
UCLA
UCLA Electronic Theses and Dissertations

Title
Distributed Stochastic Optimization in Non-Differentiable and Non-Convex Environments

Permalink
https://escholarship.org/uc/item/7pb746mg

Author
Vlaski, Stefan

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7pb746mg
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Distributed Stochastic Optimization in

Non-Differentiable and Non-Convex Environments

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Stefan Vlaski

2019



c© Copyright by

Stefan Vlaski

2019



ABSTRACT OF THE DISSERTATION

Distributed Stochastic Optimization in

Non-Differentiable and Non-Convex Environments

by

Stefan Vlaski

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Ali H. Sayed, Chair

The first part of this dissertation considers distributed learning problems over networked

agents. The general objective of distributed adaptation and learning is the solution of global,

stochastic optimization problems through localized interactions and without information

about the statistical properties of the data.

Regularization is a useful technique to encourage or enforce structural properties on the

resulting solution, such as sparsity or constraints. A substantial number of regularizers are

inherently non-smooth, while many cost functions are differentiable. We propose distributed

and adaptive strategies that are able to minimize aggregate sums of objectives. In doing

so, we exploit the structure of the individual objectives as sums of differentiable costs and

non-differentiable regularizers. The resulting algorithms are adaptive in nature and able to

continuously track drifts in the problem; their recursions, however, are subject to persistent

perturbations arising from the stochastic nature of the gradient approximations and from

disagreement across agents in the network. The presence of non-smooth, and potentially

unbounded, regularizers enriches the dynamics of these recursions. We quantify the impact

of this interplay and draw implications for steady-state performance as well as algorithm

design and present applications in distributed machine learning and image reconstruction.

There has also been increasing interest in understanding the behavior of gradient-descent

algorithms in non-convex environments. In this work, we consider stochastic cost functions,

ii



where exact gradients are replaced by stochastic approximations and the resulting gradient

noise persistently seeps into the dynamics of the algorithm. We establish that the diffusion

learning algorithm continues to yield meaningful estimates in these more challenging, non-

convex environments, in the sense that (a) despite the distributed implementation, individual

agents cluster in a small region around the weighted network centroid in the mean-fourth

sense, and (b) the network centroid inherits many properties of the centralized, stochastic

gradient descent recursion, including the escape from strict saddle-points in time inversely

proportional to the step-size and return of approximately second-order stationary points in

a polynomial number of iterations.

In the second part of the dissertation, we consider centralized learning problems over

networked feature spaces. Rapidly growing capabilities to observe, collect and process ever

increasing quantities of information, necessitate methods for identifying and exploiting struc-

ture in high-dimensional feature spaces. Networks, frequently referred to as graphs in this

context, have emerged as a useful tool for modeling interrelations among different parts of

a data set. We consider graph signals that evolve dynamically according to a heat diffu-

sion process and are subject to persistent perturbations. The model is not limited to heat

diffusion but can be applied to modeling other processes such as the evolution of interest

over social networks and the movement of people in cities. We develop an online algorithm

that is able to learn the underlying graph structure from observations of the signal evolution

and derive expressions for its performance. The algorithm is adaptive in nature and able

to respond to changes in the graph structure and the perturbation statistics. Furthermore,

in order to incorporate prior structural knowledge to improve classification performance, we

propose a BRAIN strategy for learning, which enhances the performance of traditional algo-

rithms, such as logistic regression and SVM learners, by incorporating a graphical layer that

tracks and learns in real-time the underlying correlation structure among feature subspaces.

In this way, the algorithm is able to identify salient subspaces and their correlations, while

simultaneously dampening the effect of irrelevant features.

iii



The dissertation of Stefan Vlaski is approved.

Lieven Vandenberghe

Suhas N. Diggavi

Abeer A. Alwan

Ali H. Sayed, Committee Chair

University of California, Los Angeles

2019

iv



To my Family.

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Single-Agent Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Empirical Risk Minimization . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Online Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Stochastic Gradient Algorithms for Empirical Risk Minimization . . . 3

1.2 Multi-Agent Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Regularized Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Non-Convex Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Learning for Networked Feature Spaces . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Online Graph Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 The BRAIN Strategy for Online Learning . . . . . . . . . . . . . . . 12

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Small Regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Differentiable Cost Functions . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Non-Differentiable Cost Functions . . . . . . . . . . . . . . . . . . . . 17

2.3 Proximal Diffusion Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Operator Representation of Proximal Diffusion . . . . . . . . . . . . . . . . . 21

2.5 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Fixed-Point of Deterministic Recursion . . . . . . . . . . . . . . . . . 24

2.5.2 Bias Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



2.5.3 Evolution of Stochastic Recursion . . . . . . . . . . . . . . . . . . . . 27

2.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.A Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.B Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.C Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 General Regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Related Works in the Literature . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Algorithm Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Construction of Smooth Approximation . . . . . . . . . . . . . . . . . 38

3.2.2 Accuracy of the Smooth Approximation . . . . . . . . . . . . . . . . 41

3.2.3 Regularized Diffusion Strategy . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Centralized Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Network Basis Transformation . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Mean-Square-Error Bounds . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Application: Division of Labor in Machine Learning . . . . . . . . . . . . . . 52

3.4.1 Group Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.A Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.B Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



3.C Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.D Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.E Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.F Proof of Lemma 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.G Proof of Lemma 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Extension to Matrix Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Problem and Algorithm Formulation . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Analogy to Vector Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Distributed Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Decentralized Non-Convex Learning — Short-Term Model . . . . . . . . 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.2 Preview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Evolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Network basis transformation . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Network disagreement . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.3 Evolution of the network centroid . . . . . . . . . . . . . . . . . . . . 100

