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ABSTRACT OF THE DISSERTATION 

 

Deciphering and targeting transcription-replication coordination in cancer 

 

by 

Michael David Kronenberg 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2022 

Professor Michael Carey, Chair 

 

Head-on collisions between the replication and transcription machinery over R-loop 

forming sequences potently stall replication forks. Stalled fork structures can then be 

converted into DNA breaks, leading to apoptosis or growth arrest of cycling cells. The 

mechanisms which coordinate transcription and replication to avoid these genotoxic 

collisions are therefore critical for cellular fitness, especially in the case of rapidly 

dividing tumor cells. However it is unclear if coordination occurs passively through 

globally encoded co-directionality between transcription units and replication forks, or 

actively, through transcriptional regulatory mechanisms that function to silence head-on 

transcripts during S-phase. ‘Active’ coordination would imply that transcriptional 

regulators could be effectively targeted in cancer to induce collisions and subsequent 

tumor cell killing. However, the ‘active’ coordination model has never been 

systematically assessed. In this dissertation, we present work demonstrating that head-

on transcription over R-loop forming sequences occurs at a high frequency during the 
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cell cycle across tumor cell types, that this transcription is temporally downregulated 

during S-phase, and that INO80 and MOT1 are leveraged in NSCLC to suppress 

genotoxic TRCs and preserve tumor cell viability. These results suggest that 

transcriptional regulation is imperative to genome stability, and transcriptional regulators 

serve as promising targets for the treatment of NSCLC.  
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Overview  

Head-on transcription-replication collisions (HO TRCs) over R-loop forming sequences 

(RLFS) (hereby referred to as genotoxic TRCs), potently stall replication forks and 

generate DNA breaks in in-vitro and episomal systems (Bruning and Marians, 2020; 

Hamperl et al., 2017; Helmrich et al., 2013; Kumar et al., 2021; Prado and Aguilera, 

2005). The high fitness cost of genotoxic TRCs suggests that dividing cells must 

suppress these events to maintain viability. However, it is unclear how genotoxic TRCs 

are avoided within the transcriptionally active landscape of the genome. A ‘passive’ 

model proposes that genotoxic TRCs are avoided through encoded co-directionality 

between transcription units (TUs) and replication forks (Chen et al., 2019; Petryk et al., 

2016; Wang et al., 2021). Alternatively, an ‘active’ model proposes that head-on 

transcription over RLFS occurs frequently during the cell cycle but is silenced during S-

phase to mitigate collisions. The ‘active’ model is attractive, as it implies that 

transcriptional regulators could be therapeutically targeted to induce the killing of rapidly 

dividing tumor cells. However, it is unclear how frequently head-on transcription over 

RLFS occurs on the genome, whether this transcription is temporally silenced, and if so, 

what the regulators of such TUs might be. This work addresses these knowledge 

gaps, with the two-fold goal of testing the hypothesis that the active model 

reflects transcription-replication coordination in tumor cells, and ascertaining 

whether the transcriptional regulators INO80 and MOT1 function to prevent 

genotoxic TRCs in Non-Small Cell Lung cancer (NSCLC). This introduction will detail 

the consequences of replication fork stalling, illustrate the effects of different kinds of 

transcription-replication collisions on replication fork processivity, discuss evidence for 
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both the passive and active model of transcription-replication coordination, rationalize 

targeting transcription-replication collisions in cancer for therapeutic purposes, and 

present logic for investigating the transcriptional regulators INO80 and MOT1 as 

candidate suppressors of genotoxic TRCs in NSCLC.  

 

Replication stress 

DNA replication is a highly organized, stepwise process. In G1-phase cells, ~50,000 

replication origins, or replication initiation sites (RIS), are set through recruitment of the 

6-subunit origin of replication complex (ORC) to accessible regions enriched for G-

quadruplex (G4) secondary structures (Akerman et al., 2020; Dellino et al., 2013; Foulk 

et al., 2015; Hoshina et al., 2013; Kumagai and Dunphy, 2020; Langley et al., 2016). 

ORC binding initiates a recruitment cascade, leading to the binding of two MCM2-7 

helicase hexamers, thus ‘licensing’ the origin for downstream activation (Fragkos et al., 

2015; Ganier et al., 2019). Throughout S-phase, ~20% of licensed origins are 

phosphorylated via transient DDK4 and CDK2 activity, leading to association of CDC45 

and the GINS complex with the MCM2-7 helicase, and subsequent formation of the 

activated CMG complex. CMG then catalyzes DNA duplex unwinding, and the bi-

directional firing of competent replisomes (Fragkos et al., 2015). Processive replisomes 

consist of the CMG helicase complex on the leading edge, followed by replicative DNA 

polymerases and a multitude of supporting factors (Fragkos et al., 2015; Leman and 

Noguchi, 2013). Due to CMG-catalyzed DNA unwinding ahead of polymerase activity, 

replisomes form a ‘fork-like’ structure, commonly known as the replication fork. These 

processive structures must traverse the DNA fiber, faithfully synthesizing daughter DNA 
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molecules until fork convergence and termination (Bailey et al., 2015; Petryk et al., 

2016).  

 

The elongating replication fork is a vulnerable structure. When intact, the fork contains 

small tracts of single-stranded DNA (ssDNA), which are quickly converted to double-

stranded DNA molecules (dsDNA) upon daughter strand synthesis (Leman and 

Noguchi, 2013) (Figure 1, top). However, when replication forks encounter physical 

impediments on the DNA template, they can become stalled (Saxena and Zou, 2022). 

Fork stalling, in turn, leads to the generation of large tracts of ssDNA, typically through 

uncoupling of the replicative helicase and polymerases (Dobbelstein and Sorensen, 

2015; Saxena and Zou, 2022; Toledo et al., 2017) (Figure 1, bottom). Stalled forks and 

subsequent ssDNA formation is collectively known as ‘replication stress’, and these 

aberrant structures activate what is known as the replication stress response. Briefly, 

exposed ssDNA directly recruits the heterotrimeric replication protein A (RPA), which in 

turn recruits the ATR kinase. ATR, upon binding RPA, phosphorylates several 

substrates, including Chk1 to activate the intra-S phase checkpoint (Dobbelstein and 

Sorensen, 2015; Toledo et al., 2017) (Figure 1, left). The signaling cascade induced by 

excess ssDNA leads to the inhibition of new RIS firing, fork protection and re-start, and 

delay of mitotic entry (Toledo et al., 2017). Such events enable RPA pools to be 

conserved, replication forks to be repaired and restored, and genome replication to still 

be completed prior to mitosis despite challenges. This ultimately results in maintenance 

of genome stability and cell viability. 
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The RPA-ATR axis has the capacity to buffer replication stress at mild to moderate 

levels. This is likely due to the estimated 6-10 fold excess RPA present in a cell under 

unstressed conditions (Toledo et al., 2017). However, at high levels of stress, RPA 

pools become completely sequestered by exposed ssDNA, leading to the accumulation 

of non-coated forks (Toledo et al., 2017; Toledo et al., 2013) (Figure 1, right). Under 

these conditions, an event known as replication catastrophe (RC) occurs. In RC, non-

coated forks are processed by endonucleases, such as MUS81 (Matos et al., 2020; 

Toledo et al., 2017), into highly toxic double-stranded breaks (DSBs). DSB-mediated 

signaling then activates apoptotic or senescent programs, leading to cell death or 

growth arrest (Dobbelstein and Sorensen, 2015; Norbury and Zhivotovsky, 2004). Thus, 

suppressing replication fork stalling events during S-phase is critical for RPA pool 

conservation and cell viability. The formation of highly stable, aberrant fork structures 

could lead to RC. 

  

Transcription-replication collisions 

Transcription and replication occur simultaneously on the genome. Both processes are 

driven by large polymerase-containing complexes which simultaneously open duplex 

DNA and traverse the DNA fiber. The co-existence of these bulky, processive structures 

suggests that transcription and replication could potentially interfere with each other. 

Given the genotoxic consequences of replication fork stalling, there has been much 

interest garnered over the years in determining the consequences of transcription-

replication collisions (TRCs) on fork processivity. As a result, a model of TRC outcomes 

can be constructed from both in-vitro and in-vivo work (Figure 2) (Bruning and Marians, 
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2020; Hamperl et al., 2017; Kumar et al., 2021; Lee et al., 2020; Prado and Aguilera, 

2005). 

 

TRCs can potentially occur in four different contexts (Figure 2). Spatially, TRCs can 

occur in a co-directional manner, in which the replisome and RNA polymerase II 

(RNAPII) travel in the same direction (Figure 2, top 2 panels), or head-on, in which they 

converge (Figure 2, bottom 2 panels). Moreover, from a sequence standpoint, TRCs 

can either occur over C-rich template strands that encourage re-hybridization of nascent 

RNA (R-loop forming sequence, or RLFS) (Figure 2, right 2 panels), or non-C-rich 

strands where re-annealing is absent (Figure 2, left 2 panels) (Aguilera and Garcia-

Muse, 2012; Helmrich et al., 2013). Re-annealing of RNA to C-rich DNA forms a three-

stranded nucleic acid structure known as an R-loop (Aguilera and Garcia-Muse, 2012). 

In these structures, the G-rich non-template strand can form intra-strand secondary 

structures known as G-quadruplexes (G4s) (Figure 2, right 2 panels) (Kumar et al., 

2021; Lee et al., 2020). Thus, both the spatial and sequence context of a collision must 

be considered when assessing outcomes. 

          

Interestingly, in all but one context, collisions do not stably stall replication forks in 

reconstituted systems in-vitro. When collisions are stimulated co-directionally in in-vitro 

eukaryotic and bacterial systems, CMG helicase directly removes RNAPII from the DNA 

template, enabling replisome continuation (Figure 2, upper-left) (Bruning and Marians, 

2020; Kumar et al., 2021). This ability to bypass co-directional RNAPII occurs 

regardless of R-loops, as CMG helicase can directly remove R-loops via unwinding, and 
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lagging strand synthesis can ‘jump over’ opposite strand G4s, leaving a ssDNA gap that 

can be filled during mitosis (Figure 2, upper-right) (Bruning and Marians, 2020; Kumar 

et al., 2021). This finding has been re-capitulated in-vivo, where induced co-directional 

collisions were found to remove R-loops and occur without genotoxic consequence. 

Similarly, head-on transcription-replication collisions (HO TRCs) over non-C-rich 

RNAPII template strands failed to incur stable replication fork stalling in-vitro, or DNA 

damage in-vivo (Figure 2, bottom-left) (Hamperl et al., 2017; Kumar et al., 2021). Thus, 

most potential collisions that could occur on the genome appear to not cause replication 

fork stalling and are well tolerated by the cell.  

 

Alternatively, when HO TRCs are stimulated in-vitro over C-rich sequences in the 

template strand of RNA polymerase II (RNAPII), the replication fork becomes stably 

blocked (Figure 2, bottom-right) (Bruning and Marians, 2020; Kumar et al., 2021). In this 

sequence context, nascent RNA from head-on RNAPII forms an R-loop, thus stabilizing 

G4s on the replisome’s leading strand. While CMG helicase can bypass the G4 on the 

leading strand, replicative polymerase cannot, leading to uncoupling and ssDNA 

formation (Figure 3). Alternatively, CMG helicase can be blocked by highly stable G4s, 

leading to fork reversal, MUS81-dependent cleavage, and ssDNA generation in this 

context (Kumar et al., 2021; Matos et al., 2020). It is likely that G4 stabilization 

contributes to fork block, as introduction of the G4 unwinding helicase PIF1 rescues fork 

stalling (Kumar et al., 2021). In agreement with these findings, in-vivo induction of HO 

TRCs over RLFS generates R-loops at the collision site and concomitant DNA damage 

(Hamperl et al., 2017; Nojima et al., 2018). The potent damage induction observed in-
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vivo suggests that HO TRCs over RLFS generate stably stalled forks that eventually are 

converted into DNA breaks. Collectively, these fascinating studies demonstrate that HO 

TRCs over C-rich R-loop forming sequences (RLFS) (genotoxic TRCs) potently block 

replication fork progression in a conserved manner.  

  

Transcription-replication coordination 

The 3 billion base-pair genome plays host to a myriad of metabolic processes, including 

DNA replication and RNA transcription. It is currently estimated that there are ~20,000 

protein-coding genes on the genome, as well as ~50,000 non-coding transcription units 

termed lincRNAs (Hangauer et al., 2013; Pertea et al., 2018). Furthermore, ~85% of the 

genome is transcribed at detectable levels (Hangauer et al., 2013; Jacquier, 2009). 

Alternatively, it is estimated that ~20,000-100,000 replication forks are active in any 

given S-phase, initiating from around 10,000-50,000 initiation sites (Fragkos et al., 

2015; Ganier et al., 2019; Kumagai and Dunphy, 2020). Replication initiation and active 

transcription cluster in genomic space (Chen et al., 2019; Dellino et al., 2013; Langley et 

al., 2016). The ubiquitous and proximal nature of both processes suggests that the 

avoidance of genotoxic TRCs stems from directional or temporal coordination. 

 

One-way genotoxic TRCs could be avoided in crowded genomic space is enforced co-

directionality between all transcription units and replication forks. The development of 

OK-seq, which maps replication fork directionality genomewide, has helped decipher 

this relationship (Petryk et al., 2016). OK-seq datasets from HeLa and lymphoid 

blastoma cells reveal a conserved replication landscape, in which replication initiates 
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upstream of active genes in ~30kb regions dubbed initiation zones (IZs), elongates co-

directionally with coding transcription through gene bodies, and terminates downstream 

of genes in termination zones (TZs) (Petryk et al., 2016). Orthogonal approaches such 

as optical replication mapping, have unveiled a similar replication landscape via a small 

molecule approach (Wang et al., 2021). Interestingly, when a strong promoter was 

ectopically placed into the genome, it directed the formation of an upstream IZ, 

suggesting that transcription units themselves direct replication activity, likely through 

the formation of strong NDRs in the promoter region (Chen et al., 2019). These studies 

to date have argued for a ‘passive’ model in which genotoxic TRCs are passively 

mitigated through genome-encoded co-directionality between both processes (Figure 

4).  

 

Alternatively, genotoxic TRCs could be avoided through the silencing of head-on 

transcription units (HO TUs) during genome replication (Figure 5). Several lines of 

evidence support this ‘active’ model of coordination. The passive model only accounts 

for interference from protein-coding gene transcription, which occurs across only ~3% of 

the genome (Hangauer et al., 2013). It is estimated that 75-90% of the genome is 

transcribed, and that a majority of this transcription is non-coding, or ‘pervasive’ in 

nature (Jacquier, 2009). Indeed, ~50,000 pervasive transcription units (pervasive TUs, 

also referred to as lincRNAs) have been called from RNA-seq data, demonstrating that 

non-gene loci are transcribed with moderate frequency (Hangauer et al., 2013). These, 

pervasive TUs are often transcribed antisense to genes, suggesting they could provide 

a source of head-on transcription (Hangauer et al., 2013; Jacquier, 2009). Moreover, 
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pervasive transcription was found to initiate at origin-of-replication complex bound loci in 

HeLa cells, in an accessible region that overlaps with C-rich DNA and G4 quadruplex 

forming sequences (Dellino et al., 2013). However, the directionality of this transcription 

relative to the emerging replication fork remains unclear. Additionally, the passive model 

does not account for intragenic RIS, which would produce replication forks that 

converge with gene transcription. It is clear intragenic RIS are abundant on the genome, 

as they have been mapped across different methodologies (Dellino et al., 2013; Langley 

et al., 2016; Petryk et al., 2016). Interestingly, most intragenic RIS localize just 

downstream of the TSS, where abortive TSS transcription would be highly active.     

 

Functional studies suggest that transcriptional silencing is necessary to prevent 

genotoxic TRCs in human cells. Knockdown of the positive elongation factor Spt6 

increased the expression of promoter-upstream transcripts (PROMPTs) in 

asynchronous HeLa cells, leading to the build up of NET-seq signal at select upstream 

origins, PROMPT-associated R-loops and DNA damage, and replication stress 

phenotypes (Nojima et al., 2018). Inhibition of the positive elongation factor BRD4 

similarly generated evidence of genotoxic TRCs in HeLa and HCT116 cells (Lam et al., 

2020). These studies suggest that transcriptional regulation by multiple players is 

necessary to avoid genotoxic TRCs. However, as these studies were only performed at 

select loci in asynchronous cells, it remains unknown how widespread head-on 

transcription over RLFS occurs on the genome, or whether such transcription is 

temporally regulated. Collectively, the widespread presence of pervasive TUs, existence 

of intragenic RIS, and evidence of genotoxic TRC suppression by regulators supports 
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an ‘active’ model of transcription-replication coordination. However, this model has not 

been systematically tested on a global scale with temporal resolution.    

 

Induction of genotoxic TRCs as a strategy to treat cancer 

A hallmark of cancer is elevated replication stress (Gaillard et al., 2015). This phenotype 

is oncogene-driven, resulting in a myriad of stress-causing phenomena such as 

depleted dNTP pools, increased nucleotide alterations, and compromised cell cycle 

checkpoints (Dobbelstein and Sorensen, 2015; Saxena and Zou, 2022). These 

collectively lead to increased endogenous levels of exposed ssDNA and decreased 

available RPA (Toledo et al., 2017; Toledo et al., 2013). It has been suggested that 

tumor-specific replication stress can be exploited therapeutically (Dobbelstein and 

Sorensen, 2015; Ubhi and Brown, 2019). If tumor cells have less ability to buffer 

increases in ssDNA relative to healthy cells due to depleted RPA pools, then 

perturbations that generate novel sources of replication stress, through, for example, 

inducing genotoxic TRCs, might achieve tumor-selective toxicity (Figure 6). In support of 

this, BRD4 inhibition across cell lines was shown to selectively generate DNA damage 

in oncogene-driven models with high stress phenotypes (Lam et al., 2020). Moreover, 

several drugs that function through generating stress via intra or inter-strand DNA 

crosslinks, protein-DNA crosslinks, or base modifications, serve as the backbones for 

approved cancer therapy regimens (Dobbelstein and Sorensen, 2015). However, many 

chemotherapies induce replication stress-independent toxicities as well, leading to 

undesirable side-effect profiles and dose limitations (Barabas et al., 2008). Furthermore, 

new downstream approaches targeting the replication stress-response, such as CHK1 
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inhibition, have been found to be highly toxic (Dent, 2019). The discovery of novel 

mechanisms that function to suppress sources of replication stress in tumor cells could 

potentially lead to the development of next-generation therapeutics with enhanced 

profiles relative to the current standards of care. Transcriptional regulators that 

suppress genotoxic TRCs are attractive targets in this regard.  

  

INO80 and MOT1 

INO80C is a highly conserved, multi-functional 15-subunit chromatin remodeling 

complex that participates in transcription, replication, and DNA repair (Poli et al., 2017). 

INO80 affects DNA processes through its ability to mobilize nucleosomes, perform 

histone variant exchange, and directly interact with trans factors (Brahma et al., 2017; 

Lafon et al., 2015; Poli et al., 2017). MOT1 is a highly conserved ATPase that functions 

as a TATA-binding protein (TBP) antagonist (Auble et al., 1994). INO80 and MOT1 

have a unique function amongst transcriptional regulators in that they silence pervasive 

transcription across model organisms (Xue et al., 2017). For example, in both yeast and 

mouse embryonic stem cells, INO80 and MOT1 were found to bind at gene TSS. Upon 

INO80 and MOT1 co-depletion, upstream antisense RNA transcription from bound TSS 

greatly increased, with little effect on gene expression observed (Xue et al., 2017). 

While it was originally unclear why INO80 and MOT1 would silence non-productive 

transcription in a conserved manner, it was later found that INO80 and MOT1 

selectively bound and silenced pervasive transcription near RIS (Topal et al., 2020). 

Indeed, co-depletion in yeast under induced replication stress generated DNA breaks at 

RIS, suggesting that INO80 and MOT1 function to prevent genotoxic TRCs through 
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silencing pervasive transcription in this model organism (Topal et al., 2020). However, it 

is unclear if INO80 and MOT1 regulate pervasive transcription or prevent genotoxic 

TRCs in human cells (Figure 7). 

