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Abstract

The 20 Vertex Model and Related Domino Tilings

by

Frederick Huang

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Sylvie Corteel, Chair

A configuration of the twenty vertex model is an orientation of each edge in a triangular
lattice such that at each vertex the number of incoming and outgoing edges is equal. This
is similar to the six vertex model, which takes place on a square lattice, that has long been
of interest to combinatorialists for its connections to alternating sign matrices. Recently
Di Francesco and Guitter uncovered interesting combinatorics for the twenty vertex model
which previously was primarily studied by physicists. Di Francesco was also able to relate
configurations of the twenty vertex model to domino tilings of a so-called Aztec triangle,
and conjectured a product formula for enumerating these configurations. We examine the
enumeration of these objects including several combinatorial bijections of the twenty vertex
model. In particular we establish a relation from the aforementioned domino tilings to
sequences of partitions, and then introduce a generalized Aztec triangle for which we obtain
a generalization to Di Francesco’s conjecture.
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Chapter 1

Introduction

Recently Di Francesco and Guitter [9] uncovered interesting combinatorics regarding the
twenty vertex (20V) model, which previously was of interest to physicists [1] [13]. The 20V
model considers all orientations on the edges on some finite portion of a triangular lattice,
shown in Figure 1.1, such that at each vertex the number of ingoing edges is equal to the
number of outgoing edges. Since each such vertex is adjacent to six edges in the triangular
lattice, of which three must be ingoing and three must be outgoing, we see that there are
exactly twenty possible configurations of edges at a vertex – hence the name twenty vertex
model. The 20V model is analogous to the six vertex (6V) model [4], which uses a square
lattice (with six possible configurations of edges at a vertex). This 6V model is famously
used to in a proof of the alternating sign matrix (ASM) theorem [17], ie. that the number

of n × n ASMs is given by
∏n−1

i=0
(3i+1)!
(n+i)!

[19, A005130]. ASMs have long been of interest to

combinatorialists, with the first proof of this theorem regarding their enumeration in [23].
In [9] Di Francesco and Guitter show that the number of configurations of the 20V model

on a square domain (with particular boundary conditions) can be counted by (a weighted
enumeration of) configurations of the 6V model on an analogous domain (in fact, the ones
from the ASM theorem). Chapter 2 explores several bijections for the 20V model on square
domains, including its poset structure, pairs of symplectic tableaux, and alternating phase
matrices, which Di Francesco and Guitter define in [9].

By considering 20V models on a larger domain named an Aztec triangle, an example
of which is in Figure 1.2, Di Francesco [8] later also conjectures that 20V models on these

domains are counted by 2n(n−1)/2
∏n−1

i=0
(4i+2)!

(n+2i+1)!
[19, A341275] which strikingly resembles

the formula from the ASM theorem. In the same paper [8], Di Francesco establishes that
configurations of the 20V model on this expanded domain are equal in number to domino
tilings of a particular domain, one such example pictured in Figure 1.2. Though notably
there is no combinatorial bijection between these two sets of equal size.

In Chapter 3 we interpret domino tilings of these domains from [8] as sequences of parti-
tion λ(0) = (0, . . . , 0), . . . , λ(2n−1) = (n, n− 1, . . . , 1) subject to certain conditions, like those
seen in [2]. More generally we are able to construct domains, which we call generalized
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Aztec triangles, for sequences where the final partition is not (n, n − 1, . . . , 1) as well as
for sequences of greater length. From here we provide a number of ways to enumerate the
domino tilings for our domains and provide a generalization to Di Francesco’s formula for
when the final partition is (k, k − 1, . . . , 1, 0n−k), thereby proving Di Francesco’s conjecture
for when n = k. In particular when the final partition is λ(ℓ−1) = (k, k− 1, . . . , 1, 0n−k) with
either ℓ = 2n or ℓ = 2n + 1, domino tilings of the corresponding generalized Aztec triangle
are enumerated by∏

i≥0

(
−k+2i∏

s=−2k+4i+1

(ℓ+ s)
2k−4i−2∏
s=k−2i

(ℓ+ s)

)/
k−1∏
i=1

(2i+ 1)k−i

Figure 1.1: On the left is pictured a domain of the 20V model considered in [9], in which
configurations of various boundary conditions are counted. On the right is an example of
another domain of interest, which is considered in [8].

1.1 Background

Let us begin with several preliminary definitions.

Definition 1.1.1. A partition µ = (µ1, . . . , µn) is a sequence of non-negative integers such
that µ1 ≥ µ2 ≥ · · · ≥ µn. We call µ1, . . . , µn the parts of the partition µ, and n the length
of the partition µ. Any partition of length n can also be considered a partition of length m
for any m ≥ n (or even m infinite) by appending 0’s at the end of the partition..

We also define the conjugate partition of µ to be the partition µ′ of length µ1 such that
µ′
i = #{µj | µj ≥ i}.
A Young diagram is a collection of boxes arranged in rows such that the rows are left

justified and non-decreasing from bottom to top. We can visualize a partition µ as a Young
diagram with rows of lengths equal to the parts of µ, as illustrated in Figure 1.3.
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Figure 1.2: An example of an Aztec triangle considered by Di Francesco in [8] whose domino
tilings are equal in number to 20V configurations on the domain on the right in Figure 1.1.

Figure 1.3: The Young diagram corresponding to the partition µ = (4, 2, 1, 1).

Definition 1.1.2. For partitions λ, µ of equal length such that λi ≥ µi for all i, we can
define the skew diagram λ/µ to be the boxes in the Young diagram of λ that are not in the
Young diagram of µ. A skew diagram λ/µ is called a horizontal strip if its Young diagram
contains at most one box in each column. Similarly, it is called a vertical strip if λ′/µ′ is a
horizontal strip, or equivalently if its Young diagram contains at most one box in each row.

In Figure 1.4, we illustrate a few skew diagrams, one of which is a horizontal strip and
another a vertical strip.

Definition 1.1.3. A standard Young tableau is a filling of the boxes of the Young dia-
gram corresponding to µ with entries 1, 2, 3, . . . such that its rows and columns are strictly
increasing.

Definition 1.1.4. A semistandard Young tableau is a filling of the boxes of the Young
diagram corresponding to µ with entries 1, 2, 3, . . . such that its rows are weakly increasing
and columns are strictly increasing.
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Figure 1.4: Three skew diagrams λ/µ where λ = (5, 3, 3, 2). On the left we have µ =
(2, 2, 1, 0). In the center, we have µ = (3, 3, 2, 1) resulting in a horizontal strip. On the right
we have µ = (4, 2, 2, 1) resulting in a vertical strip.

Definition 1.1.5 ([15, 14, 12]). A semistandard symplectic tableau of shape µ is a filling of
the boxes of the Young diagram corresponding to µ with entries 1 < 1 < 2 < 2 < · · · such
that

(1) rows are weakly increasing and columns are strictly increasing.

(2) i and ı do not appear below the ith row.

The first condition is referred to as the semistandard condition, and the second condition
is the symplectic condition. Note that we can equivalently state the semi-standard condition
of weakly increasing rows and strictly increasing columns as:

(i) rows and columns are weakly increasing.

(ii) for all i, the entries i or ı form horizontal strips.

Definition 1.1.6. A super symplectic tableau of shape µ is a filling of boxes of the Young
diagram corresponding to µ with entries 1 < 1 < 2 < 2 < · · · such that

(1) rows and columns are weakly increasing

(2) for all i, the entries i form horizontal strips (i.e. there is at most one i in each column).

(3) for all i, the entries ı form vertical strips (ie. there is at most one ı in each row).

The rows of our super symplectic tableaux are overpartitions [7] and, without the sym-
plectic conditions, our tableaux would be super semistandard tableaux [16]. Figure 1.5
provides an examples of our various tableaux.

Vertex Models

Let us now define a number of vertex models, also known as ice models. We start with the
most well known vertex model: the six vertex model.
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1 3 4

2 6

5

1 2 2

3 4

4

1 1 1

2 2

4

1 2 2

3 4

3

Figure 1.5: In order from left to right: a standard Young tableau, a semistandard Young
tableau, a symplectic tableau, and a super symplectic tableau of shape (3, 2, 1).

Definition 1.1.7. Consider the square lattice on the integer points of [0, n−1]2, pictured in
Figure 1.6, so that each of these vertices are adjacent to four edges. A configuration of the
6 vertex (6V) model on this finite domain is an assignment of a direction to each of these
edges such that at each vertex the number of incoming and outgoing edges are equal.

We will consider 6V models with a fixed boundary condition, where the horizontal edges
on the west and east boundaries are oriented towards the domain and the vertical edges
on the north and south boundaries are oriented away from the domain. We use Z6V (n) to
denote the set of all such configurations.

Figure 1.6: The square lattice of the 6V model with our boundary condition.

The 6V model was originally used in statistical mechanics to model ice, in which each
oxygen atom is connected by a bond to four other oxygen atoms, via a hydrogen atom.
Moreover, exactly two of these four hydrogen atoms are closer to the oxygen atom so that
we have an H2O molecule. In this way, the vertices of our square lattice represent oxygen
atoms and the orientation of each edge represents which hydrogen atoms are closest to each
oxygen atom.

From Definition 1.1.7 we see that each vertex must have two incoming and two outgoing
edges. So there are

(
4
2

)
= 6 configurations at each vertex seen in Figure 1.7, hence the name

6 vertex model. We can also interpret a 6V model configuration of Z6V (n) as a collection n
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osculating paths by assigning a segment of a path to horizontal edges oriented to the right
and vertical edges oriented to down. Indeed we see that with our boundary condition we
then must have n paths beginning on the west boundary and ending on the south boundary.
See Figure 1.8 for a sample 6V model configuration and its associated osculating paths.

Here we use osculating to mean that our paths are non-intersecting except at some finite
number of vertices. In the case of the 6V model, there are vertices where one path comes
from the west and turns south, and another comes from the north and turns east. See the
first vertex in Figure 1.7.

Figure 1.7: The six possible configurations at any vertex of the 6V model and the corre-
sponding paths.

Figure 1.8: A configuration of the 6V model, and the corresponding osculating paths.

Though it had its beginnings in physics, the 6V model has now long been of interest to
combinatorialists for its connections to alternating sign matrices.

Definition 1.1.8. An alternating sign matrix (ASM) of size n is an n×n matrix with entries
−1, 0, 1 such that

• the sum of each row and column is 1

• the nonzero entries in each row and column alternate in sign
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Specifically, configurations of the 6V model on n× n vertices are in bijection with alter-
nating sign matrices of size n [17]. For each vertex in the configuration of the 6V model, we
set the corresponding entry in the n × n ASM to −1, 0, 1 according to Figure 1.9 to 1 and
−1, for example as shown in Figure 1.10. Moreover, we know from a celebrated theorem [17]
[23] about ASMs that the number of ASMs of size n is given by

n−1∏
i=0

(3i+ 1)!

(n+ i)!

←−−→ 0 ←−−→ −1

←−−→ 0 ←−−→ 0

←−−→ 1 ←−−→ 0

Figure 1.9: Bijection from the 6V model to ASMs.

←−−→


0 0 1 0 0
0 0 0 0 1
0 1 −1 1 0
1 −1 1 0 0
0 1 0 0 0



Figure 1.10: A configuration of the 6V model on 5 × 5 vertices, and the corresponding
alternating sign matrix of size 5.

Definition 1.1.9. Now consider the triangular lattice on the integer points of [0, n − 1]2,
pictured in Figure 1.11, so that each of these vertices are adjacent to four edges. A configu-
ration of the 20 vertex (20V) model on this finite domain is an assignment of a direction to
each of these edges such that at each vertex the number of incoming and outgoing edges are
equal.
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Again we will consider 20V models with a fixed boundary condition, where the horizontal
edges on the west and east boundaries are oriented towards the domain and the vertical
edges on the north and south boundaries are oriented away from the domain. Moreover the
diagonal edges on the main diagonal as well as any diagonals to the southwest are oriented
down and to the right, whereas diagonal edges to the northeast of the main diagonal are
oriented up and to the left. We also use Z20V (n) to denote the set of all such configurations.

Of course, this is just one of many possible boundary conditions we could take. In [9]
there are three boundary conditions which are considered. The one we have in the definition
above is called DWBC1, which is also equivalent to the second boundary condition, DWBC2,
in said paper. For the third boundary condition of [9], DWBC3, we will consider a different
domain.

Figure 1.11: The triangular lattice of the 20V model with our boundary condition.

Similar to the 6V model, we see that for the 20V model at each vertex there are
(
6
3

)
= 20

possible configurations. We can also interpret configurations of the 20V model as a collection
of osculating paths, where we additionally assign segments of paths to diagonal edges oriented
down and to the right. In this way we have 2n osculating paths for any configuration of
Z20V (n), beginning on the west boundary and ending on the south boundary. See Figure
1.13 for a sample 20V model configuration and its associated osculating paths.

For both the 6V and 20V model, we will interchangeably consider them as orientations
of edges and osculating paths. Moreover when we consider them as osculating paths, we will
refer to the outermost path as the one furthest to the top right.

In [9] Di Francesco and Guitter show the following theorem.

Theorem 1.1.10. |Z20V (n)| is equal to a weighted enumeration of Z6V (n) where the weight
of each configuration of Z6V (n) is determined by the product of the weights of its vertices,
and the vertices in Figure 1.14 receive weight

√
2 while the other four types of vertices have

weight 1.

This is proved by using the Yang-Baxter equations to move the move the diagonal edges
edges of our 20V model configuration outside the square, thus “unravelling” our 20V model
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Figure 1.12: The twenty possible configurations at any vertex of the 20V model and the
corresponding paths.

Figure 1.13: A configuration of the 20V model, and its corresponding osculating paths.

configuration into a 6V model configuration (or several configurations – see [1], Section 3 of
[9]).

Figure 1.14: The vertices of the 6V model with weight
√
2.

Let us also introduce another collection of configurations of the 20V model which will be
of relevance in Chapter 3.

Definition 1.1.11. The trapezoidal domain Tn is the region bounded by
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(i) 0 ≤ x ≤ n− 1

(ii) y ≤ n− 1

(iii) x+ y ≥ 0

We will consider 20V model configurations on Tn with the boundary condition that

• horizontal edges are oriented towards the domain.

• vertical edges are oriented away from the domain.

• diagonal edges along the west and north boundary are oriented away from the domain,
and diagonal edges along the east boundary are oriented towards the domain.

The domain T5 along with its boundary condition is pictured in Figure 1.15.

