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ANOMALIES IN QUANTUM FIELD THEORY 

AND 

DIFFERENTIAL GEOMETRY 

by 

Juan Luis Manes 

ABSTRACT 

Anomalies in field theory appeared first in perturbative computations 

involving Feynman diagrams. It is only recently that differential geometric 

techniques have been used to obtain the form of gauge and gravitational 

anomalies in a direct and simple way. This is possible because of the topo-

logical nature of the anomaly. 

In the first chapter of this thesis the gauged Wess-Zumino action is con-

structed by differential geometry methods. After reviewing the relevant tech-

niques, an expression for the action valid in any (even) number of space-time 

dimensions is obtained. This expression is compared with Witten's result in 

four dimensions. 

The link between topology and the anomaly is provided by the appropri-

ate index theorem. The index density is a supersymmetric invariant poly-

nomial from which the anomaly and other related objects can be obtained 



2 

through the use of the "descent equations". A new proof of the Atiyah-Singer 

index theorem for the Dirac operator is presented in chapter 3. This proof is 

based on the use of a WKB approximation to evaluate the supertrace of the 

kernel fora supersymmetric hamiltonian. Chapter 2, which is dedicated to 

the development of the necessary WKB techniques, contains also a discussion 

of mechanical systems with bosonic and fermionic degrees op freedom. 
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INTRODUCTION 

Chiral anomalies in field theory appeared first in perturbative computa-

tions involving Feynman diagrams (see [1,2] and references therein). Later, 

Wess and Zumino [3] realized that non-abelian chiral anomalies had to satisfy 

certain consistency conditions. These consistency conditions could be used to 

determine the non-abelian anomaly once the abelian case was known. They 
\ 

also provided a. way of checking the many different expressions obtained per-

turbatively. 

However, it is only recently [4,5,6] that differential geometric techniques 

have been used to obtain solutions to the consistency conditions in an elegant 

and simple way. This has provided an alternative method to the lengthy 

and complicated Feynman-diagrammatic computations. These techniques 

have also been extended to the study of gravitational anomalies [7,8] and 

anomalies in supersymmetric gauge theories [9]. 

In a different line of developments, Witten [10] has obtained an expression 

for the Wess-Zumino effective action from topological considerations. This 

effective action was originally constructed [3] from the non-abelian anomaly 

by using the Wess-Zumino consistency conditions. Witten's result was sur-

prising not only because of the topology involved, but also because the action 

appeared as a finite polynomial in the gauge fields. 

In chapter 1 of this thesis I extend the differential geometric techniques 

to the calculation of the Wess-Zumino action. A general expression valid 

in any (even) number of space-time dimensions is obtained. This expression 
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coincides with Witten's result in four dimensions and it is simpler to evaluate 

in that it does not require the use of a trial and error method. A review of 

the relevant differential geometric techniques is also presented in chapter 1. 

The link between topology and the anomaly is provided by the appro­

priate index theorem [11,12]. The index density is a symmetric invariant 

polynomial from which the anomaly and other related objects can be ob­

tained through the use of the "descent equations" [5,6]. 

The use of supersymmetry has made it possible to give simple proofs of 

the index theorem [13-15J, based on concepts familiar to physicists. However, 

these proofs are somewhat obscured by the presence of path integrals, which 

are always tricky to define and hard to evaluate in a. rigorous way. 

A conceptually simpler approach can be found in ref. [16], which presents 

a. proof of the Atiyah-Singer index theorem for the Dirac operator. This 

proof uses a WKB approximation instead of path-integrals, but only the 

case of vanishing external gauge fields is treated. The generalization to non­

vanishing gauge fields is non trivial, and is the subject of chapter 3 of this 

thesis. The necessary WKB techniques are developed in chapter 2, which 

contains a study of mechanical systems with bosonic and fermionic degrees 

of freedom. 
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1 DIFFERENTIAL GEOMETRY AND THE 

WESS-ZUMINO ACTION 

Some new developments have taken place recently concerning the mathe­

matical structure of chiral anomalies. The use of differential geometry meth­

ods has made possible the explicit calculation of both abelian and non-abelian 

chiral anomalies without evaluating Feynman diagrams [4,51, and the form of 

the Wess-Zumino [31 terms as well as its new a priori quantization has been 

derived by Witten [10] on the basis of topological considerations. Further­

more, Witten has used a trial and error method to gauge the Wess-Zumino 

term, and has found that the dependence of the resulting action on the gauge 

fields is in the form of a finite polynomial. 

In this chapter, a general expression for the Wess-Zumino action is ob­

tained by differential geometry techniques. This expression, which is evalu­

ated directly without the use of a trial and error method, yields the action 

in the form given by Witten [10], except for some minor discrepancies that 

we discuss in detail. 

We consider a theory of fermions interacting with external gauge fields. 

The spinor field has internal degrees of freedom and transforms under a 

representation of a (flavor) group G with generators {.Ac}. The lagrangian 

includes vector and axial vector gauge fields Vjj

C and A!: 

(1.1 ) 

We will use the symbol is for the equivalent matrix in 2n-dimensional space-



time, i.e. 
2n-l 

- .·n+l II ;~ ;5 =-. 
~=O 

4 

and ;~ = 1 

The fields v.: and A~ will be combined in the Lie algebra-valued I-forms V. 

A general local transformation on the spinor fields is written 

and if we define the O-forms 

.. , 
a == -sa "'., 

(1.2) 

(1.3) 

(1.4) 

the transformation of the gauge fields can be written in a compact way: 

(1.5) 

where 9 = eU E G x G. 

It is well known that the vector and axial vector currents 

(1.6) 

satisfy anomalous non-conservation laws: 

(1. 7) 

." ,. 
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The functions Gr and G: were obtained by Gross and Jackiw [2] and 

Bardeen [1], who was able to remove the anomaly from the vector current 

by adding a suitable counterterm to the lagrangian. 

Wess and Zumino [3] showed that the functions Gr,A could be obtained 

from a functional W(A, V, e) containing the gauge fields and an additional 

field e (a meson octet in the case G E SU(3», such that eie E G, as 

(1.8) 

where V" A" e, are the transformed of V, A, e by the local action of 

9 E Gx G. In their original form the Wess-Zumino effective action W(V, A, e) 

was not apparently a finite polynomial in the gauge fields. As it was already 

noted, this fact only became clear with the explicit evaluation of the action 

by Witten [101, who obtained it as a functional W(R, L, U) depending on the 

left and right gauge fields and U = eiE • 

More recently, it has been possible to obtain the functions Gr,A by dif-

ferential geometry methods [4,5] based on the use of the Wess-Zumino con-

sistency conditions that these functions must satisfy. Also, Zumino [5] has 

given an explicit expression for the action in the form W(R, L, gR, gL) = 

W(R,gR) - W(L,9L), where gL and gR are elements of G. This expression 

is obtained directly as a polynomial in the gauge fields, but differs from the 

one given by Witten in that here we need two octets eR and eL of meson 

fields. 

Since these differential geometry techniques are relatively unknown among 

physicists, we find it necessary to explain them in some detail. This is done in 

sect. 1, where proofs have been omitted in general, trying instead to empha-
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size the notational conventions, definitions and main equations used in the 

rest of this work. The reader is referred to the original papers [4,5,17,18,6] for 

a more complete presentation of the subject. This techniques are extended 

in sects. 2 and 3, which contain the main results of this chapter, so as to give 

a functional W(R, L, U) depending on a single octet of meson fields. For the 

case of four-dimensional space-time this functional is actually constructed 

and compared with Witten's result in sect. 4. 

1.1 Differential geometry and the effective functional 

In what follows it will be more convenient to write the equations in terms 

of the left and right gauge fields Land R: 

(1.9) 

with R = V + A and L = V-A. r and 1 are the right and left projection 

operators: 

~ 1 
1= -(1 -,5) 

2 

Defining left and right spinors tPL = ItP and tPR = rtP the lagrangian (1) can 

be split: 

(1.10) 

A general transformation g(x) E G x G will be written: 

(1.11) 

with gR = ellR = e6+a and gL = ellt. = e6 - a . From (1.5), (1.9) and (1.11) it 

follows that the gauge fields R = AR and L = AL transform independently 
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of each other: 

H=L,R 

(1.12) 

where FH = dAH + Ak (d is the exterior differential operator, and it IS 

understood that Ak stands for AH 1\ AH). 

The left and right currents have anomalous covariant divergences: 

(1.13) 

The functions G~ were obtained explicitly by Gross and Jackiw [21, and in 

fact 

77R = -77L = 1 (1.14) 

These functions can also be obtained by differential geometry methods with-

out the use of Feynman diagrams [4]. To this end we have to define a number 

of differential geometric objects. Given the left-right symmetry expressed in 

eqs. (1.12) and (1.14), in what follows the index H will not be written. The 

first object is the nth Chern character O2,,: 

(1.15) 

The form O2,, is closed (dO::" = 0), and as a consequence can be locally 

expressed as the total differential of a form w~"_l(A). An explicit expression 

for w~"_l is obtained by considering a I-parameter family of gauge fields Ac. 