5.2.4 Behavior around stationary points . . . . . . . . . . . . . . . . . . . . 102

5.3 Application: Robust Regression . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.A Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.B Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.C Proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.D Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

viii



5.E Proof of Lemma 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Decentralized Non-Convex Learning — Escape from Saddle-Points . . . 127

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Review of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Modeling Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.2 Review of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Escape from Saddle-Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.A Proof of Lemma 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.B Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.C Proof of Theorem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Centralized Non-Convex Optimization . . . . . . . . . . . . . . . . . . . . . 167

7.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Modeling Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.1 Smoothness Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.2 Gradient Noise Conditions . . . . . . . . . . . . . . . . . . . . . . . . 172

7.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.1 Preliminary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.2 Large-Gradient Regime . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.3.3 Escape from Saddle-Points . . . . . . . . . . . . . . . . . . . . . . . . 178

7.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.A Proof of Lemma 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

ix



7.B Proof of Lemma 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.C Proof of Lemma 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.D Proof of Lemma 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.E Proof of Theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.F Proof of Theorem 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8 Graph Learning from Streaming Data . . . . . . . . . . . . . . . . . . . . . 216

8.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.2.1 Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.2.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.2.3 An Equivalent Linear Model . . . . . . . . . . . . . . . . . . . . . . . 220

8.2.4 Graph Signal Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.3 Graph Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.A Proof of Lemma 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.B Proof of Lemma 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.C Proof of Lemma 8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9 Interpretative Learning via the BRAIN strategy . . . . . . . . . . . . . . . 236

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

9.1.1 Relation to other works . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.2 Algorithm Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.3 Correlation-Aware Online Update . . . . . . . . . . . . . . . . . . . . . . . . 242

9.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

9.4.1 Artificial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

x



9.4.2 p53 Mutants Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

10 Conclusions and Future Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 248

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

xi



LIST OF FIGURES

1.1 A network of N nodes with an emphasis on the neighborhood Nk of agent k. . . 7

2.1 Proximal diffusion as a cascade of operators. . . . . . . . . . . . . . . . . . . . . 23

2.2 Network topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Data statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Performance comparison for ν = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Sample network consisting of N = 40 agents, card(F) = 10, card(D) = 20,

card(S) = 10. Fully-informed agents have access to data as well as partial struc-

tural information. Data-informed agents observe realizations of the feature vector

along with class-labels, but have no information on the structure of the classi-

fier. Structure-informed agents do not have access to data, but do have partial

information on sparse elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Noise profile across the network for training (if k ∈ F ∪ D) and testing. . . . . . 56

3.3 Classifier performance on separate testing set. . . . . . . . . . . . . . . . . . . . 57

4.1 Original image A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Corrupted image SS [A]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 The sampled image is decomposed into 12 blocks of size 150 × 200. Each agent

only has access to the block it has been assigned. For example, the top-left agent

only sees the top-left block of the sampled image. Agents are allowed to exchange

estimates, if their respective blocks share an edge. . . . . . . . . . . . . . . . . . 78

4.4 Each agent’s estimate of the full image after a single iteration. . . . . . . . . . . 79

4.5 After 20 iterations, it can be observed how the information from each agent is

radiated into its neighborhood. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xii



4.6 After 100 iterations, the agents have almost reached consensus and continue to

refine their solution to move closer to the global minimizer. . . . . . . . . . . . . 81

4.7 After 300 iterations, the full image has been recovered at every agent. . . . . . . 82

5.1 Classification of approximately stationary points. Theorem 5.2 in this chapter

establishes descent in the green branch. The red branch is treated in Chapter 5.

The two results are combined in Theorem 6.2 to establish the return of a second-

order stationary point with high probability. . . . . . . . . . . . . . . . . . . . . 89

5.2 Graph with N = 20 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Regressor power Tr (Rh,k) at each agent. . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Performance in the nominal case. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Performance in the corrupted case. . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Classification of approximately stationary points. Theorem 6.1 in this chapter

establishes descent in the green branch. The red branch is treated in Chapter 5.

The two results are combined in Theorem 6.2 to establish the return of a second-

order stationary point with high probability. . . . . . . . . . . . . . . . . . . . . 139

6.2 Cost surface of a simple neural network with ρ = 0.1. . . . . . . . . . . . . . . . 147

6.3 Agents are initialized at different points in space, but nevertheless quickly cluster.

They then jointly travel away from the strict saddle-point and towards one of the

local minimizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Agents are initialized together precisely in the strict saddle-point. The presence

of the gradient perturbation allows them to jointly escape the saddle-point. . . . 150

7.1 Cost surface of a simple neural network with ρ = 0.1 and sample trajectories.

The symmetric nature of the loss and initialization result in an equal probability

of escaping towards the local minimum in the positive or negative quadrant. . . 182

7.2 Evolution of the function value. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xiii



8.1 True graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.2 True adjacency matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.3 Graph recovered using the Projected Laplacian LMS Strategy I. . . . . . . . . . 231

8.4 Adjacency matrix recovered using the Projected Laplacian LMS Strategy I. . . . 232

8.5 Mean-Square Deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9.1 (left) Traditional learning paradigm. (right) The BRAIN strategy with dictionary

and correlation networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9.2 Illustration of a correlation layer placed on top of an online learning algorithm. . 242

9.3 Evolution of correlation network of classifier sub-scores. . . . . . . . . . . . . . . 245

9.4 Learning curves for logistic regression with and without the correlation layer on

synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.5 Learning curves for Support-Vector-Machine with and without correlation layer

on gene data, µ = 0.01, ν = 0.01, and ρ = 0.01. . . . . . . . . . . . . . . . . . . 247

9.6 Correlation network evolution on p53 mutants. . . . . . . . . . . . . . . . . . . . 247

xiv



LIST OF TABLES

5.1 Comparison of modeling assumptions and results for gradient-based methods.

Statements marked with ? are not explicitly stated but are implied by other

conditions. The works marked with † establish global (asymptotic) convergence,

which of course implies escape from saddle-points. . . . . . . . . . . . . . . . . . 87

xv



ACKNOWLEDGMENTS

First, and foremost, I would like to express my deepest gratitude to Professor Ali H. Sayed,

for his guidance as well as support throughout my studies and the opportunity to work on

exciting and challenging projects. His passion and knowledge have inspired me to grow as a

researcher; his patience and meticulous approach to science have laid the foundation to do

so. Our interactions have offered invaluable lessons far beyond academic applications, and I

am grateful to carry them with me for years to come.