Figure 1.15: The domain T5 with its boundary condition for the 20V model.
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Chapter 2

Combinatorial Bijections

In this section we will identify a few combinatorial bijections for the 20V model on a square
domain with the boundary condition DWBC1 from Definition 1.1.9. In doing so, we draw
inspiration from analogous bijections for the 6V model, beginning with examining its poset
structure as done in [22] and concluding with an analog to the 6V model and ASM bijection.

2.1 The Poset Perspective

Definition 2.1.1. A poset (P,≤) is a set of elements P and a relation ≤ such that we have

1. Reflexivity: for all a ∈ P , a ≤ a.

2. Antisymmetry: if a ≤ b and b ≤ a then a = b.

3. Transitivity: if a ≤ b and b ≤ c then a ≤ c.

We can represent a poset by its Hasse diagram, where each element of P is represented
by a vertex. Also for a, b ∈ P , we draw a below b if a ≤ b, and connect them with a line if b
covers a – that is there does not exist any c ∈ P with a ≤ c ≤ b.

Figure 2.1 shows the Hasse diagram of the power set on three elements, ie. the set of
subsets of a three element set, ordered by inclusion.

Let us make some more definitions for posets which we will use in this section.

Definition 2.1.2. A lower set I of a poset (P,≤) is a subset I ⊆ P such that for all x ∈ I
and p ∈ P , if p ≤ x then p ∈ I. For any poset (P,≤), we use J(P ) to denote the set of all
lower sets of P . J(P ) itself is also a poset, ordered by inclusion.

An interval I of a poset (P,≤) is a subset I ⊆ P such that for all x, y ∈ I and p ∈ P , if
x ≤ p ≤ y then p ∈ I. For a, b ∈ P we will denote [a, b] to be the interval consisting of all
elements p ∈ P satisfying a ≤ p ≤ b.
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{a, b, c}

{a, b} {a, c} {b, c}

{c} {b} {a}

∅

Figure 2.1: The Hasse diagram of the power set on three elements a, b, c ordered by inclusion.

In [22] (whence the title of this section derives) Striker studies the poset structure of
ASMs, and hence also the 6V model, of a fixed size n. We will use an equivalent construction
to Striker’s to realize this poset. First define three vectors

b⃗ = (1, 1, 0), y⃗ = (0, 1, 1), r⃗ = (0, 2, 0)

and consider the points in the set

Tn = {c1⃗b+ c2y⃗ + c3r⃗ | c1, c2, c3 ∈ Z≥0, c1 + c2 + c3 ≤ n− 2}

which are the lattice points of some tetrahedron. Now if we also define the vectors

g⃗ = (1,−1, 0), o⃗ = (0,−1, 1)

then we have the following proposition (2.5.2 in [22]):

Proposition 2.1.3. Consider Tn as a poset with the relation that for x, y ∈ Tn we have
x ≤ y if y − x ∈ {c1⃗b + c2g⃗ + c3y⃗ + c4o⃗ | c1, c2, c3, c4 ∈ Z≥0}. Then the lower sets J(Tn) are
in bijection with n× n alternating sign matrices.

We illustrate an example of Tn with its poset structure in Figure 2.2 via its Hasse diagram.
This bijection is provided in [22] and induces a poset structure on the set of n × n

alternating sign matrices. Since n × n alternating sign matrices are in bijection with 6V
model configurations on n× n vertices, we have the following corollary.

Corollary 2.1.4. There is a poset structure on Z6V (n) consistent with the poset structure
on ASMs of size n.

Let us describe the poset structure on Z6V (n), the number of 6V model configurations
on an n× n square lattice as defined in Definition 1.1.7. For any two configurations A,B ∈
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Figure 2.2: The Hasse diagram for the poset T6. b⃗ corresponds to the blue edges, g⃗ the green
edges, y⃗ the yellow edges, and o⃗ the orange edges.

≤

Figure 2.3: An example of the poset structure on 6V model configurations.

Z6V (n), we have B ≤ A if each path in B is below and to the left of the corresponding path
in A, as shown in Figure 2.3.

It follows that for two configurations A,B ∈ Z6V (n), we have that A covers B if they
are equal except at a group of 2× 2 vertices where some path of B takes a downward then
eastward step, which becomes an eastward then downward step in A. See Figure 2.4. In this
case, we will say that configuration B has been raised to the configuration A. Note that in
order to perform this raising operation, not only do we need there to be edges for us to raise
but we also need that the edges we are raising to are not already occupied by some other
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path. Note that then we can restate our poset relation as B ≤ A if there exists some (not
unique) sequence of raising operations that we apply to B to obtain A.

≤

Figure 2.4: The covering relation for the poset structure on 6V model configurations.

We can precisely state the bijection from J(Tn) to Z
6V (n). Each point in a ∈ Tn represents

a raising operation as in Figure 2.4 on a specific path. In particular we can uniquely write
a = c1⃗b+ c2y⃗+ c3r⃗ where c1, c2, c3 ∈ Z≥0. Then c2 tells us which path is being raised, and c1
tells how far up the corner being raised is. Specifically, if the c2th outermost path starts at
(−1, n−1−c2) then that path is being raised from having a corner at (c1+c3, n−2−c2−c3)
to having one at (c1 + c3 + 1, n− 1− c2 − c3).

Then for any I ∈ J(Tn), the corresponding configuration in Z6V (n) is that which results
from performing all its raising operations on the smallest element of Z6V (n), pictured in
Figure 2.5.

Figure 2.5: The smallest element of Z6V (5).

Our goal now is to construct the poset Sn for which its lower sets J(Sn) are in bijection
with Z20V (n): the number of 20V model configurations on a triangular lattice of n×n vertices,
with the boundary condition DWBC1, as defined in Definition 1.1.9. We will use a similar
poset structure on Z20V (n) as we do for Z6V (n): for two configurations A,B ∈ Z20V (n) we
have B ≤ A if each path in B is below and to the left of the corresponding path in A. Figure
2.6 illustrates an example of such configurations A,B ∈ Z20V (3).

Similar to the 6V model, we see that for A,B ∈ Z20V (n) we have A covers B if they are
equal except at a group of 2× 2 vertices where either
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≤

Figure 2.6: An example of the poset structure on 20V model configurations.

• some path of B takes a downward then eastward step, which becomes a diagonal step
in A

• or some path of B takes a diagonal step, which becomes an eastward then downward
step in A.

See Figure 2.7 for these relations. Again we see that we can restate our poset relation as
B ≤ A if there exists some sequence of these raising operations that we can apply to B to
obtain A.

≤ ≤

Figure 2.7: The covering relations for the poset structure on 20V model configurations.

Because our previous covering relation in Z6V (n) now goes through an intermediate
configuration in Z20V (n), our poset Sn should be obtained by replacing each point in a ∈ Tn
with two points a, a′ ∈ Sn where a ≤ a′. In addition to our previously defined

b⃗ = (1, 1, 0) g⃗ = (1,−1, 0) y⃗ = (0, 1, 1) o⃗ = (0,−1, 1)

define also
l⃗ = (1, 0, 0) w⃗ = (0, 0, 1)

Then we can exactly construct Sn as follows.
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Proposition 2.1.5. Let Sn be the poset constructed by

1. Starting with the points (0, 2m, 0) for m = 0, . . . , n− 1

2. At each of these points we can add one of {⃗b, g⃗, w⃗}.

3. Whenever we add one of {⃗b, g⃗, w⃗} we must then add one of {y⃗, o⃗, l⃗} next, and vice
versa.

subject to x ≥ 0, z ≥ 0 and either{
3x+ 2y + z ≤ 4n− 3

3x− 2y + z ≤ 1
or

{
x+ 2y + 3z ≤ 4n− 4

x− 2y + 3z ≤ 0

with the relation that for a, b ∈ Sn we have b ≤ a if

a− b ∈ {c1⃗b+ c2g⃗ + c3w⃗ + c4y⃗ + c5o⃗+ c6l⃗ | ci ∈ Z≥0}

That is a− b is some conical combination of b⃗, g⃗, w⃗, y⃗, o⃗, l⃗. Then there exists a bijection from
its lower sets J(Sn) to configurations of the 20V model Z20V (n).

We see that for a, b ∈ Sn we have that a covers b precisely if

a− b ∈ {⃗b, g⃗, w⃗, y⃗, o⃗, l⃗}

So as in our tetrahedral poset Tn we can draw the Hasse diagram for Sn using exactly the
vectors b⃗, g⃗, w⃗, y⃗, o⃗, l⃗. See Figure 2.8.

Proof of Proposition 2.1.5. We can explicitly state the bijection in Proposition 2.1.5 by refer-
ring back to the bijection from J(Tn) to Z

6V (n) from [22]. Recall from the covering relations
of the 20V model that we can think of Sn as replacing each point in Tn with two points a, a′

where a ≤ a′. With the provided Hasse diagram for Sn, we can state this more precisely.
Let us contract Sn along the vectors w⃗ and l⃗ as follows:

1. Consider all the points that have minimum value in their x-coordinate, and contract
the Hasse diagram on these points along all vectors w⃗.

2. Of the remaining uncontracted points, take those that have minimum value in their
z-coordinate, and contract the Hasse diagram on these points along all vectors l⃗.

3. Of the remaining points, repeats steps 1 and 2 until all points in Tn have been con-
tracted.



CHAPTER 2. COMBINATORIAL BIJECTIONS 17

Figure 2.8: The Hasse diagram for the poset S6. In addition to the colors in Figure 2.2, w⃗
corresponds to the grey edges and l⃗ corresponds to the black edges.

Then the resulting Hasse diagram is exactly that of Tn. In this way for every vertex a ∈ Tn,
we can label corresponding vertices a ≤ a′ in Sn. Then a ∈ Sn corresponds to the raising
a path from a corner to diagonal on the four vertices associated with a ∈ Tn, and a′ ∈ Sn

corresponds to the raising a path from the diagonal to the corner on those same four vertices.
As a result, the points in any plane z = k for k ∈ Z correspond to raising operations of the
same path.

From here onward, for any a ∈ Tn, we will use a and a′ to refer to those corresponding
points in Sn (so that as sets Tn ⊆ Sn and Sn = Tn

⋃
T ′
n – see Definition 2.1.7 later). See

Figure 2.9. We will restate this in Remark 2.1.6, and refer to this labeling of points in Sn

by this remark.
For the 6V model, any point a ∈ Tn covers up to four other points in Tn by (some subset

of) the edges {⃗b, g⃗, y⃗, o⃗}, since the covering relation (Figure 2.4) depends on there being

edges to raise (represented by b⃗ and g⃗) as well as the edges in the path above having already
been raised (represented by y⃗ and o⃗). However for the 20V model any point a ∈ Sn covers

up to three other points in Sn either by (some subset of) the edges {⃗b, g⃗, w⃗} or by (some

subset of) the edges {y⃗, o⃗, l⃗}. We think of the former case as raising a path from a corner to

a diagonal: b⃗ and g⃗ represent the path having reached the corner and w⃗ represents the path
above having been raised from the diagonal. Similarly we think of the latter case as raising
a path from a diagonal to a corner: l⃗ represents the path having reached the diagonal and y⃗
and o⃗ represent the path above having been raised from the corner. With this, we see that
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the covering relations provided by Sn are correct.
Finally to see that J(Sn) actually permits a bijection to Z20V (n) let us induct on n.

For small values of n we can check directly that the above bijection works, for example see
Figure 2.9. Now from the smallest configuration of Z20V (n), let us apply a number of raising
operations. First, perform a raising operation on each segment of each path so that a path
consisting of all corners now consists of all diagonal edges, and vice versa. Then fully raise
the top-left-most path. The resulting configuration is pictured as the right configuration of
Figure 2.11. We see that any more raising operations on this configuration must be done on
the central (n−2)× (n−2) vertices, and can be considered as raising operations on Z20V (n).
Hence if we remove the points in Sn corresponding to these raising operations, the resulting
poset should be that of Sn−2.

Again from Remark 2.1.6, the points corresponding to these raising operations are exactly
those points satisfying either z = 0 (for the first set of raising operations) or x = 0 (for the
second set of raising operations). Then it remains to be seen that Sn without these points
gives us Sn−2. Indeed we see that the resulting poset can be defined exactly as in Proposition
2.1.5 except now we start with the points (1, 2m+2, 1) for m = 0, . . . , n− 3. Then applying
a change of coordinates

(x, y, z) 7→ (x′, y′, z′) = (x− 1, y − 2, z − 1)

we see that our remaining points must satisfy x′ ≥ 0, z′ ≥ 0 and either{
3(x′ + 1) + 2(y′ + 2) + (z′ + 1) ≤ 4n− 3

3(x′ + 1)− 2(y′ + 2) + (z′ + 1) ≤ 1
=⇒

{
3x′ + 2y′ + z′ ≤ 4(n− 2)− 3

3x′ − 2y′ + z′ ≤ 1

or {
(x′ + 1) + 2(y′ + 2) + 3(z′ + 1) ≤ 4n− 4

(x′ + 1)− 2(y′ + 2) + 3(z′ + 1) ≤ 0
=⇒

{
x′ + 2y′ + 3z′ ≤ 4(n− 2)− 4

x′ − 2y′ + 3z′ ≤ 0

Hence we obtain Sn−2, proving our result.

We restate an important idea from our proof as a remark.

Remark 2.1.6. As seen in the proof of Proposition 2.1.5, for every point a ∈ Tn there exists
points a, a′ ∈ Sn such that a′ covers a. Moreover if we contract all the edges corresponding
to these covering relations in the Hasse diagram of Sn, we obtain exactly the Hasse diagram
of Tn. In particular, every point in Sn can be uniquely identified as a or a′ for some a ∈ Tn
as seen in Figure 2.9, and for the rest of this section we will refer to points in Sn in this way.

Recall from Theorem 1.1.10 that Di Francesco and Guitter established a way of sending
any configuration of the 20V model to a (or several) configuration of the 6V model. We can
use this to construct a map sending every configuration of the 6V model to its preimage
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a

b

c

d

aa′

bb′

c

c′

dd′

Figure 2.9: Labeling vertices of T4 and S4

Figure 2.10: The smallest element of Z20V (5).

of 20V model configurations. Moreover since the 6V model and 20 model are in bijection
with J(Tn) and J(Sn), respectively, we can define φ to be the map from J(Tn) to subsets of
J(Sn).

Z6V (n) {subsets of Z20V (n)}

J(Tn) {subsets of J(Sn)}
φ

We state the map φ in Proposition 2.1.8, but first it will help to make a few definitions.

Definition 2.1.7. For any lower set I ∈ J(Tn), we will also consider I as a subset of Sn.
From Remark 2.1.6, I ⊂ Sn is exactly those points labeled a for all a ∈ I ⊆ Tn. Note then
that I contains no entries labeled a′ for any a, and also that I ⊂ Sn is not necessarily a lower
set of Sn.
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Figure 2.11: The inductive step for Proposition 2.1.5.