Under an ordinary variation ct, 0::" experiences a variation given by 

(1.16) 
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Choosing the parametrization Ae = tA, (1.16) can be readily integrated and 

we get for W~n-l 

W~n-l (A) = n fal St tr (AF,"-l) 

with Fe = dAt + A: = tdA + f'A 2 = tF + t(t - I)A2. 

( 1.17) 

Since W~n-l is defined by dw~n_l = 02n, we could add a total differential 

to (1.17). This fact will be exploited later in sects. 2 and 3. 

02n is invariant under gauge transformations. This allows the definition 

of a form Wln _2(A, v){g = eV
) as follows. From the definition of W~n_l' 

(1.18) 

This means that SvW~"_l is closed and can be locally expressed as a total 

differential: 

(1.19) 

The form W~n-2 is important because it gives directly a, solution to the Wess-

Zumino consistency conditions, and contains the anomalous divergences G. 

in (2n - 2)-dimensional space-time: 

. 1 in 
Kn= -....,.-.....,--

n! (21r')n-l (1.20) 

(see appendix A for an explicit expression for W~"_2') 

We can now proceed to the construction of an effective functional. We 

define formally 

(1.21) 

where D2n- 1 is a (2n-l)-dimensional disk which has as boundary space-time 

compactified to a sphere s2n-2. Under a gauge transformation 
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(1.22) 

and W' satisfies 

(1.23) 
,< 

This definition of W' is not totally satisfactory, since although W~"_l is a 

finite polynomial in the gauge fields, it is not a total differential, and when 

we try to express it as an integral over (2n - 2)-dimensional space-time, the 

integrand becomes nonlocal, ie., contains interactions of arbitrary high order. 

This problem can be fixed by considering the following property of w~n-l: 

with A, == T(g)A = g-l Ag + g-ldg and F, = g-l Fg. 

In this expression W~n-l (g-ldg, 0) has a topological significance [101. We 

will refer to it as A2n- 1(g). An explicit expression follows easily from (1.17): 

(1.25) 

where ,8(n, n)is the ,8-function given by 

,8(n, n) = r(n)r(n) = (n - 1)!(n - I)! 
r(2n) (2n - I)! 

An expression for 02,,-2 in which it appears as a finite polynomial in A 

and V == dgg- 1 can be found in appendix A. Since F is a function of A, we 

will write W~"_l (A, F) == w~n_l (A). From (1.12) we have the group property 

T(g)T(h) = T(hg) (1.26) 
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and we get the identity 

In other words, T(g)W~n_l is invariant under the transformation A - Ah, 

9 - h-1go If we define 

(1.28) 

by (1.27) we have 

\ OWl OW'I ovlr = ovlr = GIr(A) 
v=o v=o 

(1.29) 

and by (1.24) W(A, g) can be written 

W(A, g) = -Kn r A2n- 1(g) + dCX2n-2(A, g) 
JD2"_1 

(1.30) 

Now the gauge fields appear only in the second integral, which is explicitly 

a finite polynomial in A and V = dgg- 1 as given by (A.3). There exists only 

a finite number of vertices containing the gauge fields and g. Since A2n- 1(g) 

cannot be written as a total differential, we still have an infinite number of 

vertices, but only in the field g. 

Taking into account the signs given by (1.14), the complete functional is 

(1.31) 

where gR(X) = e i€ll(z) and 9L(X) = ei€dz)) are elements of G. 

1.2 The functional W(R, L, U) 

In this section we modify the functional W(R, L, gR, gd so as to make it 

depend on a single field U(x)(U E G) instead of gR and gL. To this end we 
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define 

(1.32) 

and notice that by (1.28), (1.31) and (1.32) the effective functional can be 

written as 

Here T(gR, gL) defines the action of an element 9 = gRr + gLl E G x G: 

(1.34) 

If we define the nth Chern character for the whole group G x G as 

(1.35) 

then W~"_l (R, L) as given by (1.32) is a solution to the equation 

(1.36) 

In the next section we will show that another solution w~"_l{R,L) to (1.36) 

can always be found, such that it is invariant under vector gauge transfor-

mations: 

(1.37) 

By (1.36) it can only differ from (1.32) by a total differential: 

" 

(1.38) 

If we consider the functional 

(1.39) 
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and use Stokes theorem (aD2n- 1 = S2n-2), we can see that W is related to 

W by 

piece of (1.40) is invariant under the local transformation 

This means 

L - L"z.; 

SW SW H 
'TT=TT=G., H=L,R 
OUR oUR 

(1.41) 

(1.42) 

Also, in the next section S2n-2(R, L) will be calculated explicitly as a finite 

polynomial in the gauge fields. W is thus local in Rand L, and by (1.42) is 

a satisfactory effective functional. 

Now we use the group property to combine gR and gL into one single 

field: 

(1.43) 

since T(gR,gL) is a vector gauge transformation and has no effect on w~"_l' 

If we define U = gLgi/ E G, we have 

(1.44) 

where e is the identity element of G, and from (1.41) U transforms as 

(lAS) 
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We can now define the effective functional W(R, L, U): 

By (1.38) and (1.24) the last piece can be written 

T(e, U)W~n_1 = W~n_l (R, L) - A:Zn - 1 (U) - do::zn-:z(L, U) + dS:zn-:z(R, Lu) 

(1.47) 

and the final expression is 

W(R, L, U) = Kn r A2n- I (U) + Kn r 0:2n-2(L, U) - S:Z"-2(R, Lu) 1 D2,,-1 152"-2 

(1.48) 

where Lu = U-I LU + U-1dU, and U(x) = ei~(:I) is an element of G. 

W(R, L, U) is the Wess-Zumino effective action. The first integral con-

tains the Wess-Zumino term and the second one is the result of its gauging. 

Notice that, by (1.37), 52"-2 has the following behavior under vector gauge 

transformations: 

(1.49) 

and it follows 

6 ( r () _ 6W(R,L,U) -v 
6f3" W(R, L, U) + 1

5
2"-2 52"-2 R, L) = 6f31e = G Ie (R, L) = 0 

(1.50) 

i.e. the addition of S2n-2(R, L) to the lagrangian removes the anomaly from 

the vector current. S2n-2(R, L) is thus equivalent, in four dimensions, to the 

counterterm used by Bardeen [5] to conserve the vector current and we will 

refer to it simply as 'the counterterm'. An expression for S'ln-'l (R, L) valid 

for any n is derived in the next section. 
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It is an interesting fact that the counterterm, which was first used by 

Bardeen to get the conserved vector current form of the anomaly, appears 

in our method as an essential ingredient in the construction of W (R, L, U), 

which by (1.42) gives the anomaly in the left-right symmetric form. 

1.3 The counterterm 

To find solutions to the equation 

(1.36) 

in a systematic way, it is convenient to express O2,,, as a function of V+ = 

rR + 1L: 

(1.51) 

where F+ = dV+ + V'; = (dR+R2)r+ (dL+L2)1, and D x D is the dimension 

of the Dirac matrices. The equivalence of (1.35) and (1.51) follows from the 

fact that r and 1 are projection operators and "15 = r -1. 

We consider a 2-parameter family of one-forms : 

(1.52) 

with V_ = V -"IsA = rL+1R. An ordinary variation (CA,CJ.I.) of the 

parameters induces a variation in O2,,, given by 

c02",(A'\~) = ~ d tr ("!scA.\/"F:;l) 

where cA'\~ = CAV+ + CJ.l.V_ and F,\~ = dA,\", + Ai~. 

Now Yfe observe that ll:zn (Aoo) = 0 and 

(1.53) 
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(1.54) 

From this it follows that 02n(V+) can be expressed as the differential of ~ 

line integral 

(1.55) 

where the integrals are along the oriented paths (a), (b) or (c) shown in fig. 

1. Each path gives a different solution to eq. (1.36). In particular, if we 

integrate along the straight line JJ. = 0 we get the solution (1.32): 

(1.56) 

The same result is obtained by integration along the line A = O. It is easy to 

show (see appendix B) that the solution obtained when we integrate along 

JJ. + A = 1 is invariant under vector gauge transformations, i.e. 

(1.57) 

From (1.56), (1.57) and (1.38) an expression in which dS2n- 2 (R, L) is repre-

sen ted by a closed line integral is readily obtained (see fig. 2) 

(1.58) 

(Here all the integrals are along straight lines.) 

A more convenient expression giving directly 52n- 2 (R, L) is constructed 

from (1.58) in appendix B. The result is 

( n(n - 1) !! (V V F"-2) 52n- 2 R,L) = D Str is - + ).~ (1.59) 
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where the integral is over the interior of the triangle represented in fig. 2. 