 

INO80C has recently emerged as an oncogenic protein complex in various cancers 

(Lee et al., 2017; Zhang et al., 2017; Zhou et al., 2016). Pan-tumor analysis of 

sequencing and expression data from the cancer genome atlas (TCGA) revealed that 

INO80 is genetically amplified across most cancer subtypes (Lee et al., 2017; Zhang et 

al., 2017). INO80 depletion in melanoma, prostate, breast, colorectal, and lung cancer 

cell lines inhibits growth, suggesting that INO80 has pan-cancer oncogenic activity (Lee 

et al., 2017; Prendergast et al., 2020; Zhang et al., 2017; Zhou et al., 2016). However, it 

is unclear how INO80 mechanistically facilitates tumor expansion. Work in melanoma 

and NSCLC models suggested that INO80 drives oncogenic enhancer activation, 

although such studies were descriptive in nature (Zhang et al., 2017; Zhou et al., 2016). 

Alternatively, work in colorectal, prostate, and breast cancer models demonstrated that 

INO80 suppresses replication stress and replication-dependent DNA damage through 

an unclear mechanism, (Lee et al., 2017; Prendergast et al., 2020). Interestingly, INO80 

depletion was found to be synthetic lethal with replication stress in yeast, suggesting 

that INO80 could be interacting with a tumor-specific stress phenotype (Papamichos-

Chronakis and Peterson, 2008). Could INO80 be functioning to prevent genotoxic TRCs 

in these cancer types? Interestingly, work in PC3 cells found that INO80 increases 

chromatin occupancy in S-phase, supporting the idea that INO80 could be an S-phase 

specific transcriptional regulator (Vassileva et al., 2014). Furthermore, INO80 depletion 
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increased R-loop occupancy on chromatin in S-phase PC3 cells, a phenotype reflecting 

upregulated genotoxic TRCs (Prendergast et al., 2020). However, INO80 regulatory 

activity was not assessed at high resolution in these studies. Thus, it is unclear how 

INO80 mechanistically prevents DNA damage during S-phase in tumor cells.  

  

Non-Small Cell Lung cancer 

Lung cancer is currently the leading cause of cancer-related deaths for both men and 

women in the United States (Herbst et al., 2018). Non-Small Cell Lung cancer (NSCLC) 

is the most prevalent histologic lung cancer subtype, accounting for ~85% of total cases 

(Herbst et al., 2018). First line treatment for advanced NSCLC is typically cisplatin-

based chemotherapy, which produces a ~20% response rate and ~8-month median 

survival across different regimens (Fennell et al., 2016). In a small subset of NSCLC 

tumors harboring EGFR or ALK mutations, targeted kinase inhibitors can significantly 

prolong survival, demonstrating improved efficacy over cisplatin-based regimens 

(Alanazi et al., 2020). However, these treatments are rarely curative, with most patients 

progressing on therapy. Thus, there is a clear need to develop novel therapies for 

NSCLC. 

 

NSCLC is unique amongst cancer types in that it displays remarkable levels of genome 

instability. In support of this, pan-cancer analysis found that NSCLC exhibits a rapid 

mutation rate of ~50 mutations/Mb of DNA, the highest amongst cancers assessed 

(Kandoth et al., 2013). A priori, it can be assumed that this instability is driven afferently 

by replication stress, and efferently by compromised DNA damage response and repair 
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mechanisms. Indeed, NSCLC cell line panels have shown uniquely high levels of 

ssDNA, a strong biomarker for replication stress (Boucher et al., 2019; Zhao et al., 

2009). NSCLC genetically exhibits high rates of KRAS gain-of-function mutations, which 

have been shown to induce replication stress in controlled systems (Araujo et al., 2021; 

Kotsantis et al., 2016). Moreover, NSCLC exhibits a high rate of inactivating mutations 

in the SWI/SNF subunit SMARCA4, which likewise drive heterochromatin-induced 

replication stress in controlled systems (Kurashima et al., 2020; Medina et al., 2008). 

Thus, NSCLC profiles as a strong candidate tumor subtype for therapies that 

exogenously introduce replication stress, therefore exploiting the depleted RPA pools in 

these tumor cells. Interestingly, INO80 has been found to be critical for NSCLC growth 

across cell lines, although INO80’s oncogenic mechanism remains unclear (Zhang et 

al., 2017). It is striking that INO80 depletion does not affect the growth of normal lung 

epithelial cells, suggesting that INO80 is interacting with a tumor-specific phenotype 

(Zhang et al., 2017). Whether INO80 functions to prevent genotoxic TRCs in NSCLC 

remains unexplored.  

  

Approach 

In this thesis work, I set out to answer two main questions: 1. Is transcription actively 

regulated to avoid genotoxic TRCs in tumor cells? and 2. Do the transcriptional 

regulators INO80 and MOT1 prevent genotoxic TRCs in NSCLC? To answer the first 

question, I leveraged a multitude of publicly available datasets, including CAGE-seq, 

SNS-seq, and phased GRO-seq in the MCF-7 breast cancer cell line to investigate if 1. 

HO TUs exist on the genome, and 2. HO TUs are silenced during S-phase at potential 
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genotoxic TRC sites. To broach the second question, I performed both high resolution 

genomic assays, including ChIP-seq, nascent RNA-seq, EdU-seq, and bulk DNA 

damage assessments to interrogate if 1. INO80 and MOT1 bound at HO TUs in 

NSCLC, 2. INO80 and MOT1 silenced HO TU transcription, and 3. INO80 and MOT1 

prevented TRC-induced DNA damage. These dual studies, which are both descriptive 

and functional in nature, enabled me to ultimately ascertain whether genotoxic TRCs 

are prevented on the cancer genome through transcriptional silencing mechanisms.  

  

Significance  

Despite large advances in the last twenty years, there remains a high unmet need for 

improved cancer therapeutics. The discovery of novel cancer-specific vulnerabilities due 

to tumor pathology is key to efforts in drug development. This work seeks to illuminate a 

potential weakness in tumor cells derived from abnormal DNA metabolism. Moreover, 

the interplay between transcription and replication has been understudied, potentially 

due to a lack of crosstalk between the transcription and replication fields. This work 

seeks to bridge this intellectual gap and potentially draw attention to the idea that 

transcriptional regulatory mechanisms can be critical to cellular physiology independent 

of gene expression.  

  

Summary  

In this work, I will first provide evidence in support of an ‘active’ transcription-replication 

coordination model through an integrative bioinformatic analysis performed from data 

generated in MCF-7 breast cancer cells. I will then pivot to presenting data supporting a 
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model by which the transcriptional regulators INO80 and MOT1 function to suppress 

genotoxic TRCs in NSCLC, and thus facilitate tumor cell growth. My work will culminate 

in a descriptive study mapping the genome-wide DNA damage effects induced by 

cisplatin treatment in NSCLC cells. This work ultimately illuminates a novel paradigm in 

transcription-replication coordination on the human genome and provides rationale for 

the therapeutic targeting of such coordination in cancer.    
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Figure Legends 

Figure 1: Consequences of replication fork stalling. Graphic representation of 

cellular response to replication fork stalling in conditions of low replication stress (left) 

and high replication stress (right).   

 

Figure 2: Outcomes of transcription-replication collisions in different contexts. 

Graphic representation of co-directional collisions at sites with no R-loop forming 

sequences (upper-left), co-directional collisions at sites with R-loop forming sequences 

(upper-right), head-on collisions at sites with no R-loop forming sequences (lower-left), 

and head-on collisions at sites with R-loop forming sequences (lower-right). In the first 3 

contexts, the replication fork does not stall and is able to continue synthesis. In the final 

context, the replisome becomes stably blocked due to the formation of G4 secondary 

structures on the leading strand.  

 

Figure 3: Consequences of replication fork stalling induced by genotoxic 

transcription-replication collisions. Graphic representation of replication fork stalling 

induced by a head-on transcription-replication collision over an R-loop forming 

sequence. In this scenario, leading strand synthesis is blocked by a G4 quadruplex, 

which the CMG helicase is able to bypass. This leads to replisome uncoupling and 

single-stranded DNA generation. Lagging strand synthesis is capable of bypassing the 

transcriptional complex to continue DNA synthesis.  
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Figure 4: Passive model of transcription-replication coordination. Graphic 

representation of transcription-replication coordination in a ‘passive’ system in which all 

transcription-replication collisions are co-directional in nature. This directional 

relationship would enable replisome bypass and continual synthesis without fork 

stalling.   

 

Figure 5: Active model of transcription-replication coordination. Graphic 

representation of transcription-replication coordination in an ‘active’ system in which 

head-on transcription occurs on the genome but is silenced during S-phase by 

transcriptional regulators. Temporal suppression of head-on transcripts would enable 

replisome passage during S-phase.  

 

Figure 6: Rationale for therapeutically targeting genotoxic collisions in cancer. 

Graphic representation of the consequences of inducing genotoxic transcription-

replication collisions in healthy cells (left) and tumor cells (right). Due to increased 

endogenous replication stress and depleted RPA pools in tumor cells, induced collisions 

would generate unstable forks that could be converted into DNA breaks by 

endonucleases such as MUS81, leading to tumor cell death or growth arrest.  

 

Figure 7: Model of INO80 and MOT1’s potential protective function in cancer. 

Graphic representation of a molecular model in which INO80 and MOT1 function to 

silence head-on transcription, thus suppressing genotoxic collisions and preserving 
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tumor cell viability. Inhibition of the INO80/MOT1 axis would lead to collision induction, 

DNA damage, and downstream cytotoxic effects in tumor cells.  
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Chapter 2: Temporal regulation of head-on transcription at 

replication initiation sites. 
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Abstract 

Head-on collisions between the DNA replication machinery and RNA polymerase are 

potent genotoxic events leading to replication fork stalling, R-loop formation, and DNA 

breaks. Current models suggest that head-on collisions are avoided through replication 

initiation site (RIS) placement upstream of active genes, thus ensuring co-orientation of 

replication fork movement and genic transcription. However, this model does not 

account for pervasive transcription units, or intragenic replication initiation events. 

Through mining phased GRO-seq data, and developing a rigorous informatic strategy to 

identify RIS, we demonstrate that head-on transcription occurs frequently in a breast 

cancer cell line, and that this transcription is significantly downregulated during S-phase, 

particularly in regions susceptible to R-loop formation. Collectively, our analysis 

suggests the existence of a temporally tuned transcriptional regulation mechanism that 

functions to maintain genome stability. 

 

Introduction 

DNA replication and transcription are both polymerase-driven reactions that occur on 

the same DNA template with the potential to spatially and temporally interfere with one 
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another. Prior studies across model organisms have shown that head-on collisions 

between the DNA and RNA polymerases are potent genotoxic events, capable of 

generating stalled replication forks, R-loops, and double-stranded DNA breaks (Hamperl 

et al., 2017; Lang et al., 2017; Liu and Alberts, 1995; Mirkin and Mirkin, 2005; Prado 

and Aguilera, 2005; Zardoni et al., 2021). In contrast, co-directional collisions are 

tolerated and result in little effect on replisome progression (Hamperl et al., 2017; Liu 

and Alberts, 1995; Mirkin and Mirkin, 2005; Prado and Aguilera, 2005). Such findings 

highlight the need for cells to preserve genome stability by employing mechanisms to 

avoid head-on collisions. 

  

It is generally assumed that head-on collisions are avoided passively through genome 

organization. OK-seq, which maps replication fork movement, revealed that replication 

initiation typically occurs in zones upstream of the transcription start site (TSS) of active 

genes, and terminates downstream of gene bodies (Chen et al., 2019; Petryk et al., 

2016). Likewise, optical replication mapping, which maps replication initiation via a 

single molecule approach, found that most initiation zones (IZs) co-localized with zones 

identified by OK-seq (Wang et al., 2021). The organization suggested by these studies 

would in theory ensure that leading strand synthesis primarily occurs in a co-directional 

manner with genic transcription. However, there are several limitations to the model. 

First, although about 2% of the genome is occupied by protein-coding genes, 75-90% of 

the genome is transcribed (Consortium, 2012; Hangauer et al., 2013). Non-coding, or 

pervasive transcription, can occur both outside gene bodies, such as in the form of 

promoter upstream transcripts (PROMPTs) (Berretta and Morillon, 2009; Preker et al., 
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2008), or inside genes, such as intragenic cryptic transcripts (McCauley and Dang, 

2022; Smolle and Workman, 2013). Often, these units are transcribed antisense to gene 

transcription, suggesting they could be a source of head-on collisions (Berretta and 

Morillon, 2009; Xie et al., 2011). Second, several lines of evidence suggest transcription 

occurs adjacent to replication initiation sites (RIS) (Candelli et al., 2018; Dellino et al., 

2013; Miotto et al., 2016), and indeed might be a functional feature of RIS, acting to 

recruit the replication machinery (Dellino et al., 2013; Hoshina et al., 2013). However, 

these studies never assessed transcriptional activity at high resolution relative to RIS 

locations. If RIS-adjacent transcription converged into the RIS, it would present a source 

of head-on transcriptional collisions. Third, several assays mapping RIS have found 

enrichment of peaks within gene bodies. Ini-seq, which maps RIS via digoxigenin-dUTP 

incorporation, purification, and sequencing, identified 8,048 peaks within genes in EJ3 

cells (Langley et al., 2016). ChIP-seq of ORC1 identified 4,272 peaks within genes in 

HeLa cells (Dellino et al., 2013). SNS-seq, which maps RIS via isolation of lambda 

exonuclease-resistant RNA-primed DNA fragments found that peaks primarily localized 

downstream of the TSS of active genes in MCF-7 cells (Martin et al., 2011). OK-seq in 

HeLa and GM6990 cells showed that ~20% of IZs localized within active genes (Petryk 

et al., 2016). Therefore, it appears that a subset of RIS initiate within gene bodies 

across cell types. Within these genes, it is possible that gene transcription could 

generate head-on collisions. 

  

Collectively, it appears that both pervasive and genic transcription could be potential 

sources of head-on collisions. However, in the case of pervasive transcription units, it is 
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unclear how transcription directionally occurs relative to the moving replication fork. In 

the case of gene units, it is unclear whether RIS occur within genes that are actively 

transcribed. If pervasive and genic transcription occurred at a high frequency in the 

head-on orientation, a key question is how do cells avoid head-on collisions at these 

locations? In this study, we sought to systematically analyze transcriptional activity near 

RIS with positional and strand resolution utilizing publicly available datasets generated 

in the MCF-7 breast cancer cell line. By focusing on transcription within 3 kilobases of 

stringently identified RIS, we infer replication fork direction and thus determine the 

positional relationship between transcription and replication. Surprisingly, head-on 

transcription occurs frequently at both intergenic and intragenic RIS in asynchronous 

breast cancer cells. Furthermore, we find that head-on transcription is significantly 

downregulated in S-phase cells relative to G1-phase cells, especially at R-loop forming 

sequences. Interestingly, even subtle increases in head-on transcription at RIS have 

been shown to induce significant DNA damage and replication stress (Hamperl et al., 

2017; Nojima et al., 2018), suggesting the downregulation effects we see are likely 

protective in nature. Collectively, our study identifies pervasive and genic transcription 

as potential sources of genotoxic head-on collisions, and strongly implicates the 

existence of a transcriptional regulatory mechanism that functions to silence head-on 

transcription at RIS during S-phase to preserve genome stability. 
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Results 

Identifying high-confidence replication initiation sites in the MCF-7 genome 

 A multi-layered approach was employed to identify high confidence RIS in MCF-7 cells 

(Figure 1A). We first considered a ‘core origin’ dataset containing ~65,000 regions with 

a median size of 700 base pairs, which captured a majority (~80%) of small nascent 

strand sequencing (SNS-seq) reads across 20 human cell types (Akerman et al., 2020; 

Foulk et al., 2015). Approximately ~40% of core origin loci are active in any given cell 

type (Akerman et al., 2020). To enrich for RIS in the MCF-7 cell line, we used bedtools 

software to intersect core origins with MCF-7 SNS-seq peaks yielding 23,110 loci 

(Martin et al., 2011). To further filter out false positives, we intersected the remaining 

loci with an epigenetic signature that predicts binding locations of the origin of 

replication complex (ORC) with remarkable accuracy (Miotto et al., 2016). This 

approach yielded 4,572 RIS with a median size of 730 bp. 

  

We validated the identified RISs by assessing their positioning relative to MCF-7 repli-

seq replication timing (RT) profiles (Consortium, 2012; Dellino et al., 2013). RT profiles 

contain an inverted V-apex at sites of replication initiation, and typically apex locations 

contain one or more bonafide RIS (Dellino et al., 2013). Thus, if our identified RIS loci 

were true positives, then a high percentage of them should localize within apex regions. 

Viewing the RIS on a browser track with RT data clearly showed positioning at apex 

locations in the earliest S-phase fraction (G1b) (Figure 1B, left panel). To assess 

whether the RIS localized to apexes genome-wide, we assigned an s50 score to each 

RIS. An s50 score was assigned if at least 50% of total RT reads map to a region in a 
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single S-phase fraction. This region is then assigned a label for that fraction, indicating 

that the region is localizing within an inverted-V apex peaking in the indicated temporal 

window (Dellino et al., 2013). 68% of total RIS loci were assigned a G1b s50 score as 

compared to 32% of core origins, 33% of epigenetic signature loci, 26% of SNS-seq 

peaks, and 8% of randomly selected Dnase-seq peaks, demonstrating that our strategy 

successfully enriched for true RIS (Figure 1B, right panel). To further analyze this 

subset, RIS were normalized to the median size of 730 bp and centered on a heat map 

encompassing 3 kb upstream and downstream of the left and right boundaries (LB and 

RB) respectively, based on the Watson strand (Figure 1C). MCF-7 SNS-seq signal 

within this context reveals a clear enrichment within the demarcated RIS regions (Figure 

1C). Among all RIS, 1,166 localized in intergenic space, 3,030 localized within gene 

bodies, and 376 spanned gene body termini and adjacent intergenic regions (Figure 

1D), in agreement with the distribution of SNS-seq peaks seen in the MCF-7 cell line 

(Martin et al., 2011). For intergenic RIS, 40% were within 5kb of a TSS, 31% were 

between 5 and 50 kb from a TSS, and 29% were more than 50 kb from a TSS (Figure 

1E).  For intragenic RIS, we found that 50%, 34%, and 16% localized in this manner 

(Figure 1E). With an understanding of RIS positioning relative to gene units, we next 

sought to evaluate local transcription at these sites. 

 

Head-on transcription occurs at intergenic and intragenic RIS 

To assess whether head-on transcription occurs at or near RIS and whether it was a 

feature of genic or pervasive transcription, we separately evaluated transcription at 

intergenic and intragenic subsets of RIS. We first measured transcription initiation 
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observed within 3kb of the RIS. To positionally map transcription initiation at these sites, 

we utilized published data from Mnase-seq (Shimbo et al., 2013), Dnase-seq 

(Consortium, 2012), RNAP2 ChIP-seq (Consortium, 2012), TBP ChIP-exo (Venters and 

Pugh, 2013), and TSS-seq (Yamashita et al., 2011). The results show that transcription 

initiated within a nucleosome-depleted region (NDR) adjacent to both RIS subsets, in 

agreement with past studies evaluating the chromatin landscape around ORC ChIP-seq 

and SNS-seq peaks in yeast and murine cells, respectively (Eaton et al., 2010; Foulk et 

al., 2015) (Figure 2A). Thus, proximal transcription initiation is a feature of the local RIS 

environment. Due to this conserved organization, we were able to uniformly orient all 

RIS so that transcription initiation was downstream on a heatmap, enabling positional 

analysis of transcriptional activity at these loci on a global scale (Figure 2A).    

  

GRO-seq is a highly sensitive nuclear run-on assay capable of mapping genic and 

pervasive transcription with strand specificity (Core et al., 2008), including unstable and 

lowly expressed transcripts. To evaluate transcriptional activity at RIS, we first utilized 

asynchronous GRO-seq data generated in the MCF-7 cell line (Liu et al., 2017). We 

assessed GRO-seq signal traveling out of the downstream NDR and into the upstream 

RIS. We called this head-on (HO) transcription because it converges into an emerging 

replication fork. On both the global and individual locus scale, we found a strong peak of 

transcription initiating near the border of the RIS adjacent to the NDR and peaking 

within the center of the RIS. These data reveal that HO transcription is a feature of the 

local RIS environment (Figure 2A,B). HO transcription was evident at both intergenic 

and intragenic RIS (Figure 2A,B), demonstrating that it is an intrinsic feature of this RIS 
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subset and not due to association with gene bodies. Analysis of HO GRO-seq read 

density at the two subsets of RIS relative to gene GRO-seq read density showed that 

HO transcription occurs at a similar frequency as highly expressed gene transcription 

(Figure 2C). 