For I ∈ J(Tn) we also define I ′ ⊂ Sn defined as I ′ = {a′ ∈ Sn | a ∈ I}, so that now I ′

does not contain any entries labeled a. Again I ′ is not necessarily or even usually a lower
set of Sn.

For any set U ⊆ Sn we define U to be the lower set generated by U , that is U = {x ∈
Sn | there exists y ∈ U such that x ≤ y}.

Define T u
n be the points in Tn that correspond to a raising operation that changes the

configuration on at least one edge above the main diagonal y = n−x and below y = n+1−x.
Then for any I ∈ J(Tn) we define Iu = I

⋂
T u
n .

Finally define for any I ∈ Tn the set Im to be the set of maximal elements of I under the
poset structure of Tn.

Proposition 2.1.8. φ as a map from J(Tn) to intervals of J(Sn) sends for any I ∈ J(Tn)
to the interval of lower sets containing Iu and contained in I ′, that is

φ : I 7→
{
K ∈ J(Sn) | Iu ≤ K ≤ I ′

}
.

The intervals in the image of φ are not pairwise disjoint. However if we instead define a
map ψ from J(Tn) to intervals of J(Sn) by sending any I ∈ J(Tn) to the interval of lower
sets containing Im and contained in I ′, that is

ψ : I 7→
{
K ∈ J(Sn) | Im ≤ K ≤ I ′

}
.

Of note we get that the sets in the image of this map are pairwise disjoint. Hence we obtain
the following corollary.

Corollary 2.1.9. ∑
A∈Z6V (n)

|ψ(A)| = |Z20V (n)|

for all n.
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2.2 Symplectic Tableaux

In this section, we will use the Hasse diagram of Sn to find a bijection from Z20V (n) to
pairs of symplectic tableaux subject to some additional constraints. Along the way we will
encounter the well known combinatorial object known as Dyck paths:

Definition 2.2.1. A Dyck path of order n is a path from (0, 0) to (n, n) using north and
east steps that does not go below the line y = x.

It is well known that Dyck paths are counted by Catalan numbers Cn = 1
n+1

(
2n
n

)
. Of the

many objects also counted by Catalan numbers, let us observe that Dyck paths of order n
are in bijection with standard Young tableau of shape (n, n) with entries {1, . . . , 2n}. The
bijection puts places i in the top row of the tableau if the ith step of the Dyck path is north
step, and otherwise places i in the bottom row of the tableau if the ith step of the Dyck path
is an east step. Figure 2.12 provides a Dyck path of order 5, and its corresponding standard
Young tableau under this bijection.

1 2 4 7 8

3 5 6 9 10

Figure 2.12: A Dyck path from (0, 0) to (5, 5), and the corresponding standard Young tableau
of shape (5, 5).

Now let us now consider Hasse diagram of Sn with the edges w⃗ and l⃗ removed. As
pictured in Figure 2.13 the resulting Hasse diagram consists of 2(n − 2) components that
are mutually disconnected – that is elements in different components have no relation under
our poset.

Indeed, if we consider the definition of Sn from Proposition 2.1.5 we see that each com-
ponent of the resulting Hasse diagram necessarily consists of alternating layers of edges in
{⃗b, g⃗} and {y⃗, o⃗}. Furthermore if two points in a1, a2 ∈ Sn differ by either w⃗ or l⃗ then there
does not exist ci,j ∈ Z≥0 for i = 1, 2 and j = 1, 2, 3, 4 such that

a1 + c1,1⃗b+ c1,2g⃗ + c1,3y⃗ + c1,4o⃗ = a2 + c2,1⃗b+ c2,2g⃗ + c2,3y⃗ + c2,4o⃗

and |(ci,1 + ci,2)− (ci,3 + ci,4)| ≤ 1 for both i = 1, 2.
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Figure 2.13: Only the relations corresponding to b⃗, g⃗, y⃗, o⃗ for the Hasse diagram for the poset
S6.

From Remark 2.1.6, each component corresponds to raising operations that change the
vertical or horizontal edges between the lines y = k − x and y = k + 1− x for some k.

Now each of these components contains a maximal element a, and the entire component
consists of points

a− c1⃗b− c2g⃗ − c3y⃗ − c4o⃗

where c1, c2, c3, c4 ∈ Z≥0, c1 + c2 + c3 + c4 ≤ m for some m, and (c1 + c2)− (c3 + c4) ∈ {0, 1}
or (c1 + c2) − (c3 + c4) ∈ {−1, 0} depending on the component. In particular, as pictured
in Figure 2.13, each component is a “triangular” Hasse diagram. Then with the observation
that lower sets of each of these components are in bijection with Dyck paths (in particular,
with a Dyck path that begins two rows below the Hasse diagram and exactly has those points
of the lower set below it), we have the following proposition.

Proposition 2.2.2. Lower sets of the Hasse diagram of Sn with only the relations given by
b⃗, g⃗, y⃗, o⃗ are in bijection with

P 2
1 × P 2

2 × · · · × P 2
n

where Pk is the set of subsets of {1, . . . , 2k − 1} of size k containing 1.

Proof. The proof is mostly stated above, but also recall that Dyck paths of order n are in
bijection with standard Young tableau of shape (n, n), which are completely determined by
their top row. Then since lower sets of each component of the Hasse diagram are in bijection
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with Dyck paths, specifically for each k = 1, . . . , n there are two components whose lower
sets are in bijection with Dyck paths of order k, we have our result.

Furthermore in the Hasse diagram of Sn with only the relations given by b⃗, g⃗, y⃗, o⃗, we see
that there are two types of connected components: those starting with one of b⃗, g⃗ or those
starting with one of y⃗, o⃗. Indeed, those with of the former type lie in the closed half-space
x ≥ z, and those of the latter type lie in its complement x < z. With this distinction, we
see that the bijection in Proposition 2.2.2 may be made with

(P1 × P2 × · · · × Pn)
2

with one copy of P1
n := P1 × · · · × Pn corresponding to the part of Sn satisfying x ≥ z, and

one copy of P2
n := P1 × · · · × Pn corresponding to x < z.

First let us consider P1
n and the skew shape (n, . . . , n)/(n − 1, n − 2, . . . , 1, 0). For each

column of length k in the skew shape, we fill it with a subset of {1, . . . , 2k − 1} of size k
containing 1, so that the column is strictly decreasing. In this way, fillings of our skew shape
are in bijection with P1

n.
Now we wish to restrict P1

n so that our bijection can be made with all the lower sets of

the half of Sn satisfying x ≥ z, including the relations given by w⃗ and l⃗. Of course, we do
this by introducing the relations imposed by w⃗ and l⃗ into what we already have. It will help
to define a number of somewhat unusual operations.

Definition 2.2.3. For any integer x, we define

• ⌊x⌋even to be the greatest even integer less than or equal to x

• ⌈x⌉even to be the least even integer greater than or equal to x

• ⌈x⌉odd to be the least odd integer greater than or equal to x

Then introducing the relations given by w⃗ requires us to impose z ≤ ⌊y⌋even, where y, z
are any two entries a knight’s move away as pictured in Figure 2.14. Next, introducing l⃗
requires us to impose x ≤ ⌈z + 1⌉odd, where x, z are any two entries diagonally adjacent as
pictured in Figure 2.14.

Similarly, P2
n is also in bijection with fillings of the skew shape (n, . . . , n)/(n − 1, n −

2, . . . , 1, 0) with the same restrictions on the entries in columns as above. Moreover the

relations given by w⃗ and l⃗ are exactly those of l⃗ and w⃗ in P1
n, respectively. Hence lower sets

of the half of Sn satisfying x < z are also in bijection with fillings of the skew shapes with
the conditions z ≤ ⌊y⌋even and x ≤ ⌈z + 1⌉odd as before.

Finally we can obtain a bijection to all lower sets of Sn from pairs of fillings of skew
shapes. Each filling is subject to all the conditions above, with additional constraints given
by the relations imposed by those w⃗ and l⃗ which involve points on the plane x = z. We
observe that these relations are only between the largest connected component in each of
x ≥ z and x < z, which corresponds to Pn in each of P1

n and P2
n. Then in terms of the
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y

a x

z

1 1 1 1

Figure 2.14: The skew shape corresponding to P1
4 and P2

4 .

our pair of skew shapes, the only conditions we have are on the rightmost columns of each
shape. Specifically we have from the relations l⃗ the condition x ≤ ⌈y⌉even for any x, y from
the same row with x coming from the skew shape corresponding to P1

n and y coming from
the skew shape corresponding to P2

n. Similar to before we use ⌈y⌉even to denote the smallest
even integer greater than or equal to y. We also have from the relations w⃗ the condition
y ≤ ⌈z⌉even where z is from the skew shape corresponding to P1

n, y is from the skew shape
corresponding to P2

n, and z is in the row above y. Both of these conditions are pictured in
Figure 2.15.

This gives us the proposition below. Going forward, we will use this bijection with pairs
of skew shapes without identifying one skew shape as corresponding to P1

n and the other as
corresponding to P2

n.

z

x y

1 1

Figure 2.15: For our bijection to all lower sets of Sn, the rightmost column in each skew
shape must satisfy x ≤ ⌈y⌉even and y ≤ ⌈z⌉even for any x, y, z as pictured above with the
column from P1

4 on the left.

Proposition 2.2.4. Lower sets of Sn are in bijection with fillings of a pair of skew shapes
(n, . . . , n)/(n− 1, . . . , 0) such that in each of the skew shapes we have the relations

x < y, x ≤ ⌈z + 1⌉odd, z ≤ ⌊y⌋even

for any x, y, z as pictured in Figure 2.14, and for the two rightmost columns we have

x ≤ ⌈y⌉even, y ≤ ⌈z⌉even

for any x, y, z as pictured in Figure 2.15.
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Let us also observe that the rows in both skew shapes are weakly decreasing. Consider any
a, x, y, z as pictured in Figure 2.14. We will show that a ≥ x. If a is even, then the conditions
in Proposition 2.2.4 give us that y ≤ ⌈a+ 1⌉odd = a+ 1. Then x < y ≤ a+ 1 =⇒ x ≤ a as
desired. On the other hand if a is odd then z < a and x ≤ ⌈z + 1⌉odd ≤ z + 1 ≤ a, again as
desired.

Now if we substitute the integers in our filling of our skew shapes with entries 1 < 1 <
2 < · · · < n− 1 < n via

i 7→

{
n− i

2
i even

n− i−1
2

i odd

then we see that each of the fillings of our skew shapes are now weakly increasing in rows,
strictly increasing in columns, and i and ı do not appear past the ith row. Note that this third
property comes from the fact that the kth column contains only integers in {1, . . . 2k − 1}
and hence only entries in {n+ 1− k, n+ 1− k, . . . , n}. With these three conditions, we see
that these are pairs of symplectic skew tableaux, with some extra conditions, as outlined in
below.

Theorem 2.2.5. Lower sets of Sn are in bijection with pairs of symplectic skew tableaux
of shape (n, . . . , n)/(n− 1, n− 2, . . . , 1, 0) such that in each skew tableaux for any x, y, z as
pictured in Figure 2.16 we have

x ≥ ⌊z − 1⌋, z ≥ ⌈y⌉

and also for the rightmost columns of the two skew tableaux for any x, y, z as pictured in
Figure 2.17 we have

x ≥ ⌈y − 1⌉, y ≥ ⌈z − 1⌉

Here we use z− 1 to denote the value preceding z, so that 3− 1 = 2 and 3− 1 = 3. Also,
we use ⌊x⌋ to denote the unbarred value corresponding to x. Similarly we use ⌈x⌉ to denote
the barred value corresponding to x. In this way, for both x = i or x = ı we would have

⌊x⌋ = i and ⌈x⌉ = ı.

We give an example of the bijections in Proposition 2.2.4 and Theorem 2.2.5 from a lower
set of S4 in Figure 2.18.
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y

x

z

Figure 2.16: For the symplectic skew tableux in Theorem 2.2.5, we also require that any
x, y, z as pictured satisfy x ≥ ⌊z − 1⌋ and z ≥ ⌈y⌉.

z

x y

Figure 2.17: For any pair of symplectic skew tableaux in Theorem 2.2.5, we also require that
in their rightmost columns any x, y, z as pictured satisfy x ≥ ⌈y − 1⌉ and y ≥ ⌈z − 1⌉.
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5

3 3

3 2 2

1 1 1 1

4

4 3

3 3 2

1 1 1 1

2

3 3

3 3 3

4 4 4 4

2

2 3

3 3 3

4 4 4 4

Figure 2.18: The lower set denoted by the red points in the pictured S4 and its pairs of skew
tableaux and symplectic skew tableaux, according to the bijections in Proposition 2.2.4 and
Theorem 2.2.5, respectively.
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2.3 Alternating Phase Matrices

Just as the 6V model is in bijection with alternating sign matrices (ASMs) [17] [23], we can
create an analogous bijection for the 20V model. Di Francesco and Guitter construct such
an object in [9]: alternating phase matrices (APMs).

Definition 2.3.1. An alternating phase matrix of size n is an n × n matrix of entries
(h, v, d) ∈ {−1, 0, 1}3 such that

(i) hi,j + vi,j + di,j = 0 for all i, j ∈ {1, . . . , n}

(ii) Each row has a nonzero h and each column has a nonzero v

(iii) Along rows, the nonzero h alternate in sign, beginning with 1 and ending with 1.

(iv) Along columns the nonzero v alternate in sign, beginning with −1 and ending with
−1.

(v) Along lower diagonals, including the main diagonal, the nonzero d alternate in sign,
beginning with 1 and ending with −1. Along upper diagonals, the nonzero d alternate
in sign, beginning with −1 and ending with 1.

We can think of an alternating phase matrix as describing at each vertex of the 20V model
whether there is a net incoming (−1), net outgoing (1), or no net (0) horizontal, vertical,
and diagonal edge. Of note, the aforementioned and widely known ASMs are realized as
APMs where di,j = 0 for all i, j.

Proposition 2.3.2. Alternating phase matrices are in bijection with pairs of symplectic
tableaux from Theorem 2.2.5.

Proof. In [9] Di Francesco and Guitter actually show that these APMs are in bijection with
configurations of the 20V model. By Theorem 2.2.5 and Proposition 2.1.5, it follows that
our pairs of symplectic tableaux are also in bijection with APMs.

Below we will provide one way of explicitly constructing a pair of symplectic tableaux
from any APM. Theorem 2.2.5 and Proposition 2.1.5 together give us an explicit bijection
from the 20V model to pairs of symplectic tableaux (subject to our extra conditions), so if
we can reconstruct the configuration of the 20V model from our APM, we can write this
bijection.