I would like to thank Professor Alwan for her mentorship during my Masters studies at

UCLA, as well as her participation on the doctoral committee for this dissertation. I would

also like to thank Professor Christina Fragouli, Professor Suhas N. Diggavi and Professor

Lieven Vandenberghe for their participation and feedback.

I am thankful to Deeona Columbia, Ryo Arreola, and Mandy Smith for their help during

my time at UCLA. I am grateful to Professor Abdelhak Zoubir and Dr. Michael Muma at

TU Darmstadt, whose mentorship led me to this path.

I am lucky to have met exceptional colleagues, collaborators and friends throughout my

time at UCLA and while visiting EPFL – thank you for thoughtful discussions and occasional

laughs: Chung-Kai Yu, Hawraa Salami, Bicheng Ying, Kun Yuan, Lucas Cassano, Sulaiman

Alghunaim, Sina Basir-Kazeruni, Professor Dejan Marković, Zaid J. Towfic, Jianshu Chen,

Xiaochuan Zhao, Steven Lee, Chengcheng Wang, Sara Al-Sayed, Saeed Ghazanfari Rad,

Roula Nassif, Augusto Santos, Virginia Bordignon, Elsa Rizk, Guillermo Ortiz Jimenez,

Hermina P. Maretić, Professor Pascal Frossard and Professor Ricardo Merched.

I am thankful to my family, Zaklina, Viktor, Slavka and Vasil, for their unconditional

support, and to Cathrin, for being my partner along the way.

This dissertation is based upon work partially supported by the National Science Foun-

dation under grants CCF-1011918, CCF-1524250 as well as ECCS-1407712 and DARPA

project N66001-14-2-4029. Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the author and do not necessarily reflect the views of

xvi



the National Science Foundation, the Department of Defense or the U.S. Government.

xvii



VITA

2013 B.Sc. in Electrical Engineering, Technical University Darmstadt, Germany.

2014 M.S. in Electrical Engineering, University of California, Los Angeles, CA,

USA.

2014–2017 Research Assistant, Department of Electrical Engineering, University of

California, Los Angeles, CA, USA.

2016 Intern, Apple Inc., Cupertino, CA, USA.

2017 Intern, Amazon Lab126, Sunnyvale, CA, USA.

2017–2019 Visiting Doctoral Assistant, École polytechnique fédérale de Lausanne,

Switzerland.

PUBLICATIONS

Stefan Vlaski, Lieven Vandenberghe and Ali H. Sayed, “Regularized Diffusion Adaptation

via Conjugate Smoothing,” in preparation, September 2019.

Stefan Vlaski and Ali H. Sayed, “Second-Order Guarantees of Stochastic Gradient Descent

in Non-Convex Optimization,” submitted for publication, available as arXiv:1908.07023,

August 2019.

Stefan Vlaski and Ali H. Sayed, “Distributed Learning in Non-Convex Environments –

Part II: Polynomial Escape from Saddle-Points,” submitted for publication, available as

arXiv:1907.01849, July 2019.

xviii



Stefan Vlaski and Ali H. Sayed, “Distributed Learning in Non-Convex Environments – Part

I: Agreement at a Linear Rate,” submitted for publication, available as arXiv:1907.01848,

July 2019.

Stefan Vlaski and Ali H. Sayed, “Diffusion Learning in Non-Convex Environments”, in Pro-

ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 5262–5266, Brighton, UK, May 2019.

Stefan Vlaski, Hermina P. Maretić, Roula Nassif, Pascal Frossard and Ali H. Sayed, “Online

Graph Learning from Sequential Data”, in Proceedings of the IEEE Data Science Workshop

(DSW), pp. 190–194, Lausanne, Switzerland, June 2018.

Stefan Vlaski, Bicheng Ying and Ali H. Sayed, “The BRAIN Strategy for Online Learn-

ing”, in Proceedings of the IEEE Global Conference on Signal and Information Processing

(GlobalSIP), pp. 1285–1289, Washington, D.C., USA, December 2016.

Stefan Vlaski, Lieven Vandenberghe and Ali H. Sayed, “Diffusion Stochastic Optimization

with Non-Smooth Regularizers”, in Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, pp. 4149–4153, March

2016.

Stefan Vlaski and Ali H. Sayed, “Proximal Diffusion for Stochastic Costs with Non-Differentiable

Regularizers”, in Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 3352–3356, Brisbane, Australia, April 2015.

xix



CHAPTER 1

Introduction

1.1 Single-Agent Learning

Most learning problems can be formulated as stochastic optimization problems where the

objective is to learn a parameter vector w that minimizes a risk Q(w;x) over the distribution

of the random data x, i.e. [1]:

wo , arg min
w

ExQ(w;x) , arg min
w

J(w) (1.1)

where

J(w) , ExQ(w;x) (1.2)

If Q(w;x) is viewed as a penalty for the parameter set w given x, then (1.1) can be viewed

as the task of finding the parametrization w that gives the smallest expected penalty over

the distribution of x. The key challenge in learning by means of pursuing a solution to (1.1)

is that in general, the distribution of the data x is unknown. Two main remedies exist for

this challenge:

1.1.1 Empirical Risk Minimization

In empirical risk minimization, rather than solving (1.1) directly, S sample realizations of

x are collected into a batch {xs}Ss=1 and the expectation is approximated by the sample

mean [2]:

w? = arg min
w

1

S

S∑
s=1

Q(w, xs) (1.3)

1



Note that, in general, the minimizer of the expected risk wo will be different from the

minimizer of the empirical risk w?. Under the assumption of ergodicity, and in light of the

law of large numbers, we can nevertheless expect that w? will be a reasonable estimate for

wo. This intuition can be formalized for a variety of data distributions and risk functions

and is extensively studied [2–7].

