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Response and resistance to
BRAFV600E inhibition in gliomas:
Roadblocks ahead?

Monica Capogiri 1, Andrea J. De Micheli 1, Alvaro Lassaletta2,
Denise P. Muñoz3, Jean-Philippe Coppé3, Sabine Mueller1,4

and Ana S. Guerreiro Stucklin1*

1Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich,
Zurich, Switzerland, 2Department of Pediatric Hematology and Oncology, Hospital Universitario
Niño Jesús, Madrid, Spain, 3Department of Medicine, Helen Diller Family Comprehensive Cancer
Center, University of California, San Francisco, CA, United States, 4Department of Neurology,
Neurosurgery and Pediatrics, University of California, San Francisco, United States
BRAFV600E represents the most common BRAF mutation in all human cancers.

Among central nervous system (CNS) tumors, BRAFV600E is mostly found in

pediatric low-grade gliomas (pLGG, ~20%) and, less frequently, in pediatric

high-grade gliomas (pHGG, 5-15%) and adult glioblastomas (GBM, ~5%). The

integration of BRAF inhibitors (BRAFi) in the treatment of patients with gliomas

brought a paradigm shift to clinical care. However, not all patients benefit from

treatment due to intrinsic or acquired resistance to BRAF inhibition. Defining

predictors of response, as well as developing strategies to prevent resistance to

BRAFi and overcome post-BRAFi tumor progression/rebound growth are some

of the main challenges at present in the field. In this review, we outline current

achievements and limitations of BRAF inhibition in gliomas, with a special focus

on potential mechanisms of resistance. We discuss future directions of

targeted therapy for BRAFV600E mutated gliomas, highlighting how insights

into resistance to BRAFi could be leveraged to improve outcomes.

KEYWORDS

glioma, BRAF inhibitors, drug resistance, BRAFV600E mutation, high-grade glioma
(HGG), low-grade glioma (LGG)
1 Background

Precision medicine brings new therapeutic avenues to clinical practice, tailoring

therapies to tumor-specific vulnerabilities. Yet, with the increasing use of targeted agents,

new patterns of tumor response and drug resistance are emerging. Tumor development

under therapeutic stress is an evolutionary process. Treatment interventions impose

selective pressures on tumor cells and their microenvironment that in turn impact
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response to therapy. A comprehensive understanding of a

tumor’s biology and its evolution under treatment has thus

become crucial for improving clinical outcomes, as well as

successfully implementing novel cancer therapeutics.

Several targeted therapies are directed at activated kinases.

BRAFV600E is the most frequent mutation in BRAF (serine/

threonine-protein kinase B-raf), a proto-oncogene and the most

commonly mutated kinase in human cancers. The biological and

clinical relevance of BRAFV600E has been thoroughly described

in melanoma, colorectal cancer, thyroid cancer, non-small-cell

lung cancer, and hairy cell leukemia (1–4).

BRAFV600E is also detected in glioma, the most common

primary brain tumor across all ages (5, 6). Among gliomas, the

highest incidence of BRAFV600E is in low-grade gliomas,

including pleomorphic xanthoastrocytoma (PXA, 56%),

ganglioglioma (GG, 40%) and pilocytic astrocytoma (PA, 3%).

While rarer in high-grade gliomas overall (< 5%), its incidence is

higher in the epithelioid glioblastoma subtype (69%) (7).

Targeting BRAFV600E with specific BRAF inhibitors (BRAFi)

in monotherapy (8, 9) and in combination with downstream

MEK inhibitors (MEKi) (10–12) led to improved patient

outcomes in different cancer entities, including gliomas (13–

17). Despite these encouraging results, patients may experience

therapy failure at different stages of treatment, with some tumors

being refractory to BRAFi upfront (intrinsic resistance), and

others developing resistance, after an initial response, while on

therapy (acquired resistance). Moreover, rapid tumor

progression is often observed after BRAFi discontinuation

(rebound growth).