Given an APM ((hi,j, vi,j, di,j))1≤i,j≤n we construct two matrices V ∈ {0, 1}(n+1)×n and

H ∈ {0, 1}n×(n+1) as follows:

Vi,j =

{∑i
k=1 hk,j + dk,j i = 1, . . . , n

0 i = 0

Hi,j =

{∑j
k=1 vi,k + di,k j = 1, . . . , n

1 j = 0
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Our matrices V and H encode exactly where the vertical and edges of a configuration of
the 20V model occur. In this way, our matrix V ends in a row of 1 and our matrix H ends
in a column of 0. These properties can be checked from the definition of APMs.

The matrices V and H completely determine our configuration of the 20V model, but
we can also encode the diagonal edges simiarly in a matrix D. Let D be an n× n matrix in
{0, 1} defined recursively by

Di,j = Vi−1,j +Hi,j−1 +Di−1,j−1 − Vi,j −Hi,j

for all 1 ≤ i, j ≤ n. Then Di,j records whether or not the vertex (i, j) in a configuration of
the 20V model has an outgoing diagonal edge. This allows us to characterize exactly which
(V,H) ∈ {0, 1}(n+1)×n × {0, 1}n×(n+1) arise from a valid APM. These are exactly when Di,j

as defined above satisfy

• Di,j ∈ {0, 1} for all 1 ≤ i, j ≤ n

• Dn,j = 1 for all 1 ≤ j ≤ n

• Di,n = 0 for all 1 ≤ i ≤ n− 1

In any case, with the configuration of the 20V model recovered from an APM, we return
now to our explicit bijection. For i ≥ j:

• If Vi−1,j = 0 then column n− i+ j of the right tableau has an entry n− j.

• If Hi,j = 1 then column n− i+ j of the right tableau has an entry n− j.

Otherwise for i < j:

• If Hi,j−1 = 1 then column n− j + i of the left tableau has an entry n− i.

• If Vi,j = 0 then column n− j + 1 of the left tableau has an entry n− i.

Sorting entries in each column in ascending order gives us the pair of symplectic tableaux.
Figure 2.19 gives an example of the bijection from APM to Z20V (n) to pairs of symplectic

tableaux, as well as the corresponding matrices V , H, and D.

2.4 Conclusion

We have now identified several bijections for the 20V model with the boundary condition
DWBC1, as defined in Definition 1.1.9. Each of these bijections has an analogous bijection
with the 6V model, and as such these served as an initial attempt to find a nice prod-
uct formula for the 20V model akin to the well known formula for enumerating 6V model
configurations

n−1∏
i=0

(3i+ 1)!

(n+ i)!
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(0,−1, 1) (0, 0, 0) (1,−1, 0)
(0, 0, 0) (1, 0,−1) (0, 0, 0)
(0, 0, 0) (1,−1, 0) (0, 0, 0)



V =


0 0 0
1 0 1
1 0 1
1 1 1

 H =

1 1 1 0
1 1 0 0
1 1 0 0

 D =

0 0 0
1 1 0
1 1 1


2

2 2

3 3 3

1

2 2

3 3 3

Figure 2.19: An APM, its corresponding configuration of the 20V model, the matrices
V,H,D, as well as the corresponding pair of symplectic tableaux.

Alas in the following Section 3, we see that a multiplicative formula for the 20V model can
be obtained by expanding to a larger non-square domain. Still, the question of enumerating
20V model configurations on this square domain remains, and a formula can still possibly
be found through one of these combinatorial objects.

Of note, tableaux with a symplectic condition seems to be a key property for the 20V
model on any domain and boundary condition. Indeed in Chapter 3 when we examine the
20V model on a different domain, as defined in Definition 1.1.11, we again can establish a
bijection to fillings of Young diagrams with a symplectic condition. Admittedly the presence
of the somewhat unusual condition on our symplectic skew tableaux in Theorem 2.2.5 makes
this enumeration difficult. However the symplectic condition seems to capture something
fundamental about the 20V model.
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Chapter 3

Domino Tilings

This section is largely based off of [6], which examines the 20V model on trapezoidal domains
Tn from Definition 1.1.11. In particular, in [8] Di Francesco shows that the number of
configurations of the 20V model on Tn is equal to the number of domino tilings on some
Aztec triangle, an example of which is pictured in Figure 3.1. He also conjectures that the
number of 20V model configurations on Tn is given by the product formula

2n(n−1)/2

n−1∏
i=0

(4i+ 2)!

(n+ 2i+ 1)!

In this section we will construct a domain that generalizes the aforementioned Aztec triangle,
and present a generalized product formula in Theorem 3.4.3 to the one conjectured by Di
Francesco.

Figure 3.1: An example of an Aztec Triangle considered by Di Francesco in [8] whose domino
tilings are equal in number to 20V configurations on T4.
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3.1 Sequences of partitions

First we define certain sequences of partitions, with conditions similar to those found in [2]
and [3].

Definition 3.1.1. Given a partition µ = (µ1, . . . , µn), an integer m ≥ µ1, and a word
w = (w1, . . . , w2n−1) ∈ {+,−}2n−1 or w = (w1, . . . , w2n) ∈ {+,−}2n, consider sequences of
partitions λ(0), . . . , λ(2n−1) or λ(0), . . . , λ(2n), respectively, such that

(1) λ(0) is empty

(2) λ(2n−1) = µ or λ(2n) = µ, respectively

(3) λ(2i+1)/λ(2i) is a horizontal strip if w2i+1 = + and λ(2i)/λ(2i+1) is a horizontal strip if
w2i+1 = −

(4) λ(2i)/λ(2i−1) is a vertical strip if w2i = + and λ(2i−1)/λ(2i) is a vertical strip if w2i = −

(5) λ(i) has at most ⌈ i
2
⌉ nonzero parts

(6) λ
(i)
j ≤ m for all i, j

We will refer to sequences λ(0), . . . , λ(2n−1) as Case 1, and sequences λ(0), . . . , λ(2n) as Case
2.

Remark 3.1.2. When w2j+1 = + for all j, then condition (6) imposes no restriction for
m sufficiently large. Specifically, this happens when m ≥ µ1 + #{j | w2j = −}. This

is because for all i, j we have λ
(2j+1)
i − λ

(2j)
i ≥ 0 and λ

(2j)
i − λ

(2j−1)
i ∈ {0, 1} if w2j = +

otherwise λ
(2j)
i − λ

(2j−1)
i ∈ {−1, 0} if w2j = −. Then since µi ≤ µ1 for all i, we see that

µi ≤ µ1 +#{j | w2j = −} for all i.
Unless stated otherwise, we will assume m = µn +#{w2j = −}.

Delannoy paths

Definition 3.1.3. For any i, j ∈ Z the Delannoy number D(i, j) is the number of paths
from (0, 0) to (i, j) using only north, northeast, or east steps.

Remark 3.1.4. The Delannoy numbers D(i, j) [5] can also be defined recursively by

1. D(i, j) = 0 if i < 0 or j < 0

2. D(0, 0) = 1

3. D(i, j) = D(i− 1, j) +D(i, j − 1) +D(i− 1, j − 1)

Definition 3.1.5. For i, j ∈ Z we also define H-Delannoy H(i, j) given by
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1. H(i, j) = 0 if i < 0 or j < 0

2. H(0,−1) = 1

3. H(i, j) = 2D(i− 1, j) +H(i, j − 1)

We can also interpret H(i, j) as paths – H(i, j) is the number of paths from (0, 0) to
(i, j+1) using north, northeast, or east steps that do not pass through (i−1, j+1) as shown
in Figure 3.2. A number of identities exist for D and H.

(0, 0)

(i, j)

(0, 0)

(i, j)
(i, j + 1)

Figure 3.2: On the left, the paths counted by D(i, j) are those from (0, 0) to (i, j) taking
only north, northeast, and east steps. On the right, the paths counted by H(i, j) are those
from (0, 0) to (i, j + 1) using north, northeast, and east steps that do not pass through the
point (i− 1, j + 1) in red.

Proposition 3.1.6.

D(i, j) = D(i− 1, j) +H(i, j − 1) (3.1)

=
i∑

m=0

H(m, j − 1) (3.2)

=
∑
m

(
i

m

)(
j

m

)
2m (3.3)

H(i, j) = H(i− 1, j) +H(i, j − 1) +H(i− 1, j − 1) (3.4)

= 2

j−1∑
m=0

D(m, i) (3.5)

=
∑
m

(
i− 1

m− 1

)(
j + 1

m

)
2m for i ≥ 1 (3.6)

Proof. If we consider the geometry of Definition 3.1.3 and the observation above, equation
(1) is clear. Equation (2) then follows by induction on i. To see equation (3), we first observe
that

(
i
m

)(
j
m

)
is the number of paths from (0, 0) to (i, j) using only east and north steps that
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have exactly m turns consisting of an east step followed by a north step. Then to count
Delannoy paths, we obtain a factor of 2m since at each of these turns we can instead take a
northeast step.

Now equation (1) gives us H(i, j) = D(i, j+1)−D(i−1, j+1), and combined with 3. in
Remark 3.1.4 we obtain equation (4). Equation (5) follows from induction on i using 3. in
Definition 3.1.5. Finally the proof for equation (6) follows from the argument for equation
(3), noting that we are considering paths from (0, 0) to (i, j+1) where the east-most column
must contain one of the aforementioned east to north turns.

3.2 Domino Tilings

Definition 3.2.1. Let D be a region of the Euclidean plane that is the union of unit squares
whose vertices lie in the integer lattice Z2. A domino is the union of two such unit squares
that share an edge. Then we say a domino tiling ofD is a set D of mutually disjoint dominoes
such that

⋃
d∈D = D.

The goal of this section is to construct domains D such that domino tilings of D are in
bijection with Case 1 and Case 2 sequences defined in Definition 3.1.1. These types bijections
have been studied many times before [2] [3], and we will use many of the same ideas. But
first, let us provide some language to describe our domains which will aid in describing our
particular bijection.

Definition 3.2.2. For a domain of unit squares as described in Definition 3.2.1, we number
its southwest to northeast diagonals from northwest to southeast, starting with diagonal 0.
We will say that these diagonals begin on their southwestern-most square, so that within
each diagonal, a squares has its next square to its northeast and its previous square to its
southwest. We can then color the squares of our domain as a chessboard such that even
diagonals always consist of light squares. It follows then that our domain is tiled by four
types of dominoes as in Figure 3.3. We will refer to the north or west square of a domino as
its start. Dominoes that start on an even diagonal will be called even, and dominoes that
start on an odd diagonal will be called odd, as in Figure 3.3.

For a domino tiling of a domain, we obtain a sequence of partitions as follows: Even
dominoes are filled with holes and odd dominoes are filled with particles (see Figure 3.3).
The last diagonal may contain squares not in our domain, in which case we treat those squares
as the start of a domino, for example as in Figure 3.4. Then the ith diagonal determines
the ith partition λ(i) via the following rule: the jth part λ

(i)
j of this partition is exactly the

number of holes to the southwest of the jth-to-last particle.

Remark 3.2.3. Each partition here is obtained via its Maya diagram. A Young diagram,
and hence a partition, is determined by the edges that form its southeast boundary. In
particular this will be a series of north and east steps beginning with the southwest point of
the bottom row of the Young diagram. In this way, for each diagonal in a domino tiling of
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our domain D, we obtain a partition by treating holes as east steps and particles as north
steps.

Moreover on each diagonal, we can treat the infinite sequence of squares to the southwest
not in our domain as having particles, and the infinite sequence of squares to the northeast
not in our domain as having holes. See Figure 3.5.

Figure 3.3: Four types of dominoes used to tile our domains, and the resulting holes or
particles. The first two types of dominoes are even dominoes, and the last two types of
dominoes are odd dominoes. For each domino, its starting square is either its north or west
square.

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

diagonal 7

Figure 3.4: A particular domain, a domino tiling on that domain, and a filling of that domino
tiling with holes and particles. The corresponding sequence of partitions is λ(0) = (0, 0, 0, 0),
λ(1) = (1, 0, 0, 0), λ(2) = (2, 0, 0, 0), λ(3) = λ(4) = λ(5) = (3, 1, 0, 0), λ(6) = (3, 2, 1, 0),
λ(7) = (3, 2, 2, 1).

Case 1 sequences

Recall that for any partition µ = (µ1, . . . , µn), m ≥ µ1, and w = (w1, . . . , w2n−1) ∈
{+,−}2n−1, Case 1 sequences are sequences of partitions λ(0), . . . , λ(2n−1) such that
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. . . . . .

Figure 3.5: The Young diagram for the partition (6, 3, 3, 1) and its Maya diagram. Its shape
is completely determined by the north and east steps in red. We can also consider this as an
infinite sequence of north and east steps by prepending the blue north steps and appending
the blue east steps.

(1) λ(0) is empty

(2) λ(2n−1) = µ

(3) λ(2i+1)/λ(2i) is a horizontal strip if w2i+1 = + and λ(2i)/λ(2i+1) is a horizontal strip if
w2i+1 = −

(4) λ(2i)/λ(2i−1) is a vertical strip if w2i = + and λ(2i−1)/λ(2i) is a vertical strip if w2i = −

(5) λ(i) has at most ⌈ i
2
⌉ nonzero parts

(6) λ
(i)
j ≤ m for all j

Theorem 3.2.4. The domain D whose domino tilings are in bijection with Case 1 sequences
for a given µ = (µ1, . . . , µn), m ≥ µ1, and w = (w1, . . . , w2n−1) ∈ {+,−}2n−1 can be
constructed by its diagonals as follows:

(i) Diagonal 0 is of length m.

(ii) The length of each odd diagonal 2i + 1 is one more than the length of the previous
diagonal 2i. The first (ie. left-most) square of diagonal 2i+ 1 lies

• Directly below the first square of diagonal 2i if w2i+1 = +

• Directly below the first square of diagonal 2i if w2i+1 = −

(iii) Each even diagonal 2i has length equal to the length of the previous diagonal 2i − 1.
The first square of diagonal 2i lies
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• Directly below the first square of diagonal 2i− 1 if w2i = +

• Directly to the right of the first square of diagonal 2i− 1 if w2i = −

(iv) The last diagonal 2n − 1 follows (ii) above, but consists of squares in D and squares
not in D: Convert the partition µ into its sequence of holes and particles. Then any
hole corresponds to a square in D and a particle corresponds to a square not in D.

Figure 3.6 shows examples of (iv) in Theorem 3.2.4, and Figure 3.7 illustrates Theorem
3.2.4 for two choices of µ and w (and m taken to be sufficiently large as in Remark 3.1.2).