The following property is useful in the actual evaluation of (1.59): given the 

trace of a monomial containing IS and the fields V± and/or F±, the reversal 

of all the signs in V± and F± reproduces the original expression with opposite 

sign. For instance 

1.4 An application 

In this section the functional W(R, L, U) is actually constructed for the 

case n = 3, i.e. four-dimensional space-time. W contains three functions 

that have to be evaluated: 

W(R, L, U) = Ks r As(U) + Ks ( a.(L, U) - S.(R, Lu) iDs is. (1.60) 

From (1.25) 

(1.61) 
I 

and from (A.3) 

a.(L, U) = - i tr {(dUU-1)(LdL + dLL + L 3
) 

- !(dUU-1)L(dUU-1)L - (dUU-1)3 L} (1.62) 
2 

S. is obtained from (1.59) as a function of the fields V+ and V_: 

Using the fact that rand i are projection operators and that in four dimen­

sions tr r=tr 1=2, S .. may be written in terms of Rand L 
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In this last expression we have made the substitution 

(1.65) 

The normalization constant K3 is given by (1.20) 

(1.66) 

After collecting the terms arising from (1.61), (1.62) and (1.64) with 

(1.65), and making the substitution 

(the left- and right-hand side of (1.67) differ by the total differential of 

RdU-l LU) to get a more symmetrical expression we obtain 

where the 4-form Z is 

Z = - tr {UL(LdL + dLL + L3) - (UL)3 L} - tr {R - L} 

+ ! tr (ULLULL) - ! tr {R - L} - tr (U- 1 LUR3
) 

22. 

+ tr (URU- 1 L3
) - tr {U- 1 LU(RdR + dRR)} 

+ i tr {RU- 1 LU RU-1 LU} 

Here UL stands for dUU-l and UR for U-1dU. 

( 1.69) 
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Eq. (1.69) is our final result. To compare it with the expression obtained 

by Witten [101 we must notice that AR == -iR and AL == -iL due to a 

different convention in the definition of the covariant derivative. We find 

some minor differences with Witten's effective functional, which he calls t, 
which does not seem to have the prescribed transformation properties. If 

one makes the following changes in Z,,"a{J (of t): 

(ii) Interchange R - L in the second term of the third line: 

second line; then the final expression transforms correctly, and the relation 

with (1.69) is 

(1.70) 

The last term, being a total differential, vanishes upon integration by parts, 

and the first term is invariant under both vector and axial vector gauge 

transformations and is therefore irrelevant. 

Witten has established the a priori quantization of the Wess-Zumino 

action in the sense that W has to be multiplied by an integer which he has 

found to be equal to the number of colors Nt: [101. Taking this into account, 

the anomalous contribution of the field U to the baryon current can be 

calculated directly from (1.89). To this end, consider a local transformation 

of the fundamental spinor fields in the lagrangian (1.1) given by 

( 
vO{x)) 

tP{x) - exp iff; tP{x) (1.71) 
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where liNe is the baryon number of a fermion (quark). By (1.3) and (1.4) 

this corresponds to a generator .Ao given by 

(1.72) 

where 1 is the f x f unit matrix (f is the number of flavors). 

Then the anomalous vector baryon current is easily computed: 

(1.73) 

since tr(Ui)=tr(Ui) Etr(U-1dU)s. Note that Jt" (anomalous) vanishes iden-

tically. 

Eq. (1.73) coincides with the expression given by Witten [10] by analogy 

with the electromagnetic anomalous current. The addition of the U(I) gener-

ator .Ao to the generators of SU(3} increases the number of mesons to nine, the 

new one being a pseudoscalar (singlet). From the fact that fls(SU(2)) = Z 

it is clear that all the meson fields but the pion triplet can be set equal to 

zero, and one still gets an anomalous baryon number contribution Bo [19]: 

(1.74) 
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Figure captions 

1. The (A, JL) parameter space and paths associated with different solu­

tions to eq. (1.36) 

2. Domain of integration for 82",-2 

\ 
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2 WKB METHOD FOR BOSE-FERMI 

QUANTUM-MECHANICAL SYSTEMS 

The purpose of this chapter is to develop a WKB approximation for the 

kernel of a mixed (Bose-Fermi) quantum-mechanical system. This approxi-

mation is used in chapter 3 to compute the index of the Dirac operator 

which, as we shall see, can be written as the supertrace of the kernel for the 

appropriate supersymmetric system. 

We shall consider the computation of the kernel for a quantum mechan­

ical Hamiltonian it which is a Cunction of bosonic operators x" and p" and 

fermionic operators t and Sa. These operators satisfy 

[• • "l 1t. ell p", Z = "70" , 
and any bosonic operator commutes with any fermionic operator. 

The canonical fermionic momenta are conventionally defined by 

and therefore 

(2.1) 

(2.2) 

(2.3) 

In the classical description of the system x" and PIA are ordinary real 

variables, and Ba, Sa and 1T'a are anticommuting or Grassman variables. 

Some concepts of classical mechanics, generalized to systems with fermionic 

variables, are presented in section 1. These concepts are used in section 2 to 

give a WKB formula for the kernel of a general quantum mechanical Hamil-

tonian with bosonic and fermionic operators. In the case of a purely bosonic 
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system this formula reduces to the well-known expression [23,24]. 

(2.4) 

where S is the classical Hamilton-Jacobi function and D is the Van Vleck 

determinant. Some ordering problems arising when fermionic variables are 

present are analyzed in detail. 

Section 3 is dedicated to the computation of traces and supertraces of the 

evolution operator in the WKB approximation, and a general analysis of the 

validity of this approximation is presented. This analysis is used in chapter 3 

to show that, in the case of the supersymmetric quantum mechanical system 

used to prove the index theorem, the WKB formula is exact. 

2.1 Classical mechanics with fermionic variables 

To simplify the notation we shall use Q instead of (z,8) and P instead 

of (p,1r). Omitting obvious indices, the action functional is 

1 = fo' QP - J((Q, P)) dt' (2.5) 

The equations of motion are obtained by imposing 0 I = 0 under any 

arbitrary variation with oQo = oQ, = O. The result is 

oJ( - QoP + oQP = 0 (2.6) 

which can also be written 

(2.7) 

where 

u(k) = { 
+ 1 if Q k is bosonic 

(2.8) 
-1 if QIc is fermionic 
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Note that the order in which factors are written is important because of the 

presence of Grassman variables. 

We shall now describe some functions which will be used in the WKB 

construction of the kernel. These are the modified Hamilton-Jacobi function 

and the generalized Van Vleck superdeterminant. Recall that the Hamilton-

Jacobi function or "classical" action is defined by [251 

(2.9) 

where the integration is along the classical trajectory from (Qo; 0) to (Qt it). 

Under a variation of t, Qt and Qo the change in the classical action is 

ss = SQcPc - SQoPo - )1St (2.10) 

This last expression gives the initial and final momenta as functions of Qo, Qt 

and t once S is known 

as as 
Pc = aQc (Qc,Qo;t), Po = - aQo (Qc,Qo;t) (2.11) 

and contains the Hamilton-Jacobi equation 

as ( as) at +)1 Q" aQc = 0 (2.12) 

The generalization of the Van Vleck determinant [221 to a system with 

bosonic and fermionic variables is given (up to a sign) by the superdetermi-

nant [261 of the supermatrix of second derivatives of the classicaf action with 

respect to initial and final coordinates 

',;:l, ... ,N (2.13) 
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By differentiating the Hamilton-Jacobi equation and using eq. (2.11) and 

the following property of the superdeterminant [26] 

6( Sdet M) = Sdet M· Str (M- 16M) (2.14) 

where Str is the supertrace, a continuity equation for D is easily obtained 

(2.15) 

A derivation of this equation together with the definitions of supertrace and 

8uperdeterminant is presented in Appendix C. 

It often happens, when one considers a system with fermionic variables, 

that the classical action S(Q"Qo,t) is not defined because there is no clas-

sical trajectory from (Qo,O) to (Q"t). As a simple example consider the 

following Hamiltonian 

The equations of motion are 

with solutions 

. aN 
IJ = -- = -ilJ 

a1r 

. aN . 
, 11" = -- = '11" 

alJ 

it (J IJ -it 1rt = 1I"oe , ,= oe 

(2.16) 

(2.17) 

(2.18) 

Obviously, for given t, we cannot specify both (Jo and (Jc, but we can instead fix 

(Jo and 11",. This fact motivates the consideration of certain modified classical 

actions S which are defined as Legendre transforms of S with respect to a 

subset of variables: 
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i:l, ... ,R j:R+l, ... ,N (2.19) 

where now 

rC 
• 

S(Qti, Pc;, Qo; t) == 10 (QP - )I)dt' (2.20) 

and the integral is along the classical trajectory from (Qo; 0) to (Qh, P,i ; t). 

S satisfies 

(2.21) 

which implies 

as . as as 
PCi = aQci ' Qc; = -<7(;) apc; , Po = - aQo (2.22) 

and the corresponding Hamilton-Jacobi equation is 

(2.23) 

The generalized Van Vleck superdeterminant is 

i : 1, ... , R j : R + 1, ... , N k: 1, ... ,N (2.24) 

and satisfies the following continuity equation 

an a (- a)l ) . a (- a)l ) -+- D- -u(J)- D- =0 
at aQ'i aPtj apti aQti 

(2.25) 

In practice, it will be particularly useful to Legendre transform only with 

respect to the fermionic variables. The reason is that for most of the cases of 
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interest there exists a classical trajectory specified by the initial coordinates 

together with the final fermionic momenta and bosonic coordinates. In this 

case 

S'(z" 9" Zo, 90 ; t) = S(ze, 9e, zo" 00 ; t) - igeO, 

8 2S' 8 2S' 
8z,8zo 8z,890 

D' = (_)N Sdet (2.26) 

. 82S' ,--=--
80t8zo 

where we have used 9 instead of 1r = -i9. 