 

To more systematically evaluate HO transcription at RIS, we next sought to identify the 

frequency of head-on transcription units (HO TUs). To do this, we utilized MCF-7 NET 

CAGE-seq data, which identifies TSSs genome-wide with high sensitivity and directional 

information via cap chemistry and sequencing (Hirabayashi et al., 2019). We defined 

HO TUs as regions bookended on one end by a HO NET CAGE-seq peak within 1kb of 

an RIS border, and on the other the RIS summit (Supplemental Figure 3A). We found 

that 3,357 of the 4,572 RIS contained at least one HO TU (Supplemental Figure 3B).  In 

total, we identified 4,567 HO TUs, as multiple units formed at some RIS. Viewing NET 

CAGE-seq and GRO-seq signals at HO TUs on a heatmap clearly demonstrates that 

HO transcription is initiating at and elongating within the TUs, observably peaking at the 

RIS summit (Supplemental Figure 3C). Thus, in agreement with earlier analysis, HO 

transcription is a feature of a majority of RIS, and occurs within distinct, identifiable 

units. 

  

We next evaluated whether the HO transcription observed at RIS was pervasive in 

nature. The intergenic RIS subset was localized completely outside gene bodies and, as 

such, the transcription occurring at these regions was pervasive. However, the 

intragenic RIS subset is located within gene bodies, making is unclear if HO 
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transcription at these sites is generated from normal genic transcription or intragenic 

pervasive transcription. To distinguish between these two possibilities, we measured 

transcription initiation and GRO-seq signal at intragenic RIS subset by its distance from 

the nearest genic TSS. Regardless of TSS distance, we observed enrichment of 

RNAP2, TBP, and TSS-seq signal within the adjacent NDR, suggesting that 

transcription initiation at RIS loci is occurring independent of a nearby genic TSS 

(Supplemental Figure 1A). Furthermore, we found that 31% of intragenic RIS contained 

HO transcripts that traveled antisense to genic transcription (Supplemental Figure 1B). 

Finally, we determined whether HO transcripts were overrepresented in the GRO-seq 

dataset relative to total RNA-seq data from the same study (Liu et al., 2017), which 

would be relatively depleted of HO transcripts if these were indeed pervasive and thus 

unstable. We found a significant reduction in total RNA-seq RPKM values for HO 

transcripts relative to GRO-seq, further suggesting that HO transcription at intragenic 

RIS is pervasive in nature (Supplemental Figure 1C). 

 

As an orthogonal approach, we interrogated identified HO TUs for pervasive 

characteristics. Like RIS units, HO TUs had higher GRO-seq RPKM values than RNA-

seq (Supplemental Figure 3D). In contrast, active genes had higher RNA-seq RPKM 

values then GRO-seq, reinforcing the validity of this approach (Supplemental Figure 

3D). We next evaluated whether HO TUs associate with different pervasive transcript 

species, and if so, at what frequency. To do this, we first identified all transcripts 

belonging to four different pervasive species: promoter upstream transcripts 

(PROMPTs), enhancer RNAs (eRNAs), antisense TSS-associated RNAs (asTSSa), and 
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sense TSS-associated RNAs (sTSSa) utilizing GRO-seq data (Liu et al., 2022; Whyte et 

al., 2013). We then categorized HO TUs by whether they overlapped with any of these 

pervasive transcript classes. We found that 11% of HO TU associations were with 

PROMPTs, 16% with eRNAs, 18% with asTSSa, 34% with sTSSa, and 21% with 

transcripts outside these classes (Supplemental Figure 4E). Finally, we observed GRO-

seq and RNA-seq values across HO TUs categorized by transcript class association. 

Interestingly, we found that HO TUs had higher GRO-seq RPKMs across associations, 

reinforcing that HO TUs are indeed pervasive in nature (Supplemental Figure 3F). 

  

Genic transcription could also cause head-on collisions with intragenic RIS. GRO-seq 

RPKM values for RIS-containing genes were similar to that of high to moderately 

transcribed genes (Figure 2D), suggesting that coding transcription within RIS-

containing genes occurs at a fairly high frequency across asynchronous cells. 

Collectively, these data demonstrate that pervasive and genic transcription occurs in the 

HO orientation in asynchronous tumor cells (Figure 2E). 

  

Head-on transcription at RIS is markedly downregulated in actively replicating 

cells  

The results from asynchronous MCF-7 cells described above raise the question of how 

could head-on transcription occur at RIS without negative effects on cellular fitness? We 

hypothesized that although head-on transcription occurs during the cell cycle, it might 

be mitigated during genome replication in S-phase. We therefore evaluated HO GRO-

seq RPKM distributions at intergenic and intragenic RIS between MCF-7 cells 
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synchronized in either S-phase or G1-phase (Liu et al., 2017). The results show there is 

a marked decrease in GRO-seq signal in S-phase cells relative to G1-phase cells 

across both RIS subsets (Figure 3A,B,C). Importantly, while we observed a small 

overall decrease in gene transcription between S-phase and G1-phase cells, the 

magnitude of the HO transcriptional changes at RIS were significantly greater, 

demonstrating that S-phase downregulation is biased towards RIS (Figure 3D). 

Moreover, the transcription of genes with proximal upstream RIS is not downregulated 

in S-phase, demonstrating that the effects seen at RIS are independent of 

transcriptional buffering that might occur on replicated DNA (Padovan-Merhar et al., 

2015; Yunger et al., 2018) (Supplemental Figure 2). These analyses indicate that HO 

pervasive transcription at RIS is selectively downregulated during S-phase, suggesting 

that temporally tuned transcriptional regulation at RIS might play a role in genome 

stability. 

 

We next assessed transcriptional dynamics at HO TUs. In agreement with the previous 

RIS-based analysis, we found that HO TU transcription was significantly downregulated 

in S-phase relative to G1-phase cells (Supplemental Figure 4A,B). Differential 

expression analysis revealed that 1,827 HO TUs are significantly downregulated in S-

phase, while only 28 HO TUs are significantly upregulated (Supplemental Figure 4C). 

Moreover, significant reductions in HO TU transcription levels during S-phase were 

apparent across transcript class associations, suggesting S-phase suppression is a 

feature of HO TUs, and not pervasive transcript species broadly speaking 

(Supplemental Figure 4D,E). Importantly, we found that randomly selected size and 
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transcriptional activity matched TUs within gene bodies did not show S-phase specific 

downregulation (Supplemental Figure 5A). Interestingly, pervasive TUs, protein-coding 

genes, and lincRNAs showed a slight bias towards S-phase downregulation 

(Supplemental Figure 5B,C,D). However, comparison of the log2 fold-change 

distribution across HO TUs and these transcript classes demonstrates that HO TUs 

experience a significantly greater magnitude of S-phase downregulation (Supplemental 

Figure 5E). Collectively, these findings support the idea that head-on transcription at 

RIS is specifically suppressed during genome replication.  

  

We also sought to determine if genic transcription through genes containing RISs was 

downregulated during S-phase. Indeed, RIS-containing genes were downregulated to a 

greater degree than genes lacking RIS, suggesting that head-on genic transcription is 

preferentially downregulated during genome replication (Figure 3E). Collectively, the 

data in Figures 1 through 3 suggest a model in which head-on pervasive and coding 

transcription occurs during the cell cycle, but is reduced during S-phase, potentially to 

avoid genotoxic collisions with the replisome. 

  

S-phase downregulation of head-on pervasive transcription is amplified over R-

loop forming sequences 

If a particular sequence feature amplified the genotoxicity of head-on collisions, one 

would predict that RIS containing this feature would experience a greater degree of S-

phase transcription downregulation. R-loops are three-stranded nucleic acid structures 

generated when nascent RNA anneals to the DNA template strand during transcription 



 

 50 

(Aguilera and Garcia-Muse, 2012). It has been reported that HO transcription-replication 

collisions generate DNA damage through stabilizing R-loops over C-rich R-loop forming 

sequences (RLFS) (Hamperl et al., 2017). To address whether S-phase transcription 

was preferentially downregulated at RLFS, we first identified RLFS annotated by R-

loopDB (Jenjaroenpun et al., 2017) within the HO template strand at RIS. RLFS 

occurred within the HO template strand at 63% of all RIS loci, relative to only 2% of 

random loci within the template strand of gene bodies (data not shown). This finding 

suggested that HO transcription at RIS has a predisposition to form R-loops, and 

enabled us to quantitate differences in transcription between RLFS positive and 

negative RIS. We observed a sharper loss of S-phase transcription signal at RLFS 

positive RIS, despite both subsets exhibiting similar levels of transcription in G1-phase 

(Figure 4A). Moreover, when we compared the temporal RPKM distributions of HO 

GRO-seq reads at RIS subsets, we found that only RLFS positive RIS RPKMs 

displayed a significant downward shift in S-phase relative to G1-phase (Figure 4B). 

Differential expression analysis using a volcano plot revealed that 42% of RLFS high 

RIS demonstrated significant downregulation based on pre-determined thresholds (see 

methods), whereas only 22% of RLFS low RIS were significantly downregulated (Figure 

4C). However, it is clear from the plot that the vast majority of transcription at both RIS 

subsets is downregulated. The INO80 chromatin remodeling complex (INO80C) has 

been shown to prevent R-loop dependent damage during DNA replication in MCF-7 

cells (Prendergast et al., 2020). Interestingly, ChIP-seq revealed that INO80C binds 

non-randomly at MCF-7 RIS, with significantly increased occupancy at the RLFS 

positive subset, providing a link between a genome protectant and temporally regulated 
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RIS (Figure 4D,E,F). In sum, this analysis demonstrates that HO transcription is 

preferentially downregulated at collision sites with high genotoxic potential, supporting 

the idea that HO RIS transcription is actively regulated across the cell cycle to prevent 

DNA damage and maintain genome stability. 

 

We lastly evaluated RLFS frequency and positioning within the transcribed strand of HO 

TUs. We found that 3,476 of the 4,567 HO TUs contained at least one RLFS on the 

template strand, and that RLFS appeared to localize throughout the HO TU body 

(Supplemental Figure 6A,B). We next looked at temporal transcriptional changes at HO 

TUs subset by increasing RLFS density levels. We observed a clear relationship 

between increasing RLFS density and S-phase downregulation, again suggesting that 

temporal suppression of HO TUs is likely a mechanism to prevent genotoxic 

transcription-replication collisions (Supplemental Figure 6C). In aggregate, we propose 

that HO TUs potentiate damaging collisions with the replisome, and are actively 

silenced in S-phase by still unknown players to prevent DNA damage (Supplemental 

Figure 6D).  

 

Discussion 

Head-on transcription-replication collisions are potent genotoxic events. The co-

directional alignment of replication fork movement and gene transcription across the 

genome is thought to help avoid this type of collision (Petryk et al., 2016). Our analysis, 

utilizing multiple published datasets from the MCF-7 breast cancer model, reveals a 

novel source of head-on transcriptional complexes stemming from pervasive 
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transcription initiating within an accessible region immediately adjacent to RIS (Akerman 

et al., 2020; Consortium, 2012; Liu et al., 2017; Martin et al., 2011; Miotto et al., 2016; 

Venters and Pugh, 2013). Furthermore, our analysis demonstrates that head-on 

pervasive transcription at these sites is downregulated in S-phase, suggesting that 

collisions are minimized through a transcriptional regulatory mechanism. In support of 

the idea that head-on transcription is regulated to maintain genome stability, we find that 

RLFS-positive RIS, which potentiate highly genotoxic collisions, experience a higher 

magnitude of regulation than RLFS-negative RIS. Furthermore, the effect sizes we 

observe in our data likely indicate functional avoidance of genotoxicity. For example, 

only a 10% increase in HO transcription in an episomal system was shown to generate 

an 80% loss of the episome (Hamperl et al., 2017). Additionally, an induced 2-fold 

increase in lncRNA transcription through origins generated severe replication stress in 

HeLa cells (Nojima et al., 2018). Collectively, our results reveal a surprising spatial 

relationship between pervasive transcription and replication initiation, and support the 

presence of a temporally regulated transcriptional axis that functions to prevent DNA 

damage at RIS during S-phase.   

  

Although this study is the first in-depth analysis of pervasive transcription dynamics at 

RIS to our knowledge, the regulation of pervasive transcription has been previously 

linked to DNA damage prevention in both yeast and mammalian cells (Nojima et al., 

2018; Topal et al., 2020). For example, depletion of the positive transcription elongation 

factor Spt6 in asynchronous HeLa cells was shown to increase PROMPT transcription 

into origins, R-loop formation, DNA damage, and replication stress (Nojima et al., 2018). 
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Additionally, co-depletion of the chromatin remodeling complex INO80C and the TBP 

antagonist MOT1 led to increased head-on transcription and replication stress-

dependent DNA breaks at yeast origins (Topal et al., 2020). While these findings 

strongly suggested that suppression of pervasive transcription was functionally 

preventing transcription-replication collisions, they did not define if transcriptional 

silencing by these factors was occurring during genome replication. Our results 

complement these studies, which support the idea that pervasive transcription at RIS 

potentiates collisions and must be actively regulated during S-phase. 
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Figure Legends 

Figure 1: Identifying high confidence replication initiation sites in the MCF-7 

genome 

A. Schematic of the strategy used to identify MCF-7 RIS. B. (Left) Browser track 

showing RIS (top track, blue markers) and RT profiles (Bottom 5 tracks). Tracks are 

ordered from top to bottom by the earliest S-phase fraction (G1b) to the latest S-phase 

fraction (S4). Red lines demarcate inverted-V structures. (Right) Distribution of s50 

labels across RIS, benchmark, and control datasets. C. Average profile and heatmap of 

MCF-7 SNS-seq Poisson enrichment at distance normalized RIS loci. D. Bar graph 

showing RIS frequency by position relative to gene bodies. E. Bar graphs showing RIS 

frequency by absolute distance relative to the nearest protein-coding TSS. 

  

Figure 2: Head-on transcription occurs at intergenic and intragenic RIS 

A. Average profiles and heatmaps of MCF-7 Mnase-seq, Dnase-seq, RNAP2 ChIP-seq, 

and TBP ChIP-exo Poisson enrichment, and TSS-seq and HO GRO-seq counts per 

million at distance normalized RIS loci. Black lines align with the left and right 

boundaries (LB and RB) of the RIS region. B. Browser track examples of transcription at 

intragenic and intergenic RIS. C. Violin plot showing the distribution of RPKM values for 

HO GRO-seq reads over subset RIS regions, and genic GRO-seq reads over genes 

split into quartiles by transcription levels. D. Violin plot showing the distribution of RPKM 

values for genic GRO-seq reads over gene bodies containing RIS, and genes split into 

quartiles by transcription levels. E. Cartoon model showing positional relationship 

between HO transcription and replication initiation at RIS. 
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Figure 3: Head-on transcription at RIS is markedly downregulated in actively 

replicating tumor cells 

A. Average profiles and heatmaps of head-on (HO) GRO-seq signal in counts per 

million at distance normalized RIS loci (Left and Middle panels). GRO-seq from G1-

phase cells (Left). GRO-seq from S-phase cells (Middle). Average profiles and 

heatmaps of the log2 fold change between S-phase and G1-phase CPM values (Right 

panel). Black lines align with the left and right boundaries of the RIS region. B. Browser 

track examples of changes in HO transcription at intragenic and intergenic RIS. C. Violin 

plot comparing the distribution of RPKM values for GRO-seq reads in the HO orientation 

across intergenic and intragenic RIS regions from G1-phase and S-phase cells D. Violin 

plot comparing the distributions of the fold changes in either HO GRO-seq reads or 

genic GRO-seq reads between S-phase and G1-phase cells across intergenic RIS, 

intragenic RIS, and all protein coding genes. E. Bar graph showing the median fold 

change in genic transcription across genes with and without internal RIS. 

  

Figure 4: S-phase downregulation of head-on pervasive transcription is amplified 

over R-loop forming sequences 

A. Average profiles and heatmaps of head-on (HO) GRO-seq signal in counts per 

million at distance normalized RIS loci. (Left) GRO-seq from G1-phase cells. (Middle) 

GRO-seq from S-phase cells. (Right) Average profiles and heatmaps of the log2 fold 

change between S-phase and G1-phase CPM values. Black lines align with the left and 

right boundaries of the RIS region. B. Violin plot comparing the distribution of RPKM 

values for GRO-seq reads in the HO orientation across RIS with and without RLFS in 
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the HO transcript template strand from G1-phase and S-phase cells. C. Volcano plots of 

a differential expression analysis of HO RPKMs within RIS regions between S-phase 

and G1-phase cells subset by top 25% or bottom 25% RLFS density. D. Average profile 

and heatmap of INO80C ChIP-seq Poisson enrichment at distance normalized RIS loci. 

Black lines align with the left and right boundaries (LB and RB) of the RIS region. E. 

Violin plot comparing the distribution of total INO80C ChIP-seq reads at randomly 

selected Dnase-seq peaks, RLFS- RIS, or RLFS+ RIS. F. Cartoon model showing 

positional relationship between HO transcription, replication initiation at RIS, and cell-

cycle specific HO transcription regulation. 
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Supplemental Figure Legends 

Supplemental Figure 1: HO transcription at intragenic RIS is pervasive in nature.  

A. Average profiles and heatmaps of MCF-7 Mnase-seq, Dnase-seq, RNAP2 ChIP-seq, 

and TBP ChIP-exo Poisson enrichment, and TSS-seq and HO GRO-seq in counts per 

million within 50bp bins centered on distance normalized RIS regions demarcated by a 

left boundary (LB) and right boundary (RB). RIS are partitioned into subsets of 

increasing genomic distance from the nearest protein-coding TSS. B. Pie chart showing 

the distribution of intragenic RIS with either antisense or sense HO transcriptional 

activity relative to gene transcription. C. Violin plot showing the distribution of log 

transformed HO GRO-seq or HO total RNA-seq RPKM values at intragenic RIS. 

  

Supplemental Figure 2: Observed temporal changes in transcriptional activity at 

RIS occur independently of post-replication transcriptional buffering. 

Violin plot comparing the distribution of RPKM values for genic GRO-seq reads over 

gene bodies with upstream RIS from G1-phase and S-phase cells. 

 

Supplemental Figure 3: HO TUs are a feature of RIS and are pervasive in nature. 

A. Graphic representation of a Head-on transcription unit (HO TU). B. Diagram of total 

RIS demarcated by the presence or absence of at least one HO TU. C. Average profiles 

and heatmaps of HO CAGE-seq and HO GRO-seq (asynchronous) in counts per million 

within 50bp bins centered on distance normalized HO TUs demarcated by the TSS and 

RIS summit. D. Violin plot showing the distribution of HO TU or active gene RPKMs 

from either the GRO-seq or RNA-seq assay. E. Pie chart showing the percentage of HO 
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TU associations with a given pervasive TU species. F. Violin plot showing the 

distribution of HO TU RPKMs subset by pervasive TU association from either the GRO-

seq or RNA-seq assay. 

 

Supplemental Figure 4: HO TUs are suppressed during S-phase.  

A. Average profiles and heatmaps of head-on (HO) GRO-seq signal in counts per 

million within 50bp bins at distance normalized HO TUs (Left and Middle panels). GRO-

seq from G1-phase cells (Left). GRO-seq from S-phase cells (Middle). Average profiles 

and heatmaps of the log2 fold change between S-phase and G1-phase CPM values 

(Right panel). B. Violin plots of HO TU RPKM distributions in G1 and S-phase 

synchronized cells. C. Volcano plot showing the differential expression of HO TUs 

between S-phase and G1-phase cells. D. Violin plots of HO TU RPKM distributions in 

G1 and S-phase synchronized cells subset by pervasive TU association. E. Volcano 

plots showing the differential expression of HO TUs between S-phase and G1-phase 

cells subset by pervasive TU association.  