Figure 3.6: On the left, the last diagonal for partition µ = (3, 2, 1). In the center µ =
(3, 2, 1, 0), and on the right µ = (4, 1, 1, 0, 0). The resulting southeast boundaries are also
drawn.

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

diagonal 7

diagonal 0

diagonal 1
diagonal 2diagonal 3

diagonal 4

diagonal 5

diagonal 6

diagonal 7

Figure 3.7: On the left, the domain D for the partition µ = (3, 2, 1, 0) and w = (+8). On the
right, the domain D for the partition µ = (3, 2, 2, 1) and wi = − for i = 2, 4, 5 and wi = +
otherwise.
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Proof. Let us prove first the case where w = (+2n−1). We begin by showing that our domain
D as defined satisfies our conditions (1)-(6) above. Given that diagonal 0 contains only the
start (ie. north or west square) of dominoes, it is clear that (1) must be true. Furthermore
due to condition (iv) and since the squares diagonal 2n− 1 that are in D are not starts (ie.
only south or east squares) of dominoes, it is clear that (2) must also be true. It can also be
seen by induction that each diagonal i has n holes and ⌈ i

2
⌉ particles, hence we have (5).

Now consider condition (4) when w2i = +. Given the configuration of holes and particles
on a diagonal 2i − 1, the configuration of holes and particles on diagonal 2i is determined
by whether the dominoes starting on the previous diagonal are vertical or horizontal. We
see that any such vertical domino keeps the particle at the same place from diagonal 2i− 1
to diagonal 2i, and any horizontal domino moves the particle one square later in the next
diagonal. Moreover the restrictions of the domino tiling imply that a horizontal domino
requires that any particles immediately following it must also be the start of a horizontal
domino. In terms of the corresponding partition this means that going from λ(2i−1) to λ(2i),
each part can increase by at most one with the additional condition that for parts of equal
size, if one of these parts increases by one then the earlier parts of equal size must also
increase by one. This is exactly the condition that λ(2i)/λ(2i−1) is a vertical strip.

On the other hand when w2i = −, again we consider dominoes that begin on the previous
diagonal 2i − 1. The j-to-last domino in diagonal 2i − 1 being horizontal corresponds to
λ
(2i)
j = λ

(2i−1)
j , and the j-to-last domino in the diagonal being vertical corresponds to λ

(2i)
j =

λ
(2i−1)
j − 1. Again a horizontal odd domino forces all subsequent adjacent odd dominoes to

be horizontal. Thus λ
(2i−1)
j /λ

(2i)
j is a vertical strip. Both cases of w2i are illustrated in Figure

3.8.
For condition (3) we again consider first w2i+1 = +. In this case, diagonals 2i and 2i+ 1

begin on the same diagonal just as in our proof for condition (4) when w2i = +. Furthermore
we see that the configuration of particles on diagonal 2i + 1 is determined by whether the
dominoes starting on diagonal 2i are vertical or horizontal. However since dominoes starting
on diagonal 2i contain holes instead of the particles when proving condition (4), we now
require

λ′
(2i+1)

/λ′
(2i)

is a vertical strip =⇒ λ(2i+1)/λ(2i) is a horizontal strip.

Note that since the length of diagonal 2i + 1 is greater than the length of diagonal 2i, we
are permitted to increase the length of λ

(2i)
n .

Now when w2i+1 = −, the first square of diagonal 2i+1 is forced to be a particle. We can
then obtain a configuration of holes and particles if w2i+1 were + by moving this particle to
any square of its diagonal strictly to the right of the last particle of diagonal 2i as in Figure
3.9. Since removing a horizontal strip is exactly adding a horizontal strip then removing the
largest part, we see that λ(2i)/λ(2i+1) is a horizontal strip as desired. See Figure 3.9.

Hence we have shown that any domino tiling gives us a sequence of partitions as desired.
In fact the same argument shows that any sequence of partitions satisfying (1)-(5) must give
us a domino tiling of D. In particular conditions (3) and (4) guarantee that we get a domino
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tiling of some domain D′. Then condition (5) tells us that the length of each diagonal in
this domain D′ is the same as in our domain D, and conditions (1) and (2) guarantee that
the first and last rows of D′ agree with D. This completely determines the shape of D′.

Figure 3.8: Condition (4) for w2i = + on the left and w2i = − on the right, with diagonals
2i − 1 and 2i. The configuration of holes and particles, hence dominoes, on diagonal 2i is
completely determined by whether the dominoes beginning on the particles of diagonal 2i−1
are vertical or horizontal. The blue line denotes how the dominoes must lie based on our
configuration of holes and particles.

Figure 3.9: Moving the first particle when w2i+1 = − to obtain a configuration for w2i+1 = +.
For this particular configuration on diagonal 2i+ 1, there are 3 squares to move the orange
particle.
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Case 2 sequences

The domain on which domino tilings are in bijection with Case 2 sequences can be constructed
similarly to that of Case 1 sequences.

Theorem 3.2.5. The domain D whose domino tilings are in bijection with Case 2 sequences
for a given µ = (µ1, . . . , µn), m ≥ µ1, and w = (w1, . . . , w2n) ∈ {+,−}2n can be constructed
by its diagonals as follows:

(i) Diagonal 0 is of length m.

(ii) The length of each odd diagonal 2i + 1 is one more than the length of the previous
diagonal 2i. The diagonal starts so that

• The first square of diagonal 2i+ 1 is directly below the first square of diagonal 2i
if w2i+1 = +

• The second square of diagonal 2i+ 1 is directly below the first square of diagonal
2i if w2i+1 = −

(iii) Each even diagonal 2i has length equal to the length of the previous diagonal 2i − 1.
The first square of diagonal 2i lies

• Directly below the first square of diagonal 2i− 1 if w2i = +

• Directly to the right of the first square of diagonal 2i− 1 if w2i = −

(iv) The last diagonal 2n consists of squares in D and squares not in D. Convert the
partition µ into its sequence of holes and particles. Then any particles correspond to a
square in D and holes correspond to a square not in D.

We illustrate Theorem 3.2.5 with an example in Figure 3.10. Theorem 3.2.5 differs from
Theorem 3.2.4 only by (iv), and its proof proceeds similarly.

As mentioned previously, the Aztec triangles in [8] are exactly the Case 1 domains cor-
responding to the partition µ = (n, n − 1, . . . , 1) and w = (+2n−1). Hence we will refer to
these domains, both Cases 1 and 2, as generalized Aztec triangles.
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diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

diagonal 0

diagonal 1

diagonal 2

diagonal 3
diagonal 4diagonal 5

diagonal 6diagonal 7

diagonal 8

Figure 3.10: On the left, the generalized Aztec triangle D for the partition µ = (3, 2, 1) and
w = (+6). On the right, the generalized Aztec triangle D for the partition µ = (4, 2, 1, 0)
and wt = − for i = 3, 4, 6 and wt = + otherwise.

Special cases

Definition 3.2.6. The Aztec diamond of order n is the set of unit squares whose vertices lie
in the integer lattice Z2 whose centers (x, y) lie in the region |x|+ |y| ≤ n. See figure 3.11.

It is well known that the number of domino tilings of the Aztec diamond of order n is
2n(n+1)/2 [10].

Figure 3.11: The Aztec diamond of order 4.

Corollary 3.2.7. When w2t = − and w2t+1 = + for all t and µ = (0n), tilings of the
generalized Aztec triangle D are in bijection with tilings of an Aztec diamond. More precisely,
tilings of the Case 1 generalized Aztec triangle are in bijection with domino tilings of the Aztec
diamond of order n− 1, and tilings of the Case 2 generalized Aztec triangle are in bijection
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with domino tilings of the Aztec diamond of order n. It follows then for Case 1 the number
of tilings of our domain is 2n(n−1)/2, and for Case 2 the number of tilings of our domain is
2n(n+1)/2.

Proof. By construction of our generalized Aztec triangle D, when w2t = − and w2t+1 = +
each diagonal of D ends in the top-most row of D. Moreover since µ = (0n), in Case 1 the
last diagonal of D contains n squares not in D followed by n squares D. We see then that
the i-th row from the top must contain n + 1 − i horizontal (even) dominoes as in Figure
3.12.

On the other hand in Case 2 the last diagonal of D contains n squares in D followed by
n squares not in D. Then similarly we see that the i-th row from the top must contain n− i
horizontal (even) dominoes, again as in Figure 3.12. In both Cases 1 and 2, if we consider
the part of the domain not occupied by these frozen dominoes, we see that what remains is
an Aztec diamond.

Figure 3.12: The generalized Aztec triangles for Cases 1 and 2, respectively, when µ =
(0, 0, 0, 0), m = 4, w2t = − and w2t+1 = + for all t. Frozen dominoes are drawn in, and
tilings of the domain are exactly tilings of the Aztec diamond.

Corollary 3.2.8. More generally when w2i = − and w2i+1 = + for all i and µ is any
partition of length n, for Case 1 the number of domino tilings is given by 2n(n−1)/2sµ(1

n),
and for Case 2 the number of domino tilings is given by 2n(n+1)/2sµ(1

n).

Proof. First we consider Case 1. As illustrated in Figure 3.13 the nonfrozen portion of our
domain is the northwest part of an Aztec diamond of order 2n−1 whose southwest boundary
is determined by µ. In particular if we consider µ as a series of holes and particles as in
Remark 3.2.3 then the southeast-most diagonal includes holes and does not include particles.
Since µ = (µ1, . . . , µn) has particles at µn+1−i + i, Section 4 in [10] gives us that the number
of tilings is

2n(n−1)/1
∏

1≤i<j≤n

(µn+1−j + j)− (µn+1−i + i)

j − i
= 2n(n−1)/2sµ(1, . . . , 1)
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Similarly for Case 2, our generalized Aztec triangle is part of an Aztec diamond of order
2n where the southeast-most diagonal is determined by µ (again see Figure 3.13). This time
it includes particles and does not include holes, but again we can use Section 4 in [10] (also
[21] and [3], where these domains are referred to as Aztec rectangles) to see that the number
of tilings is

2n(n+1)/1
∏

1≤i<j≤n

(µn+1−j + j)− (µn+1−i + i)

j − i
= 2n(n+1)/2sµ(1, . . . , 1)

Figure 3.13: Domains when when w2t = − and w2t+1 = + for all t with frozen dominoes
drawn. Specifically, on the left we have Case 1 for µ = (4, 2, 1, 1) and on the right Case 2
for µ = (3, 2, 0).

3.3 Enumeration

Non-intersecting paths

Recall that a Delannoy path is a path from (x1, y1) to (x2, y2) where x1, x2, y1, y2 ∈ Z using
only north, northeast, or east steps. We will say that two Delannoy paths P1, P2 are non-
intersecting if the set of points that P1 and P2 pass through are disjoint.

In [8], a bijection between certain non-intersecting Delannoy paths and domino tilings of
the Type 1 domains for sequences λ(0) = (0, . . . , 0), . . . , λ(2n−1) = (n, n− 1, . . . , 1) is used to
compute the number of domino tilings on these domains. In this section we will prove this
bijection, which can be obtained by drawing segments of the paths according to the four
types of dominoes, as described in Figure 3.14. These paths end at the penultimate diagonal
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Figure 3.14: For each domino, the path is indicated in red. A parity argument explains why
dominoes of the second type do not permit a path.

of our domain, and we consider the paths as being extended southeastward through the last
diagonal of our domain, shown in diagonal 7 in Figure 3.15.

For describing our Delannoy paths, it will be helpful to consider a change of coordinates
by a rotation of π

4
and a dilation of

√
2, as well as a translation so that the origin is at the

midpoint of the west edge of the first square of diagonal 2n− 2. See Figure 3.15 for this Z2

lattice after this transformation. For this section we will use east, south, and southeast to
describe the direction of steps in these Delannoy paths after this change of coordinates.

Finally, for any word w ∈ {+,−}2n−1 or w ∈ {+,−}2n, we define Wi = #{w2j = + | j >
n− i}. For example, if w = (+,+,+,−,+,−,+,+,+) so that w2, w8 = + and w4, w6 = −,
then W1 = 0, W2 = W3 = W4 = 1, and W5 = 2.

Proposition 3.3.1. Domino tilings on the generalized Aztec triangle corresponding to Case
1 sequences with w2t+1 = + for all t are in bijection with non-intersecting n Delannoy paths
where the ith path is from (Wi, i− 1) to (µn−i+1 + i− 1, 0)

We present two proofs for this. The first will be a constructive proof allowing us to read
the sequence of partitions directly from a set of non-intersecting paths. The second will be a
more general proof which we will reference again when we consider other ways of assigning
paths to a domino tiling.

Proof of Proposition 3.3.1. The paths permitted by each domino (Figure 3.14) require that
the starts of our paths are exactly those dark squares whose left edge lie on the boundary of
D. These are exactly the first squares of each odd diagonal. Since these paths always move
eastward, they will eventually end on an eastern edge of our domain. Moreover since these
paths always leave a domino on a light square, we see that these paths will always exit our
domain on the east edge of those squares on the penultimate diagonal whose east edge lies on
the boundary of the domain. Equivalently, these are the west edges of the squares on the last
diagonal that are not included in our domain. Indeed we observe that for µ = (µ1, . . . , µn)
there are exactly n points where our paths start and n points where our paths end.

By construction via the domino tiling, these n paths will be non-intersecting. Now we
claim that this map sending domino tilings to non-intersecting paths is injective. If we label
our paths from bottom to top, starting with path 1, we see that the collective number of
southeast and east paths in path i must be exactly i − 1. Hence the location of the odd
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path 1

path 2

path 3

path 4

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

diagonal 7

Figure 3.15: A particular domino tiling of the generalized Aztec triangle for Case 1 with
µ = (3, 2, 2, 1) and w = (+7), and its corresponding Delannoy paths. To the right, the edges
on which possible paths can occur for this domain. This vertices of the possible paths lie
in the lattice Z2 after the transformation described above. Corollary 3.3.3 gives the total
number of paths, hence tilings, as the determinant

∣∣∣∣∣∣∣∣
1 1 1 1
1 5 7 11
0 5 13 41
0 1 7 63

∣∣∣∣∣∣∣∣ = 704

dominoes (that is dominoes with holes) completely determines each path. Then since our
previous bijection of domino tilings to sequences of partitions in Section 3.2 gives us that a
domino tiling is completely determined by the location of these odd dominoes, our claim is
proved.

