison with Slimmable Network Based Method

	Conclusion

	SLEXNet: Adaptive Inference Using Slimmable Early Exit Neural Networks
	Introduction
	Related Work
	Background and Motivation
	Methodology
	SLEXNet
	Runtime
	Challenges for SLEXNet

	Experiments
	Training and Dataset Details
	Offline Performance Evaluation of SLEXNet
	Online SLEXNet Performance with Adaptive Scheduling
	Additional Analyses

	Conclusion

	Fast and Scalable Design Space Exploration for Deep Learning on Embedded Systems
	Introduction
	Related work
	Problem Formulation, Background and Motivation
	Problem Formulation
	Background and Motivation

	Proposed Approach: DivCon 
	The Algorithm
	Advantages over other methods

	Experiments
	Search Spaces
	Visualization of DivCon Working Mechanism
	Comparison with other methods

	Conclusion and Future Work

	Conclusion
	Bibliography