Drug resistance is a multifaceted phenomenon involving

genetic, epigenetic, metabolic and (micro)environmental

changes (18, 19). Direct target reactivation, presence or gain of

additional genetic alterations, activation of compensatory

oncogenic pathways, and adaptive survival mechanisms are

some of the features of cancer cells driving drug resistance.

Additionally, environmental features such as hypoxia, blood-

brain barrier (BBB) and tumor microenvironment (TME) may

also play a critical role in response to treatment.

To improve outcomes and mitigate treatment failure, it is

essential to understand, predict, prevent, and overcome

resistance to BRAFi. In this review, we discuss the role of

BRAFV600E in glioma, with a focus on lessons learned from

molecularly informed clinical trials as well as our current

understanding of the mechanisms involved in resistance to

targeted therapy. We highlight upcoming strategies to surpass

potential roadblocks ahead.
2 Targeting BRAF

The B-raf proto-oncogene (BRAF) is located on

chromosome 7 (7q34) and encodes the BRAF protein of the

RAF kinases family, a core component of the proliferation and
Frontiers in Oncology 02
survival RAS-RAF-MEK-MAPK cascade (Figure 1). In response

to growth factor binding to receptor tyrosine kinases, RAF

dimerizes and activates MEK1/2, which in turn phosphorylates

ERK1/2. These events lead to the activation of multiple

substrates that can promote cell growth and proliferation

(20–22).

A missense mutation located in exon 15, nucleotide 1799,

results in substitution of valine (V) by glutamic acid (E) at codon

600 (V600E) and causes a 500-fold increase in constitutive

activity, without the need for dimerization (23). BRAF is

mutated in nearly 7% of all human cancers, and V600E point-

mutation represents more than 90% of observed alterations (24).

In the same exon, other less frequent alterations have also been

detected (V600K, V600D, V600R) (25).

The first generation of RAF inhibitors were small-molecule

ATP-competitive multikinase inhibitors. Most notably Sorafenib

(23, 26, 27), blocking CRAF, BRAF (wildtype and mutant), KIT,

VEGFR1/2, FLT1 and PDGFR, was tested in several clinical

trials. Unexpectedly, Sorafenib led to accelerated tumor growth

in children with BRAF-fused and NF1-driven low-grade

gliomas, most likely due to ERK/MAPK paradoxical activation

(27). Selective BRAF inhibitors, includingVemurafenib (28–30),

Dabrafenib (31, 32) and Encorafenib (33, 34), efficiently inhibit

the catalytic activity (and MAPK signaling) of the mutant

BRAFV600E, which can function as active monomers, but have

limited efficacy against RAF in dimeric forms. Moreover, they

can induce increase in functional RAF kinase dimers and

paradoxical activation of MAPK signaling in wild-type BRAF

or BRAF-fusion expressing cells (35).

A new generation of RAF inhibitors, developed after the

characterization of BRAF dimerization, are now in clinical trials.

Among these are “paradox breakers” (compounds such as

PLX7904 and PLX8394) designed to avoid the paradoxical

activation of MAPK. Another subclass includes compounds

that inhibit both the monomeric and dimeric forms of BRAF,

thus limiting the dimerization of RAF, a known mechanism of

resistance (DAY101/Tovorafenib) (36).
3 Response to BRAFi: Monotherapy
and combination with MEKi
in gliomas

After several case studies (37–41), a growing number of

clinical trials have established the clinical benefit of BRAFV600E-

directed therapies in pediatric and adult gliomas (15, 16, 42).

Reports of successful tumor responses and improved survival

outcomes with favorable tolerability have been shown with

Dabrafenib (42) and Vemurafenib (15, 17) as single agents or

in combinations with MEK inhibitors (MEKi) (14, 16).

As part of the VE-BASKET multi-cohort study for non-

melanoma cancers (15), BRAF inhibition with Vemurafenib led
frontiersin.org
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to an objective response rate (ORR) of 25% in a cohort of 24

adult patients with relapsed/progressive BRAFV600E mutant

gliomas. Reponses varied but were detected in all histological

glioma subsets, with greater effect detected in low-grade gliomas

and PXAs. Meaningful responses were also seen upon treatment

with Dabrafenib in pediatric patients with low-grade gliomas

[n=32, ORR 44% (95% CI 26 – 62)], with 1-year progression-free

survival (PFS) of 85% (95% CI 64 – 94) (43). Supported by

preclinical data showing a correlation of extent of MAPK

inhibition with response to BRAFi treatment (44) and data

emerging from trials evaluating MEK inhibitors (Selumetinib,

Trametinib and Binimetinib) in pediatric glioma patients (45–

49), subsequent studies assessed the effect of combinatorial

BRAFV600E and MEK inhibition.