It remains to be seen that this map from domino tilings to non-intersecting paths is
surjective. Since each path i must cross 2(i−1) diagonals and each odd domino results in the
path crossing 2 diagonals where as each even domino results in the path crossing 0 diagonals,
we see that path i contains exactly i−1 odd dominoes. As shown above these odd dominoes
allow us to recover a sequence of partitions, and we see that λ

(i)
n−j +#{wt = − | t ≤ i} is the

number of east or northeast steps at least half completed when path j crosses diagonal i.
Then let us check that this sequence of partitions obtained from any set of non-intersecting

paths satisfies

(1) λ(0) is empty

(2) λ(2n−1) = µ
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(3) λ(2i+1)/λ(2i) is a horizontal strip for all i

(4) λ(2i)/λ(2i−1) is a vertical strip if w2i = + and λ(2i−1)/λ(2i) is a vertical strip if w2i = −
for all i

(5) λ(i) has at most ⌈ i
2
⌉ nonzero parts for all i

(6) λ
(i)
j ≤ m for all i, j

Conditions (1) and (2) are clear, and condition (5) follows from the fact that path i begins
between diagonals 2(n− i) and 2(n− i)+ 1. Condition (6) is follows from the length of each
diagonal in our domain.

To observe condition (3), we see that the jth part of λ(2i+1)/λ(2i) for any j, which we
denote as (λ(2i+1)/λ(2i))j, is determined exactly by the number of east steps taken by path

n−j between diagonals 2i+1 and 2i. Indeed, λ
(2i+1)
j and λ

(2i)
j are determined by the number

of east and southeast steps taken by path n− j by diagonal 2i+ 1, and any southeast steps
cannot have been at least half completed between diagonals 2i and 2i+1. Then noting that
at any diagonal, the number of east steps path n − j − 1 can take is bounded by the total
number of east and southeast steps path j has taken, we see that λ(2i+1)/λ(2i) is a horizontal
strip.

A similar argument shows condition (4). Here λ(2i)/λ(2i−1) is determined by the number
of southeast steps taken between diagonals 2i and 2i − 1 – either 0 or 1. It is clear that
when w2i = +, taking a southeast step gives us that (λ(2i)/λ(2i−1))j = 1 and otherwise
(λ(2i)/λ(2i−1))j = 0. On the other hand, when w2i = −, taking a southeast step gives us that
(λ(2i−1)/λ(2i))j = 0 and otherwise (λ(2i−1)/λ(2i))j = 1. Hence λ(2i)/λ(2i−1) is a vertical strip if
w2i = + and λ(2i−1)/λ(2i) is a vertical strip.

And now the second proof of Proposition 3.3.1:

Alternate proof of Proposition 3.3.1. Let us see that any domino tiling of our region must
result in a set of n non-intersecting paths as stated. Indeed, each segment of our paths must
enter a domino from the west edge of a dark square and exit a domino from the east edge
of a light square. It follows that our paths must begin on the dark squares of D whose west
edge lies on the boundary of D, and must end on the light squares of D whose east edge lies
on the boundary of D.

Conversely, such a set of non-intersecting paths determines the locations of all our domi-
noes in D except the horizontal even dominoes, that is the domino to which we do not assign
any segment of a path. Then it suffices to show that for any two non-intersecting paths, the
space in between them can be filled with horizontal even dominoes.

For any two non-intersecting paths, we insert dominoes into our generalized Aztec triangle
according to the paths as in Figure 3.16. Then we see that the distance between consecutive
paths lines y = t where t is odd (keeping in mind our rotation by π

4
) determines the number

of light squares directly above the line y = t that are not filled by dominoes, as well as the
number of dark squares directly below the line y = t that are not filled by dominoes. In
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particular, each light square of D is not part of a domino must be adjacent to a dark square
to its right that is also not part of a domino. Again see Figure 3.16. It follows that the space
between any two non-intersecting paths can be filled with horizontal even dominoes.

Note that for dominoes above the north-most path we can consider an additional fixed
path as in Figure 3.16. Such a path poses no restrictions on this north-most path, but shows
that we can indeed fill the area above this path with horizontal even dominoes.

path 3

path 4

path 1

path 2

path 3

path 4

Figure 3.16: On the left, filling the domain with dominoes according to the two paths in red.
The green line is a segment of the line y = 3 which we use in the second proof of Proposition
3.3.1. Note that between these two paths, there are exactly 3 light squares above the line
and 3 dark squares below the line. On the right in green, additional fixed dominoes we add
to the domain to show that we can fill the region above the north-most path with vertical
dominoes.

Similarly we can identify a bijection from Case 2 sequences when w2i+1 = + to sets of
non-intersecting Delannoy paths. Again we will use our change of coordinates above to more
easily describe where these paths start and end. Of note for Case 2 sequences, the final step
in any path cannot an east step, since this would correspond to a change from partition
2n+ 1 to 2n+ 2, but we do not have λ(2n+2) for a Case 2 sequence.

Proposition 3.3.2. Domino tilings on the generalized Aztec triangle corresponding to Case
2 sequences with w2t+1 = + for all t are in bijection with non-intersecting n Delannoy paths
where the ith path is from (Wi, i− 1) to (µn−i+1 + i− 1,−1) where the last step of each path
is not an eastward step.

Proof. We can use much of our proof for Proposition 3.3.1 to prove this proposition. We
need only to justify the different ending points, as well as the additional restriction on the
last step of each path.
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As with Case 1 sequences, our paths must start at the first square of each odd diagonal and
exit at the light squares of D whose right edge lies on the boundary of D. For the generalized
Aztec triangles D corresponding to Case 2 sequences, these light squares are exactly the light
squares in diagonal 2i. Hence these paths end at the points (µn−i+ i−1,−1) for i = 1, . . . , n
as desired.

Moreover since these light squares on the final diagonal of D, they cannot be adjacent
to a dark square below them. Hence the last step of each path cannot be an eastward step
(the first domino in Figure 3.14).

We note that unlike in the case of Case 2 sequences, there is no restriction on the last
step of each path for Case 1 sequences. Indeed, suppose the shape of our generalized Aztec
triangle D does not allow some path j to end with an eastward step, that is if some light
square in diagonal 2n − 2 which contains the endpoint of some path does not have a dark
square below it. Then it must be that the previous path j − 1 ends at the preceding light
square in diagonal 2n− 2 and the non-intersecting nature of our paths will prohibit path j
ending with an eastward step. See paths 2 and 3 in Figure 3.15, which illustrate this idea.
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path 1

path 2

path 3

path 4

path 5

diagonal 0

diagonal 1

diagonal 2

diagonal 3

diagonal 4

diagonal 5

diagonal 6

diagonal 7

diagonal 8

diagonal 9

diagonal 10

Figure 3.17: A particular domino tiling of the generalized Aztec triangle for Case 2 with
µ = (5, 3, 1, 1, 0) and w = (+10), and its corresponding Delannoy paths. To the right, the
edges on which possible paths can occur for this domain. This vertices of the possible paths
lie in the lattice Z2 after the transformation described above.
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Determinants

As done in [8], from the bijection in Proposition 3.3.1, we can use the Lindström–Gessel–
Viennot Lemma [11] [18] to write the number of Case 1 sequences when w2t+1 = +, for all t,
as a determinant of a matrix whose entries are in D.

Corollary 3.3.3. The number of Case 1 sequences for µ = (µ1, . . . , µn) and w such that
w2t+1 = + for all t is given by det(A) where

Ai,j = D(µn−j+1 + j −Wi − 1, i− 1)

and Wi = #{w2t = + | t > n− i}.

Note that since we are taking east, south, and southeast steps in our Delannoy paths
instead of the north, east, and northeast steps in Definition 3.1.3, the number of paths from
(x1, y1) to (x2, y2) is given by D(x2 − x1, y1 − y2).

For Case 2 sequences, we note that a path from (0, 0) to (x, y) without ending in an east
step is counted by H(x, y− 1) (see Definition 3.1.5). Then similarly for Case 2 sequences we
have

Corollary 3.3.4. The number of Case 2 sequences for µ = (µ1, . . . , µn) and w such that
w2t+1 = + for all t is given by det(A) where

Ai,j = H(µn−j+1 + j −Wi − 1, i− 1)

and Wi = #{w2t = + | t > n− i}.

More non-intersecting paths

In this section we will explore other ways of assigning paths to dominoes in a domino tiling
of a domain, and the resulting matrix whose determinant enumerates the number of domino
tilings on said domain. We will only consider generalized Aztec triangles resulting from
partitions of the form (k, k−1, . . . , 1, 0n−k) with positive w. These are exactly the generalized
Aztec triangles for which we have a product formula in Theorem 3.4.3.

First we consider associating dominoes in a domino tiling to paths via Figure 3.18. We can
use an argument similar to our second proof of Proposition 3.3.1 to see that the resulting non-
intersecting paths must start from light squares on the northwest boundary of our domain
and end in the dark squares along the southeast boundary of our domain, as illustrated in
Figure 3.19.

We can use these paths to construct another matrix whose determinant will give us the
number of tilings on our generalized Aztec triangle. Similar to before, we will consider a
change of coordinates so that it will be easier to express the coordinates of the starting and
ending points of our paths. In this case, we rotate by −3π

4
, dilate by

√
2, and translate so

that the origin is at the midpoint of the north edge of the north-most light square. See
Figure 3.19 for the origin after our transformation. For the remainder of this section we will
use north, south, east, west to refer to directions before our change of coordinates.
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Figure 3.18: Another way to assign paths to each domino in a domino tiling, which results
in the determinants in Proposition 3.3.5.

Figure 3.19: The grid on which paths in this new bijection can take. On the left we have
the Case 1 domain for the partition (3, 2, 1, 0, 0) and on the right the Case 2 domain for the
partition (4, 3, 2, 1). Filled red points denote the starts of our paths, unfilled red points denote
the ends of our paths, and blue points are additional trivial paths we add to compute our
determinants. The north-most filled red point is our origin after our change of coordinates.

Proposition 3.3.5. The number of Case 1 sequences for a partition µ = (k, . . . , 1, 0n−k)
with w = (+2n−1) is given by the determinant of a 2k × 2k matrix B where

Bi,j =


H(2j − i, n− 1) i, j ≤ k

H(2j − i, n− i+ k − 2) i > k, j ≤ k

D(j − i, j − k − 1) i ≤ k, j > k

D(j − i, j − i) i, j > k

The number of Case 2 sequences for a partition µ = (k, k− 1, . . . , 1, 0n−k) with w = (+2n) is
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given by the determinant of a 2k × 2k matrix B where

Bi,j =


D(2j − i, n− 1) i, j ≤ k

D(2j − i, n− i+ k − 2) i > k, j ≤ k

D(j − i, j − k − 1) i ≤ k, j > k

D(j − i, j − i) i, j > k

Proof. Consider first Case 1. Let us extend our domain to the left as in the blue grid in
Figure 3.19 to ensure that our paths are H paths as defined in Definition 3.1.5 (note that the
last diagonal of our domain being an incomplete diagonal of dark squares guarantees that
our paths end as in Definition 3.1.5). Then as noted above we can follow the second proof of
Proposition 3.3.1 and find the starting points and ending points of our paths to construct a
determinant that enumerates our non-intersecting paths. We get k starting points (i− 1, 0)
and k ending points (2i− 1, n− 1) for i = 1, . . . , k.

Now to prevent our paths from exiting our domain, we can add k trivial paths at the
points in blue pictured in Figure 3.19. This adds k more starting and ending points at
(k + i− 1, i− 1) for i = 1, . . . , k. Noting that paths which end at these k additional ending
points are Delannoy paths, we have our proposition for Case 1.

Case 2 follows similarly, noting that instead of H paths now our paths are all Delannoy
paths (again see Figure 3.19). Recall also from Definition 3.1.5 that H(i, j) counts the
number of H paths from (0, 0) to (i, j + 1).

Remark 3.3.6. If we wish to express this matrix without the added trivial paths, consider

our 2k×2k matrix as four k×k block matrices

[
A1 A2

A3 A4

]
. Then the matrix that enumerates

paths that lie strictly in our domain (without the trivial paths) is given by B1 − B2B
−1
4 B3.

For example the number of Case 1 sequences for the partition (3, 2, 1, 0, 0) and the number of
Case 2 sequences for the partition (4, 3, 2, 1) from Figure 3.19 are given by the determinants,
respectively ∣∣∣∣∣∣∣∣∣∣∣∣

10 170 1002 1 9 61
1 50 450 1 7 41
0 10 170 1 5 25
0 1 50 1 3 13
0 0 8 0 1 3
0 0 1 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
10 169 874
1 49 352
0 9 98

∣∣∣∣∣∣ = 7644

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

9 129 681 2241 1 11 85 575
1 41 321 1289 1 9 61 377
0 9 129 681 1 7 41 231
0 1 41 321 1 5 25 129
0 0 9 129 1 3 13 63
0 0 1 25 0 1 3 13
0 0 0 5 0 0 1 3
0 0 0 1 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
9 129 664 1408
1 41 306 714
0 9 116 304
0 1 30 90

∣∣∣∣∣∣∣∣ = 32032
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(0, 0)

(5, 5)

Figure 3.20: The paths that the 5th Schröder number counts.

Definition 3.3.7. The nth Schröder number is the number of paths from (0, 0) to (n, n)
using east, north, and northeast steps that do not go below the line y = x.

See Figure 3.20 for the paths that the 5th Schröder number counts. With this definition
we can now observe another special case of our generalized Aztec triangles.

Proposition 3.3.8. Let A1
n be the matrix from Corollary 3.3.3 for the partition (1n) and

A2
n the matrix from Corollary 3.3.4 for the same partition, so that

Al
n,(i,j) = Hl(i− j + 1, i− 1)

Then
|A1

n+1| = |A2
n| = Sn

where Sn is the nth Schröder number.

Proof. Though the partition (1n) is not addressed in Proposition 3.3.5, we can consider the
paths we get for the domain corresponding to this partition. Recall that these paths begin
on north-most light squares and end at south-most dark squares. Hence it follows that there
is a single path beginning at (0, 0) and ending at (n, n) as pictured in Figure 3.21 (we still
use the same transformation as in Proposition 3.3.5). However for Case 1, the path is fixed
from (n − 1, n − 1) to (n, n). Finally, since our domain requires that our paths do not go
below y = x, we see that they are exactly Schröder paths and our proposition is proved.

Now let us associate dominoes to paths via Figure 3.22. Again we will use a change
of coordinates to describe these paths – this time rotate by −3π

4
, dilate by

√
2, and finally

translate so that our origin is at the midpoint of the north edge of the east-most dark square
(north-most if there are multiple). Again see the red points in Figure 3.23 for where our
origin is located.