 

Supplemental Figure 5: Observed temporal changes in HO TU transcription are 

HO TU-specific. 

A .Volcano plot showing the differential expression of Control TUs between S-phase 

and G1-phase cells. B. Volcano plot showing the differential expression of pervasive 

TUs between S-phase and G1-phase cells. C. Volcano plot showing the differential 

expression of protein-coding genes between S-phase and G1-phase cells. D. Volcano 

plot showing the differential expression of lincRNAs between S-phase and G1-phase 
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cells. E. Violin plots showing the S-phase verse G1-phase GRO-seq log2 fold change 

distribution of HO TUs and control datasets.    

 

Supplemental Figure 6: HO TUs contain R-loop forming sequences and S-phase 

regulation is linked to RLFS density.  

A. Diagram of total HO TUs demarcated by the presence or absence of at least one 

RLFS in the template strand. B. Average profile and heatmap of RLFS frequency on 

template strand within 50bp bins at distance normalized HO TUs. C. Bar chart showing 

the median log2 fold change (with 95% confidence interval) in S-phase verse G1-phase 

GRO-seq RPKMs at HO TUs subset by RLFS density. D. Graphic depicting an HO TU 

enriched in RLFS on the template strand and its temporal regulation.  
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Materials and Methods 

KEY RESOURCES TABLE 

REAGENT or 

RESOURCE 

SOURCE IDENTIFIER 

Antibodies 

ACTR5/Arp5 

antibody 

Proteintech Cat# 21505-1-AP, RRID:1234 

Deposited Data 

Core origin 

coordinate file 

Akerman et al. 2020 NCBI Gene Expression Omnibus (GEO): 

GSE128477 

MCF-7 SNS-seq Martin et al. 2011 NCBI Gene Expression Omnibus (GEO): 

GSE28911 

MCF-7 Dnase-seq John 

Stamatoyannopoulos, UW 

ENCODE: doi:10.17989/ENCSR000EPH 

MCF-7 H3K4me2 

ChIP-seq 

Bradley Bernstein, Broad  ENCODE: doi:10.17989/ENCSR875KOJ 

MCF-7 H3K27ac 

ChIP-seq 

Bradley Bernstein, Broad  ENCODE: doi:10.17989/ENCSR752UOD 

MCF-7 Repli-seq 

S1 

John 

Stamatoyannopoulos, UW 

ENCODE: doi:10.17989/ENCSR727ZRP 

MCF-7 Repli-seq 

S2 

John 

Stamatoyannopoulos, UW 

ENCODE: doi:10.17989/ENCSR170QBY 

MCF-7 Repli-seq 

S3 

John 

Stamatoyannopoulos, UW 

ENCODE: doi:10.17989/ENCSR404GFT 
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MCF-7 Repli-seq 

S4 

John 

Stamatoyannopoulos, UW 

ENCODE: doi:10.17989/ENCSR831UBH 

EJ3 Ini-seq Langley et al. 2016 European Nucleotide Archive (ENA): 

PRJEB12207 

K562 ORC1 ChIP-

seq 

Miotto et al. 2016 NCBI Gene Expression Omnibus (GEO): 

GSE70165 

MCF-7 H2A.Z ChIP-

seq 

Bradley Bernstein, Broad  ENCODE: doi:10.17989/ENCSR057MWG 

HaCat G4 ChIP-seq Hansel-Hersch et al. 2016 NCBI Gene Expression Omnibus (GEO): 

GSE76688 

MCF-7 RNAP2 

ChIP-seq 

Vishwanath Iyer, UTA ENCODE: doi:10.17989/ENCSR000DMT 

MCF-7 TBP ChIP-

exo 

Venters et al. 2013 NCI read archive: SRA067908 

MCF-7 TSS-seq Yamashita et al. 2011 NCI read archive: SRA003625 

MCF-7 GRO-seq Liu et al. 2017 NCBI Gene Expression Omnibus (GEO): 

GSE94479 

MCF-7 RNA-seq Liu et al. 2017 NCBI Gene Expression Omnibus (GEO): 

GSE94479 

MCF-7 NET CAGE-

seq 

Hirabayashi et al. 2019 NCBI Gene Expression Omnibus (GEO): 

GSE118075 

R-loop forming 

sequences 

Jenjaroenpun et al. 2017 http://rloop.bii.a-star.edu.sg/ 

Experimental Models: Cell Lines 

MCF-7 ATCC HTB-22 

Software and Algorithms 
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Bedtools Quinlan and Hall 2010   

Samtools Li et al., 2009   

Tophat2 Kim et al., 2013   

MACS2 Zhang et al., 2008   

Bowtie2 Langmead et al, 2009   

Deeptools Ramirez er al. 2014   

HOMER Heinz et al., 2010   

ROSE Whyte et al. 2013  

 

EXPERIMENTAL PROCEDURES 

Processing of sequencing data 

 All publicly available sequencing datasets used for analysis were downloaded in fastq 

file format from public repositories, including input files for normalization. All datasets 

were mapped to the hg19 genome with bowtie2 (Langmead et al., 2009) to generate 

bam alignment files. All bam files were then processed with samtools (Li et al., 2009) so 

that duplicates were removed, and low-quality reads were filtered out. MACS2 peakcall 

(Zhang et al., 2008) was then used to generate read normalized treatment and 

background bedgraph files from IP and input controls respectively. MACS2 bdgcmp 

(Zhang et al., 2008) was then used on normalized IP and input bedgraph files to 

generate bedgraph files containing genome-wide IP/input Poisson enrichment scores. 

These bedgraph files were then converted to bigwig files using the bedGraphtoBigWig 

script from ENCODE (Consortium, 2012; Kent et al., 2010) for downstream analysis 

using the python deeptools software suite (Ramirez et al., 2014). 
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RIS identification  

 Core origin summits (Akerman et al., 2020), MCF-7 SNS-seq peaks (Martin et al., 

2011), and Dnase-seq peaks from loci containing overlapping peaks of MCF-7 H3K27ac 

ChIP-seq, MCF-7 H3K4me2 ChIP-seq, and MCF-7 Dnase-seq were extended 1 kb in 

each direction using bedtools slop (Consortium, 2012; Quinlan and Hall, 2010). These 

extended peaks were then intersected using bedtools intersect (Quinlan and Hall, 

2010). Intersected core origin coordinates were used to represent RIS. 

  

RIS validation 

Samtools bedcov (Li et al., 2009) was used to map reads from MCF-7 replication timing 

datasets (Repli-seq) (Consortium, 2012) to RIS regions and comparator dataset loci 

(SNS-seq peaks, ENCODE Dnase-seq peaks, Core origins, and randomly selected 

Dnase-seq peaks). For SNS-seq peaks, ENCODE Dnase HS peaks, and random 

Dnase-seq peaks, the center of each peak was extended 1kb in each direction for 

mapping using bedtools slop (Quinlan and Hall, 2010). For RIS and core origins, the 

center of all coordinate locations were taken and extended 1kb in each direction for 

mapping using bedtools slop. 4,572 random Dnase-seq peaks were selected through 

using bedtools shuffle (Quinlan and Hall, 2010) on the Dnase-seq peak dataset and the 

Linux shell head function. To quantify enrichment at inverted-V apexes of replication 

timing profiles, normalized repli-seq reads were mapped from all fractions to test 

regions. If a region contains at least 50% of the total reads from one fraction, then it was 

marked with an s50 label for that fraction as was done previously (Dellino et al., 2013). 
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RIS global visualization 

 For heatmap and average profile generation of RIS on a global scale, RIS loci were 

normalized to the same bin number representing the median region size of ~750 bp and 

centered within a matrix that also displayed regions 3kb upstream and downstream of 

the normalized region (demarcated by a left and right boundary, ‘LB’ and ‘RB’), divided 

into 50bp bins using the python deeptools computeMatrix function (Ramirez et al., 

2014). The matrix was then sorted by largest to smallest RIS region length using the 

python deeptools plotHeatmap function (Ramirez et al., 2014). An SNS-seq Poisson 

enrichment bigwig file was then overlaid onto the matrix via the computeMatrix and 

plotHeatmap functions. 

  

RIS sub-setting by intragenic or intergenic status 

Intragenic RIS were identified by using bedtools intersect to find RIS entirely confined 

within protein-coding gene body termini as annotated from the GENCODE database 

(Frankish et al., 2019). Intergenic RIS were identified by using bedtools subtract 

(Quinlan and Hall, 2010) to identify the remaining RIS. If RIS both overlapped gene 

body regions and adjacent intergenic regions, they were categorized as ‘both’ and 

removed from further analysis.   

  

RIS sub-setting by TSS distance 

 The HOMER annotatePeaks function (Heinz et al., 2010) was used to determine the 

distance from the nearest protein-coding TSS for each RIS location based off the RIS 

center coordinate. RIS were then binned by the calculated absolute distance. 
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 Determination of genes with upstream RIS 

 Bedtools intersect was used to find genes with 3 kilobase upstream regions that co-

localize with an intergenic RIS. Bedtools intersect was again used to filter out all genes 

that contained internal RIS to generate the final gene set. 

  

Orienting RIS to proximal transcription initiation events 

 RIS were uniformly aligned to their proximal NDR region using the python deeptools 

computeMatrix function (Ramirez et al., 2014) and the processed Dnase-seq bigwig file 

(ENCODE), with the NDR being oriented downstream of the RIS region on the matrix. 

Poisson enrichment scores from the generated TBP ChIP-exo bigwig file, RNAP2 ChIP-

seq bigwig file, and TSS-seq bigwig file in counts per million were then overlaid onto this 

aligned matrix using the python deeptools computeMatrix and plotHeatmap functions 

(Ramirez et al., 2014). All analyses of GRO-seq signal utilize this aligned matrix.  

 

Head-on transcription unit (HO TU) identification  

Directional NET CAGE-seq peaks (Hirabayashi et al. 2019) were intersected with 

regions delimited by a RIS center and 1kb downstream of the RIS border proximal to 

the NDR using bedtools intersect. Minus strand NET CAGE-seq peaks were intersected 

with RIS that formed a downstream NDR, and plus strand NET CAGE-seq peaks were 

intersected with RIS that formed an upstream NDR. Intersected peaks were labeled HO 

TU TSS, and the cognate RIS center point represented the HO TU terminus. Some RIS 

contained multiple HO TUs due to multiple NET CAGE-seq peaks intersecting with the 

demarcated RIS region. 
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GRO-seq raw data processing  

 Raw fastq files from (Liu et al., 2017) were mapped to the hg19 genome with tophat2 

(Kim et al., 2013) to produce bam alignment files. Duplicates and low quality reads were 

removed from bam files via samtools (Li et al., 2009). Replicate bam files were merged 

for downstream analysis using samtools merge (Li et al., 2009). Merged and QC’d bam 

files were then converted to stranded bigwig files describing mapped reads in counts 

per million in python deeptools using the bamCoverage function with the filterRNAstrand 

option (Ramirez et al., 2014). To generate GRO-seq bigwig files that described 

asynchronous cell populations, bam files from G1-phase, S-phase, and M-phase MCF-7 

cell populations were merged using samtools merge (Li et al., 2009), and converted as 

previously described. To generate GRO-seq bigwig files for G1-phase and S-phase cell 

populations, bam files from G1-phase cells and S-phase cells were processed 

separately. 

 

Pervasive transcript identification 

MCF-7 asynchronous GRO-seq datasets were used to perform de novo transcript 

discovery via HOMER software, yielding 82,636 transcripts. Transcripts were labeled as 

PROMPTs if they were intergenic, within 5kb upstream of a TSS, and were antisense to 

the proximal gene. This yielded 5,680 total PROMPTs. Transcripts were labeled as 

eRNAs if their TSS overlapped with enhancer regions called by the ROSE software with 

gene TSS exclusion (Whyte et al., 2013). This yielded 11,564 total eRNAs. Transcripts 

were labeled as asTSSa if they overlapped with TSS plus 500bp downstream and were 
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divergent to gene direction. This yielded 6,269 asTSSa. For sTSSa identification, we re-

called transcripts from asynchronous GRO-seq data that was filtered to only contain 

reads 20-90bp in order to enrich for short pervasive transcripts, yielding 51,492 

transcripts. Transcripts were labeled as sTSSa if they overlapped with TSS plus 500bp 

downstream and were in the same direction as gene transcription. This yielded 12,276 

sTSSa.  

 

Head-on transcription unit (HO TU) pervasive transcript class association 

Bedtools intersect was used to find overlap between identified HO TUs and pervasive 

transcripts by class. Some HO TUs were associated with multiple classes. In these 

cases, the HO TU was partitioned into both classes for downstream analysis.  

 

GRO-seq directional heatmap and average profile generation 

 To generate head-on GRO-seq heatmaps and average profiles at RIS, GRO-seq 

stranded bigwig files were directionally mapped to RIS loci subset by having either an 

upstream accessible region or a downstream accessible region based on the plus 

strand of the genome. Stranded GRO-seq bigwig files were mapped onto the RIS matrix 

as was previously described, using a 150bp smoothing length (Ramirez et al., 2014). 

After mapping stranded bigwig files to the directionally subset RIS, the matrices were 

combined via the deeptools computeMatrix Rbind function for visualization of directional 

GRO-seq signal across all RIS (Ramirez et al., 2014). 

  



 

 78 

To observe differences between directional GRO-seq signal at RIS between G1 and S-

phase cell populations, G1 and S-phase GRO-seq bigwig files were generated from 

bam files as described above, but a scale factor was applied based off mapped reads 

from a S2 Drosophila spike-in. Normalized bigwig files could then be mapped as 

previously described to observe relative signal in counts per million at RIS. To assess 

log2 fold change signal at RIS, deeptools bamCompare function was used with the 

application of a scale factor to produce a bigwig file containing stranded log2 fold 

change values within 50 bp bins (Ramirez et al., 2014). Bins with values of 0 were 

replaced with 0.1 for this analysis. These bigwig files could then be directionally mapped 

onto RIS matrices as previously described. The same pipeline was used for heatmap 

and average profile generation at HO TUs.   

  

Browser track visualization 

 Bigwig files generated as previously described were directly visualized in the web-

based WashU genome browser (Li et al., 2019). 

  

RPKM calculations 

Merged and QC’d bam files generated from fastq files from (Liu et al., 2017) as 

previously described were converted to sam files, separated by strand, reconverted to 

bam files, and indexed using samtools (Li et al., 2009). To find HO RPKMs, samtools 

bedcov was used to map reads from stranded bam files directionally onto RIS regions 

subset by location of the accessible region on the plus strand. Subsequent files 

containing head-on mapped read information for each RIS subset were then 
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concatenated. Mapped reads within RIS regions were then normalized per kilobase as 

well as per million mapped reads to give an RPKM value. All RPKM values were log2 

transformed for distribution analysis and statistical tests. A similar workflow was used to 

calculate gene RPKMs, using gene body regions separated by strand to map reads to 

the template strand via samtools bedcov. For gene quartile separation, genes were 

filtered out if RPKM < 1. Remaining genes were then separated into quartiles based on 

RPKM values (Q1>Q2>Q3>Q4) for analysis. All violin plot RPKM visualizations were 

generated via PRISM 9 statistical software.  

  

RLFS identification and association with features 

 R-loopDB (http://rloop.bii.a-star.edu.sg/) is an online database containing coordinate 

files for bioinformatically predicted R-loop forming sequences across model genomes. 

The merged RLFS coordinate file for the hg19 genome was downloaded and separated 

by strand. Concomitantly, RIS were subset by accessible region location based on the 

plus strand as was done in prior analyses. To identify RIS that contained RLFS in the 

head-on transcription template strand, bedtools intersect was used to find subset RIS 

that overlapped with the directionally appropriate stranded RLFS file. Resulting files 

were then concatenated. The same pipeline was used to assess RLFS presence within 

the template strand of HO TUs.  

 

To determine RLFS high and low RIS, a bedgraph file describing RLFS frequency per 

50bp bin across the hg19 genome was generated via IGB. This file was converted to a 

bigwig file as previously described and used as an input along with RIS coordinates for 
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python deeptools analysis. Output files describing RLFS density within individual RIS 

units were rank-ordered and the bottom 25% and top 25% loci were selected for low 

and high groups respectively.  

 

To generate a RLFS heatmap and average profile at HO TUs, a bedgraph file 

describing RLFS frequency per 50bp bin was generated via IGB as described above. 

This file was converted to a bigwig file as previously described and used as an input for 

python deeptools analysis.  

  

Differential expression analysis 

Tag directories from G1 and S-phase GRO-seq replicate bam files were generated via 

HOMER software. A raw read count table was then generated using the HOMER 

analyzeRepeats script describing the reads mapping from these files to a designated gtf 

file describing genomic locations of interest. This table was then used as an input for the 

HOMER getDiffExpression script, which utilizes DESeq2 to generate a file describing 

Log2 fold change and P-value between conditions at each location of interest. The 

resulting file was then used as input to be processed by the bioinfokit python program to 

produce a volcano plot. Predetermined thresholds for significance were less than or 

equal to a p-value of .05 and a log2 fold change of 1 or -1.  

 

Control TU identification 

Bedtools random was used to generate a bed file of random genomic locations at the 

median size of HO TUs (760bp). Genes were then filtered so that only ‘active’ genes, 
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denoted as the 10,000 most highly expressed genes, were considered. The random loci 

bed file was then intersected with active gene bodies to produce a bed file describing 

random HO TU sized regions within actively transcribed genes. 4,567 TUs were then 

randomly selected to be a representative dataset for downstream analysis.  

 

MCF-7 cell culture 

 MCF-7 cells were cultured on TC qualified plates in media containing DMEM/F12 (1:1) 

(Thermo Fisher, 11320-033), supplemented with 10% fetal bovine serum. 

  

INO80C ChIP-seq 

 ChIP-seq was performed in MCF-7 cells as was done in (Xue et al., 2017), using an 

antibody against the INO80C subunit ACTR5 (ProteinTech Cat# 21505-1-AP). 

Generated fastq files were processed as described previously to produce bam 

alignment files and bigwig files for downstream analysis. 

  

INO80C RIS occupancy analysis 

 QC’d bam files generated from INO80C ChIP-seq fastq files as previously described 

were indexed using samtools (Li et al., 2009). Samtools bedcov was used to map reads 

from bam files onto regions that extended 1 kb from the RIS boundary into the NDR. A 

random Dnase-seq peak file (described previously) was uniformly extended 500bp in 

each direction to generate 1kb control regions. 

  

Graphics generation 
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 All visual graphics in manuscript were created with BioRender.com. 

  

Statistical tests 

 P-values generated from either RPKM, Log2 fold change, or total read distribution 

comparisons were calculated using the unpaired parametric T-test in Prism GraphPad.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 83 

References 

Aguilera, A., and Garcia-Muse, T. (2012). R loops: from transcription byproducts to 

threats to genome stability. Mol Cell 46, 115-124. 10.1016/j.molcel.2012.04.009. 

Akerman, I., Kasaai, B., Bazarova, A., Sang, P.B., Peiffer, I., Artufel, M., Derelle, R., 

Smith, G., Rodriguez-Martinez, M., Romano, M., et al. (2020). A predictable conserved 

DNA base composition signature defines human core DNA replication origins. Nat 

Commun 11, 4826. 10.1038/s41467-020-18527-0. 

Berretta, J., and Morillon, A. (2009). Pervasive transcription constitutes a new level of 

eukaryotic genome regulation. EMBO Rep 10, 973-982. 10.1038/embor.2009.181. 

Candelli, T., Gros, J., and Libri, D. (2018). Pervasive transcription fine-tunes replication 

origin activity. Elife 7. 10.7554/eLife.40802. 

Chen, Y.H., Keegan, S., Kahli, M., Tonzi, P., Fenyo, D., Huang, T.T., and Smith, D.J. 

(2019). Transcription shapes DNA replication initiation and termination in human cells. 

Nat Struct Mol Biol 26, 67-77. 10.1038/s41594-018-0171-0. 

Consortium, E.P. (2012). An integrated encyclopedia of DNA elements in the human 

genome. Nature 489, 57-74. 10.1038/nature11247. 

Core, L.J., Waterfall, J.J., and Lis, J.T. (2008). Nascent RNA sequencing reveals 

widespread pausing and divergent initiation at human promoters. Science 322, 1845-

1848. 10.1126/science.1162228. 