It can be observed that (1.3), in contrast to (1.1), is now fully deterministic, and hence,

w? can be pursued by a variety of optimization algorithms. The most immediate solution is

based on gradient descent:

wi = wi−1 − µ∇
(

1

S

S∑
s=1

Q(w, xs)

)
= wi−1 −

µ

S

S∑
s=1

∇Q(w, xs) (1.4)

However, the approximation (1.3) has two main drawbacks. First, the formulation and

solution of (1.3) requires the collection of a large number of samples {xs}Ss=1. This may

not be feasible, particularly if (a) the sample size S is very large or (b) data is streaming

in, requiring processing of samples on the fly. Second, guarantees on the accuracy of w?

relative to wo are generally based on an ergodicity assumption, which is violated whenever

data statistics drift over time.

1.1.2 Online Learning

Returning to (1.1), observe that if we had knowledge about the distribution of x, we could

simply iterate:

wi = wi−1 − µ∇J(wi−1) = wi−1 − µ∇ExQ(wi−1;x) (1.5)

In order to derive the stochastic gradient algorithm, one can drop the expectation operation

and replace the true gradient by an instantaneous approximation [1, 8]:

∇̂J(w) , ∇Q(w;x) (1.6)

2



and instead iterate:

wi = wi−1−µ∇̂J(wi−1) = wi−1−µ∇Q(wi−1;x) (1.7)

where wi is denoted in boldface to emphasize the fact that it is now random. Observe that,

rather than moving along the negative gradient direction, (approximate) descent occurs now

relative to an approximate gradient direction. This approximation introduces noise into the

evolution of the iterates wi. Indeed, if we denote:

si(wi−1) , ∇̂J(wi−1)−∇J(wi−1) (1.8)

we have for (1.7):

wi = wi−1−µ∇J(wi−1)− µ si(wi−1) (1.9)

Despite the presence of the gradient noise term si(wi−1), it can be established that (1.7) will

nevertheless approach a small region around the minimizer wo under reasonable technical

conditions on the cost functions and gradient noise term. Specifically, it holds in the mean-

square sense that [1]:

lim sup
i→∞

E ‖wo −wi‖2 = O(µ) (1.10)

1.1.3 Stochastic Gradient Algorithms for Empirical Risk Minimization

Observe from the gradient recursion to the deterministic, empirical risk (1.4), that every

single gradient update from wi−1 to wi requires the evaluation of S gradients, where S denotes

the sample size. This can be prohibitively expensive, particularly for large data sizes. For

this reason, a number of algorithms have been developed to alleviate the per-iteration cost

of the gradient update in empirical risk minimization. The most basic algorithm is a variant

of the online stochastic gradient algorithm (1.7), where instead of sampling from the true

distribution of x, at each iteration, data is sampled from the empirical distribution of xemp,

3



where:

xemp =



x1, w.p. 1
S
,

x2, w.p. 1
S
,

...

xS, w.p. 1
S
.

(1.11)

Then, the empirical risk minimization problem is equivalent to:

w? , arg min
w

1

S

S∑
s=1

Q(w, xs) = arg min
w

Exemp Q(w;xemp) (1.12)

This construction motivates the following stochastic gradient algorithm for empirical risk

minimization:

wi = wi−1−µ∇Q(wi−1;xemp) (1.13)

where the gradient now, in contrast to (1.4), is evaluated only at one sample per iteration.

This construction reduces the computational complexity per iteration by a factor of S and

can result in a significant improvement of the accuracy obtained after a limited number of

gradient evaluations. It does, however, come at a cost. Since the true gradient, similarly to

the online stochastic gradient iteration (1.7), is replaced by a stochastic gradient approxima-

tion, some gradient noise is introduced into the recursions, preventing the iterates wi from

converging to the minimizer w? of (1.12). The work [9] has leveraged the analogy between

the two problems (1.1) and (1.12) to obtain and accurate expression for the residual error in

steady-state, namely:

lim sup
i→∞

E ‖w? −wi‖2 = O(µ) (1.14)

The observation that the residual error introduced by employing stochastic gradient approx-

imations, rather than exact gradients, tends to be proportional to the variance introduced

by the stochastic gradient noises, has sparked a line of work employing “variance-reduction”

to reduce the variance of the stochastic gradient approximation over time [10]. These works

generally rely on the assumption that the sample size S is finite, and are hence only applicable

to empirical risk minimization (1.3).

4



Despite their apparent similarity, we draw in this work a clear distinction between the

pursuit of wo, the minimizer of the expected risk (1.1), and w?, the minimizer of the empirical

risk (1.3). This distinction becomes particularly clear in the context of classification, where

the empirical risk is generally referred to as the “training error”, i.e., the performance of

the parametrization w on the training data. The expected risk (1.1) on the other hand,

denotes the expected performance of w on unseen data. While generalization theory loosely

states that, as long as the classification surface is sufficiently simple, when compared to the

sample size S, good training performance, i.e., a low empirical risk value, can guarantee small

expected risk with high probability [2–4,7], we emphasize that the fundamental objective of

generalization ability is captured in the expected, rather than empirical risk. As such, in this

dissertation, we will focus on developing learning solutions which are applicable to expected

risk minimization. While these solutions will be applicable to empirical risk minimization

by means of (1.11), we will not employ solutions which improve over (1.14) for the smaller

class of empirical risk minimization problems.