We follow the previous proof for Proposition 3.3.5 referencing Figure 3.23. This time we
have n Delannoy paths beginning at (0, i− 1) for i = 1, . . . , n and ending at (2i− 2, n− 1)
for i = 1, . . . , k and (i+ k − 1, n− 1) for i = k + 1, . . . , n. As in Proposition 3.3.5 we add in
some trivial paths which are pictured in blue in Figure 3.23, which are at (i + k, i − 1) for
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Figure 3.21: The Case 1 and Case 2 domains, respectively, for the partition (1, 1, 1, 1).
Assigning paths using Figure 3.18 gives the red grid pictured, which is a single Schröder
path.

i = 1, . . . , n − 1. (Note that for Case 1, the n starting point is also a trivial path). Finally
observing that Case 1 gives rise to Delannoy paths and Case 2 gives rise to H paths, we have
the following proposition:

Proposition 3.3.9. The number of Case 1 sequences for a partition µ = (k, . . . , 1, 0n−k)
with w = (+2n−1) is given by the determinant of a (2n− 1)× (2n− 1) matrix C where

Ci,j =



D(2j − 2, n− i) i ≤ n, j ≤ k

D(2j − i+ n− k − 2, 2n− i) i > n, j ≤ k

D(j + k − 1, n− i) i ≤ n, k < j ≤ n

D(j − i+ n− 1, 2n− i) i > n, k < j ≤ n

D(j + k − n, j − i− n) i ≤ n, j > n

D(j − i, j − i) i, j > n

The number of Case 2 sequences for a partition µ = (k, k− 1, . . . , 1, 0n−k) with w = (+2n) is
given by the determinant of a (2n− 1)× (2n− 1) matrix C where

Ci,j =



H(2j − 2, n− i) i ≤ n, j ≤ k

H(2j − i+ n− k − 2, 2n− i) i > n, j ≤ k

H(j + k − 1, n− i) i ≤ n, k < j ≤ n

H(j − i+ n− 1, 2n− i) i > n, k < j ≤ n

D(j + k − n, j − i− n) i ≤ n, j > n

D(j − i, j − i) i, j > n

Again, we can apply Remark 3.3.6 to find the matrix without the additional trivial paths.
Our final way to associate dominoes to paths is given in Figure 3.24. Our change of

coordinates for these paths is given by first reflection over the y-axis, rotation by −π
4
, dilation
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Figure 3.22: A third way to assign paths to each domino in a domino tiling, which results
in the determinants in Proposition 3.3.9.

Figure 3.23: The grid on which paths in Proposition 3.3.9 can take. On the left we have
the Case 1 domain for the partition (3, 2, 1, 0, 0) and on the right the Case 2 domain for the
partition (4, 3, 2, 1). Filled red points denote the starts of our paths, unfilled red points denote
the ends of our paths, and blue points are additional trivial paths we add to compute our
determinants. The north-most filled red point is our origin after our change of coordinates.

by
√
2, and translation so that the origin is at the midpoint of the west edge of the west-most

square of the first diagonal. Figure 3.3 identifies the origin for two such transformations.
As before we find the starting and ending points of these paths. For starting points we

have (0, k − i) for i = 1, . . . , k and (i,−i) for i = 1, . . . , n − 1. For ending points we have
(i, k− 1) for i = 1, . . . , n− 1 which are Delannoy paths in both Case 1 and Case 2. For Case
1 we also have (n− 1, k− 2i+1) for i = 1, . . . , k which are are H paths after being reflected
over the line y = x. For Case 2 we have instead (n, k − 2i + 1) for i = 1, . . . , k which are
Delannoy paths for i ≥ 2 and an H path for i = 1. Also in Case 2 when n > k we have an
additional starting point (n,−n) and ending point (n−1,−k−1) which is a Delannoy path.

Proposition 3.3.10. The number of Case 1 sequences for a partition µ = (k, . . . , 1, 0n−k)
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with w = (+2n−1) is given by the determinant of a (n+ k− 1)× (n+ k− 1) matrix D where

Di,j =


H(j, i− 1) i ≤ k, j < n

H(j − i+ k, i− 1) i > k, j < n

H(2n− 2j + i− 1, n− 1) i ≤ k, j ≥ n

H(2n− 2j + i− 1, n+ k − i− 1) i > k, j ≥ n

The number of Case 2 sequences for a partition µ = (k, . . . , 1) with w = (+2n) is given by
the determinant of a (n+ k − 1)× (n+ k − 1) matrix D where

Di,j =



H(j, i− 1) i ≤ k, j < n

H(j − i+ k, i− 1) i > k, j < n

H(n, i− 1) i ≤ k, j = n

H(n+ k − i, i− 1) i > k, j = n

D(n, 2n− 2j + i− 1) i ≤ k, j > n

D(n+ k − i, 2n− 2j + i− 1) i > k, j > n

The number of Case 2 sequences for a partition µ = (k, k − 1, . . . , 1, 0n−k) where n > k with
w = (+2n+1) is given by the determinant of a (n+ k)× (n+ k) matrix D where

Di,j =



H(j, i− 1) i ≤ k, j < n

H(j − i+ k, i− 1) i > k, j < n

H(n, i− 1) i ≤ k, j = n

H(n+ k − i, i− 1) i > k, j = n

D(n, 2n− 2j + i− 1) i ≤ k, j > n

D(n+ k − i, 2n− 2j + i− 1) i > k, j > n

Figure 3.24: A fourth way to assign paths to each domino in a domino tiling, which results
in the determinants in Proposition 3.3.10.
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Figure 3.25: The grid on which paths in Proposition 3.3.10 can take. On the left we have
the Case 1 domain for the partition (3, 2, 1, 0, 0) and on the right the Case 2 domain for the
partition (4, 3, 2, 1). Filled points denote the starts of our paths and unfilled points denote
the ends of our paths, The blue point is our origin after our change of coordinates.

3.4 Positive w

Tableaux

Here we will identify another combinatorial object that is in bijection with Case 1 and 2
sequences for the case when w is positive.

Proposition 3.4.1. When wt = + for all t, Case 1 sequences for any µ are in bijection with
super symplectic tableaux of shape µ with entries 1 < 1 < · · · < n.

Proof. The bijection is established by considering putting entries i in the cells corresponding
to λ2i−1/λ2i−2, and entries ı in the cells corresponding to λ2i/λ2i−1. The restriction on the
number of nonzero parts in any λi guarantees our symplectic condition. Conversely, given
such a tableau we can recover λ2i by taking the cells of the tableau with entries at most ı,
and we can recover λ2i+1 by taking the cells of the tableau with entries at most i+ 1. See
Figure 3.26.

This proof also applies to Case 2 sequences:

Proposition 3.4.2. When wt = + for all t, Case 2 sequences for any µ are in bijection with
super symplectic tableaux of shape µ with entries 1 < 1 < · · · < n < n.

Given a super symplectic tableau of shape µ = (µ1, . . . , µn), the unbarred entries in row
l give the locations of the east steps of path n + l − i (the lth north-most path), and the
barred entries give the locations of the southeast steps. Specifically if row l of the super
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1 1 1 3 3

2 2 3

3 3

4

Figure 3.26: A domino tiling on the generalized Aztec triangle for µ = (5, 3, 2, 1), and the
corresponding super symplectic tableau.

symplectic tableau contains the unbarred entry i exactly m times, then path n + 1 − i has
exactly m east steps between diagonals 2i− 2 and 2i− 1. If row l contains the barred entry
ı, then path n+ 1− i has a southeast step that begins before diagonal 2i− 1 and ends after
diagonal 2i. With the addition of south steps there is a unique way of realizing this path,
which completes the bijection from super symplectic tableaux to non-intersecting Delannoy
paths.

Product formulas

Theorem 3.4.3. When µ = (k, k − 1, . . . , 1, 0n−k) and w = (+2n−1), the number of Case 1
sequences is given by

∏
j≥0

( −k+2j∏
i=−2k+4j+1

(2n+ i)

2k−4j−2∏
i=k−2j

(2n+ i)

)/
k−1∏
j=1

(2j + 1)k−j

When µ = (k, k− 1, . . . , 1, 0n−k) and w = (+2n), the number of Case 2 sequences is given by

∏
j≥0

( −k+2j∏
i=−2k+4j+1

(2n+ i+ 1)

2k−4j−2∏
i=k−2j

(2n+ i+ 1)

)/
k−1∏
j=1

(2j + 1)k−j
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More generally, the number of sequences λ(0), . . . , λ(ℓ−1) as defined in Definition 3.1.1 (Case
1 if ℓ− 1 is odd and Case 2 if ℓ− 1 is odd) is given by

∏
j≥0

( −k+2j∏
i=−2k+4j+1

(ℓ+ i)

2k−4j−2∏
i=k−2j

(ℓ+ i)

)/
k−1∏
j=1

(2j + 1)k−j

The proof for Theorem 3.4.3 uses the determinant for Case 1 found in Corollary 3.3.3
to prove the first product formula. From this, the formula for Case 2 is a consequence of
Theorem 3.4.4 below (and then the third formula immediately follows). The full details of
the proof can be found in Sections 4 and 5 of [6]. For the remainder of this section, we will
observe some properties and consequences regarding this formula.

We observe that Theorem 3.4.3 for Case 2 sequences can be obtained from that of Case
1 sequences by taking values of n in 1

2
+Z. In fact, we can show that a similar relation holds

when computing computing determinants from Corollaries 3.3.3 and 3.3.4. In this case of
µ = (k, . . . , 1, 0n−k) and w = (+2n−1), Corollary 3.3.3 gives us the n× n matrix

A1
i,j = D(µn−j+1 + j − i, i− 1)

whose determinant is determined by its bottom right k × k entries

M1
i,j = D(2j − i, i+ n− k − 1)

Similarly in this case Corollary 3.3.4 gives us the n× n matrix

A2
i,j = H(µn−j+1 + j − i, i− 1)

again whose determinant is determined by the bottom right k × k entries

M2
i,j = H(2j − i, i+ n− k − 1)

In particular M1 and M2 depend only on k, n so we can define M1(k, n) and M2(k, n) to be
the k × k matrices above.

Theorem 3.4.4. For n, k ∈ Z≥0

det(M1(k, n+ 1
2
)) = det(M2(k, n))

The entries of M1 are all of the form D(i, j) for some i, j ∈ Z. Let us redefine D(i, j)
using one of the identities in Proposition 3.1.6:

D(i, j) =
i∑

m=0

(
i

m

)(
j

m

)
2m
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where now we allow any j ∈ R. In particular here our binomial coefficients
(
j
m

)
are defined

for j ∈ R by (
j

m

)
=
j(j − 1)(j − 2) · · · (j −m+ 1)

m!

and
(
j
m

)
= 0 if m < 0.

Proof of Theorem 3.4.4. Our claim follows from Proposition 3.4.6 below: that for i, j ∈ Z≥−1

D(i, j + 1
2
) =

⌈i/2⌉∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l, j)

Then our definitions of M1 and M22 then give us that M1(k, n + 1
2
) can be obtained by

column operations M2(k, n) hence proving their determinants are equal.

Lemma 3.4.5. For all i ∈ Z, j ∈ R we have

D(i, j) = D(i− 1, j) +D(i− 1, j − 1) +D(i, j − 1)

D(i, j) is defined by

D(i, j) =
i∑

m=0

(
i

m

)(
j

m

)
2m

Proof. This is part of the Remark 3.1.4, but as we cannot use our combinatorial definition
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of D(i, j) we compute directly

D(i, j) =
i∑

m=0

(
i

m

)(
j

m

)
2m

=
i−1∑
m=0

(
i− 1

m

)(
j

m

)
2m +

i∑
m=1

(
i− 1

m− 1

)(
j

m

)
2m

= D(i− 1, j) +
i∑

m=1

(
i− 1

m− 1

)(
j − 1

m

)
2m +

i∑
m=1

(
i− 1

m− 1

)(
j − 1

m− 1

)
2m

= D(i− 1, j) +D(i− 1, j − 1) +
i∑

m=1

(
i− 1

m− 1

)(
j − 1

m

)
2m

+
i∑

m=1

(
i− 1

m− 1

)(
j − 1

m− 1

)
2m−1

= D(i− 1, j) +D(i− 1, j − 1) +
i∑

m=1

(
i− 1

m− 1

)(
j − 1

m

)
2m

+
i−1∑
m=0

(
i− 1

m

)(
j − 1

m

)
2m

= D(i− 1, j) +D(i− 1, j − 1) +
i∑

m=0

(
i

m

)(
j − 1

m

)
2m

= D(i− 1, j) +D(i− 1, j − 1) +H(i, j − 1)

Proposition 3.4.6. For i, j ∈ Z≥−1

D(i, j + 1
2
) =

⌈i/2⌉∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l, j)

where D(i, j) is defined by

D(i, j) =
i∑

m=0

(
i

m

)(
j

m

)
2m

Proof. We will induct on j. For our inductive step we will prove our statement

D(i, j + 1
2
) =

⌈i/2⌉∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l, j)

for any i ≥ −1 and some fixed j ≥ 0 given that it holds for j−1. For this we will additionally
induct on i. Again we begin with the inductive step. Using Lemma 3.4.5 along with the
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identity H(i, j) = H(i − 1, j) + H(i, j − 1) + H(i − 1, j − 1) from Proposition 3.1.6 to see
that for i, j ≥ 0

D(i, j + 1
2
) = D(i− 1, j + 1

2
) +D(i− 1, j − 1

2
) +H(i, j − 1

2
)

=

⌈(i−1)/2⌉∑
l=0

(−1)l
(
−1

2

l

)
H(i− 1− 2l, j)

+

⌈(i−1)/2⌉∑
l=0

(−1)l
(
−1

2

l

)
H(i− 1− 2l, j − 1)

+

⌈i/2⌉∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l, j − 1)

=

⌈i/2⌉∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l, j)

noting that H(i, j) = 0 for i < 0 and all j. Now for the base case i = −1 we have

D(−1, j + 1
2
) = 0 = H(−1, j)

for all j, as desired.
It remains to be seen that the base case j = −1 holds, that is

D(i,−1
2
) =

⌈i/2⌉∑
l=0

(−1)l
(
−1

2

l

)
H(i− 2l,−1)

for all i ≥ 0. Now

H(i,−1) =

{
1 i = 0

0 else

so we wish to show

D(i,−1
2
) =

i∑
m=0

(
i

m

)(
−1

2

m

)
2m =

{
0 i odd∣∣∣(−1/2

i/2

)∣∣∣ i even

Now we note that the terms of the summation above satisfy(
i

m+ 1

)(
−1

2

m+ 1

)
2m+1(

i

m

)(
−1

2

m

)
2m

=
(m− i)(m+ 1

2
)

(m+ 1)2
· 2
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and so by definition it is the hypergeometric series [20]

i∑
m=0

(
i

m

)(
−1

2

m

)
2m = 2F1

[
1
2
, −i
1

; 2

]
Using Mathematica we also find that it evaluates to

i∑
m=0

(
i

m

)(
−1

2

m

)
2m =

(1 + (−1)i) Γ
(
i+1
2

)
√
πiΓ

(
i
2

)
for i > 0. When i is odd the right hand side is equal to 0 as desired. Otherwise when i is
even we can induct on i. Beginning with i = 2 (it is easy to check directly that i = 0 holds)
we find that

(1 + (−1)2) Γ
(
3
2

)
√
π2Γ (1)

=
1

2
=

∣∣∣∣(−1
2

l

)∣∣∣∣
And when i = 2(t+ 1) we have by inductive hypothesis

2Γ
(
2t+3
2

)
√
π2(t+ 1)Γ (t+ 1)

=
(2t+ 1)Γ

(
2t+1
2

)
√
π2(t+ 1)tΓ(t)

=
2t+ 1

2(t+ 1)
·
∣∣∣∣(−1

2

t

)∣∣∣∣ = ∣∣∣∣( −1
2

t+ 1

)∣∣∣∣
This concludes the base case of our induction on j and we have our result.