Treatment with dabrafenib plus trametinib was evaluated in

the phase 2 Rare Oncology Agnostic Research (ROAR) trial (16).

An interim analysis showed an ORR of 69% (95% CI 39 – 91) in

adult patients with low-grade gliomas (9 of a total of 13 patients).

For the high-grade glioma cohort (n = 45, 31/45 with

glioblastoma) a lower but meaningful ORR was reported of

33% (95% CI 39 – 91, 15 of 45 patients) at a median follow-up

time of 12.7 months (IQR 5.4 – 32.3 months). In pediatric

patients with low-grade gliomas, when compared to

conventional chemotherapy with vincristine and carboplatin

(VC), dabrafenib plus trametinib significantly increased ORR
Frontiers in Oncology 03
(47%, 95% CI 35-59 vs 11%, 95% CI 3-25 for the VC cohort;

odds ratio 7.2) (14). Comparison with previous single-agent

trials is limited by differences in design and heterogeneity in

patient inclusion, however current data suggest an advantage of

combinatorial BRAF and MEK inhibition, when compared to

BRAFi monotherapy. Beyond progression-free and overall

survival, time to response is another important aspect of

therapy. Rapid tumor shrinkage is especially relevant in CNS

locations where tumors can lead to potentially irreversible

neurological damage (e.g. patients with optic pathway gliomas,

for whom preservation of vision is critical). Future studies

should provide further insights regarding extent/timing of

response us ing targeted treatments , compared to

conventional chemotherapy.

The therapeutic benefit of BRAFi and concurrent BRAFi/

MEKi in gliomas is indisputable (14, 16). Whether complete and

sustained tumor responses can be achieved remains unclear and

several key questions remain to be addressed. A large subset of

patients may experience rebound growth upon discontinuation

of treatment (13). However, most data so far were collected for

patients with progressive gliomas, treated with BRAFi after one

or several lines of conventional cytotoxic therapies. The optimal

timing for introduction of targeted agents (upfront vs at

progression), duration of treatment, schedule for treatment

discontinuation and best approach to post-BRAFi progression
FIGURE 1

Oncogenic BRAF/MAPK signaling. The mitogen-activated protein kinase (MAPK) pathway is essential to the regulation of cellular growth,
proliferation, and survival. Upstream of BRAF, growth factors binding to receptor tyrosine kinases (RTKs) at the cell surface lead to
phosphorylation of RAS proteins, which then activate BRAF. Signal transduction continues downstream from BRAF to MAPK kinase (MEK) 1 and
MEK2, and finally to ERK, which phosphorylates multiple targets, leading to increased cell survival, proliferation and differentiation. The V600E
mutation results in constitutive activation of BRAF and downstream activation of MEK and ERK, in a RAS-independent manner. Specific inhibitors
have been synthetized to target the mutated BRAF (Dabrafenib, Encorafenib, Vemurafenib) and the downstream MEK (Trametinib, Binimetinib,
Cobimetinib, Selumetinib); more recently pan-raf inhibitors such as Tovorafenib have been developed. The PI3K/AKT/mTOR pathway is another
survival pathway and its overactivation has been associated with BRAFi resistance (Created with BioRender.com).
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remain under debate. Also, long-term side effects of these

targeted therapies in children remain unknown.
4 Resistance to BRAF inhibition

The tumor’s ability to escape therapeutic pressure can

precede (intrinsic resistance) or emerge during treatment

(acquired resistance). As a result, patients can be refractory to

treatment or experience an initial response followed by tumor

growth while on treatment. Tumor progression after BRAFi

discontinuation (rebound growth) is another form of treatment

failure but not strictly driven by resistance to BRAFi, since it

occurs also in patients with good response to treatment, in the

absence of intrinsic or acquired resistance.