2.2 WKB expression for the kernel 

Given a quantum mechanical Hamiltonian 

(2.27) 

the kernel K(Zh 9" zo, 90 ; t) is defined by 

(2.28) 

where the wave function q, satisfies Schrodinger's equation 

(2.29) 

and is normalized with respect to the following inner product [27,28] 

(2.30) 

An explanation of the conventions used in the integration over Grassman 

variables is given in Appendix D. Complex conjugation takes Oa into 9a and 

reverses the order of all anticommuting variables. 
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Note that, with respect to the above inner product, PI-' = (Ii/i) afJ. and 
.. 

xl-' = X~ are hermitian operators, and 00. = a / a flo. and 80. = flo. are hermitian 

conjugates of each other. 

Equations (2.28) and (2.29) imply that K satisfies 

( 
~ Ii a a ) Ii aK 

)J Xt ,"7 a ~, afl ,(Jco K(x" (Jc; Xo, (Jo; t) + "7-a = 0 
'Xt Co , t 

(2.31) 

and 

(2.32) 

Using the notation of the preceding section, the kernel K( QCi, Ptj , Qo.; t) 

is defined by 

, : 1, ... , R 

1 : R + 1, ... , N 

Ie : 1, ... , N (2.33) 

where i is the appropriate Fourier transform of 'It. K is, up to a sign, the 

corresponding Fourier transform of K. (See Appendix D for details.) 

In what follows we shall obtain an approximate expression for K. We 

shall assume that the "exact" kernel K is given, for small t, by an asymptotic 

expansion of the form 

(2.34) 

where C is a constant and S has been defined in eq. (2.19). The WKB 
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approximation will be obtained by keeping only the first term in the series: 

(2.35) 

The kernel k satisfies the Schrodinger equation 

( .... lia)-
)I(Q"Pt ) + -; at K = 0 (2.361 

where (henceforth the subscript t is omitted) 
) 

(2.37) 

and goes to the appropriate Fourier transform of the delta function as t - o. 

These conditions determine, in principle, the functions Ai. 

By commuting Schrodinger's operator through exp(i 5) we get 

(2.38) 

where Di are differential operators independent of 11.. It will be shown below 

that Do coincides with the Hamilton-Jacobi equation for 5 and therefore 

vanishes identically. Substitution of (2.34) and (2.38) into Schrodinger's 

equation yields the following tower of differential equations 

(2.39) 
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For a sufficiEmtly regular Hamiltonian, these can be solved iteratively with 

appropriate boundary conditions to give an expression for the kernel valid 

for small t.l Here we are interested only in the first of these equations 

which, as we shall see, is solved by 

(2.40) 

where b is the generalized Van Vleck superdeterminant (2.24). This result 

is proven by obtaining Do and Dl for a general Hamiltonian. The notation is 

somewhat simpler when the Hamiltonian is given in coor~inate represent am 

tion, i.e., when we consider K(Q" Qoi t) and here we shall restrict ourselves 

to this case. The proof for general k is essentially the same. 

Since many quantum Hamiltonians may be associated with a classical 

system, we must specify to which particular one eq. (2.40) applies. We shall 

assume that the classical Hamiltonian is an analytic (super) function of Q. 

and Pic and is expanded as a power series in p.: 

JI(Q, P) = Lgr(Q)fr(P) (2.41) 
r 

where fr is a homogeneous polynomial of degree r in the momenta. The 

associated quantum Hamiltonian is taken to be 

it = )I(Q, P) = ~ L [grU~)' fr(P) L 
r 

(2.42) 

where the bracket is 

1 For longer times it might be necessary to add contributions from various classical trajec. 

toriea connecting the initial and final configurations [241· 
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{ 

-1 
a{A, B) = 

+1 

if A and iJ are fermionic (odd) operators 
(2.43) 

otherwise 

To comput~ Do and Dl we first expand 

(2.44) 

and 

(2.45) 

where O'{k} has been defined in eq. (2.8). 

Next, we observe that the bracket in eq. (2.42) can be written 

Collecting the terms of order tr,o from (2.45) and (2.46) with (2.44) yields 

( as) as (as) as Do=~gr(Q}fr aQ +&=N Q'aQ +-at=O (2.47) 

which, as mentioned above, is the Hamilton-Jacobi equation. 

After multiplying by VD, the terms of order tr, are proportional to 

agr afr (as) a (a ( (as))) aD +a(k, fr) aQ. ap. aQ D = aQ. ap. gr(Q)fr aQ D + at 
(2.48) 

Summing over r gives 

(2.49) 



32 

This is the continuity equation satisfied by the superdeterminant D, and 

this part of the proof is thus completed. Had we considered k and b, we 

would have obtained eqs. (2.23) and (2.25) instead of (2.47) and (2.49), as is 

clear from eq. (2.37). 

To complete the proof we still have to show that the WKB expression 

(2.50) 

has the correct limit as t - O. This will be done for the kernel Kt.v (xe, ie, xo, 80 ; t). 

The reason is that, although ultimately we want the kernel K in coordinate 

representation (in order to compute traces, for instance), the corresponding 

action S(xe, Be, xo, 80 ; t) does not exist in general, as mentioned in section 1. 

Once K' is known we can obtain K by a fermionic Fourier transform. 

As this part of the proof involves the study of the action when t - 0, we 

shall have to make some additional assumptions about the system. We shall 

assume that the Lagrangian is of the following form 

J,J., &I : 1 ... n 

a : L .. m (2.51) 

and that g/A'" B/A and Ware analytic, with detilg/Ailil = g #- O. The canonical 

momenta are 

(2.52) . 

and the Hamiltonian is given by 

(2.53) 
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It is easy to show (see Appendix E) that for this system 5' has the following 

asymptotic form 

(2.54) 

From this we obtain for the superdeterminant 

..fiji = t:/2 ( v' g(zo) + O(X) + O(t)) (2.55) 

and therefore 

(2.56) 

This is, up to a constant, the Fourier transform with respect to 6, of the 

delta function 6(z, - zo)6(6, - 90). This shows that K:.v has the correct limit 

as t - O. Using the conventions for the fermionic Fourier transform (s,ee 

Appendix D) the constant of proportionality C' is determined and we have 

K:"(z"S"zo,60 ;t) = C'exp (*5') VlY 

C' - (-~)'" 
- (211'i~)"/2 

where n(m) is the number of bosonic (fermionic) coordinates z$'(94 ), and 5' 

and D' have been defined in eq. (2.26). 

Before closing this section we discuss how to use this WKB formula with 

a quantum Hamiltonian )I(Q, P) which is not of the form given in eq. (2.42). 

For any it analytic in Q and P, we can always commute the operators in 

such a way that we obtain a Hamiltonian of the form (2.42) plus' terms 
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proportional to Ii, Ii 2, etc. 

it = )J(Q, P) = ~ L [g,.(Q), f,.(P) L + lH3 1 + 1i2S2 + ... ,. 

~i = 9,(Q, P) (2.58) 

It is easy to see that, for purely bosonic hermitian Hamiltonians, 9 1 

always vanishes. For instance, in coordinate representation 

(2.59) 

Since 9 2,9, ... do not contribute to Do or Dl (see eq. (2.38)), it is clear that 

the WKB formula can be used directly for a purely bosonic system, i.e., there 

are no ordering problems. This is not the case, however, for systems with 

fermionic variables. The following Hamiltonian 

(2.60) 

is obviously hermitian, but is not of the form (2.42). To use the WKB 

formula, we first rewrite iI as in (2.58) 

(2.61) 

and then consider a classical system with Hamiltonian 

(2.62) 

After obtaining S' and D' for this system, we recover the WKB approxi-

mation for the original system (2.60) by setting a = Ii and expanding S' to 

order Ii and S' to order h,0. The general rule is that one should always use 

as classical Hamiltonian 

(2.63) 

rather than )J. 
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2.3 WKB calculation of traces 

To obtain the trace of the evolution operator of a system with bosonic and 

fermionic variables in the WKB approximation we first compute Kw (Xc, Be, xo, 00; t) 

as given by eq. (2.57). A fermionic Fourier transform with respect to Bt gives 

Kw in coordinate representation, and the trace is obtained by setting Xt = Xo 

and 8t = -80 and integrating over initial coordinates 

( tr exp( - ~ N) L = f tho /'. Kw (%0. -80 • %0.80 ; t) 

1'1.'" f /, _ / i , - -= ( -",),,/2 dzo _ VD'(zo,8"zo,80i t )exP .,(S(Xo,8"zo,8oi t ) -i8t80 ) 
21rl '0', " 

(2.64) 

(See Appendix D for details on the derivation of this formula and eq. (2.67) 

below.) 