Theorem 3.4.7. The number of Case 1 sequences for the partition µ = (k + 1, k, . . . , 1)
with w = (+2k+1) is equal to the number of Case 2 sequences for the partition µ = (k, k −
1, . . . , 1, 0) with w = (+2k+2).

Proof. Using our formula from Theorem 3.4.3 we wish to show that

⌊ k
2
⌋∏

j=0

−k+2j−1∏
i=−2k+4j−1

(2k + i+ 2) ·
⌊ k−1

2
⌋∏

j=0

2k−4j∏
i=k−2j+1

(2k + i+ 2)

/
k∏

j=1

(2j + 1)k+1−j

=

⌊ k−1
2

⌋∏
j=0

−k+2j∏
i=−2k+4j+1

(2k + i+ 3) ·
⌊ k−2

2
⌋∏

j=0

2k−4j∏
i=k−2j+2

(2k + i+ 3)

/
k−1∏
j=1

(2j + 1)k−j

This is done in Computation A.0.1.

Figure 3.27 shows two generalized Aztec triangles that Theorem 3.4.7 state must have
an equal number of domino tilings. We also present an alternative proof for Theorem 3.4.7
by using our determinants from Corollaries 3.3.3 and 3.3.4.
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Figure 3.27: By Theorem 3.4.7, these two generalized Aztec triangles have the same number
of domino tilings.

Alternate proof of Theorem 3.4.7. Let A be the matrix from Corollary 3.3.3 for the partition
(k + 1, k, . . . , 1) and let B be the matrix from Corollary 3.3.4 for the partition (k, k −
1, . . . , 1, 0). Then

Ai,j = D(2j − i, i− 1) and Bi,j = H(2j − i− 1, i− 1)

We claim that

H(i, j) =

j∑
k=0

(−1)j−k(D(i+ 1 + j − k, k) +D(i− 1 + j + k, k))

whence we have

H(2j − i− 1, i− 1) =
i−1∑
k=0

(−1)i−1−k(D(2j − k, k) +D(2j − 3− k, k))

=
i∑

k=1

(−1)i−k(D(2j − k, k − 1) +D(2j − k − 2, k − 1))

Bi,j =
i∑

k=1

(−1)i−k(Ak,j + Ai,j−1)

And it would follow that det(A) = det(B) since B is obtained from a series of row and
column operations on A. Now let us prove our claim by inducting on j. We wish to show
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that

H(i, j) = (D(i+ 1, j) +D(i− 1, j))− (D(i+ 2, j − 1) +D(i, j − 1)) + · · ·
± (D(i+ 1 + j, 0) +D(i− 1 + j, 0))

Using some identities from Proposition 3.1.6 we see that

H(i, j) = D(i, j) +D(i− 1, j)

= D(i+ 1, j)−D(i+ 1, j − 1)−D(i, j − 1) +D(i− 1, j)

= (D(i+ 1, j) +D(i− 1, j))−H(i+ 1, j − 1)

thus proving both our claim and proposition.

Remark 3.4.8. Finally let us observe that this formula is actually a generalization of Di
Francesco’s conjectured formula [8]:

F (n) := 2n(n−1)/2

n−1∏
i=0

(4i+ 2)!

(n+ 2i+ 1)!

Indeed when µ = (n, n − 1, . . . , 1), Conjecture 3.4.3 gives us that the number of Case 1
sequences is equal to

G(n) :=
∏
j≥0

( −n+2j∏
i=−2n+4j+1

(2n+ i)

2n−4j−2∏
i=n−2j

(2n+ i)

)/
n−1∏
j=1

(2j + 1)n−j

=
∏
j≥0

(
n+2j∏

i=4j+1

i

4n−4j−2∏
i=3n−2j

i

)/
n−1∏
j=1

(2j + 1)n−j

Now we compute for n ≥ 1

F (n+ 1)

F (n)
= 2n · (4n+ 2)!

(3n+ 2)!

n−1∏
i=0

(n+ 2i+ 1)!

(n+ 2i+ 2)!
= 2n · (4n+ 2)!

(3n+ 2)!

n−1∏
i=0

1

n+ 2i+ 2

=
2n(4n+ 2)!n!!

(3n+ 2)!(3n)!!

where n!! is the product of all integers from 1 to n with the same parity as n.
A lengthier computation done in Computation A.0.2 shows that F (n+1)

F (n)
= G(n+1)

G(n)
for all

n ≥ 1. Then along with the fact that F (1) = G(1) = 1, we see that F (n) = G(n) for all
n ≥ 1. Hence indeed, Di Francesco’s conjectured formula [8, Conj. 8.1] results as a special
case from Theorem 3.4.3.
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3.5 Conclusion

The original motivation [8] for studying domino tilings of Aztec triangles was to obtain a
combinatorial object for which there exists a bijection to configurations of the 20V model
on trapezoidal domains Tn. We now have a generalized Aztec triangle that depends on
parameters µ, w, and m as well as being either Case 1 or Case 2. However since there
was no explicit bijection from domino tilings of Aztec triangles to configurations of the 20V
model, it is unclear what the relation is from generalized Aztec triangles to 20V model
configurations. The relation is unknown even when µ = (k, k − 1, . . . , 1, 0n−k) and w is
positive as in the case of Theorem 3.4.3 where we have a product formula for enumerating
its domino tilings.

One way to relate domino tilings of generalized Aztec triangles back to configurations
of the 20V model is suggested by Di Francesco [8]. He additionally conjectures that the
number domino tilings of the Aztec triangle with the first k − 1 rows (consistent with Di
Francesco’s definition of Tn,n−k) removed is equal to 20V model configurations on particular
pentagonal domains. In fact, he proves (see Section 7) this conjecture for k = 2, 3 through
combinatorial means (with k = 1 being the entire Aztec triangle). Larger values of k remain
open, and combinatorial proofs in these cases seem much more complicated.

We can think of Tn,n−k – the Aztec triangle with k − 1 rows removed – as an Aztec
triangle where the first k− 1 rows are forced to have horizontal dominoes. Then in terms of
the sequences of partitions, domino tilings of Tn,n−k correspond to sequences as described in

Definition 3.1.1 with µ = (n, n− 1, . . . , 1) and the additional condition that λ
(i)
j ≤ n− (k −

1) + ⌊ i
2
⌋ for all i, j. So while we can also interpret domino tilings of Tn,n−k as sequences of

partitions, they are not directly addressed here.
Furthermore we can also reformulate this in terms of tableaux: domino tilings of Tn,n−k

correspond to fillings of the Young diagram of shape (n, n − 1, . . . , 1) with entries 1 < 1 <
2 < 2 < · · · < n subject to the conditions in Proposition 1.5 and also additionally that the
entries i and i− 1 do not appear past the (n− k + i)th column.

Finally it is unknown which other classes of generalized Aztec triangles can be explicitly
enumerated. Based on experimental data computed from the determinants in Corollaries
3.3.3 and 3.3.4, it seems that other choices µ, w, and m do not permit a simple product
formula as in Theorem 3.4.3. It is very possible that some generalization of Schur functions
could be used here – see the usage of Schur functions in Section 3.13. This question of
enumeration could also involve construction of an even more general Aztec triangle, for
example to include the aforementioned domains Tn, n−k. Still, in this case it seems unlikely
that a simple product formula would suffice to enumerate its domino tilings.
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Appendix A

Computations

Here we carry out a couple computations from Section 3.4.

Computation A.0.1.

⌊ k
2
⌋∏

j=0

−k+2j−1∏
i=−2k+4j−1

(2k + i+ 2) ·
⌊ k−1

2
⌋∏

j=0

2k−4j∏
i=k−2j+1

(2k + i+ 2)

/
k∏

j=1

(2j + 1)k+1−j

=

⌊ k−1
2

⌋∏
j=0

−k+2j∏
i=−2k+4j+1

(2k + i+ 3) ·
⌊ k−2

2
⌋∏

j=0

2k−4j∏
i=k−2j+2

(2k + i+ 3)

/
k−1∏
j=1

(2j + 1)k−j

Proof. We This is an equality of two fractions; we bring both numerators to the left hand
side and both denominators to the right hand side:∏⌊ k

2
⌋

j=0

∏−k+2j−1
i=−2k+4j−1(2k + i+ 2)∏⌊ k−1

2
⌋

j=0

∏−k+2j+1
i=−2k+4j+2(2k + i+ 2)

·
∏⌊ k−1

2
⌋

j=0

∏2k−4j
i=k−2j+1(2k + i+ 2)∏⌊ k−2

2
⌋

j=0

∏2k−4j−1
i=k−2j+1(2k + i+ 2)

=
k∏

j=1

(2j + 1)

When k is even this results in

(2k + 1)

k
2
−1∏

j=0

(4j + 1)(4j + 2)(4j + 3)(4k − 4j + 2)

(k + 2j + 3)(k + 2j + 2)
=

k∏
j=1

(2j + 1)

k
2
−1∏

j=0

(4j + 2)(4k − 4j + 2)

(k + 2j + 3)(k + 2j + 2)
= 1



APPENDIX A. COMPUTATIONS 70

Similarly when k is odd we have

2k + 4

2k + 4

k−1
2∏

j=0

(4j + 1)(4j + 2)(4j + 3)(4k − 4j + 2)

(k + 2j + 3)(k + 2j + 2)
=

k∏
j=1

(2j + 1)

k−1
2∏

j=0

(4j + 2)(4k − 4j + 2)

(k + 2j + 3)(k + 2j + 2)
= 1

We can verify that both of these identities do hold true. For even k the product on the left
hand side expands as

2 · 6 · · · (2k − 2) · (2k + 6)(2k + 10) · · · (4k + 2)

(k + 2)(k + 3) · · · (2k + 1)
=

2k/2(k − 1)!!2k/2 (2k+1)!!
(k+1)!!

(2k+1)!
(k+1)!

=
2k(k − 1)!!(k + 1)!

(k + 1)!!
· (2k + 1)!!

(2k + 1)!

= 2kk! · 1

(2k)!!
= 1

where k!! is the product of all integers from 1 to k with the same parity as k. Similarly for
odd k we have

2 · 6 · · · (2k) · (2k + 4)(2k + 8) · · · (4k + 2)

(k + 2)(k + 3) · · · (2k + 2)
=

2(k+1)/2k!!2(k+1)/2 (2k+1)!!
k!!

(2k+2)!
(k+1)!

= 2k+1(k + 1)! · (2k + 1)!!

(2k + 2)!
= 1

Computation A.0.2.
G(n+ 1)

G(n)
=

2n(4n+ 2)!n!!

(3n+ 2)!(3n)!!

where

G(n) =
∏
j≥0

(
n+2j∏

i=4j+1

i

4n−4j−2∏
i=3n−2j

i

)/
n−1∏
j=1

(2j + 1)n−j

Proof. To compute G(n+1)
G(n)

we first note that for even n we have

G(n) =

n−2
2∏

j=0

n+2j∏
i=4j+1

i ·
n−2
2∏

j=0

4n−4j−2∏
i=3n−2j

i

/n−1∏
j=1

(2j + 1)n−j

and for odd n we have

G(n) =

n−1
2∏

j=0

n+2j∏
i=4j+1

i ·
n−3
2∏

j=0

4n−4j−2∏
i=3n−2j

i

/n−1∏
j=1

(2j + 1)n−j
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Then we will first compute G(n+1)
G(n)

for when n is odd:

G(n+ 1)

G(n)
=

∏n−1
2

j=0

∏n+2j+1
i=4j+1 i ·

∏n−1
2

j=0

∏4n−4j+2
i=3n−2j+3 i∏n−1

2
j=0

∏n+2j
i=4j+1 i ·

∏n−3
2

j=0

∏4n−4j−2
i=3n−2j i

/(∏n
j=0(2j + 1)n+1−j∏n−1
j=0 (2j + 1)n−j

)

=

n−1
2∏

j=0

(n+ 2j + 1) · (2n+ 4)!

(2n+ 3)!
·

n−3
2∏

j=0

(4n− 4j − 1) · · · (4n− 4j + 2)

(3n− 2j) · · · (3n− 2j + 2)

/
(2n+ 1)!!

=
(2n)!!

(n− 1)!!
· (2n+ 4)!

(2n+ 3)!
·

(4n+2)!
(2n+4)!

(3n+2)!
(2n+3)!

· (3n)!!
(2n+1)!!

· 1

(2n+ 1)!!

=
2nn!(4n+ 2)!

(n− 1)!!(3n+ 2)!(3n)!!
=

2n(4n+ 2)!n!!

(3n+ 2)!(3n)!!

On the other hand when n is even:

G(n+ 1)

G(n)
=

∏n
2
j=0

∏n+2j+1
i=4j+1 i ·

∏n−2
2

j=0

∏4n−4j+2
i=3n−2j+3 i∏n−2

2
j=0

∏n+2j
i=4j+1 i ·

∏n−2
2

j=0

∏4n−4j−2
i=3n−2j i

/(∏n
j=0(2j + 1)n+1−j∏n−1
j=0 (2j + 1)n−j

)

= (2n+ 1) ·
n−2
2∏

j=0

(
(n+ 2j + 1)

(4n− 4j − 1) · · · (4n− 4j + 2)

(3n− 2j) · · · (3n− 2j + 2)

)/
(2n+ 1)!!

= (2n+ 1) · (2n− 1)!!

(n− 1)!!
·

(4n+2)!
(2n+2)!

(3n+2)!
(2n+2)!

· (3n)!!
(2n)!!

· 1

(2n+ 1)!!

=
2n(4n+ 2)!n!!

(3n+ 2)!(3n)!!
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