Dellino, G.I., Cittaro, D., Piccioni, R., Luzi, L., Banfi, S., Segalla, S., Cesaroni, M., 

Mendoza-Maldonado, R., Giacca, M., and Pelicci, P.G. (2013). Genome-wide mapping 

of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin 

selection and replication timing. Genome Res 23, 1-11. 10.1101/gr.142331.112. 



 

 84 

Eaton, M.L., Galani, K., Kang, S., Bell, S.P., and MacAlpine, D.M. (2010). Conserved 

nucleosome positioning defines replication origins. Genes Dev 24, 748-753. 

10.1101/gad.1913210. 

Foulk, M.S., Urban, J.M., Casella, C., and Gerbi, S.A. (2015). Characterizing and 

controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals 

phasing between nucleosomes and G-quadruplex motifs around a subset of human 

replication origins. Genome Res 25, 725-735. 10.1101/gr.183848.114. 

Frankish, A., Diekhans, M., Ferreira, A.M., Johnson, R., Jungreis, I., Loveland, J., 

Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. (2019). GENCODE reference 

annotation for the human and mouse genomes. Nucleic Acids Res 47, D766-D773. 

10.1093/nar/gky955. 

Hamperl, S., Bocek, M.J., Saldivar, J.C., Swigut, T., and Cimprich, K.A. (2017). 

Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates 

Distinct DNA Damage Responses. Cell 170, 774-786 e719. 10.1016/j.cell.2017.07.043. 

Hangauer, M.J., Vaughn, I.W., and McManus, M.T. (2013). Pervasive transcription of 

the human genome produces thousands of previously unidentified long intergenic 

noncoding RNAs. PLoS Genet 9, e1003569. 10.1371/journal.pgen.1003569. 

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, 

C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining 

transcription factors prime cis-regulatory elements required for macrophage and B cell 

identities. Mol Cell 38, 576-589. 10.1016/j.molcel.2010.05.004. 

Hirabayashi, S., Bhagat, S., Matsuki, Y., Takegami, Y., Uehata, T., Kanemaru, A., Itoh, 

M., Shirakawa, K., Takaori-Kondo, A., Takeuchi, O., et al. (2019). NET-CAGE 



 

 85 

characterizes the dynamics and topology of human transcribed cis-regulatory elements. 

Nat Genet 51, 1369-1379. 10.1038/s41588-019-0485-9. 

Hoshina, S., Yura, K., Teranishi, H., Kiyasu, N., Tominaga, A., Kadoma, H., Nakatsuka, 

A., Kunichika, T., Obuse, C., and Waga, S. (2013). Human origin recognition complex 

binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol 

Chem 288, 30161-30171. 10.1074/jbc.M113.492504. 

Jenjaroenpun, P., Wongsurawat, T., Sutheeworapong, S., and Kuznetsov, V.A. (2017). 

R-loopDB: a database for R-loop forming sequences (RLFS) and R-loops. Nucleic Acids 

Res 45, D119-D127. 10.1093/nar/gkw1054. 

Kent, W.J., Zweig, A.S., Barber, G., Hinrichs, A.S., and Karolchik, D. (2010). BigWig 

and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204-

2207. 10.1093/bioinformatics/btq351. 

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). 

TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions 

and gene fusions. Genome Biol 14, R36. 10.1186/gb-2013-14-4-r36. 

Lang, K.S., Hall, A.N., Merrikh, C.N., Ragheb, M., Tabakh, H., Pollock, A.J., Woodward, 

J.J., Dreifus, J.E., and Merrikh, H. (2017). Replication-Transcription Conflicts Generate 

R-Loops that Orchestrate Bacterial Stress Survival and Pathogenesis. Cell 170, 787-

799 e718. 10.1016/j.cell.2017.07.044. 

Langley, A.R., Graf, S., Smith, J.C., and Krude, T. (2016). Genome-wide identification 

and characterisation of human DNA replication origins by initiation site sequencing (ini-

seq). Nucleic Acids Res 44, 10230-10247. 10.1093/nar/gkw760. 



 

 86 

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol 10, 

R25. 10.1186/gb-2009-10-3-r25. 

Li, D., Hsu, S., Purushotham, D., Sears, R.L., and Wang, T. (2019). WashU Epigenome 

Browser update 2019. Nucleic Acids Res 47, W158-W165. 10.1093/nar/gkz348. 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., 

Abecasis, G., Durbin, R., and Genome Project Data Processing, S. (2009). The 

Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079. 

10.1093/bioinformatics/btp352. 

Liu, B., and Alberts, B.M. (1995). Head-on collision between a DNA replication 

apparatus and RNA polymerase transcription complex. Science 267, 1131-1137. 

10.1126/science.7855590. 

Liu, X., Guo, Z., Han, J., Peng, B., Zhang, B., Li, H., Hu, X., David, C.J., and Chen, M. 

(2022). The PAF1 complex promotes 3' processing of pervasive transcripts. Cell Rep 

38, 110519. 10.1016/j.celrep.2022.110519. 

Liu, Y., Chen, S., Wang, S., Soares, F., Fischer, M., Meng, F., Du, Z., Lin, C., Meyer, 

C., DeCaprio, J.A., et al. (2017). Transcriptional landscape of the human cell cycle. Proc 

Natl Acad Sci U S A 114, 3473-3478. 10.1073/pnas.1617636114. 

Martin, M.M., Ryan, M., Kim, R., Zakas, A.L., Fu, H., Lin, C.M., Reinhold, W.C., Davis, 

S.R., Bilke, S., Liu, H., et al. (2011). Genome-wide depletion of replication initiation 

events in highly transcribed regions. Genome Res 21, 1822-1832. 

10.1101/gr.124644.111. 



 

 87 

McCauley, B.S., and Dang, W. (2022). Loosening chromatin and dysregulated 

transcription: a perspective on cryptic transcription during mammalian aging. Brief Funct 

Genomics 21, 56-61. 10.1093/bfgp/elab026. 

Miotto, B., Ji, Z., and Struhl, K. (2016). Selectivity of ORC binding sites and the relation 

to replication timing, fragile sites, and deletions in cancers. Proc Natl Acad Sci U S A 

113, E4810-4819. 10.1073/pnas.1609060113. 

Mirkin, E.V., and Mirkin, S.M. (2005). Mechanisms of transcription-replication collisions 

in bacteria. Mol Cell Biol 25, 888-895. 10.1128/MCB.25.3.888-895.2005. 

Nojima, T., Tellier, M., Foxwell, J., Ribeiro de Almeida, C., Tan-Wong, S.M., Dhir, S., 

Dujardin, G., Dhir, A., Murphy, S., and Proudfoot, N.J. (2018). Deregulated Expression 

of Mammalian lncRNA through Loss of SPT6 Induces R-Loop Formation, Replication 

Stress, and Cellular Senescence. Mol Cell 72, 970-984 e977. 

10.1016/j.molcel.2018.10.011. 

Padovan-Merhar, O., Nair, G.P., Biaesch, A.G., Mayer, A., Scarfone, S., Foley, S.W., 

Wu, A.R., Churchman, L.S., Singh, A., and Raj, A. (2015). Single mammalian cells 

compensate for differences in cellular volume and DNA copy number through 

independent global transcriptional mechanisms. Mol Cell 58, 339-352. 

10.1016/j.molcel.2015.03.005. 

Petryk, N., Kahli, M., d'Aubenton-Carafa, Y., Jaszczyszyn, Y., Shen, Y., Silvain, M., 

Thermes, C., Chen, C.L., and Hyrien, O. (2016). Replication landscape of the human 

genome. Nat Commun 7, 10208. 10.1038/ncomms10208. 



 

 88 

Prado, F., and Aguilera, A. (2005). Impairment of replication fork progression mediates 

RNA polII transcription-associated recombination. EMBO J 24, 1267-1276. 

10.1038/sj.emboj.7600602. 

Preker, P., Nielsen, J., Kammler, S., Lykke-Andersen, S., Christensen, M.S., 

Mapendano, C.K., Schierup, M.H., and Jensen, T.H. (2008). RNA exosome depletion 

reveals transcription upstream of active human promoters. Science 322, 1851-1854. 

10.1126/science.1164096. 

Prendergast, L., McClurg, U.L., Hristova, R., Berlinguer-Palmini, R., Greener, S., Veitch, 

K., Hernandez, I., Pasero, P., Rico, D., Higgins, J.M.G., et al. (2020). Resolution of R-

loops by INO80 promotes DNA replication and maintains cancer cell proliferation and 

viability. Nat Commun 11, 4534. 10.1038/s41467-020-18306-x. 

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing 

genomic features. Bioinformatics 26, 841-842. 10.1093/bioinformatics/btq033. 

Ramirez, F., Dundar, F., Diehl, S., Gruning, B.A., and Manke, T. (2014). deepTools: a 

flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42, W187-191. 

10.1093/nar/gku365. 

Shimbo, T., Du, Y., Grimm, S.A., Dhasarathy, A., Mav, D., Shah, R.R., Shi, H.D., and 

Wade, P.A. (2013). MBD3 Localizes at Promoters, Gene Bodies and Enhancers of 

Active Genes. Plos Genetics 9. ARTN e1004028 

10.1371/journal.pgen.1004028. 

Smolle, M., and Workman, J.L. (2013). Transcription-associated histone modifications 

and cryptic transcription. Biochim Biophys Acta 1829, 84-97. 

10.1016/j.bbagrm.2012.08.008. 



 

 89 

Topal, S., Van, C., Xue, Y., Carey, M.F., and Peterson, C.L. (2020). INO80C Remodeler 

Maintains Genomic Stability by Preventing Promiscuous Transcription at Replication 

Origins. Cell Rep 32, 108106. 10.1016/j.celrep.2020.108106. 

Venters, B.J., and Pugh, B.F. (2013). Genomic organization of human transcription 

initiation complexes. Nature 502, 53-58. 10.1038/nature12535. 

Wang, W., Klein, K.N., Proesmans, K., Yang, H., Marchal, C., Zhu, X., Borrman, T., 

Hastie, A., Weng, Z., Bechhoefer, J., et al. (2021). Genome-wide mapping of human 

DNA replication by optical replication mapping supports a stochastic model of 

eukaryotic replication. Mol Cell 81, 2975-2988 e2976. 10.1016/j.molcel.2021.05.024. 

Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, 

P.B., Lee, T.I., and Young, R.A. (2013). Master transcription factors and mediator 

establish super-enhancers at key cell identity genes. Cell 153, 307-319. 

10.1016/j.cell.2013.03.035. 

Xie, L., Pelz, C., Wang, W., Bashar, A., Varlamova, O., Shadle, S., and Impey, S. 

(2011). KDM5B regulates embryonic stem cell self-renewal and represses cryptic 

intragenic transcription. EMBO J 30, 1473-1484. 10.1038/emboj.2011.91. 

Xue, Y., Pradhan, S.K., Sun, F., Chronis, C., Tran, N., Su, T., Van, C., Vashisht, A., 

Wohlschlegel, J., Peterson, C.L., et al. (2017). Mot1, Ino80C, and NC2 Function 

Coordinately to Regulate Pervasive Transcription in Yeast and Mammals. Mol Cell 67, 

594-607 e594. 10.1016/j.molcel.2017.06.029. 

Yamashita, R., Sathira, N.P., Kanai, A., Tanimoto, K., Arauchi, T., Tanaka, Y., 

Hashimoto, S., Sugano, S., Nakai, K., and Suzuki, Y. (2011). Genome-wide 



 

 90 

characterization of transcriptional start sites in humans by integrative transcriptome 

analysis. Genome Res 21, 775-789. 10.1101/gr.110254.110. 

Yunger, S., Kafri, P., Rosenfeld, L., Greenberg, E., Kinor, N., Garini, Y., and Shav-Tal, 

Y. (2018). S-phase transcriptional buffering quantified on two different promoters. Life 

Sci Alliance 1, e201800086. 10.26508/lsa.201800086. 

Zardoni, L., Nardini, E., Brambati, A., Lucca, C., Choudhary, R., Loperfido, F., 

Sabbioneda, S., and Liberi, G. (2021). Elongating RNA polymerase II and RNA:DNA 

hybrids hinder fork progression and gene expression at sites of head-on replication-

transcription collisions. Nucleic Acids Res 49, 12769-12784. 10.1093/nar/gkab1146. 

Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., 

Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-based 

analysis of ChIP-Seq (MACS). Genome Biol 9, R137. 10.1186/gb-2008-9-9-r137. 

 

 

 

 

 

 

 

 

 

 

 



 

 91 

Chapter 3: INO80 and MOT1 regulate head-on transcription 

units in Non-Small Cell Lung cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 92 

INO80 and MOT1 regulate head-on transcription units in Non-Small Cell Lung 

cancer. 

  

Michael Kronenberg1,2, Michael F. Carey1,2,3,*  

1 Department of Biological Chemistry, UCLA David Geffen School of Medicine, Los 

Angeles, CA, 90095, USA 

2 Molecular Biology Institute, UCLA, Los Angeles, CA, 90024, USA 

  

Abstract 

Past work has identified the INO80 chromatin-remodeling complex as a critical 

component of Non-Small Cell Lung cancer (NSCLC) growth. However, it is unclear how 

INO80 mechanistically supports NSCLC progression. Recent work has demonstrated 

that INO80, along with the transcriptional regulator MOT1, prevents genotoxic head-on 

transcription-replication collisions (HO TRCs) in yeast, thus preserving cell viability. 

Moreover, the recent discovery of temporally regulated head-on transcription units (HO 

TUs) in tumor cells suggests that transcription is actively regulated in cancer to avoid 

HO TRCs. We hypothesized that INO80 and MOT1 function to silence HO TUs in 

NSCLC, thereby preventing HO TRCs. Utilizing genomic assays, we find that INO80 

and MOT1 co-bind HO TUs in the A549 NSCLC cell line, and cooperatively silence 

transcription at a subset of these loci. Furthermore, we find that INO80 and MOT1 

cooperate to facilitate NSCLC growth, as well as prevent replication and R-loop 

dependent DNA damage. This study supports a novel regulatory axis that functions to 
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silence genotoxic transcription in NSCLC, and thus protect the tumor cell genome from 

growth-arresting damage.  

  

Introduction 

INO80 is an ATP-dependent 15-subunit chromatin remodeling complex that regulates 

several DNA metabolic processes, including transcription, replication, and repair (Poli et 

al., 2017). INO80 has recently emerged as a key player in Non-Small Cell Lung cancer 

(NSCLC) physiology. INO80 complex subunits are genetically amplified at a high 

frequency in NSCLC histologies and are overexpressed across NSCLC cell lines 

relative to healthy controls, suggesting that clonal evolution during tumorigenesis 

selects for increased INO80 activity (Zhang et al., 2017). Clinically, high INO80 

expression correlates with worse prognosis in lung cancer patients, demonstrating that 

INO80 is functionally important for tumor growth (Zhang et al., 2017). In line with this 

observation, INO80 inhibition markedly reduces the growth of NSCLC cell lines in-vitro, 

as well as mouse xenografts (Zhang et al., 2017). It is unclear how INO80 

mechanistically supports NSCLC growth. Past studies in melanoma and NSCLC models 

suggested that INO80 binds at enhancers and facilitates chromatin opening, leading to 

the expression of cancer-associated genes (Zhang et al., 2017; Zhou et al., 2016).  

Alternatively, work in colorectal, prostate, and breast cancer cells has found that INO80 

functions to prevent replication fork stalling and intra-S phase DNA damage, although 

how it does so remains unclear (Lee et al., 2017; Prendergast et al., 2020; Vassileva et 

al., 2014). Given the clinical success of genotoxic agents in NSCLC, it is tempting to 
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speculate that INO80 might be functioning as a DNA protectant in this cancer subtype, 

and thus serve as an intriguing therapeutic target.  

  

Head-on transcription-replication collisions (HO TRCs) occur when the DNA replisome 

collides into a converging RNA polymerase during S-phase (Helmrich et al., 2013). 

When HO TRCs occur over R-loop forming sequences (RLFS), nascent RNA extending 

outside the RNAPII catalytic core re-hybridizes to the template strand, forming a three-

stranded nucleic acid structure known as an R-loop (Hamperl et al., 2017; Helmrich et 

al., 2013; Zardoni et al., 2021). R-loop formation in turn stabilizes G-quadruplexes on 

the replisome’s leading strand, preventing replication fork progression, and potentially 

leading to eventual fork collapse into DNA breaks (Hamperl et al., 2017; Kumar et al., 

2021; Lee et al., 2020). The genotoxic fallout of HO TRCs leads to cell cycle arrest and 

senescence in tumor cells, demonstrating the growth-arresting consequence of these 

events (Nojima et al., 2018). Recent work by our lab has found that RLFS-containing 

head-on transcription units (HO TUs) form proximal to replication initiation sites in the 

MCF-7 breast cancer cell line, and are silenced during S-phase, likely to avoid HO 

TRCs (Kronenberg and Carey, in review). However, the ubiquity of HO TUs across 

cancer types is unclear. Moreover, the transcriptional regulators of HO TUs are 

unknown. HO TU regulators could potentially function as essential DNA protectants in 

fast cycling tumor cells. 

  

Past studies investigating INO80’s function as a transcriptional regulator have 

uncovered a conserved ability to silence non-coding, or pervasive transcription at 
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replication initiation sites (RIS) (Topal et al., 2020; Xue et al., 2017). Work in mouse 

embryonic stem cells (mESCs) found that INO80, cooperatively with the TBP antagonist 

MOT1, silenced pervasive transcription near RIS loci (Topal et al., 2020). However, 

whether this transcription was head-on in nature, or generated DNA damage upon 

upregulation, was not assessed. Concomitant work in yeast found that INO80 and 

MOT1 cooperatively silence head-on transcription at RIS and prevent local replication 

stress-dependent DNA breaks, demonstrating that INO80 and MOT1 function as DNA 

protectants through suppressing head-on transcription in this model organism (Topal et 

al., 2020). However, it is currently unknown whether INO80/MOT1 regulate head-on 

transcription in human cancers. 

  

In this study, we sought to test the hypothesis that INO80 and MOT1 silence HO TUs in 

NSCLC, thereby suppressing genotoxic collisions. We find that HO TUs commonly 

occur on the A549 NSCLC genome, in agreement with observations made in the MCF-7 

breast cancer cell line. Utilizing genomic assays, we find that A549 HO TUs are co-

bound by INO80 and MOT1, which cooperatively silence a subset with high H2A.Z 

levels. Similarly, we find that INO80 and MOT1 cooperatively support NSCLC growth 

and prevent bulk DNA damage, suggesting that INO80 and MOT1 support NSCLC 

tumorigenesis through preventing HO TRCs. In further support of this model, we find 

that DNA damage generated by INO80/MOT1 co-depletion is both replication and R-

loop dependent. Finally, we find that INO80 depletion generates DNA damage in the 

A549 NSCLC model, but not healthy lung epithelial BEAS-2B cells, highlighting INO80 

as a potentially attractive therapeutic target in NSCLC. In aggregate, this study supports 
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a model by which INO80 and MOT1 facilitate NSCLC tumorigenesis through preventing 

HO TRCs. 