1.2 Multi-Agent Learning

Rapid developments towards a networked and data-driven society have uncovered new chal-

lenges in the development of modern learning algorithms, where data driving modeling de-

cisions is increasingly available at dispersed locations. Examples of such settings are social

networks [11–13], power grids [14,15], wireless sensor [16–18] and vehicular networks [19,20]

as well as cloud applications [21]. Limitations on communication, storage and computa-

tional resources as well as privacy and robustness concerns frequently prevent aggregation

and processing of raw data at a central location [22].

Motivated by these considerations, the objective of distributed adaptation and learning

is the solution of global, stochastic optimization problems across networks of agents through

localized interactions and without information about the statistical properties of the data.

The resulting algorithms are adaptive in nature and able to continuously track drifts in the

problem. Extending the discussion from the single-agent problem (1.1), we now associate

5



with every agent, indexed by k a local cost function Jk(w) : RM → R [1]:

Jk(w) , Exk Qk(w;xk) (1.15)

Observe that through the subscript k we emphasize different sources of heterogeneity across

networks. Specifically, different agents may be observing data xk from different distributions

or may be interested in minimizing different risk functions Qk(·; ·).

We consider a strongly-connected network consisting of N agents, depicted in Fig. 1.1.

For any two agents k and `, we attach a pair of non-negative coefficients {a`k, ak`} to the

edge linking them. The scalar a`k is used to scale data moving from agent ` to k; likewise, for

ak`. Strong-connectivity means that it is always possible to find a path, in either direction,

with nonzero scaling weights linking any two agents (either directly if they are neighbors or

indirectly through other agents). In addition, at least one agent k in the network possesses

a self-loop with akk > 0. This condition ensures that at least one agent in the network has

some confidence in its local information. Let Nk denote the set of neighbors of agent k. The

coefficients {a`k} are convex combination weights that satisfy

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (1.16)

If we introduce the combination matrix A = [a`k], it then follows from (1.16) and the

strong-connectivity property that A is a left-stochastic primitive matrix. In view of the

Perron-Frobenius Theorem [1,23,24], this ensures that A has a single eigenvalue at one while

all other eigenvalues are inside the unit circle, so that ρ(A) = 1. Moreover, if we let p denote

the right-eigenvector of A that is associated with the eigenvalue at one, and if we normalize

the entries of p to add up to one, then it also holds that all entries of p are strictly positive,

i.e.,

Ap = p, 1Tp = 1, pk > 0 (1.17)

where the {pk} denote the individual entries of the Perron vector, p. One can then formulate

6



N
<latexit sha1_base64="y7C2aJUmpkJGgDi7ynnMWnIqv70=">AAACE3icdZDLSgMxFIYzXmu9VV26CRZBRMpML3a6K7pxJRXsBdqhZNJMG5q5kGSEMsw7uPFV3LhQxK0bd76NmWkHVPRA4Of/zklOfjtgVEhd/9SWlldW19ZzG/nNre2d3cLefkf4IcekjX3m856NBGHUI21JJSO9gBPk2ox07ellwrt3hAvqe7dyFhDLRWOPOhQjqaxh4TQapJf0+di2Ir1kNsrV2vmZEmatXK8kolE3q2Z8HQ8LxYzDjMOMQ6Okp1UEi2oNCx+DkY9Dl3gSMyRE39ADaUWIS4oZifODUJAA4Skak76SHnKJsKJ0nRgeK2cEHZ+r40mYut8nIuQKMXNt1ekiORG/WWL+xfqhdEwrol4QSuLh+UNOyKD0YRIQHFFOsGQzJRDmVO0K8QRxhKWKMa9CyH4K/xedcsmolMo31WLzYhFHDhyCI3ACDFAHTXAFWqANMLgHj+AZvGgP2pP2qr3NW5e0xcwB+FHa+xdffpqv</latexit>

k
<latexit sha1_base64="IgFBn90ZNfg3KRAdvQ258JCthIE=">AAACE3icdZDLSgMxFIYz9VbrbdSlm2ARRGSYTls73RXduKxgLzAdSiZN29DMhSQjlGHewY2v4saFIm7duPNtTKctqOiBwM//nZOc/F7EqJCm+anlVlbX1jfym4Wt7Z3dPX3/oC3CmGPSwiELeddDgjAakJakkpFuxAnyPUY63uRqxjt3hAsaBrdyGhHXR6OADilGUll9/SzpZZc4fOS5iWnYdatSvThXwq5atfJM1Gt2xU4naV8vLjlccrjksGSYWRXBopp9/aM3CHHsk0BihoRwSmYk3QRxSTEjaaEXCxIhPEEj4igZIJ8IN8nWSeGJcgZwGHJ1Agkz9/tEgnwhpr6nOn0kx+I3m5l/MSeWQ9tNaBDFkgR4/tAwZlCGcBYQHFBOsGRTJRDmVO0K8RhxhKWKsaBCWP4U/i/allEqG9ZNpdi4XMSRB0fgGJyCEqiBBrgGTdACGNyDR/AMXrQH7Ul71d7mrTltMXMIfpT2/gWLj5rM</latexit>