The following trace can also be defined 

, (it .. ) tr(-) exp -li)l (2.65) 

where F is the fermion number operator 

(2.66) 

This trace is, in fact, the supertrace of the evolution operator, and in the 

WKB approximation is given by 

( tr (_)1' exp ( - ~ ~) ) w 

== ( Str exp( - ~ ~)) w = (-)'" ! dxo /'0 Kw (xo, 80, xo, 80; t) 

(-h)"'! /, _ / - i , - ,-= ( '1'1.)"/2 dxo _ yD'(xo,8e, xo,80;t)exp -li(S (xo,Oc.xo,Oo;t) + 10e80) 
21rl '0'. 

(2.67) 
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The WKB expressions for the kernel K:V, eq. (2.51), and for the trace and 

supertrace of the evolution operator, eq. (2.64) and (2.67), are important. 

As we shall see in chapter 3, the proof of the Atiyah-Singer index theorem re-

duces to the computation of eq. (2.67) for the appropriate supersymmetrical 

system. 

We now consider the validity of the WKB expressions for the traces. In 

the case of sufficiently regular bosonic Hamiltonians [23,24] it is well known 

that 

1· K - Kw 0 1m = 
t-O t (2.68) 

It is not too difficult to prove that eq. (2.68) holds for our more general 

system, eq. (2.51). But, because the kernel is singular a.t t -+ 0, we can-

not permute the order in which limits and traces are taken, and therefore 

eq. (2.68) does not imply 

tr K - tr Kw 
lim =0 
t-o t (2.69) 

Instead, as t goes to zero we shall have 

tr K - tr Kw ,... O(tV) (2.70) 

where the exponent y will depend on the particular system considered. 

We can obtain y by studying the form of the quantum corrections A~ 

to the kernel K:V (see eq. (2.34)). In order to keep the correct limit of the 

kernel as t -+ 0, eq. (2.56), we must have 

limt"/2 A~(xc = xo) = 0, for i > 0 
«-0 

(2.71) 



37 

Defining2 

(2.72) 

by eqs.(2.55) and (2.71) we can write 

I J g(%o) 2 
A (%e = %0) = t"/2 (1 + blt + b2t ... ) (2.13) 

According to eq. (2.54) the modified classical action 5' does not contain 

negative powers of t for %e = %0, and we can write 

S'(%e = %0) = S~ + S~t + S;t2 + ... 

(2.74) 

(Recall that, by our discussion at the end of section 2, 5' can contain terms 

linear in h.) 

Combining eqs. (2.73) and (2.74) we obtain for the integrand in either 

(2.64) or (2.67) 

(2.75) 

Note that, for a purely bosonic system, the functions at are the same as in 

the DeWitt-WKB expansion of the kernel [291. 

By construction, the functions b, in eq. (2.73) will contain terms of order 

hO,hl ,h2 , etc. Only the terms of order hO are included in the WKB ap-

proximation. From dimensional analysis and symmetry considerations it is 

2U O~ v7Y is equa.l to zero, the solution to (2.39) with the bounda.ry conditions (2.71) is 

A~ = 0 for i > 1, a.nd the WKB expression for the kernel is exa.ct. This only happens for 

very pa.rticula.r simple systems [231. 
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usually possible to determine the form of the terms depending'on n. If such a 

term occurs in bi , it will give contributions to functions aj with j 2: i. Some 

of these contributions will vanish after we integrate, either because they ap-

pear as total derivatives or because the fermionic integrals are not saturated. 

Assume that the first non-vanishing contribution to the trace from a term 

depending on 1;. in At appears in aI:_ Since such a contribution is necessarily 

missing in the WKB formula, we have as t - 0 

tr K - tr Kw __ O(t Jl- n/ 2) (2.76) 

and we obta.in v = k - 11./2. This is only a lower bound because the contrie 

bution could vanish accidentally. 

As a simple example, we consider the following Hamiltonian 

(2.77) 

where V is a completely arbitrary analytic potential. The relevant dimen-

sions are 

(2.78) 

The following terms, invariant under rotations, can appear in 

A(x, = Xo = 0) 

Dimension Terms 

(2.79) 

where VjAj£ = aj£aj£V(x = xo), etc. 
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By time reversal invariance the action contains only odd powers of t: 

Dimension Terms 

v (2.80) 

v~v~ 

The term 1iV~~"", missing in the WKB formula, gives the following con-

tributions ~a; to the integrand 

(
i( s ) 1 Z Integrand = exp i Sit + Sst + ... ) tn / Z (1 + bit + bzt + ... ) 

(2.81) 

Since ~as is a total derivative, by eq. (2.76) we get v = 4 - n/2 and 

{ 

= 0, 
lim( tr K - tr Kw) .-0 = 00, 

n<8 
(2.82) 

n>8 

Below eight dimensions the WKB trace is exact in the limit t - O. Note 

that the naive expectation, eq. (2.69), fails for n ~ 6. 
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Added Note 

The classical mechanics of Bose-Fermi systems is treated in detail in 

refs. [3~32], and the corresponding quantum description can be found in 

ref. [33]. This last reference contains also a presentation of the WKB ap­

proximation for purely fermionic systems, but the Bose-Fermi case, relevant 

to our computation of the index, is not considered. 

The concept of Weyl symbol of a fermionic operator is studied in ref. [34]. 

This is relevant to the present work in that the Hamiltonian )/w of eq. (2.63) 

is, to order 1t., the Weyl symbol of the operator fl. 
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3 WKB PROOF OF THE INDEX 

THEOREM 

. A new proof of the Atiyah-Singer index theorem has been given indepen­

dently by Alvarez-Gaume [13] and by Friedan and Windey [14,15], who have 

followed Witten's suggestion that the index formula could be understood 

in terms of a suitable quantum mechanical supersymmetric system. These 

authors have used path integral techniques to compute the index, which 

they have expressed as the supertrace of the evolution operator for the sys­

tem. Rigorous mathematical derivations along similar lines have been sub­

sequently given by Getzler [20] (who uses a kind of Hamiltonian description) 

and by Bismut [21] (who uses Wiener integrals to give rigorous estimates). 

In this chapter we follow the approach in Refs. [13-15] but, instead of 

a path integral, we use a WKB expression to evaluate the index [16]. This 

WKB expression is given in terms of classical quantities, namely a modified 

form of the classical Hamilton-Jacobi function and a generalization of the 

Van Vleck determinant [22]. In this way the evaluation of the index formula 

is reduced to a problem in supersymmetric classical mechanics. 

We describe the calculation of the index for the case. of the Dirac operator 

on a compact Riemannian manifold of even dimension n in the presence of an 

external Yang-Mills potential. This twisted spin complex is known to contain 

all classical geometric complexes: de Rham (Euler), signature (Hirzebruch), 

Dolbeault [17]. The index theorem for the twisted Dirac operator implies 

that for a general elliptic complex, in the sense that there is a homotopy 
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relation. 

The Dirac operator in the presence of an external Yang-Mills field A~ is 

given by 

(3.1) 

where e~ is the inverse vielbein field and the x-independent "'f matrices satisfy 

{ G b} 2L"Gb elt G. b 1 "'f , "'f = 0 , "'f = "'f, a, : ... n (3.2) 

D", is covariant with respect to spinor and internal indices [171 

(3.3) 

The index of the Dirac operator is the difference between the number 

N + of zero modes of positive chirality and the number N _ of zero modes of 

negative chirality. There is a simple formula for the index 

N+ - N_ = tr bs exp(pDt D)) 

(3.4) 

and the result is independent of /1. This formula has been discussed in 

several recent papers [13-15,16], to which we refer the reader for a detailed 

explanation. Here we shall concern ourselves with the use of the formalism 

developed in previous sections to compute (3.4). 

From eqs. (3.1) and (3.3) Dt D is 
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where R is the scalar curvature and 

(3.6) 

in matrix notation. 

The operator Dt D is hermitian if the measure is taken to be yidx, Le., 

where 'lf1 and 'lf2 are arbitrary spinors and the trace is over spinor and 

internal indices. The operator 

(3.8) 

is hermitian with measure dx and has the same spectrum as Dt D. In the 

next section we shall write (3.8) as a quantum mechanical (supersymmetric) 

Hamiltonian to which the formalism developed in chapter 2 can be applied. 

Sf,!Ction 3 is dedicated to the study of the validity of the WKB formula for 

the index, which is actually evaluated in section 4. 

3.1 WKB formula for the index 

We may write eq. (3.8) as a quantum mechanical Hamiltonian by iden-

tifying 

(3.9) 

and expressing the matrices in terms of fermionic operators in the usual 

way [15,31,321 
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a,b: 1, ... ,n i,k: l, ... ,p (3.10) 

The result is 

where 

(3.12) 

The hermitian operators ~4 may be related to creation and annihilation 

operators t, er by 

to == ~2 (.i,2r-l + ,·.i,2,,) i' H {~t- } Ii ~ 
~r V ~ 'I' '1', "'r = "'r' "'r' "'. = Ur. 

r," : 1. .. n/2 (3.13) 

The matrix "Y5 = ,.,,1,.,2 ••• ,."n anticommutes with all the creation operators 

A. e" and if we define the vacuum 10) so that 

er 10) = 0, 'Vr: 1. .. 11,/2 

""510) = + 10) (3.14) 

then we can identify 

(3.15) 

The "total'" fermion number operator F is defined by 

(3.16) 
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If we now compute 

I (-it(A. aA)) I ( a) == tr (-) exp T )/ - t F" (3.17) 

and expand 

" I(a) = Z)_)teiatlt (3.18) 
t=o 

then II coincides with the index N+ :;;;. N_ as given by eq. (3.4). The in­

troduction of the chemical potential a [15] permits the separation of the 
\ 

contributions to the trace (3.17) from the different antisymmetric powers 

TAt., T being the representation of the fermions "in the Dirac equation. 