 

Results  

HO TUs occur on the NSCLC genome 

Past work by our lab revealed the presence of head-on transcription units (HU TUs) 

adjacent to a stringently selected RIS subset in MCF-7 breast cancer cells (Kronenberg 

and Carey, in review). To decipher whether A549 NSCLC cells also harbor HO TUs 

within their genome, we utilized a similar workflow as was done in the MCF-7 analysis 

(Supplemental Figure 1A). Briefly, we first identified a high confidence RIS subset 

through intersecting ~700bp loci that have demonstrated conserved replication initiation 

activity across cell types (‘core origins’), A549 EdU-seq peaks, which represent A549-

specific replication initiation hotspots (Macheret and Halazonetis, 2019), and loci 

containing an A549-specific epigenetic signature predictive of origin-of-replication 

complex binding (Miotto et al., 2016), yielding a final set of 5,277 RIS. Called RIS were 

positioned at replication timing profile inverted V-apexes (Supplemental Figure 1B, left 

panel), were enriched for early replicating regions (Supplemental Figure 1C, right 

panel), and showed expected positional profiles (Supplemental Figure 1C,D). The 

presence of HO TUs at this RIS subset was then assessed. To do this, we utilized A549 

CAGE-seq data, which maps transcription start sites genome wide through cap isolation 

and sequencing (Yan et al., 2022). We defined HO TUs as regions bookended on one 

end by a head-on A549 CAGE-seq peak within 1kb of an RIS border, and on the other 

the RIS summit (Figure 1A). We found that 3,271 of the 5,277 RIS contained at least 
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one HO TU (Figure 1B), in agreement with observations in MCF-7 cells. In total, we 

identified 3,886 HO TUs, due to the formation of multiple units at some RIS. To 

investigate HO TU transcriptional activity, we utilized A549 PRO-seq data, which maps 

directional transcription via nuclear run-on methodology (Mahat et al., 2016). Viewing 

CAGE-seq and PRO-seq signals at HO TUs on browser tracks clearly demonstrates the 

presence of units of head-on transcription at individual RIS (Figure 1C). Viewing CAGE-

seq and PRO-seq signals across all HO TUs on a heatmap clearly demonstrates that 

head-on transcription is initiating at and elongating within the TUs (Figure 1D). Thus, in 

agreement with past observations made in MCF-7 cells, head-on transcription is a 

feature of a majority of A549 RIS, and occurs within distinct, identifiable units. It is 

unclear why ~38% of the RIS subset do not contain an HO TU. Given that transcription 

at RIS has been found to correlate with earlier replication timing, it is possible that these 

loci harbor RIS that fire relatively later in S-phase. Alternatively, these loci could be false 

positives due to the inherent difficulties in mapping RIS locations (Ganier et al., 2019).  

  

Past work in MCF-7 cells demonstrated that HO TUs were mostly pervasive in nature 

(Kronenberg and Carey, in review). We next assessed whether A549 HO TUs were 

associated with pervasive transcripts. We first identified all transcripts belonging to four 

different pervasive species: promoter upstream transcripts (PROMPTs), enhancer 

RNAs (eRNAs), antisense TSS-associated RNAs (asTSSa), and sense TSS-associated 

RNAs (sTSSa) utilizing PRO-seq data as has been done previously (Jacquier, 2009; Liu 

et al., 2022) (Figure 1E). We then categorized HO TUs by whether they overlapped with 

any of these pervasive transcript classes. We found that 7% of HO TU associations 
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were with PROMPTs, 23% with eRNAs, 13% with asTSSa, 44% with sTSSa, and 13% 

with transcripts outside these classes (Figure 1F). Although we can’t distinguish 

whether sTSSa-associated transcripts are pervasive in nature or are part of 5’ gene 

transcription due to the co-directional relationship between these two transcript types, 

over 50% of HO TU associations are with bonafide pervasive transcripts, demonstrating 

that a majority of A549 HO TUs are pervasive in nature, in agreement with the 

observations made in MCF-7 cells (Kronenberg and Carey, in review). 

  

HO TRCs are especially toxic when they occur over R-loop forming sequences (RLFS), 

which enable nascent RNA re-hybridization to the template strand and highly stable fork 

stalling (Hamperl et al., 2017; Kumar et al., 2021). To address whether A549 HO TUs 

contain RLFS within their template strand, we utilized a dataset containing 

bioinformatically predicted RLFS from R-loopDB (Jenjaroenpun et al., 2017). We found 

that 3,058 of the 3,886 total HO TUs contained a RLFS within their template strand 

(Supplemental Figure 2A). When viewing RLFS density across HO TUs on a heatmap, 

we found that RLFS localized within the TU, peaking in the TU center (Supplemental 

Figure 2B). Finally, we evaluated RLFS density at HO TUs across transcript class 

associations. We found that RLFS densities were similar across subsets, with sTSSa-

associated HO TUs showing relatively increased RLFS density, in agreement with their 

positioning near RLFS-rich gene TSS (Chen et al., 2017). Notably, RIS that did not 

contain HO TUs were devoid of RLFS (data not shown), suggesting that either RLFS 

are a prerequisite for transcription, or this RIS subset is largely false positives, as CG-

rich DNA is a typical feature of RIS loci (Akerman et al., 2022). Collectively, this analysis 
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demonstrates that RLFS are a feature of A549 HO TUs, and suggests that HO TRCs 

stemming from HO TU transcription would likely be genotoxic in nature (Supplemental 

Figure 2D).  

  

INO80 and MOT1 cooperatively silence a subset of HO TUs 

Based on previous work done in yeast and mESCs, we hypothesized that INO80 and 

MOT1 bind at HO TUs and function to silence transcription in A549 cells (Xue at al., 

2017; Topal et al., 2020). To test this hypothesis, we first evaluated INO80 and MOT1 

occupancy at HO TU loci. To do this, we performed chromatin immunoprecipitation 

followed by high throughput sequencing (ChIP-seq), using antibodies against the 

ACTR5 subunit of the INO80 complex and MOT1 (Tosi et al., 2013). Browser track 

examples show clear local events of INO80 and MOT1 co-binding at HO TUs, biased to 

the TSS side (Figure 2A). Heatmap visualization of ChIP-seq signals across HO TUs 

demonstrates that INO80 and MOT1 bind at the TSS on a global scale (Figure 2B). 

Thus, INO80 and MOT1 co-bind at HO TU TSSs in A549 cells.  

  

We next evaluated INO80 and MOT1’s transcriptional regulatory activity at A549 HO 

TUs. To do this, we depleted INO80 and MOT1 over a 72 hour period via siRNA 

transfection (Supplemental Figure 3A), and then extracted cells for nascent RNA-seq , 

which measures chromatin-associated RNA levels genome-wide (Bhatt et al., 2012). As 

a control, we used cells transfected with a scramble siRNA over the same time period. 

Local browser track examples of INO80 and MOT1 co-bound HO TUs clearly show that 

INO80 and MOT1 co-depletion increases transcription at individual loci (Figure 2C). To 
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assess transcriptional changes at HO TUs globally, we mapped the log2 fold-change in 

nascent RNA-seq reads per 50bp bin on all HO TUs and performed k-means clustering 

using python deeptools. We found that 2 well-defined clusters formed (Figure 2D). The 

first cluster (C1) contains HO TUs that on average exhibited ~2-fold upregulation upon 

INO80 and MOT1 co-depletion. The second cluster (C2) contains HO TUs that appear 

largely unaffected by co-depletion. To systematically assess transcriptional effects 

across clusters, we evaluated the HO TU RPKM distributions from control and IM-

depleted cells. We found that IM-depletion significantly shifted RPKMs up at C1 HO TUs 

but did not significantly change C2 HO TU transcription (Supplemental Figure 3B). 

Likewise, differential expression analysis demonstrated that C1 HO TU transcriptional 

changes are significantly skewed towards upregulation, whereas C2 HO TU changes 

show little bias towards upregulation (Supplemental Figure 3C). Collectively, this 

analysis demonstrates that INO80 and MOT1 function either additively, cooperatively, or 

in isolation to silence a subset of HO TUs. To parse this out, we performed nascent 

RNA-seq in single knockdown backgrounds (Supplemental Figure 3A) and evaluated 

transcriptional change at C1 HO TUs. In agreement with observations made in yeast, 

we found that while INO80 single knockdown caused increased HO TU transcription, 

MOT1 single knockdown generated no effect. However, INO80 and MOT1 co-depletion 

generates a synergistic increase in transcription, demonstrating that INO80 and MOT1 

function cooperatively to silence A549 HO TUs (Supplemental Figure 3D), in agreement 

with studies done in yeast (Topal et al., 2020; Xue et al., 2017).  
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We next sought to understand what molecular features define the subset of 

INO80/MOT1-regulated HO TUs. Interestingly, we found that INO80 and MOT1 

occupancy levels were similar at C1 and C2 HO TUs, suggesting INO80/MOT1 binding 

is not sufficient for HO TU silencing (Supplemental Figure 4A). We reasoned that 

INO80/MOT1 regulatory activity might be due to an interaction with a particular 

chromatin feature. INO80 binds the histone variant H2A.Z with high affinity and 

promotes histone exchange with H2A to stimulate transcriptional silencing 

(Papamichos-Chronakis et al., 2011). Interestingly, INO80 removal of H2A.Z is critical 

for the maintenance of genome integrity in yeast (Papamichos-Chronakis et al., 2011). 

We thus reasoned that INO80/MOT1 regulated HO TUs might be enriched for H2A.Z 

relative to the non-regulated subset. To assess this, we utilized a publicly available 

A549 H2A.Z ChIP-seq dataset to evaluate H2A.Z enrichment at C1 and C2 HO TUs. 

This analysis revealed that C1 HO TUs contain significantly higher levels of H2A.Z 

relative to C2 HO TUs (Supplemental Figure 4A). Collectively, this analysis suggests 

that HO TU regulation is not determined by INO80 and MOT1 binding per se, but 

instead the interplay of INO80 and MOT1 with the local chromatin environment, 

specifically H2A.Z-containing nucleosomes.  

  

Finally, we evaluated whether INO80/MOT1-regulated HO TUs were enriched in a 

particular pervasive transcript class. When comparing association frequencies between 

C1 and C2 HO TUs, we found that PROMPTs were overrepresented in C1, while all 

other classes were either similar or underrepresented (Supplemental Figure 4B). To 

systematically assess INO80/MOT1 regulatory activity across classes, we first 
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compared subset HO TU RPKM distributions between control and co-depleted 

conditions (Supplemental Figure 4C). Interestingly, we found that on a population level, 

only PROMPT-associated HO TUs showed a significant upregulation in INO80/MOT1 

depleted conditions. In agreement with earlier analysis, this PROMPT-specific 

regulatory activity was independent of INO80/MOT1 occupancy (Supplemental Figure 

4D). Differential expression analysis of HO TU transcription by subset similarly 

demonstrates that only PROMPT-associated HO TUs experience highly skewed 

upregulation upon INO80/MOT1 depletion (Supplemental Figure 4E). In aggregate, this 

analysis demonstrates that INO80 and MOT1 uniformly silence PROMPT-associated 

HO TUs. INO80/MOT1’s variable activity at HO TUs associated with other transcript 

classes suggests that additional factors are required at these units that do not occur 

uniformly across the transcript population.   

 

INO80 and MOT1 cooperatively prevent replication and R-loop dependent DNA 

damage in NSCLC 

Upregulation of HO TU transcription via INO80/MOT1 inhibition could potentially 

increase the frequency of HO TRCs. Given the genotoxic nature of HO TRCs, we next 

evaluated whether INO80/MOT1 inhibition could generate DNA damage in A549 cells. 

We depleted INO80 and MOT1 individually or together over 72 hours (about 3 cell 

cycles), harvested whole cell extracts, and performed a western blot against the DNA 

damage marker ɣH2Ax. We found that while individual depletion of INO80 significantly 

upregulated ɣH2Ax, individual depletion of MOT1 had no effect on ɣH2Ax levels. 

However, co-depletion of INO80/MOT1 generated a synergistic increase in ɣH2Ax 



 

 103 

levels, demonstrating that INO80 and MOT1 cooperatively prevent DNA damage in 

A549 cells (Figure 3A). Interestingly, these DNA damage phenotypes across single and 

double knockdown backgrounds mirrored the effects of single and double knockdowns 

on HO TU upregulation, as well as cell growth (Figure 3B). Collectively, these analyses 

suggest that INO80 and MOT1 cooperatively prevent DNA damage through their HO TU 

silencing activity, and this activity supports tumor cell growth.  

  

If INO80 and MOT1 were preventing DNA damage via mitigating HO TRCs, then 

damage induced by INO80/MOT1 co-depletion should be replication-dependent in 

nature. To assess this, we utilized Palbociclib, a CDK4/6 inhibitor, to induce G1 arrest in 

A549 cells. After 24 hours of Palbociclib treatment, ~98% of A549 cells were arrested in 

G1-phase, demonstrating the feasibility of this approach (Figure 3C). We next co-

depleted INO80/MOT1 for 72 hours, and then treated cells with either DMSO or 

Palbociclib for 24 hours prior to performing a whole cell extraction and western blot for 

ɣH2Ax. We found that Palbociclib treatment partially rescued DNA damage induced by 

INO80/MOT1 co-depletion, demonstrating that INO80 and MOT1 prevent damage in a 

replication-dependent manner (Figure 1D).  

  

Our previous analysis found that A549 HO TUs are enriched in RLFS in the template 

strand, suggesting HO TU dysregulation could result in HO TRCs over RLFS 

(Supplemental Figure 2). Past work has demonstrated that an RLFS at head-on 

collision sites is necessary for induction of DNA damage, as collisions stabilize R-loops 

at these sites, leading to formation of secondary structures in the leading strand and 
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stable replication fork stalling (Hamperl et al., 2017; Kumar et al., 2021). Moreover, 

overexpression of RnaseH, an R-loop nuclease, has been shown to ameliorate DNA 

damage generated by induced collisions (Hamperl et al., 2017). We reasoned that if 

INO80/MOT1 were preventing HO TRCs, then DNA damage caused by co-depletion 

should be rescued by overexpression of RNaseH. To test this, we co-depleted 

INO80/MOT1 for 72 hours, and then performed either a mock transfection or transfected 

a RnaseH overexpression plasmid for 24 hours prior to performing a whole cell 

extraction and western blot for ɣH2Ax. We found that RNaseH transfection starkly 

rescued DNA damage induced by INO80/MOT1 co-depletion, demonstrating that INO80 

and MOT1 prevent DNA damage in an R-loop dependent manner (Figure 3E). 

Collectively, these analyses suggest that INO80 and MOT1 function as DNA protectants 

in the A549 cell line through preventing HO TRCs (Figure 3F). 

  

INO80 is a NSCLC-specific DNA protectant  

Past work has found that INO80 depletion selectively inhibits NSCLC tumor cell line 

growth, with little effect on healthy lung cells (Zhang et al., 2017). However, the 

molecular basis for this selective activity remains unclear. Given the enhanced 

vulnerability of tumor cells to exogenously introduced replication stress, we postulated 

that INO80 might be functioning as a NSCLC-specific DNA protectant (Dobbelstein and 

Sorensen, 2015). To test this hypothesis, we depleted INO80 in both NSCLC A549 cells 

and immortalized lung epithelial BEAS-2B cells, and separately evaluated both ɣH2Ax 

and p53 induction. Importantly, our siRNA method achieved similar depletion 

efficiencies across cell lines (Figure 4A) and recapitulated the growth phenotypes seen 
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previously (Figure 4B). We found that INO80 depletion exclusively upregulated ɣH2Ax 

and p53 in A549 cells, demonstrating that INO80 functions as an NSCLC-specific DNA 

protectant (Figure 4C). As an orthogonal approach, we evaluated A549 and BEAS-2B 

specific gene expression changes upon INO80 depletion across a set of consensus 

p53-activated genes (Fischer, 2017). We found that INO80 depletion in A549 cells 

significantly upregulated 11 genes in the set, while only 2 genes were upregulated in 

BEAS-2B cells, further reinforcing the NSCLC-selective nature of INO80’s function as a 

DNA protectant (Figure 4D). Similarly, gene set enrichment analysis (GSEA) across 

apoptosis and p53 related gene sets demonstrated that INO80 depletion significantly 

upregulates these pathways in A549, but not BEAS-2B cells (Figure 1E) (Subramanian 

et al., 2005). Finally, we hypothesized that INO80’s selective activity might stem from 

differences in basal replication stress levels between cell lines. To investigate this, we 

quantified replication stress through evaluating the expression of a transcriptional 

signature that correlates with oncogene-induced replication stress load (Guerrero Llobet 

et al., 2022). We found that this signature was more highly expressed in INO80 relative 

to BEAS-2B cells, suggesting that INO80 is interacting with cancer-specific endogenous 

replication stress to function as a DNA protectant (Figure 4F).  

  

Discussion  

HO TRCs are potent genotoxic events that lead to the loss of cycling cell viability 

(Hamperl et al., 2017; Nojima et al., 2018). The recent discovery of temporally regulated 

HO TUs in breast cancer cells suggested that transcriptional regulators might function in 

cancer to prevent head-on collisions during S-phase (Kronenberg and Carey, in review). 
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However, whether HO TUs occur in other cancer types, or what these regulators are 

remains unknown. Our analysis, utilizing an integrated bioinformatic and wet-lab 

strategy, reveals that HO TUs occur at a high frequency in the A549 NSCLC model cell 

line, suggesting that HO TUs are a general feature of tumor cells. Moreover, we find 

that the transcriptional regulators INO80 and MOT1 bind at A549 HO TU loci and 

cooperatively silence transcription at a subset marked by high H2A.Z, an INO80 

substrate (Papamichos-Chronakis et al., 2011). Furthermore, INO80 and MOT1 

cooperatively prevent replication and R-loop dependent DNA damage, suggesting 

functional prevention of HO TRCs. INO80 is a multi-functional protein complex that has 

been shown to directly remove RNAPII as well as R-loops from chromatin (Lafon et al., 

2015; Prendergast et al., 2020). While we cannot rule out a post-collision mechanism 

that explains damage prevention, the participation of MOT1, which has no known 

functions outside transcriptional regulation (Auble et al., 1994), strongly suggests that 

the prevention of HO TU transcription plays a role in suppressing HO TRC-induced 

damage. It is possible that combined transcriptional and post-transcriptional activity by 

INO80 is necessary to fully prevent HO TRC-induced damage, thus affecting the 

afferent and efferent arms of a collision.  

  

The direct result of a HO TRC is the generation of a stalled replication fork (Kumar et 

al., 2021). Stalled forks become uncoupled from the MCM helicase, leading to the 

generation of single-stranded DNA tracts (ssDNA) (Saxena and Zou, 2022; Toledo et 

al., 2017). ssDNA formation stimulates the binding of the heterotrimeric protein 

Replication Protein A (RPA), which in turn recruits effector molecules such as ATR and 
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ATM to stabilize and resolve the fork (Toledo et al., 2017). This RPA catalyzed signaling 

cascade also leads to intra-S phase checkpoint activation, leading to suppression of 

origin firing, and conservation of the RPA pool (Toledo et al., 2017). Under conditions of 

extreme replication stress, RPA becomes exhausted, leading to the presence of 

unstable forks and pan-DNA breakage, an event known as replication catastrophe (RC) 

(Toledo et al., 2017). If INO80 prevents fork stalling, then it might only function as a 

DNA protectant in conditions of elevated replication stress, where the RPA pool has 

little capacity to buffer an increase in stalled forks. Given the rapid mutation rate and 

elevated stress levels observed in NSCLC , we reasoned that INO80 might prevent 

DNA damage in a cancer-specific manner. Indeed, past work found that INO80 

depletion was selectively toxic to NSCLC cell lines, but not healthy lung epithelial cells 

(Zhang et al., 2017). We find that INO80 prevents the formation of the DNA damage 

markers ɣH2Ax and p53 in the A549 NSCLC cell line, but not the healthy lung epithelial 

BEAS-2B cell line, supporting the idea that INO80 is a cancer-specific DNA protectant. 

Interestingly, A549 cells show an increase in replication stress over BEAS-2B cells, as 

ascertained by a transcriptional signature (Guerrero Llobet et al., 2022). Collectively, 

these findings suggest that inhibition of the INO80/MOT1 regulatory axis could induce 

tumor-selective genotoxicity through interacting with the cancer-specific replication 

stress hallmark. 
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Figure Legends 

Figure 1: HO TUs occur on the NSCLC genome 

A. Graphic representation of a head-on transcription unit (HO TU). B. Diagram of total 

A549 RIS demarcated by the presence or absence of at least one HO TU. C. Browser 

track examples of A549 HO TUs. D. Average profiles and heatmaps of A549 head-on 

CAGE-seq and PRO-seq enrichment at distance normalized HO TU loci. E. Graphic 

representation of pervasive transcript classes. F. Pie chart showing the percentage of 

total A549 HO TU associations with a given pervasive transcript class.  

 

Figure 2: INO80 and MOT1 cooperatively silence a subset of HO TUs 

A. Browser track examples of INO80 and MOT1 co-binding at A549 HO TU TSSs. B. 

Average profiles and heatmaps of A549 INO80 and MOT1 ChIP-seq enrichment at 

distance normalized HO TUs. C. Browser track examples of A549 HO TUs that are 

silenced by INO80 and MOT1. D. Average profile and heatmap of the log2 fold change 

in head-on nascent RNA-seq signal between INO80/MOT1 co-depleted and control 

conditions at distance normalized A549 HO TUs subset by k-means clustering.  