In a general context, intrinsic resistance to targeted therapy

is usually caused by pre-existing concomitant genetic alterations.

Resistance may also derive from a non-genetic rewiring of

signaling pathways, epigenetic modulation and/or changes in

the tumor microenvironment, leading to the activation of

compensatory signals and/or reactivation of the targeted

pathway (50–52) (Figure 2).
Frontiers in Oncology 04
4.1 Concomitant alterations

A common reason for BRAFi treatment failure is the

presence of concomitant response-modifying alterations (53,

54). CDKN2A deletion can co-occur with BRAFV600E in

different cancer entities, including gliomas, where it is

associated with a higher risk of progression, malignant

transformation, and overall poorer outcome (55, 56). Intrinsic

resistance to BRAFi has been associated with PI3K-mTOR

pathway aberrations in several BRAFV600E mutated non-

melanoma tumors, including glioblastoma (57). All patients

presenting PI3K-mTOR pathway mutations (such as

PTENP339fs*2, PIK3CAI391M, AKTD46E) and BRAFV600E

progressed within less than 3 months of targeted

monotherapy. Later clinical trials further corroborated this

observation: five pediatric and young adult patients with

BRAFV600E-mutated brain tumors and PI3K pathway

alterations (58) were treated with a combination of

Vemurafenib and Everolimus. Overall, two patients (40%) had

a partial response and one (20%) had stable disease as best

response. Similarly, H3.3 K27M mutation is a poor prognostic

marker in gliomas overall and has been detected with

concomitant BRAFV600E mutation in rare cases (13, 59).

BRAFV600E has been detected in a tumor harboring also a

BRAF-KIAA1549 fusion. In a phase 1 trial of the MEK inhibitor

Selumetinib (45), 1 out of 38 pLGG patients carried both

alterations, and rapidly progressed on treatment. Though

thought to be generally mutually exclusive, it is unclear how

patients with BRAFV600E gliomas harboring additional genetic

alterations at the level of BRAF (mutations and/or fusions)

respond to BRAFi.
4.2 MAPK pathway reactivation

About 80% of drug resistant cases in BRAFV600E mutated

tumors overall are thought to arise from the reactivation of

MAPK pathway (60). Despite positive initial response to

inhibitors such as Dabrafenib or Vemurafenib, it is well

documented that cells can find alternative ways to activate the

pro-survival MAPK pathway in many cancer subtypes (61, 62),

including gliomas (63). Secondary mutations in the MAPK

pathway, BRAF copy number gains, BRAF alternative splicing

as well as increased expression of receptor tyrosine kinases are

some of the diverse mechanisms that can cause MAPK pathway

reactivation (64).

Binding of BRAFi to one monomer induces allosteric

transactivation of the second monomer, while at the same

time the binding of the drug at the second monomer is

sterically prevented (65). In tumor cells bearing BRAFV600E

mutants, the mutated form can dimerize with BRAFV600E,
FIGURE 2

Overview of mechanisms of resistance to BRAF inhibitors (BRAFi)
in gliomas. Drug resistance can be driven by cell-intrinsic factors,
such as mutations (A, C), pathway activation (D, F), cell-extrinsic
factors, such as the tumor microenvironment (B), the presence
of physical barriers like the blood brain barrier and its P-
glycoprotein (E). Examples of alterations and signaling pathways
related to resistance to BRAFis in low- and high-grade gliomas
are depicted (Created with BioRender.com).
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wild-type BRAF and wild-type CRAF, leading to MAPK

pathway reactivation (35).