<̀latexit sha1_base64="RygSbC34wkh44Iiego+jyBR9FGw=">AAACFnicdVBLSwMxGMzWV62vVY9egkXwoGW7be32VvTisYJ9QLuUbJq2odkHSVYoy/4KL/4VLx4U8Sre/Ddmt11Q0YHAMDNf8mWcgFEhDeNTy62srq1v5DcLW9s7u3v6/kFH+CHHpI195vOegwRh1CNtSSUjvYAT5DqMdJ3ZVeJ37wgX1Pdu5TwgtosmHh1TjKSShvp5NEgv6fOJY0dGyWqY1drFmSJWzaxXEtKoW1UrHhDG4qFezCIwi8AsAsslI0URLNEa6h+DkY9Dl3gSMyREv2wE0o4QlxQzEhcGoSABwjM0IX1FPeQSYUfpRjE8UcoIjn2ujidhqn6fiJArxNx1VNJFcip+e4n4l9cP5diyI+oFoSQeXjw0DhmUPkw6giPKCZZsrgjCnKpdIZ4ijrBUTRZUCdlP4f+kY5bKlZJ5Uy02L5d15MEROAanoAzqoAmuQQu0AQb34BE8gxftQXvSXrW3RTSnLWcOwQ9o71/qSJwY</latexit>

a22
<latexit sha1_base64="aKuYNMKhCBgyNEVi/hSa7gBPVGs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mioMeiF48V7Ae0oWy2m3btZjfsboQS+h+8eFDEq//Hm//GbZqDtj4YeLw3w8y8MOFMG9f9dkpr6xubW+Xtys7u3v5B9fCorWWqCG0RyaXqhlhTzgRtGWY47SaK4jjktBNObud+54kqzaR4MNOEBjEeCRYxgo2V2niQ+f5sUK25dTcHWiVeQWpQoDmofvWHkqQxFYZwrHXPcxMTZFgZRjidVfqppgkmEzyiPUsFjqkOsvzaGTqzyhBFUtkSBuXq74kMx1pP49B2xtiM9bI3F//zeqmJroOMiSQ1VJDFoijlyEg0fx0NmaLE8KklmChmb0VkjBUmxgZUsSF4yy+vkrZf9y7q/v1lrXFTxFGGEziFc/DgChpwB01oAYFHeIZXeHOk8+K8Ox+L1pJTzBzDHzifPyJDjtY=</latexit>

ak`
<latexit sha1_base64="iC7V6IefqiTsb79EUsRwn2oX8FA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz0SPvZmPRQiGm/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfvGUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2PhlwhcyIiSWUKW5vJWxEFWXGhlSyIXjLL6+SVq3qXVRr95eV+k0eRxFO4BTOwYMrqMMdNKAJDCQ8wyu8Odp5cd6dj0VrwclnjuEPnM8faI+Qvg==</latexit>

a`k
<latexit sha1_base64="8Gt2KVFzCvvonyqP9Q8wGdUmFXs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oWy2k3bpZhN2N0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqz0SPtZD4Ug42m/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfvGUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2PhlwhcyIiSWUKW5vJWxEFWXGhlSyIXjLL6+SVq3qXVRr95eV+k0eRxFO4BTOwYMrqMMdNKAJDCQ8wyu8Odp5cd6dj0VrwclnjuEPnM8faUqQvg==</latexit>

Nk
<latexit sha1_base64="uWYXbTBHmRm4Bv2m56/n4R8UPzw=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN66kgn1AO5RMmmlDM8mYZApl6He4caGIWz/GnX9jpp2Fth4IHM65l3tygpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvs389oQqzaR4NNOY+hEeChYygo2V/F6EzYhgnt7P+uN+ueJW3TnQKvFyUoEcjX75qzeQJImoMIRjrbueGxs/xcowwums1Es0jTEZ4yHtWipwRLWfzkPP0JlVBiiUyj5h0Fz9vZHiSOtpFNjJLKRe9jLxP6+bmPDaT5mIE0MFWRwKE46MRFkDaMAUJYZPLcFEMZsVkRFWmBjbU8mW4C1/eZW0alXvolp7uKzUb/I6inACp3AOHlxBHe6gAU0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8fCuySRg==</latexit>

Figure 1.1: A network of N nodes with an emphasis on the neighborhood Nk of agent k.

the global learning problem [1,25]:

wo = arg min
w

N∑
k=1

pkJk(w) (1.18)

The weights {pk} indicate that the resulting minimizer wo can be interpreted as a Pareto

solution for the collection of regularized risks {Jk(w)} [1,25]. The global optimization prob-

lem (1.18) can be approached through a variety of distributed algorithms, using both inex-

act [1, 26–28] and exact [29–31] gradients.

One approach for pursuing a solution of (1.18) in a distributed manner is the diffusion

algorithm [1,25].

Algorithm 1.1 Diffusion Strategy [1]

φk,i = wk,i−1−µ∇̂wJk(wk,i−1) (1.19)

wk,i =
N∑
`=1

a`kφ`,i (1.20)

7



When the individual costs Jk(w) are differentiable, and their weighted sum (1.18) is strongly-

convex, the performance of this strategy has been studied in great detail. One of the key

conclusions is that, despite the restriction of communication to localized interactions within

neighborhoods, the iterates at every agent wk,i cluster around the Pareto solution (1.18) in

the mean-square sense, after a sufficient number of iterations [1, 25].

lim sup
i→∞

E ‖wo −wk,i‖2 = O(µ) (1.21)

The effectiveness of the diffusion strategy for the pursuit of (1.18) has sparked a number of

studies and extensions in recent years, including asynchronous [32], constrained [33], sub-

gradient based [34] and multi-task [35–40] variations.