 

Figure 3: INO80 and MOT1 cooperatively prevent replication and R-loop 

dependent DNA damage in NSCLC.  

A. Western blot quantifying bulk ɣH2Ax levels across single and double knockdown 

conditions in A549 cells (Left). Bar graph showing normalized ɣH2Ax signal across 

western blot replicates (Right) (AUC: Area under the curve as assessed by ImageJ). B. 

Growth curve of A549 cells in single and double knockdown conditions. C. Bar graph of 
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A549 cell cycle distribution after 24 hours of either DMSO or Palbociclib treatment. D. 

Western blot quantifying bulk ɣH2Ax levels across replication competent and replication 

arrested conditions in A549 cells (Left). Bar graph showing normalized ɣH2Ax signal 

across western blot replicates (Right) (AUC: Area under the curve as assessed by 

ImageJ). E. Western blot quantifying bulk ɣH2Ax levels across mock and RNaseH 

overexpressing conditions in A549 cells (Left). Bar graph showing normalized ɣH2Ax 

signal across western blot replicates (Right) (AUC: Area under the curve as assessed 

by ImageJ). F. Graphic representation of modeled INO80 and MOT1 function at HO 

TUs. 

 

Figure 4: INO80 is a NSCLC-specific DNA protectant 

A. Bar graph showing the depletion efficiency of INO80 mRNA in both A549 and BEAS-

2B cells 72 hours after INO80 siRNA transfection. B. Growth curve of A549 (Left) and 

BEAS-2B (Right) cells in control and INO80 depleted conditions. C. Western blot 

quantifying bulk ɣH2Ax and p53 levels in control and INO80 depleted conditions in 

BEAS-2B (Left) and A549 (Right) cells. D. Volcano plots showing the differential 

expression of a p53-activated gene set in BEAS-2B (Left) and A549 (Right) cells. E. 

Gene set enrichment analysis of INO80 depletion-induced changes in gene expression 

for apoptosis and p53-related genes as annotated by the PANTHER classification 

system across A549 cells (Left) and BEAS-2B cells (Right). F. Box and whisker plot of 

the RPKM distribution of a replication stress transcriptional signature in BEAS-2B and 

A549 cells.  
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Supplemental Figures 
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Supplemental Figure Legends 

Supplemental Figure 1: Identification of high confidence A549 RIS. 

A. Schematic of the strategy used to identify A549 RIS. B. (Left) Browser track showing 

RIS (top track, blue markers), EdU-seq enrichment (second track from top) and 

replication timing profiles (Bottom 2 tracks). Red lines demarcate inverted-V structures. 

(Right) Distribution of s80 labels across RIS, benchmark, and control datasets. C. Bar 

graph showing RIS frequency by position relative to gene bodies. D. Bar graphs 

showing RIS frequency by absolute distance relative to the nearest protein-coding TSS. 

 

Supplemental Figure 2: A549 HO TUs are enriched in R-loop forming sequences. 

A. Diagram of total HO TUs demarcated by the presence or absence of at least one 

RLFS in the template strand. B. Average profile and heatmap of RLFS frequency on 

template strand within 50 bp bins at distance normalized HO TUs. C Bar chart showing 

the median RLFS density across HO TUs subset by pervasive transcript class 

association. D. Graphic representation of HO TUs with positioned R-loop forming 

sequences within the transcribed body. 

 

Supplemental Figure 3: INO80 and MOT1 cooperatively silence a subset of HO 

TUs. 

A. Western blot of INO80 and MOT1 protein levels 72 hours after single siRNA 

depletion or co-depletion in A549 cells. B. Violin plots of nascent RNA-seq RPKM 

distribution at clustered HO TUs in control and co-depleted conditions. C. Volcano plots 

showing differential expression analysis of clustered HO TUs. D. Bar chart showing the 
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mean log2 fold-change (+ 95% C.I.) in nascent RNA-seq signal at C1 HO TUs between 

single and double knockdown conditions.  

 

Supplemental Figure 4: Features of INO80/MOT1 regulated HO TUs. 

A. Violin plots of INO80, MOT1, and H2A.Z ChIP-seq RPKM distributions at clustered 

HO TUs. B. Pie charts showing the percentage of total C1 (Left) or C2 (Right) A549 HO 

TU associations with a given pervasive transcript class . C. Violin plots of nascent RNA-

seq RPKM distributions in control and co-depleted conditions at HO TUs subset by 

pervasive transcript association. D. Violin plots of INO80 and MOT1 ChIP-seq RPKM 

distributions as HO TUs subset by pervasive transcript association. E. Volcano plots 

showing differential expression analysis of HO TUs subset by pervasive transcript 

association. 
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Materials and methods 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

ACTR5/Arp5 Proteintech Cat# 21505-1-AP, RRID:1234 

INO80  Proteintech Cat# 18810-1-AP, RRID: NA 

MOT1  Abcam 

Abcam 

Cat# ab196491, RRID: NA 

Cat# ab72285, RRID NA 

ɣH2Ax  Millipore sigma 

Abcam  

Cat# 05-636, RRID: NA 

Cat# ab81299, RRID: NA 

P53  Cell Signaling Cat# 18032S, RRID: NA 

GAPDH  Santa Cruz 

Biotechnology 

Cat# sc-365062, RRID:NA 

V5 Abcam Cat# ab15828, RRID:NA 

Plasmids 

ppyCAG_RnaseH1_WT Addgene Cat# 111906 

siRNA 

INO80 Horizon 

Discovery 

Cat# L-004176-01-0005 

MOT1 Horizon 

Discovery 

Cat# L-012628-00-0005 

Small molecules 
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Palbociclib Selleck 

Chemicals 

Cat# S1116 

Biotin-Azide Thermo FIsher Cat# B10184 

EdU Thermo Fisher Cat# A10044 

Kits 

KAPA RNA Hyper+RiboErase 

HMR 

Roche 

diagnostics 

Cat# 08098131702 

KAPA mRNA Hyper Prep Roche 

diagnostics 

Cat# 08098115702 

KAPA HyperPrep Kit Roche 

diagnostics 

Cat# 07962312001 

Click-iT™ EdU Alexa Fluor™ 

647 Flow Cytometry Assay  

Thermo Fisher Cat# C10424 

Experimental Models: Cell Lines 

A549 ATCC CCL-185 

BEAS-2B ATCC CRL-9609 

Deposited Data 

Core origin coordinate file Akerman et al. 

2020 

NCBI Gene Expression Omnibus 

(GEO): GSE128477 

A549 Repli-seq David Gilbert, 

FSU 

ENCODE: 

doi:10.17989/ENCSR594FTB 
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A549 CAGE-seq Yan et al. 2022 NCBI Gene Expression Omnibus 

(GEO): GSE132660 

A549 PRO-seq John Lis, Cornell ENCODE: 

doi:10.17989/ENCSR244HDV 

  

Software and Algorithm 

Bedtools  Quinlan and Hall 2010 

Samtools  Li et al., 2009 

Tophat2  Kim et al., 2013 

MACS2  Zhang et al., 2008 

Bowtie2  Langmead et al., 2009 

Deeptools  Ramirez et al., 2014 

HOMER  Heinz et al., 2010 

 

EXPERIMENTAL PROCEDURES 

EdU-seq   

Asynchronous A549 cells were pulsed with 10uM EdU for 30 minutes, followed by cell 

harvesting and processing using the Click-iT™ EdU Alexa Fluor™ 647 Flow Cytometry 

Assay. Biotin Azide was substituted for Alexa Fluor, and post-click reaction the samples 

were processed as was done in (Macheret and Halazonetis, 2019). Sequencing libraries 

were made using the KAPA HyperPrep Kit. Fastq files were mapped to the hg19 

genome with bowtie2 (Langmead et al., 2009) to generate bam alignment files. All bam 

files were then processed with samtools (Li et al., 2009) so that duplicates were 
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removed, and low-quality reads were filtered out. MACS2 peakcall (Zhang et al., 2008) 

was then used to call peaks from EdU-seq samples relative to an input. Peaks were 

merged using bedtools merge (Quinlan and Hall, 2010) if summits were within 5000 bp 

of each other.  

  

RIS identification  

 Core origin summits (Akerman et al., 2020) A549 EdU-seq peaks, and Dnase-seq 

peaks from loci containing overlapping peaks of A549 H3K27ac ChIP-seq, A549 

H3K4me2 ChIP-seq, and A549 Dnase-seq were extended 1 kb in each direction using 

bedtools slop (Consortium, 2012; Quinlan and Hall, 2010). These extended peaks were 

then intersected using bedtools intersect (Quinlan and Hall, 2010). Intersected core 

origin coordinates were used to represent RIS. 

  

RIS validation 

 Samtools bedcov (Li et al., 2009) was used to map reads from A549 replication timing 

datasets (Repli-seq) (Consortium, 2012) to RIS regions and comparator dataset loci 

(Epigenetic signature peaks, core origins, and randomly selected Dnase-seq peaks). 

For epigenetic signature and Dnase-seq peaks, the center of each peak was extended 

1kb in each direction for mapping using bedtools slop (Quinlan and Hall, 2010). For RIS 

and core origins, the center of all coordinate locations were taken and extended 1kb in 

each direction for mapping using bedtools slop. 5,277 random Dnase-seq peaks were 

selected through using bedtools shuffle (Quinlan and Hall, 2010) on the Dnase-seq 

peak dataset and the Linux shell head function. To quantify enrichment at inverted-V 
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apexes of replication timing profiles, normalized repli-seq reads were mapped from all 

fractions to test regions. If a region contains at least 80% of the total reads from one 

fraction, then it was marked with an s80 label for that fraction as was done previously 

(Dellino et al., 2013). 

  

RIS sub-setting by intragenic or intergenic status 

 Intragenic RIS were identified by using bedtools intersect to find RIS entirely confined 

within protein-coding gene body termini as annotated from the GENCODE database 

(Frankish et al., 2019). Intergenic RIS were identified by using bedtools subtract  

(Quinlan and Hall, 2010) to identify the remaining RIS. If RIS both overlapped gene 

body regions and adjacent intergenic regions, they were categorized as ‘both’. 

  

RIS sub-setting by TSS distance 

 The HOMER annotatePeaks function (Heinz et al., 2010) was used to determine the 

distance from the nearest protein-coding TSS for each RIS location based off the RIS 

center coordinate. RIS were then binned by the calculated absolute distance. 

  

Head-on transcription unit (HO TU) identification  

 Directional NET CAGE-seq peaks (Hirabayashi et al., 2019) were intersected with 

regions delimited by a RIS center and 1kb downstream of the RIS border proximal to 

the NDR using bedtools intersect. Minus strand NET CAGE-seq peaks were intersected 

with RIS that formed a downstream NDR, and plus strand NET CAGE-seq peaks were 

intersected with RIS that formed an upstream NDR. Intersected peaks were labeled HO 
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TU TSS, and the cognate RIS center point represented the HO TU terminus. Some RIS 

contained multiple HO TUs due to multiple NET CAGE-seq peaks intersecting with the 

demarcated RIS region. 

  

CAGE-seq data processing 

 Fastq files were mapped to the hg19 genome with bowtie2 (Langmead et al., 2009) to 

generate bam alignment files. All bam files were then processed with samtools (Li et al., 

2009) so that duplicates were removed, and low-quality reads were filtered out. 

Replicate bam files were merged for downstream analysis using samtools merge (Li et 

al., 2009). Merged and QC’d bam files were separated by strand and MACS2 peakcall 

(Zhang et al., 2008) was then used to identify stranded peaks and generate a bedgraph 

file. This bedgraph file was then converted to bigwig files describing mapped reads in 

counts per million using the bedGraphtoBigWig script from ENCODE (Consortium, 

2012; Kent et al., 2010) for downstream analysis using the python deeptools software 

suite (Ramirez et al., 2014). 

  

PRO-seq data processing  

 Raw fastq files from were mapped to the hg19 genome with tophat2 (Kim et al., 2013) 

to produce bam alignment files. Duplicates and low quality reads were removed from 

bam files via samtools (Li et al., 2009). Replicate bam files were merged for 

downstream analysis using samtools merge (Li et al., 2009). Merged and QC’d bam 

files were then converted to stranded bigwig files describing mapped reads in counts 
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per million in python deeptools using the bamCoverage function with the filterRNAstrand 

option (Ramirez et al., 2014).   

  

Pervasive transcript identification 

 A549 PRO-seq datasets were used to perform de novo transcript discovery via 

HOMER software, yielding 29,518 transcripts. Transcripts were labeled as PROMPTs if 

they were intergenic, within 5kb upstream of a TSS, and were antisense to the proximal 

gene. This yielded 2,108 total PROMPTs. Transcripts were labeled as eRNAs if their 

TSS overlapped with enhancer regions called by the ROSE software with gene TSS 

exclusion (Whyte et al., 2013). This yielded 8,779 total eRNAs. Transcripts were labeled 

as asTSSa if they overlapped with TSS plus 500bp downstream and were divergent to 

gene direction. This yielded 4,317 asTSSa. Transcripts were labeled as sTSSa if they 

overlapped with TSS plus 500bp downstream and were in the same direction as gene 

transcription. This yielded 10,840 transcriptsTSSa.  

  

Head-on transcription unit (HO TU) pervasive transcript class association 

 Bedtools intersect was used to find overlap between identified HO TUs and pervasive 

transcripts by class. Some HO TUs were associated with multiple classes. In these 

cases, the HO TU was partitioned into both classes for downstream analysis.  

  

RLFS identification and association with features 

R-loopDB (http://rloop.bii.a-star.edu.sg/) is an online database containing coordinate 

files for bioinformatically predicted R-loop forming sequences across model genomes 



 

 127 

(Jenjaroenpun et al., 2017). The merged RLFS coordinate file for the hg19 genome was 

downloaded and separated by strand. Concomitantly, RIS were subset by accessible 

region location based on the plus strand as was done in prior analyses. To identify RIS 

that contained RLFS in the head-on transcription template strand, bedtools intersect 

was used to find subset RIS that overlapped with the directionally appropriate stranded 

RLFS file. Resulting files were then concatenated. The same pipeline was used to 

assess RLFS presence within the template strand of HO TUs.  

  

To determine RLFS high and low RIS, a bedgraph file describing RLFS frequency per 

50bp bin across the hg19 genome was generated via IGB. This file was converted to a 

bigwig file as previously described and used as an input along with RIS coordinates for 

python deeptools analysis. Output files describing RLFS density within individual RIS 

units were rank-ordered and the bottom 25% and top 25% loci were selected for low 

and high groups respectively.  

  

To generate a RLFS heatmap and average profile at HO TUs, a bedgraph file 

describing RLFS frequency per 50bp bin was generated via IGB as described above. 

This file was converted to a bigwig file as previously described and used as an input for 

python deeptools analysis.  

  

ChIP-seq 

ChIP-seq was performed in A549 cells as was done in (Xue et al., 2017), using an 

antibody against the INO80C subunit ACTR5 and MOT1. Sequencing libraries were 
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made using the KAPA HyperPrep Kit. Fastq files were mapped to the hg19 genome with 

bowtie2 (Langmead et al., 2009) to generate bam alignment files. All bam files were 

then processed with samtools (Li et al., 2009) so that duplicates were removed, and 

low-quality reads were filtered out. MACS2 peakcall (Zhang et al., 2008) was then used 

to generate read normalized treatment and background bedgraph files from IP and input 

controls respectively. MACS2 bdgcmp (Zhang et al., 2008) was then used on 

normalized IP and input bedgraph files to generate bedgraph files containing genome-

wide IP/input Poisson enrichment scores. These bedgraph files were then converted to 

bigwig files using the bedGraphtoBigWig script from ENCODE (Consortium, 2012; Kent 

et al., 2010) for downstream analysis using the python deeptools software suite 

(Ramirez et al., 2014). 

  

siRNA transfection 

A549 or BEAS-2B cells were reverse transfected at 150,000 cells/well with 0.5 ug of the 

appropriate siRNA using 6ul lipofectamine siRNA max and antibiotic free media. 

Transfection media was exchanged the next day. Cells were incubated for 72 hours 

prior to harvesting for downstream analysis. 

  

Nascent RNA-seq 

Nascent RNA-seq was performed in A549 cells as was done in Bhatt et al., 2017. 

Sequencing libraries were made with the KAPA RNA Hyper+Riboerase kit. Raw fastq 

files were mapped to the hg19 genome with tophat2 (Kim et al., 2013) to produce bam 

alignment files. Duplicates and low quality reads were removed from bam files via 
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samtools (Li et al., 2009). Replicate bam files were merged for downstream analysis 

using samtools merge (Li et al., 2009). Merged and QC’d bam files were then converted 

to stranded bigwig files describing mapped reads in counts per million in python 

deeptools using the bamCoverage function with the filterRNAstrand option (Ramirez et 

al., 2014). Bam files were also converted to stranded bam files for downstream analysis.  

  

Immunoblotting 

Cells were harvested and washed twice with cold dPBS. Cells were then lysed in RIPA 

buffer containing protease and phosphatase inhibitors per standard protocol, and 

extracts were mixed with 1x SDS loading buffer. Extracts were size separated on an 

SDS-PAGE gel via electrophoresis, and transferred with the iblot2 transfer system. 

Blots were blocked with LiCOR blocking buffer and incubated overnight at four degrees 

with the appropriate diluted antibodies. Blots were washed and incubated with 

secondary LiCOR antibodies for band imaging on a LiCOR machine. Blots were 

quantified by imageJ with an area under the curve (AUC) score for the protein of 

interest and loading control, and replicate AUC ratios were combined for statistical 

analysis. 

  

Growth Curves 

Cells were reverse transfected at 150,000 cells per well with the appropriate siRNA as 

described above. Measurements were taken across triplicate samples at 24 hours, 72 

hours, and 120 hours post-transfection using a TC-10 cell counter.  
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Induction of cell cycle arrest 

A549 cells were treated with Palbociclib dissolved in DMSO at a concentration of 2uM. 

Cells were harvested after a 24 hour incubation period for downstream analysis. 

Propidium Iodide staining was performed to validate cell cycle arrest in the G1-phase.  

  

Plasmid transfection 

One ug of the ppyCAG_RnaseH1_WT plasmid was forward transfected per well of a 6-

well plate containing A549 cells using 2ul lipofectamine 2000 and antibiotic free media. 

A549 cells were transfected at 80% confluency. Transfection media was exchanged 

after 4 hours. Cells were harvested after a 24 hour incubation period for downstream 

analysis. 

  

mRNA-seq  

Total RNA from A549 or BEAS-2B cells was extracted via trizol and purified via Dnase 

treatment and a second round of trizol extraction. Purified RNA was then used as input 

for processing with the KAPA mRNA HyperPrep kit. Raw fastq files were mapped to the 

hg19 genome with tophat2 (Kim et al., 2013) to produce bam alignment files. Duplicates 

and low quality reads were removed from bam files via samtools (Li et al., 2009). 

Replicate bam files were merged for downstream analysis using samtools merge (Li et 

al., 2009). Merged and QC’d bam files were then used as inputs for cufflinks to generate 

RPKM files at annotated genes.  

  

Differential expression analysis 
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Tag directories from replicate bam files of interest were generated via HOMER 

software. A raw read count table was then generated using the HOMER 

analyzeRepeats script describing the reads mapping from these files to a designated gtf 

file describing genomic locations of interest. This table was then used as an input for the 

HOMER getDiffExpression script, which utilizes DESeq2 to generate a file describing 

Log2 fold change and P-value between conditions at each location of interest. The 

resulting file was then used as input to be processed by the bioinfokit python program to 

produce a volcano plot. Predetermined thresholds for significance were less than or 

equal to a p-value of .05 and a log2 fold change of 1 or -1.  

  

Gene Set Enrichment Analysis 

Gene set enrichment analysis was performed as described in (Subramanian et al., 

2005). 