Mutations or hyperactivation in the PI3K/AKT pathway can

also cause the reactivation of MAPK (66). In patient-derived

BRAFV600E HGG xenograft models chronic exposure to

Dabrafenib led to an up-regulation of RAS, phospho-c-Raf,

phospho-p90RSK, and phospho-AKT, with paradoxical

activation of the MAPK pathway and AKT/mTOR pathway

causing resistance to BRAFi (67).
4.3 Activation of compensatory
oncogenic pathways

Signaling redundancies and interconnections through

pathway crosstalk have been identified as contributors to drug

resistance (68). Negative feedback loops, cross inhibition, cross

activation, and pathway convergence are hallmarks of cell

signaling regulation. Activation of compensatory pathways is

more likely to occur in HGG when compared to LGG, typically

driven by a single alteration resulting in up-regulation of the

RAS/MAPK pathway (69, 70).

Feedback activation of EGFR signaling is one way by which

BRAFV600E gliomas adjust and escape BRAFi treatment.

BRAFV600E inhibition can suppress MAPK signaling, which in

turn downregulates the EGFR phosphatase PTPN9, resulting in

sustained EGFR phosphorylation and enhanced EGFR activity

(71). One case report supports this observation, in which a

glioblastoma patient carrying both BRAFV600E and an activating

mutation of EGFR experienced no clinical benefit from RAF and

MEK inhibition (72).

Additional pathways have been implicated in resistance to

BRAFi. For example, Vemurafenib-resistant glioma cells up-

regulate pro-survival mediators such as Wnt and increase Axl

receptor tyrosine kinase activity (73).
4.4 Acquired mutations

In melanoma, around 50% of patients treated with BRAFi

alone or in combination with MEKi experience an initial

significant shrinking of the tumor followed by tumor re-

growth due to the acquisition of a new mutation (74). Loss-of-

function mutations in STAG2 (75), BOP1 downregulation (76)

and COT alteration (77) are just some of the pro-survival

mutations that bypass the inhibition of MAPK pathway in

melanoma. A case report described an acquired BRAFL514V

mutation at time of relapse in a BRAFV600E pLGG, leading to

dimerization of BRAFV600E and rendering the monomer-specific

inhibitor inefficient (78). In a larger case series, paired pre- and

post-BRAFi pediatric and adult glioma samples (n = 15 patients)

were analyzed, and 9 cases displayed a novel mutation acquired

after BRAFi monotherapy or in combination with MEKi (79).
Frontiers in Oncology 05
Among these alterations, loss of NF1, PTEN, CBL and CRAF

activation were functionally validated using patient-derived cell

lines. Further alterations included mutations in PIK3C2G,

ERRFI1, BAP1, ANKHD1, and MAP2K1. This study also

revealed the heterogeneity of mechanisms of resistance to

BRAFi, with all post-treatment samples with acquired

mutations presenting unique novel alterations.
4.5 Blood-brain barrier and challenges in
drug delivery

The BBB and blood-tumor barrier constitute two sequential

barriers that drugs need to cross to reach the tumor. Most

commercially available drugs have a reduced capability of

crossing the BBB, thus representing an important limitation to

therapy effectiveness in brain tumors. The presence of tight

junctions and efflux proteins on the BBB impacts distribution of

BRAFi and MEKi within the central nervous system. P-

glycoprotein (P-gp) and breast cancer resistance protein

(BCRP), expressed on the luminal side of the BBB, can actively

efflux various therapeutic agents (80–82) including

Vemurafenib, Dabrafenib, Trametinib, and Cobimetinib (83,

84). Furthermore, many kinase inhibitors such as Dasatinib,

Gefitinib, Sorafenib and Erlotinib (85–87) are substrates for

important transporters at the BBB and this significantly limits

their concentrations in the brain.

Although it is not clear whether these findings have a direct

link with therapy failure in glioma patients, it is likely that

intrinsic resistance to targeted therapy is partially due to the

inability of some drugs to reach therapeutic concentrations in

the brain.
5 TME and immune system

Like the BBB, the tumor microenvironment (TME) can

impose additional roadblocks to targeted therapies. While

most studies have been performed on melanoma, some of the

conclusions could be applicable to gliomas. The TME contains

various non-cancerous cells such as astrocytes, endothelial cells,

microglia, and macrophages, which by their own distinct

mechanisms can limit the efficacy of targeted inhibitors. For

example, TME stromal cells secrete high levels of ligands capable

of activating the MAPK pathway through receptor tyrosine

kinases, thereby activating the same pathways that BRAFi are

designed to block (83). In BRAFV600E-mutant melanoma, a

positive correlation between intrinsic resistance to BRAFi and

HGF expression by stromal cells has been described (88).