The Hamiltonian fI - alt i'" is not in the form of eq. (2.42). Following 

the discussion at the end of Section 3, we simply make the substitution 

(3.19) 

The classical Hamiltonian )/wto be used in the computation of 5' is obtained 

by neglecting terms on order Ii. 2• The result is 

(3.20) 

where 1 

(3.21) 

By using 

(3.22) 

1 Note that this Hamiltonian is of the type (2.53) and we can use the WKB expressions 

previously derived. 
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we can construct the Lagrangian lw 

(3.23) 

where the covariant time derivatives are given by 

(3.24) 

The total derivatiye term comes from the identity 

r : 1, ... ,n./2 4, b : 1, ... , n 

0 1 
0 

-1 0 
0: (3.25) 

0 1 
0 

-1 0 

Although this total derivative does not affect the equations of motion, it can-

not be neglected in the computation of the classical action, because t/Ja.n~bt/Jb 

is not a conserved quantity. 

Defining a, supersymmetry variation by 

(3.26) 
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the Lagrangian t. w can be expressed as 

(3.27) 

where the (odd) function X is 

(3.28) 

and the auxiliary fields Ii, Ii' are eliminated by using the equations of motion 

(3.29) 

Then we see that the variation of lw is a total derivative, because 

(3.30) 

This shows explicitly that the system is supersymmetric. 

We can obtain a WKB approximation for J( a) by writing eq. (2.61) with 

(e, '1) instead of 9 and m = n/2 + p 

J(a)w = limC'! dzo r r _ VIY(·) exp ~(S{.) - iee~e{-) - i;re~'1(')) 
e-o 1(0"0 111,(, I. 

(3.31) 

where 

C' -_ (_)"/2 (-11.)1' ,A C(.) =_ c.(.) _ Co, () - ( .... - .... 7: n .... C ". t) 
~, ,. ~. . = "'C - "'0, ,t' "t! "'0, ,0, ',0, 

(21ri)" 

~'1(-) == 1],(-) - '10 (3.32) 

and S(-) is given by the integral of lw along the classical trajectory specified 

by (.). 
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3.2 Validity of the WKB approximation 

To evaluate eq. (3.31) we need the equations of motion. By varying £w 

we obtain 

D . J4 (i R'" .1,0.1." '- Fiil& i I:'ii"')' II ,x = 2' lIob¥-' ¥-' + '11. yf]i + 2'1i.r II X + ... 

+ ~ifi(D'" F)~,,'7i"'oVJ" + ~(D'" F):,,1/J°t/J" (3.33a) 

" " iii .. II 
Det/J° = iifi;:~11i'" + 2"Fa.VJ (3.33b) 

i·, " iQ 
De'7i = 2' F'~ ",0", '7i + Tf1i (3.33c) 

where 

(3.34) 

Since the Hamiltonian Jlw is real, the equation of motion for if, is the complex 

conjugate of (3.33c). 

After we substitute eqs.(llSb-c:) into £w, the function S(·) can be written 

(3.35) 

As explained in appendix E, the equations of motion can be solved iter-

atively a.nd, for an analytic Hamiltonian (which we shall assume), the inte­

grand in eq. (3.31) will be an analytic function of the variables (XO, eft eo. Tit> 110) 

and the fields and their deriva.tives evaluated at :Co. This fact allows the use 

of dimensional analysis to study the validity of the WKB approximation for 

'. 
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/(a). The following dimensions are relevant 

[gj - [aj- 1 

[Aj - [wj - l/z 

[Rj - [Fj - 1/z2 {3.36} 

Note that only ~ and the fermionic variables have non-vanishing (negative) 

time dimensions. 

Because of the fermionic integration over e, and eo, the only terms in the 

integrand which can give a contribution to the trace must be proportional 

to 

~1 ~1 7'/2 ~"/2 = (~ ~ )"/2 
.. ' .. 0··· .. ' "0 - .. , .. 0 (3.37) 

By eq. (2.55) the square root of the superdeterminant for z, = Zo is of 

the following form 

,flj = ~ (1 + ott)) .. ~ f.(t). [f.(t)[ - 1 (3.38) 

From the dimensions in eq. (3.31) it is clear that fo{t) will contain terms 

proportional to 

where e stands for .e, and eo. 

r 
s> --2 (3.39) 

If a,.t:~ (zo) and (D" F)~{zo) are set equal to zero, the equations of mo-

tion have the following solution 

z (t') = Zo '7 (t') = '70 e(t') = eo 

ij'(t') = ij'o e(t') = eo (3.40) 
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and the exponent in eq. (3.31) vanishes. Since it also vanishes for t - a 

with x, = xo, it has to be at least linear in some of the following monomials 

Ff,F(zo)l1ot ,liF(zo)t ,Ff,DF(xo)l1ot ,liDF(xo)t ,liat (3.41) 

As a consequence, the terms in the exponent will also be proportional to 

(3.39), and the only terms in the integrand which do not vanish upon inte­

gration over e, eo are proportional to 

(3.42) 

In the limit t - 0 only the term with s = n/2 (i.e. p (J"/, of eq. (3.75)) 

survives. This shows that the WKB expression approaches a constant value 

as t goes to zero.' To see whether this value is modified by corrections of 

higher order in 11, we note that by eqs. (2.72) and (2.73) such corrections 

appear in the following form 

(3.43) 

and therefore li(t) contributes terms proportional to 

tf't· s > :. + i 
~ , - 2 (3.44) 

These, after being multiplied by the exponential, will give contributions to 

the integrand proportional to 

(3.45) 

2Compare with the non-supersymmetric system considered in section 2.3, for which the 

trace diverges as t - O. 
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which vanish as t - 0 for i > O. This shows that in the limit t - 0 the 

WKB formula is exact, i.e. 

l(ll)w = l(ll) (3.46) 

(In the language of chapter 2 we would say that v = 1, 'In, p.) 

Although l(ll) is by construction independent of t (eq. (3.4) is indepen­

dent of 13), the WKB approximation of eq. (3.31) will be, in general, time 

dependent. This dependence is cancelled by corrections of higher order in n. 

The fact that such corrections are at least linear in t justifies the calculation 

of l(ll) as the limit t - 0 of the WKB approximation. 

303 Computation of the index 

In order to evaluate eq. (3.31) we need to know the solution to the 

equations of motion (3.33) with the given boundary conditions through order 

tn/2. Since n is arbitrary, it is obvious that we must simplify the equations 

before we attempt to solve them. There is a systematic way to do this 

without a.ffecting the final result of the calculation. By eq. (3.42), the only 

terms which do not vanish upon integration over eceo are proportional to 

(3.4 7) 

Under a. rescaling 

t - {3t (3.48) 

they behave as pi-n/ 2. Only the terms of lowest order in {3 (order {3-n/2) 

survive in the limit t - O. Thus, it is enough to compute the solutions to 
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the equations of motion to lowest order in (J, which replaces t as the natural 

parameter of the expansion. 

Since all quantities in the Lagrangian have vanishing or negative time 

dimensions (see eq. (3.36)), any polynomial function of time dimension r will 

be, at best, of order /3". By our discussion in appendix E, the solutions to 

the equations of motion will be (infinite) polynomials in t, xo, e" Tit, eo, 170 and 

the fields and their derivatives at Xo. 

We have already mentioned that if 0:, F(xo) and D'" F(xo) are zero, a 

solution is given by x(t') = Xo. Therefore, x(t') - Xo must be at least linear 

in some of the monomials in eq. (3.41), which have time dimension equal to 

zero and are of order /3. Thus 

x(t') - Xo - O((J) (3.49) 

By similar arguments it is easy to obtain 

17(t') ~O(l) (3.50) 

and therefore 

(3.51) 

The "effective equations of motion" are obtained by neglecting higher 

powers of (J. Using a coordinate system and gauge such that 

(3.52) 

the result is 

(3.53a) 
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.i.a '- Fij ( ) .I.h + iii F.,i .I.h 0({31/2) 
'I" = S'7i ah Xo '7j'l"o 2" ab'l"O + (3.53b) 

. ia i Fij ( ) a b 
'7i = T'7i + 2 (lb Xo tPOt/;o'7·i + 0(1) (3.53c) 

To low_est order in {3 the function S as giveri by eq. (3.35) is 

5 = - ~ fo' ;;i(t')~!(xo)t/;gt/;~'7i(t')dt' + ~pa 

- ~t/;~n(lb.6.t/;b + 0({3) (3.54) 

The second term in the exponent can be written 
\ 

(3.55) 

which, by integrating eq. (3.53b) becomes 

• t .It. 
e,~e = i1/;g fa ;;i{t')~~{XO)'7i{t')t/;~dt' + '4 ;:i(xo)1/;gt/;~t 

+ it/;gOab.o.t/;h + 0{{3) (3.56) 