1.2.1 Regularized Learning

In many learning problems there exists a priori knowledge about the solution, such as sparsity

or constraints. An effective method for encouraging the recovered solution to conform to

this prior information is to add regularization Rk(·) to the data-dependent risk term Jk(·),
i.e.,

wo = arg min
w

N∑
k=1

pk {Jk(w) +Rk(w)} (1.22)

There are several useful works in the literature that study optimization problems with non-

smooth regularizers primarily centered around sub-gradient [26,41–44] and proximal [35,45–

48] constructions.

In this work, we will propose a modification of the diffusion strategy (1.19)–(1.20) based

on the proximal operator. Recall that the proximal operator is defined as [49]:

proxµRk(x) , arg min
u

(
Rk(u) +

1

2µ
‖x− u‖2

2

)
(1.23)

The proximal diffusion strategy then takes the form

8



Algorithm 1.2 Proximal Diffusion Strategy [50]

φk,i = proxµRk

(
wk,i−1−µ∇̂wJk(wk,i−1)

)
(1.24)

wk,i =
N∑
`=1

a`kφ`,i (1.25)

Note that each agent k obtains an intermediate estimate φk,i by a (stochastic) gradient

step relative to ∇̂wJk(wk,i−1) followed by a proximal step relative to the regularization term

Rk(·). This corresponds to a (stochastic) proximal gradient update, an algorithm which is

well studied in the centralized setting [49]. Following the proximal gradient update, agents

then exchange their intermediate estimates φk,i throughout their neighborhoods in (1.25) in

the same manner as in the traditional diffusion algorithm.

In Chapter 2 we shall study the performance of the proximal diffusion strategy for the

class of small regularizers. Small regularization weights are typically employed in an effort

to reduce the noise present in the operation of the algorithm, without introducing significant

bias relative to the unregularized solution. Such solutions encourage properties of the result-

ing estimate, without enforcing it. In particular, we will show in Chapter 2, that whenever

the regularization strength is appropriately coupled with the step-size parameter, we have:

lim sup
i→∞

E ‖wounreg −wk,i ‖2 ≤ O(µ) + o(µ) (1.26)

where the term O(µ), similar to the centralized (1.10) and unregularized diffusion perfor-

mances (1.21) arises from the stochastic gradient approximation, and is a higher-order term

which corresponds to the bias introduced by regularizing the original problem.

For scenarios where the regularizers are general convex functions, we develop a more gen-

eral strategy based on conjugate smoothing in Chapter 3, which involves a damped variation

of the proximal diffusion strategy as a special case. In particular, we will replace each non-

differentiable component, Rk(w), by a differentiable approximation Rδ
k(w), parameterized by

9



δ > 0. Subsequently, we can pursue

woδ = arg min
w

N∑
k=1

pk
{
Jk(w) +Rδ

k(w)
}

(1.27)

by means of the following, regularized diffusion strategy.

Algorithm 1.3 Regularized Diffusion Strategy [51]

φk,i = wk,i−1−µ∇̂wJk(wk,i−1) (1.28)

ψk,i = φk,i − µ∇wR
δ
k(φk,i) (1.29)

wk,i =
N∑
`=1

a`kψ`,i (1.30)

We discover that performance guarantees under these general conditions require careful bal-

ancing of the step-size µ of the algorithm and a parameter δ used to construct the smooth

approximation. We will describe a coupling relationship which ensures convergence for suffi-

ciently small step-sizes, derive performance bounds, and show an application in group-Lasso

regularized machine learning.

1.2.2 Non-Convex Learning

Driven by the need to solve increasingly complex optimization problems in signal processing

and machine learning, there has been increasing interest in understanding the behavior of

gradient-descent algorithms in non-convex environments. In contrast to (strongly) convex

optimization problems, where a small gradient norm implies proximity to an optimal solution,

non-convex loss surfaces contain many saddle-points, local minima and even maxima, where

the gradient norm is small. Most available works on distributed non-convex optimization

problems focus establishing convergence to first-order stationary points [52–58]. Recently,

there has been growing interest in examining the ability of gradient descent implementations

to escape from saddle points [59–61], since such points represent bottlenecks to the underlying

learning problem [62].

10



In Chapters 5 and 6, we study the performance of the diffusion algorithm (1.19)–(1.20)

for non-convex loss functions. We establish that the diffusion learning algorithm continues to

yield meaningful estimates in these more challenging, non-convex environments, in the sense

that (a) despite the distributed implementation, individual agents cluster in a small region

around the network centroid in the mean-fourth sense, and (b) the network centroid inherits

many properties of the centralized, stochastic gradient descent recursion, including escape

from strict saddle points in O(1/µ) iterations and return of approximately second-order

stationary points in a polynomial number of iterations.

1.3 Learning for Networked Feature Spaces

The first part of this dissertation focuses on the design of learning algorithms over networks,

where the network, depicted in Fig. 1.1, acts as a constraint on exchanges of information

between agents. In the second part of this dissertation, we take the alternative perspective

of an observer, presented with data that has an internal, unknown, network structure. In

data science applications, effective interpretation and processing of high-dimensional data is

generally contingent on an understanding of the relationships that may exist between subsets

of the data. This is particularly relevant for large-scale data sets. One useful way to capture

interrelations among different parts of a data set is by means of a graph representation or

model [63]. While data arising from some applications naturally lead to or suggest suitable

graph representations for information flow, such as graphs representing networks or power

grids, there are many instances where the underlying graph structure is not readily available

and needs to be inferred from observations. Furthermore, even when the topology of the

graph is known, the same may not hold for the weights on the edges of the graph, which

describe the strength of the relationship. For example, in a social network, it may be less

important to know whether two people are connected, than to know how much influence one

person has on the other.