BRAFi also affects the immune phenotype of the TME in

ways it can either benefit treatment or explain mechanisms of

resistance. For instance, BRAFi have been associated with an

increased number of T-cells in the TME and up-regulation of
frontiersin.org
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MHC proteins on cancer cells (89, 90). In a study on metastatic

melanoma, patients treated with Dabrafenib and Trametinib

displayed an increase in T-cell infiltration and an increase in

melanocytic differentiation agents (91). While these changes in

the immune composition could facilitate BRAFi treatment, other

changes observed in the TME were also associated with

resistance. For examples, BRAF inhibition have also been

linked to an increase in expression of the immunosuppressive

ligand PD-L1 (91). While the mechanisms by which the immune

phenotype of the TME evolves to adapt to treatment are yet to be

fully characterized, these studies suggest that better therapeutic

benefit could be derived from combining BRAFi with immune

checkpoint inhibitors or other immunomodulating drugs.
6 Future perspectives

BRAF inhibitors have shown promising results against a

wide variety of BRAFV600E mutated cancers. For children,

adolescents, and adults with low-grade gliomas, responses to

BRAFi are superior to conventional chemotherapy and a

growing body of evidence supports upfront targeted therapy in

these patients. Though to a lesser extent, encouraging responses

further support the use of BRAFi in the treatment of pediatric

and adult patients with HGG.

With BRAFi now part of routine clinical care, new

challenges emerge. The most pressing concern at present is

resistance to targeted therapy as a cause of treatment failure,

morbidity, and mortality. In many human cancers, important

progress has been made using genomic and transcriptomic

profiling of paired clinical samples to track the tumor

evolution during and after targeted treatment (92, 93). Yet, re-

biopsy at time of relapse is not a standard of care in patients with

relapsed gliomas and data are limited.

Several ongoing preclinical and clinical efforts are expected to

further elucidate the molecular causes underlying BRAFi treatment

failure. Recent reports highlight the evolution of gliomas under

BRAF inhibition and reveal a high diversity of acquired alterations

at relapse (79). This heterogeneity also suggests that the

mechanisms driving drug resistance are patient-/tumor-specific,

further supporting the need for tumor biopsies at time of relapse.

Though challenging, such an approach may reveal tumor-specific

vulnerabilities as well as inform the design of new drug

interventions and personalized treatment options for patients

with otherwise limited treatment options.

One of the main mechanisms of resistance to BRAFi in

gliomas is reprogramming of kinase and cell signaling activity.

Several proteomic approaches such as Reverse-Phase Protein

Array (RPPA), Mass Spectrometry (MS; total or phospho), or

Inhibitor-Bead Mass Spectrometry (IB-MS) can reveal how

tumors rewire signaling cascades upon therapeutic pressure

but require relatively large amounts of sample. Another

recently developed method is the High Throughput-Kinase
Frontiers in Oncology 06
Activity Mapping (HT-KAM), which measures the activity of

hundreds of kinases simultaneously, in cells or in tumor tissues’

extracts (94, 95). The readout of this assay provides a rank of

kinases that are overactive/underactive upon treatment, thus

uncovering parallel/orthogonal mechanisms that can be targeted

to overcome therapeutic resistance. With such understanding of

the molecular mechanisms treatment failure, BRAFi could then

be rationally combined with inhibitors of resistance

mechanisms, to increase treatment efficacy.

Lastly, very little is known about the long-term side effects of

these therapies, especially in pediatric patients (96). Their

potential impact in the development of young children and

adolescents must be carefully assessed in comprehensive

longitudinal prospective studies. Advanced imaging- and/or

liquid biopsy-based strategies for disease monitoring are

further areas of research, expected to improve how we predict

response, monitor and tailor treatment with BRAFi. Translation

of new technologies and innovation into clinical care will thus be

key to understand and overcome BRAFi resistance.
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