  

RPKM calculations 

Merged and QC’d bam files generated from fastq files as previously described were 

converted to sam files, separated by strand, reconverted to bam files, and indexed 

using samtools (Li et al., 2009). To find RPKMs, samtools bedcov was used to map 

reads from stranded bam files directionally onto desired regions. Mapped reads within 

regions were then normalized per kilobase as well as per million mapped reads to give 

an RPKM value. All RPKM values were log2 transformed for distribution analysis and 

statistical tests. All violin plot RPKM visualizations were generated via PRISM 9 

statistical software.  
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Cell culture 

A549 and BEAS-2B cells were cultured on TC qualified plates in media containing 

DMEM/F12 (1:1) (Thermo Fisher, 11320-033), supplemented with 10% fetal bovine 

serum. 

 

Graphics generation 

All visual graphics in manuscript were created with BioRender.com. 

  

Statistical tests 

P-values generated from either RPKM, Log2 fold change, or total read distribution 

comparisons were calculated using the unpaired parametric T-test in Prism GraphPad.  
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Abstract 

The chemotherapeutic cisplatin serves as a backbone in many first-line treatment 

regimens for Non-Small Cell Lung cancer (NSCLC). A key effort in NSCLC drug 

development is the discovery of therapies that can safely amplify cisplatin’s efficacy. 

One way this could be rationally achieved is through targeting chromatin-based 

mechanisms that either limit or increase cisplatin’s ability to damage tumor cell DNA. 

However, the relationship between chromatin states and cisplatin’s genotoxic potential 

in NSCLC is unclear. Here, we generate a high resolution and quantitative genome-

wide map of cisplatin-induced DNA-damage in an NSCLC model through performing 

ChIP-seq on the damage marker ɣH2Ax. Furthermore, we utilize this dataset to assess 

the relationship between cisplatin-induced DNA damage and chromatin state. This work 

ultimately provides a resource that can be leveraged to better understand the molecular 

mechanisms governing cisplatin genotoxicity in NSCLC. 
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Introduction 

Cisplatin is a widely used chemotherapeutic for the treatment of Non-Small Cell Lung 

cancer (NSCLC) (Fennell et al., 2016). Cisplatin induces anti-tumor toxicity through 

interacting with DNA and inducing the formation of intrastrand or interstrand crosslinks 

(ICLs) between GG dinucleotides (Hu et al., 2016; Shu et al., 2016). These crosslinks 

can either be repaired by the nucleotide excision repair pathway (NER), or generate 

replication fork stalling during genome replication, in both cases leading to ssDNA 

formation and activation of the DNA damage response (Duan et al., 2020; Fennell et al., 

2016; Frankenberg-Schwager et al., 2005). A key effort in modern NSCLC therapeutic 

development is finding rational combination partners that can amplify cisplatin toxicity in 

tumors. Understanding where and at what frequency cisplatin induces DNA damage on 

the NSCLC genome could reveal chromatin states or epigenetic factors that functionally 

amplify or suppress cisplatin genotoxicity. 

 

Past work mapping cisplatin integration and nucleotide excision repair (NER) activities 

genome-wide in lymphocyte cells revealed principles of cisplatin activity on the genome 

(Hu et al., 2016). Chromatin state analysis in this study found that while cisplatin 

induced GG intrastrand crosslinks indiscriminately, NER activity mainly occurred at 

promoter and enhancer regions (Hu et al., 2016). However, it remains unclear how 

these dynamics result in downstream DNA damage. For example, does cisplatin 

integrated in regions with poor NER kinetics generate more DNA damage than cisplatin 

in regions with highly active NER? Furthermore, this study was not powered to assess 
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interstrand crosslinks induced by cisplatin, which are highly toxic in nature (Hashimoto 

et al., 2016) . Thus, it remains unclear where and at what frequency cisplatin 

functionally damages the human genome. 

 

In this study, we map DNA damage induced by cisplatin treatment genome-wide in the 

NSCLC A549 cell line. To do so, we leverage ɣH2Ax, which marks both double-

stranded and single-stranded breaks (DSBs and SSBs) (Marti et al., 2006; Podhorecka 

et al., 2010). We find that cisplatin induces widespread, focal sites of DNA damage 

across the NSCLC genome. We further find that damage levels are much higher at both 

active and bivalent promoters relative to other chromatin states, suggesting that 

chromatin-based processes at promoter regions contribute to cisplatin genotoxicity. 

Thus, this work reveals novel relationships between cisplatin activity and the chromatin 

environment in NSCLC. 

  

Results 

Genome-wide mapping of cisplatin-induced damage across the NSCLC genome. 

In order to map DNA damage induced by cisplatin at high resolution on the NSCLC 

genome, we utilized a ChIP-seq based strategy (Figure 1A). Briefly, we treated A549 

cells with saline or 100uM cisplatin for 24 hours, followed by cell extraction, crosslinking, 

and immunoprecipitation of the DNA damage marker ɣH2Ax. Precipitated DNA was 

then purified, sequenced, normalized to an input, and processed for peak calling. 

Viewing, ɣH2Ax signal on a browser track demonstrates that cisplatin treatment 

generates clear and widespread ɣH2Ax peaks (Figure 1B). Global evaluation of the 
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ɣH2Ax signal at cisplatin-induced peaks shows a clear upregulation upon drug 

treatment (Figure 1C). Peak calling by MACS2 revealed that cisplatin treatment resulted 

in 81,342 ɣH2Ax peaks as opposed to 349 peaks in the saline treated samples (Figure 

1D). Finally, we evaluated cisplatin peak association with different genomic features. 

We found that peaks distributed across TSS, gene bodies, and intergenic regions, 

demonstrating that induced damage is not limited to a single genomic feature (Figure 

1E). It is important to note that ɣH2Ax marks both SSBs that occur during NER, as well 

as DSBs that occur during replication fork collapse (Marti et al., 2006; Podhorecka et 

al., 2010). Thus, our dataset does not distinguish between these features. 

  

Cisplatin-induced damage across chromHMM identified chromatin states. 

To understand how cisplatin genotoxicity interacts with the chromatin environment, we 

looked at cisplatin-induced ɣH2Ax signals across 18 chromatin states identified by 

chromHMM in A549 cells (Ernst and Kellis, 2017). Interestingly, we found that damage 

induction was much higher at both active and poised TSS relative to any other state 

(Figure 2A). Interestingly, although active TSS had higher levels of transcription (Figure 

2B), poised TSS had higher ɣH2Ax levels. This demonstrates that promoters, partially 

independent of transcriptional activity, contain features that support cisplatin’s ability to 

damage DNA. No other chromatin states displayed clear and uniform enrichment in 

cisplatin-induced DNA damage, although across states there are clearly loci that host 

high levels of damage. Thus, it is likely that still unknown determinants of cisplatin 

genotoxicity, independent of chromatin state, exist on the genome. 
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Discussion 

Since its approval decades ago, cisplatin is still used as a first line treatment for 

advanced Non-Small Cell Lung cancer (NSCLC) (Fennell et al., 2016). Currently over 

1200 clinical trials are being run for cisplatin-based combo treatments across cancers, 

including NSCLC (Huang et al., 2016). Thus, there is a clear effort to find adjuvant 

treatments for cisplatin therapy in NSCLC. Tumors develop resistance to cisplatin via a 

myriad of mechanisms. One key way in which they do so is through reducing DNA 

damage load via hijacking processes that affect the chromatin environment at cisplatin 

lesions (Furuta et al., 2002; Xiao et al., 2021). Thus, it is likely that chromatin states 

dictate cisplatin’s potential to damage DNA to some degree. However, the relationship 

between cisplatin-induced damage and chromatin state has never been investigated in 

NSCLC. Here we generated a high-resolution map of DNA damage induced by cisplatin 

in a NSCLC model. Interestingly, we found that active and bivalent promoters are 

enriched for induced damage, suggesting features or processes at these loci generate 

either SSBs or DSBs in response to cisplatin lesions. It is possible that high levels of 

transcription-coupled nucleotide excision repair (TC-NER), which have been observed 

at promoters, could be contributing to SSB formation (Hu et al., 2016; Shu et al., 2016). 

However, transcription levels at these promoter classes do not correlate with DNA 

damage signal. Alternatively, it is possible that DSBs form at promoters due to proximity 

to efficient replication initiation sites (Langley et al., 2016; Petryk et al., 2016). 

Regardless, promoter-based chromatin metabolism appears to contribute to cisplatin 

genotoxic potential. The data generated in this study can be leveraged to further assess 
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chromatin-based mechanisms that contribute to cisplatin genotoxicity, with the goal of 

finding targetable processes to guide therapeutic development. 
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Figure legends 

Figure 1: Genome-wide mapping of Cisplatin-induced damage across the NSCLC 

genome. A. Graphic representation of experimental strategy to map DNA damage 

induced by cisplatin in A549 cells. B. Browser track showing ɣH2Ax signal at a genomic 

locus in saline and cisplatin treated A549 cells. C. Average profiles and heatmaps of 

ɣH2Ax signal at cisplatin-induced ɣH2Ax peaks in saline and cisplatin-treated A549 

cells. D. Bar chart showing the number of called ɣH2Ax peaks in saline and cisplatin 

treated A549 cells. E. Pie chart showing the genomic locations of ɣH2Ax peaks in 

cisplatin-treated A549 cells.  

 

Figure 2: Cisplatin-induced damage across chromHMM identified chromatin 

states. A. Box and whiskers plot of ɣH2Ax ChIP-seq RPKMs across 18 chromatin 

states identified by ChromHMM. B. PRO-seq levels across active TSS and poised TSS 

loci. 
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Materials and Methods 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

yH2Ax  Abcam Cat# ab81299 

Small molecules 

Cisplatin EMD Millipore Cat# 232120 

 

Kits 

KAPA HyperPrep Kit Roche 

diagnostics 

Cat# 07962312001 

Experimental Models: Cell Lines 

A549 ATCC CCL-185 

Deposited Data 

A549 PRO-seq John Lis, Cornell ENCODE: 

doi:10.17989/ENCSR244HDV 

  

A549 ChromHMM 18-state 

model 

Manolis Kellis, 

Broad 

ENCODE: 

doi:10.17989/ENCSR283FYU 

Software and Algorithm 

Bedtools  Quinlan and Hall 2010 

Samtools  Li et al., 2009 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

yH2Ax  Abcam Cat# ab81299 

Small molecules 

Cisplatin EMD Millipore Cat# 232120 

 

Kits 

KAPA HyperPrep Kit Roche 

diagnostics 

Cat# 07962312001 

MACS2  Zhang et al., 2008 

Bowtie2  Langmead et al., 2009 

Deeptools  Ramirez et al., 2014 

 

EXPERIMENTAL PROCEDURES 

 ɣH2Ax ChIP-seq 

 ChIP-seq was performed in A549 cells as was done in (Xue et al., 2017)), using an 

antibody against ɣH2Ax. Sequencing libraries were made using the KAPA HyperPrep 

Kit. Fastq files were mapped to the hg19 genome with bowtie2 (Langmead et al., 2009)  

to generate bam alignment files. All bam files were then processed with samtools (Li et 

al., 2009) so that duplicates were removed, and low-quality reads were filtered out. 

MACS2 peakcall (Zhang et al., 2008) was then used to generate read normalized 

treatment and background bedgraph files from IP and input controls respectively, as 

well peak files. MACS2 bdgcmp (Zhang et al., 2008) was then used on normalized IP 



 

 153 

and input bedgraph files to generate bedgraph files containing genome-wide IP/input 

Poisson enrichment scores. These bedgraph files were then converted to bigwig files 

using the bedGraphtoBigWig script from ENCODE (Consortium, 2012; Kent et al., 2010) 

for downstream analysis using the python deeptools software suite (Ramirez et al., 

2014). 

 

Peak subsetting by genomic feature 

Peaks were intersected with either refgene TSS extended by 1kb in each direction, or 

refgene gene body regions with excluded TSS. Bedtools intersect was used for file 

processing.  

  

ChromHMM analysis 

Samtools bedcov was used to map reads from processed bam files to bed files 

describing loci belonging to a particular chromatin state. RPKMs per loci were then 

calculated and graphed via PRISM 9 software.  

  

Cell culture 

A549 cells were cultured on TC qualified plates in media containing DMEM/F12 (1:1) 

(Thermo Fisher, 11320-033), supplemented with 10% fetal bovine serum. 

  

Statistical tests 

P-values generated from RPKM distribution comparisons were calculated using the 

unpaired parametric T-test in Prism GraphPad.  
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Transcription-replication coordination 

The co-occurence of RNA transcription and DNA replication on the genome is essential 

for life. Both processes involve the unwinding and traversing of the DNA fiber by 

polymerases, potentiating transcription-replication collisions (TRCs) (Helmrich et al., 

2013). The induction of TRCs in controlled systems has demonstrated that head-on 

collisions over R-loop forming sequences (RLFS), but not co-directional collisions, 

potently stall the replication fork and generate DNA breaks (Bruning and Marians, 2020; 

Hamperl et al., 2017; Kumar et al., 2021; Prado and Aguilera, 2005). Averting these 

genotoxic TRCs is thus critical for the maintenance of genome integrity and the viability 

of cycling cells (Hamperl et al., 2017; Nojima et al., 2018). However, it has remained 

unclear how genotoxic TRCs are avoided on the genome. The ‘passive’ model 

proposes that replication fork movement and transcription orient co-directionally 

genome-wide through replication initiation site (RIS) placement upstream of active 

genes (Chen et al., 2019; Petryk et al., 2016). In this scenario, transcription does not 

need to be regulated to mitigate genotoxic TRCs, as all collisions would be co-

directional, and thus tolerable, in nature. Alternatively, an ‘active’ model proposes that 

head-on transcription over RLFS does occur on the genome during the cell cycle, but is 

suppressed in S-phase to allow passage of the replication fork without incident. If the 

active model did indeed accurately describe transcription-replication coordination, then 

still unknown transcriptional regulatory mechanisms likely function to preserve genome 

integrity in human cells. In the case of tumors, these mechanisms might be highly 

leveraged to preserve cell viability in the face of elevated levels of replication stress 

(Dobbelstein and Sorensen, 2015). Thus, there is value in determining whether 
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transcription-replication coordination is achieved through transcriptional regulation. 

However, the active model has never been systematically evaluated. 

  

In this thesis work, I leveraged a multitude of datasets to demonstrate that head-on 

transcription over RLFS occurs frequently on the genome, proximal to a subset of 

stringently selected RIS loci in both the MCF-7 and A549 cancer models. This analysis 

enabled the annotation of a novel class of transcriptional bodies termed head-on 

transcription units (HO TUs), which are pervasive and RLFS-rich in nature. Leveraging 

phased GRO-seq data from MCF-7 cells, I additionally find that HO TUs are 

downregulated during S-phase relative to the non-replicating G1-phase of the cell cycle. 

This observed downregulation is correlated with RLFS density. As RLFS formation post-

collision drives stable fork stalling, this strongly suggests that transcription at these loci 

is temporally silenced to avoid genotoxic TRCs. 

  

My analysis, although descriptive in nature, supports the active model of transcription-

replication coordination. Furthermore, the unveiling of HO TUs as a novel class of 

transcription units provides a framework to study regulatory mechanisms that mitigate 

genotoxic TRCs. For example, increases in transcription generated by the inhibition of 

the positive elongation factors Spt6 and BRD4 in asynchronous tumor cell lines have 

shown phenotypes suggesting the prevention of genotoxic TRCs (Lam et al., 2020; 

Nojima et al., 2018). However, it is unclear how these regulators affect global HO TU 

transcription. It is possible that different regulators silence HO TU subsets based on 

pervasive transcript association. The wealth of publicly available datasets can be 
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leveraged to investigate global HO TU regulation and identify the compendium of likely 

regulators. Ultimately, this work unveils a global principle of transcription-replication 

coordination, and provides a framework to study transcriptional regulation in the context 

of DNA damage prevention, especially in tumor cells. 

  

INO80 and MOT1 in NSCLC 

Non-Small Cell lung cancer (NSCLC) remains the leading cause of cancer-related death 

in the United States (Herbst et al., 2018). Current standards of care only extend survival 

on the scale of months, hinting at the need to develop more efficacious next-generation 

therapies (Alanazi et al., 2020; Fennell et al., 2016; Herbst et al., 2018). NSCLC tumors 

have characteristically high levels of replication fork stalling (replication stress), as 

indicated by a rapid mutation rate and high ssDNA load (Boucher et al., 2019; Kandoth 

et al., 2013; Zhao et al., 2009). Increased ssDNA leads to depletion of the fork-

stabilizing heterotrimeric complex RPA, which ablates the ability of cells to buffer further 

increases in stress (Toledo et al., 2017; Toledo et al., 2013). This suggests that NSCLC 

tumors would be sensitized to perturbations that induce an increase in stalled replication 

forks. Indeed, NSCLC models with loss-of-function mutations in the SWI/SNF subunit 

SMARCA4 have shown elevated sensitivity to CHK1 inhibition, which mechanistically 

catalyzes increased origin firing and the generation of stalled forks (Kurashima et al., 

2020). However, CHK1 inhibition has been found to be highly toxic in the clinic (Dent, 

2019). The discovery of novel mechanisms leveraged by NSCLC tumors to suppress 

replication stress could potentially lead to the identification of promising therapeutic 

targets.  
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INO80 is a chromatin-remodeling complex that is capable of regulating various DNA 

metabolic processes, including transcription (Poli et al., 2017). Past work has identified 

INO80 as an oncogenic factor in NSCLC (Zhang et al., 2017). However, the mechanism 

by which INO80 facilitates tumor growth remains unclear. Recent work in yeast and 

mouse embryonic stem cell models unveiled that INO80, along with the TBP antagonist 

MOT1, prevents genotoxic TRCs through silencing transcription at RIS (Topal et al., 

2020). Interestingly, INO80 and MOT1 only prevented DNA breaks under conditions of 

replication stress, suggesting that an increased stress load sensitizes cells to genotoxic 

TRCs. Indeed, a separate study found that INO80 deletion in yeast only reduced 

viability in media containing hydroxyurea (Papamichos-Chronakis and Peterson, 2008). 

The tumor-selective toxicity observed upon INO80 inhibition in human studies suggests 

that the INO80/MOT1 axis might functionally prevent genotoxic TRCs, and thus 

replication fork stalling events, in NSCLC (Zhang et al., 2017). However, this possibility 

has not been investigated. 

  

In this thesis work, I show that INO80 and MOT1 bind at HO TUs in the A549 NSCLC 

model, and cooperatively silence transcription at a subset with elevated H2A.Z levels. 

Furthermore, I demonstrate that INO80 and MOT1 cooperatively suppress bulk DNA 

damage and facilitate tumor cell growth. DNA damage prevention by INO80 and MOT1 

was found to be both replication and R-loop dependent. This collectively supports a 

model by which the INO80/MOT1 axis preserves the viability of NSCLC by preventing 

genotoxic TRCs. Interestingly, I found that INO80 inhibition generated DNA damage in 

A549, but not immortalized lung epithelial cells, suggesting that INO80 might be 
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leveraged as a DNA protectant under conditions of tumor-specific replication stress. 

Indeed, the A549 cell line has activating KRAS and inactivating SMARCA4 mutations, 

which generate replication stress phenotypes in controlled experiments. 

  

This work elucidates an underlying mechanism that contributes to INO80’s oncogenic 

function in NSCLC, translates a regulatory axis found in other organisms to human 

cells, and provides functional evidence that the silencing of HO TUs is linked to the 

prevention of DNA damage in tumors. These findings further support the active 

transcription-replication coordination model. On a large scale, the observations made in 

this paper support the targeting of INO80 therapeutically, possibly in combination with 

drugs that target replication forks. In support of this, the Rad52 inhibitor DL-DOPA has 

been found to selectively amplify INO80 inhibition induced apoptosis in PC3 cells 

(Prendergast et al., 2020). Interestingly, the metabolite Inositol-6 (IP6) directly inhibits 

INO80 in-vitro, and demonstrates anti-tumor effects in-vivo (El-Sherbiny et al., 2001; 

Shen et al., 2003; Vucenik and Shamsuddin, 2003). However, poor solubility and rapid 

metabolism limits the bioavailability of IP6 (Vucenik and Shamsuddin, 2003). The 

development of INO80-targeted small molecules with desirable pharmacokinetic and 

pharmacodynamic properties could potentially lead to novel therapeutics with enhanced 

clinical profiles relative to the current standards of care.  
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