Equa.tion (3.53c) can be integrated to give, in matrix notation 

'7. = exp{ia + i1t)'7o + 0({3) (3.57) 

where we have defined 

(3.58) 

Collecting from (3.54), (3.56) and (3.57) we obtain, for the exponent 

i (5'- . ) iap i ;r'i 1 ( ( . .; )) ({3) ~ - le,.o.e - 1;;,.6.'7 = 2 + 2 t + ~;;c exp la + I t - 1 '70 + 0 

(3.59) 

Note that, for practical reasons, we are using the variables t/;o instead of 

eeeo. We will take care of this by integrating over t/;o rather than e,eo, with 

the appropriate Jacobian. 
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The superdeterminant D' is obtained from eq. (2026) by using (e, ry) 

instead of 9 

82S' 82S' 82 S' 

OXt8xO OXtOeO 8 xt oryo 

D' = (_)3/2"+1" Sdet . 0 25' . 8 2S' . a2s' (3.60) , , t 
8e,8xo 8ee8eo Oee 8'fJo 

. 02S' . 02S' . 0 25' - , 
0'1,8zo 

t 
ofi,8eo 

, 
8ijt8 '1o 

\ 

By equation (2.21), a general variation of S' at constant t is 

(3.61) 

This last equation may be used to express the super determinant in the fole 

lowing more convenient way 

aPo OPt OPt --8ze oeo 0'10 

D' = (-)3/2n+I' Sdet .01'0 ae, aet (3062) -t-:=- --. ae, oeo 8770 

.01'0 877t OTIc 
-t-

8fi, oea OTlo 

where all quantities' differentia.ted are considered functions of 

(3.63) 

and the derivatives are evaluated for Xc = xo. From (3.50) and (3.21) with 

(3.52) the following orders in {3 are immediately obtained for the above su-
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permatrix 

0(,£3-1) 0(,£31/2) 0(1) 

0(,£31/2) -1 + 0(,£3) 0(,£31/2) (3.64) 

0(1) 0(1) 

With this, the general expression for the superdeterminant, eq. (E.4), 

yields 

D' = det (apo ) • det (a,.,c)-1 +0(,£3-"+1) azc a,.,o (3.65) 

To compute the derivative of Po with respect to Zc only the first term in 

eq: (3.53a) needs to be kept, since the others give contributions which, to 

leading order in ,£3, are independent of Po. 

(3.66) 

Defining 

(3.67) 

we obtain 

~ _ (exP(iRt) - 1) ~ lIeI O(~2) 
Z, - iR. IIg POel + ~ (3.68) 

and [16] 

det (apo ) = (det (az,))-l = g(xo) det . it~/2 + 0(,£3-"+1) az, aPo t" smh(ItR/2) 

(3.69) 

From eq. (3.57) we have 

a,.,c . 
( )

-1 

det a,.,o = e-tPeI det (exp( -ilt)) + 0(,£3) (3.10) 

and v'rJi is given by 

det itR/2 e-ipa/2. exp (-iliit) + 0 (,8- n /2+1) 
sinh(itR/2) 2 

(3.11) 
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where we have used the identity 

det (exp( -i1t)) = exp( -i1"it ) (3.72) 

The index density' is obtained by performing the fermionic integrals in 

(3.31). Since both the exponent and the integrand are written in terms of 

tPo rather than e, and eo, we have to change the integration variables and 

introduce a Jacobian 

r i r ( d t (a~o) = (-i)n/21 ( _ det (a~o) 
1 f.o"o ;;.e. = 1 f.oio 1,,0;;. e ae, ~o 1"0". aee 

where 

The determinant in (3.73) can be neglected because by eq. (3.43) 

det (a~o) = 1 + 0(11) ae, 

(3.73) 

(3.74) 

(3.75) 

Only the exponent in (3.31) ,depends on fi, and fio, and the integral over 

these variables gives 

(-h.)' lo;;e exp (*ife(exp(ia + itt) - 1)'70) = det (1 - exp(iQ + iFt)) 

(3.76) 

and eq. (3.31) for l(a) becomes 

I() r { 1 r d ~ ( 
a =,~ (211")n/2 lao Zo tn/2 1~0 det Sin~~i~:/2) det (1 - exp(iQ + iTt» } 

(3.77) 

Only the term proportional to t n / 2 survives the fermionic integration, 

thus cancelling the t"/2 in the denominator. Using 

(3.78) 
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we can write [(ex) in the following form 

[(ex) = i ilR/41r . ''''''t/2 det det (1 - e,ae,... ~) 
sinh( i1R/ 41r) 

(3.79) 

where lR and ~ are now the following (matrix valued) two forms 

1 
lR" = -R" lI(z)d'Pad'P/J /I .- 2 va", ...... 

(3.80) 

Expanding 

(3.81) 

we finally get the standard formula for the index [17] 

N+ - N_ = 11 = ~ det i'iR/41r tr eiQ
/
2r (3.82) 

J" sinh(ilR/41r) . 
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Appendix A 

We present here explicit expressions for some of the objects defined in 

sect. 1.1. These expressions are taken from [4,51 and adapted to the convene 

tions used in chapter 1. 

For w~n_2(A, v) we have 

w~n_2(A, v) = n(n - 1) 101 
c5t(l- t) Str (vd(A~-2)) (A.l) 

\ 

Here Fe = dA, + A; = tdA + t2 A2, and Str is a "symmetrized trace". The 

symmetrized trace of a product of Lie algebra valued forms Ai is defined by 

where the sum is over all permutations (i1 , • •• , in) of (1,2, ... ,n) and 

sgn(ix, ... , in) is the sign arising from the commutative properties of Ai as 

forms. 

Cl2n-2 is given by 

(A.3) 

where V == dgg-1, Fl.~ = dAl.,a + AI~ and Al." = ;\A - ~V. The integral is 

over a triangle in the parameter, space {>., ~): 

(A.4) 

In the evaluation of (A.3) all the integrals are of the type 

II Ail t _ h!k! 
JJ. - (h+k+2)! 

(A.S) 
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For n = 3 (A. 1) gives 

(A.6) 

and we can express the variation of the functional W(R, L, U) as follows: 

(A.7) 

in agreement with Witten's results [10] and computations at the quark 

level [2]. 
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Appendix B 

Here we complete the proof of eqs. (1.51) and (1.59) which give W~F\-l and 

5 2"-1' To show the invariance of (1.57) under a vector gauge transformation 

we have to notice that, for gR = gL ~ 9 = elJ, V+ and V_ transform in the 

same way: 

V± _ g-lV±g + g-ldg 

which can be written to first order in /3 

(B.I) 

(B.2) 

Also, under global (space-time independent) vector gauge transformation the 

integrand is obviously invariant, and we only have to consider the part of the 

variation proportional to d/3, which we indicate by writing - instead of =: 

(B,2) 

Since 6{JFe = [Fe, P), we have 

(BA) 

On the line .\ + J.I.= 1, 6Al,. is 

(B.5) 

and 

(B.6) 

FA,. can be written 
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From (B.3), (BA) and (B.7) it follows immediately that, on the line ),+JL = 1, 

o~FJ.~ - O. 

This completes the proof of eq. (1.57). Let us consider now the expression 

(1.58) for dS2n- 2 

dS2n- 2 = ;! Str b50AJ.~F:;1) 

= ;! 0), Str bSV+Fl';l) + OJL Str bsoV_Fl';l) (B.8) 

\ This expression is transformed by using Stokes theorem into an integral over 

the triangle of fig. 2: 

dS2n- 2 = ; / / Str "15 (v+ :J' -V_ :>.) Fl';l (B.9) 

Note that in (B.8) we are using the symmetrized trace, which in this case 

coincides with the ordinary one, but is more convenient in what follows. 

Using 

(B.lO) 

we can write (B.9) as 

(B.ll) 

Since the symmetrized trace is invariant under permutations (up to a 

sign due to the commutation properties of the forms involved) the last two 

terms can be combined 
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In the last step the Bianchi identity for Fl." has been used. This allows (B.ll) 

to be written as a total differential 

(B.13) 

and 

(B.14) 

The transformations leading from (B.8) to (B.14) are identical to the ones 

used by Zumino to prove eq. (A.3) for Q2n-2. 
'. 

Notice the similarity of eqs. (A.3) and (B.24), which up to a factor differ 

only by the introduction of a '15 and the substitution V_ .... -V. Nevertheless, 

in the process of evaluating Q2n-2 from (A.3) the equality elY = V2 is used. 

this equality does not hold for V_, and as a consequence the final expression 

for 52"-2 cannot be obtained simply from that for Q2n-2, but has to be 

evaluated directly from (B.14). 
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Appendix C 

In this appendix we prove the continuity equation for the Van Vleck 

superdeterminant, eq. (2.15). 

The supermatrix of second derivatives of the classical action 

(C.1) 

can be decomposed into four submatrices 

(C.2) 

such that the indices i,i are bosonic in' A, fermionic in B and of opposite 

nature in r and ~. The supertrace is defined by 

Str (S'i) = tr A - tr B == O'(i)S .. (C.3) 

where O'(i) has been defined in eq. (2.8). The superdeterminant is [26] 

D = Sdet (S. .. ) = det (A - rB-l~) I, det B (CA) 

and satisfies the usual properties of an ordinary determinant. In particular 

. 1 
6 Sdet S'i = Sdet (Sii)· Str (5.; 6Sjlc) (C.S) 

To prove the continuity equation, we first differentiate the Hamilton-

Jacobi eq. (2.12) with respect to QOi 

where we have used 

as 
Pu. = aQu. 

(C.6) 

(C.7) 
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Differentiating again with respect to Qt. yields 

The symbols a( i, Ie) and (1(1, Ie) take care of the anticommutatiori properties 

of the fermionic variables and have been defined in eq, (2.43), This last 

equation may also be written 

a!ki + (1(l, k)(1(l, i) :~: ::'1 + (1(i, k)(1(l, k)q(i, l)5li a~elc (:~J = 0 

(C.g) 

If we multiply by q(i)Si~l and sum over repeated indices~ by eq. (C.S) 

the first term gives 

( ')5-18SIri I aD 
q I 'AI -- = --, at D at (C.IO) 

and the second one 

( ') (l 'Ie) (l ')5-1851ri aJi 1 8D aN 
(1 I (1 , (1 ,I iAi aQec 8Pec = D aQtl. 8Pec (c.U) 

where we have used eq. (C.S) with 

(C,12) 

The last term becomes 

a aJi a aJi 
OlcC---- = ----

aQull ap'l aQtl ap,1. 
(C.13) 

because 

( C.14) 

implies 

(C.lS) 
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After multiplying by D, adding (C.lO), (C.l1) and (C.13), we get 

-+-- D- =0 aD a ( a)l) 
at aQu. apu. (C.16) 

The continuity equation (2.25) for b is obtained in the same way, but 

instead of eq. (C.6) we have 

a2s a2s aJl (") a2s aJi 
ataQolI + aQollaQti apts - q 1 aQollapt; aQt; = 0 (C.17) 

k : 1, ... , N i: 1, ... , R j: R + 1, ... , N 

which explains the -q(j) sign in eq.(2.25). 



66 

Appendix D 

Here we clarify some of the definitions and conventions used in the fermionic 

integrals in this paper. We always use the "nested integration" convention 

(D.1) 

When integrating over complex variables 8, and 9it the following abbree 

viations are used 

(D.2) 

which imply 

(D.3) 

For real variables t/J~ we define 

(D.4) 

so that 

for any completely antisymmetric tensor c. 

The Fourier transform is taken to be (for i : 1 ... m) 

/(8) = ~e-ii'i jeD) ; jCi) = (-)'" r ii'i /(0) (D.6) i; . i, 

The c5-function is defined by 

f(e) = /, c5(e - 8)/(8) , c5(e - 8) = (0", - e",)··· (01 - 6) (D.7) 



and its Fourier transform is 

If we define the kernel K of a fermionic system by 

'It(8e; t) = r K(8c.80; t)'lt(80; 0) j,o 

and another kernel k by 

it(ic; t) = /, kei" 80 ; t)'lt{80; 0) 
'0 

then eqs. (D.6) imply 

/, K{S,,80it)'lt{90'0) 
'0 

= (-)'" /, i lll 'lt{8'i t) 
I, 

= (-)"'/, /, illIK{9,,90it)'lt{80;0) 
II '0 

= /, /, illIK(9,,90;t)'lt(90;0) 
10 I, 

and we have 
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(D.8) 

(D.9) 

(D.lO) 

(D.ll) 

We see that k is equal to the Fourier transform of K only up to a sign (-)"'. 

Thus, the correct limit of K as t - 0 is 

This explains the value of the constant C' in eq. (2.57). 

The set of 2'" wave functions 

(D.12) 
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constitutes an orthonormal basis with respect to the inner product 

(D.13) 

with the vacuum represented by 

10) = Dl ... Dm , 8, 10) = Di 10) = 0 'Vi : I ... m (D.14) 

To obtain formulae for the trace and supertrace of the evolution operator 

exp( -itil) we first consider two identities. Denoting by ei(D) the elements in 

the orthonormal basis (D.12) we have, for any wave function "'(D) 

"'(8) = ei(D)a. = ei(D) (ei I "') = ei(D) '_e'lee;(e)"'(e) 
lEe 

= O'(i)O'(i, "') ,_ eiee;(e)"'(e)ei(8) 
lee 

(D.tS) 

This is the first identity. The second is obtained by observing that ei( -D) = 

(D.16) 

Then the trace of the evolution operator is 

tr e-ieR = (eil e-"R lei) = ,_ eiEe;(e) /, K(e, 8j t)e,(8) lEE , 

= /'O'(i,K) '_e'lEe;(e)K(e,8jt)e,(8) = r K(-8,8jt)(D.17) ,lee l, 

where the identity (D.16) has been used in the last step. 

The supertrace is defined by 

(D. IS) 
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The sign (-)'" guarantees that the vacuum (D.14) is always assigned a plus 

sign. Then, by using the identity (D.15) we obtain 

Str e-i'N = tr (-)' e-i'N = (-)'" /, K(O, OJ t) , . 
(D.19) 

By adding an integration over bosonic coordinates, wherever they are 

present, eqs. (D.t3), (D.lS) and (D.l9) become (2.30), (2.64) and (2.67), 

respectively. 
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Appendix E 

In this appendix we study the behavior as t - 0 of the modified classical 

action S'(%h ie, %0, 00 ; t) for the following Lagrangian 

where B", and W are analytic superfunctions and 9 = det Igl',,1 # O. The 

equations of motion are 

... '" r",'o,_8_ I'''(B B )'0 I'''(B O' B' -(J') WI' 
% + 01J% ~ - 9 0," - ",0 % - 9 ", i i + "'" - ' 

where 

is; + ±'" B ~ - W ~ = 0 ""t ,t 

iit, + ±'" B . - W· = 0 ""t ,t 

B - as", 
",,i = ali 

_ aB", 
B""i = aOi 

We make the following rescaling 

t' = tr , 0 ~ t' :5 t , 0 ~ r < 1 

(E.2a) 

(E.2b) 

(E.2c) 

(E.3) 

(EA) 

and in what follows dots denote derivatives with respect to r. We consider 

the solutions to (E.2) expanded in powers of t 

(E.5) 
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The integral of t, along the classical path can also be expanded in powers 

of t, and we get 

S {'''dt' 1 {I ()'~'''d .(I_. d = 10 Iw = 2t 10 g~1I Yo YoYo r +, 10 cP~cP~ r 

+ 101 
ilbB~(Yo,cpo,cpo)d(r) + O(t) (E.6) 

Thus, only Yo, CPo and CPo have to be determined in order to obtain the behav-

ior of the action as t - O. Rescaling the equations of motion and substituting 

the expansions (E.5) into them we get 

(E.7a) 

(E.7b) 

(E.7c) 

This shows that, as for purely bosonic systems [291, the coefficient of 1ft in 

the classical action is given by (1/2) the geodesic distance between Xo and 

x,. Integration of (E.7a) yields 

The boundary conditions are 

y~{O) = x~ yl'(l) = xr (E.9) 

which imply 

(£.10) 
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and we have 

(E.11) 

If we set X~ == xr - Xb = 0, then the solution to (E.7) is 

Yb(r) = 0 ,~o(r) = ~0(0) = 60 

(E.12) 

This shows that the second and third terms in (E.6) vanish for XIA = 0, and 
"\ 

we can write 

The modified classical action S' is 

and by (E.12) and (E.s) we have 

Btl = 80t + O(X) + O(t) , 9ti = 90t + O(X) + O(t) 

Using (E.13 - 15) we finally obtain 

1 3 -S' = -(g",,(zo)X" X" + O(X )) - i,6C4(Joo + O(X) + O(t) 
2t 

(E.13) 

(E.14) 

(E. 15) 

(E.16) 

which we used in section 2.2, eq. (2.54)) to prove that the kernel Ktv has 

the correct limit as t - O. 

It is obvious that this process can be continued to give the modified action 

S' to arbitrary order in t, X, etc. The subtle point is the inversion necessary 

to express S' as a function of the proper variables. By (E.15) we can write 

6t = 60 + X~ f~ + tg (E.17a) 

(E.17b) 
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where /"" g, h", and I are analytic functions (of (Jo, 80 , x, t and the "potentials" 

Wand B", and their derivatives at xo), which can be obtained by repeatedly 

differentiating eqs. (E.7) and the corresponding equations for '!lie, 'Pie, 'Pie, k > 

1. At each stage YIc(O) is expressed as a function of X, as we did in (E.I0) 

for Yo(O). 

Equation (E.17b) can be inverted to give 00 as a function of (Oe, 90 , Xt, Xo; t), 

order by order in X and t. For instance, to first order we have 

80 = 8t - Xllhll(X = 0,90,90 = 8" t = 0) - tl(X = 0,90,80 = 8" t = 0) 

(E.18) 

This process can be continued to give S'{x" 8" 90, xo, i t) as a power series in 

t (starting with lIt) in which the coefficients are polynomials in the variables 

and the "potentials" and their derivatives. 
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