11



1.3.1 Online Graph Learning

In Chapter 8, we consider signals that evolve according to a heat diffusion process [64]. This

process is related to a spatially sampled approximation of the second-order heat differential

equation. The model is not limited to heat diffusion but can be applied to modeling other

processes such as the evolution of interest over social networks [65] and the movement of

people in cities [66]. We shall show that the problem of recovering the graph Laplacian,

which parametrizes the heat diffusion process, from the time evolution of the observed signal,

can be formulated as a strongly-convex and quadratic optimization problem. This in turn

means that its minimizer can be sought efficiently by a variety of algorithms. We propose a

(projected) stochastic gradient algorithm, which amounts to a Least-Mean-Squares (LMS)-

type recursion and is adaptive in nature.

Algorithm 1.4 Laplacian LMS Strategy [67]

W i = W i−1 +µ
(
si −W i−1 si−1

)
sTi−1 (1.31)

1.3.2 The BRAIN Strategy for Online Learning

In Chapter 9, rather than simply learn a graph from data, we leverage the learned graph to

improve classification performance in a coupled and online fashion. Complexity is a double-

edged sword for learning algorithms when the number of available samples for training in

relation to the dimension of the feature space is small. This is because simple models do

not sufficiently capture the nuances of the data set, while complex models overfit. While

remedies such as regularization and dimensionality reduction exist, they can still suffer from

overfitting or introduce bias. To address the issue of overfitting, the incorporation of prior

structural knowledge is generally of paramount importance. In Chapter 9, we propose a

BRAIN strategy for learning, which enhances the performance of traditional algorithms,

such as logistic regression and SVM learners, by incorporating a graphical layer that tracks

and learns in real-time the underlying correlation structure among feature subspaces. In

this way, the algorithm is able to identify salient subspaces and their correlations, while

12



simultaneously dampening the effect of irrelevant features. This effect is particularly useful

for high-dimensional feature spaces.

1.4 Organization

Chapters 2–6 focus on decentralized learning over networked agents, while Chapters 8 and 9

develop algorithms for centralized learning over networked feature spaces. Specifically, this

dissertation is organized as follows:

• Chapter 2: We begin by introducing the proximal diffusion strategy for differentiable

loss functions with non-differentiable regularizers. The performance of the strategy

is quantified, and a coupling scheme for the regularization weight and the step-size

is proposed, which leads to an asymptotically unbiased solution. The work in this

chapter is based on material from reference [50].

• Chapter 3: In this chapter, we generalize the proximal diffusion strategy to allow

for more general, and arbitrary convex regularization functions, by means of conjugate

smoothing. We quantify the bias introduced by the smoothing procedure and establish

the ability of the regularized diffusion strategy to approach the minimizer of the non-

smooth cost with arbitrary accuracy. This chapter is based on the works [51,68].

• Chapter 4: We show how the regularized diffusion strategy can be applied to matrix

optimization and present an application in distributed image reconstruction.

• Chapter 5 and 6: We return to the study of smooth cost functions, but relax

the convexity assumption commonly employed in the study of distributed algorithms.

We establish that even in non-convex environments, iterates at individual continue to

cluster around a network centroid, and proceed to study the dynamics of the repre-

sentative centroid. We establish descent, even for (strict) saddle-points, and establish

that the diffusion algorithm returns approximately second-order stationary points in a

polynomial number of iterations. The material in these chapters is based on [69–71].

13



• Chapter 7: We focus on centralized learning problems and show how, relying primarily

on mean-square arguments, second-order guarantees for stochastic gradient descent in

non-convex environments can be obtained under conditions which are more general

than typically assumed in the literature and applicable to a broader class of adaptation

and learning problems. This chapter is based on material in [72].

• Chapter 8: This chapter considers data that arises from a heat diffusion process

and presents the Laplacian LMS strategy for online graph learning. We study the

performance of this strategy and derive mean-square error expressions. This chapter

is based on the work [67].

• Chapter 9: When the objective of the learning problem is not to simply learn a graph

describing relationships, but to leverage this information to improve performance in a

classification task, the graph learning and classification problems can be coupled. Such

procedure is proposed in Chapter 9, where a correlation layer is attached to traditional

learning architectures such as logistic regression or SVM. We present an application in

gene classification. The material in this chapter is based on [73].

• Chapter 10: The final chapter presents a summary of the contributions of this dis-

sertation and a discussion of avenues for future research.

14



CHAPTER 2

Small Regularizers

In this chapter, we study the performance of the proximal diffusion strategy for small regu-

larizers. The material is largely based on the work [50].

2.1 Motivation

Recall that our general problem of interest is:

wo = arg min
w

N∑
k=1

pk {Jk(w) +Rk(w)} (2.1)

This type of regularization can be motivated in one of two ways:

• The true objective is the minimizer

wounreg , arg min
w

N∑
k=1

pkJk(w) (2.2)

However, there is prior information available about wounreg (such as knowing that it is

sparse, or that it is constrained to a certain region in space, or that it is close to some

value). This knowledge is encoded through regularization Rk(w), which is meant to

mitigate the effect of noise on the algorithm. In these scenarios, the regularization is

generally chosen small, so as to not bias the limiting point of the algorithm relative to

wounreg.

• The true objective is wo. This is the case if properties encouraged by Rk(w) are desired,

albeit not necessarily present in wounreg. Examples of such scenarios are constrained

15



optimization or sparsity-inducing regularizers meant to avoid overfitting in machine

learning. These types of regularizers need not be small.

The more challenging case of arbitrary regularizers is treated in Chapter 3. In this chapter,

we focus on small regularizers. To this end, let:

Rk(w) , µνRorg
k (w) (2.3)

where ν is a non-negative parameter and the regularization function Rorg
k (·) does not need to

be differentiable. Note that we allow for the regularization weight to depend on the step-size

parameter of the algorithm. The motivation for this construction is the observation that the

steady-state error of diffusion algorithms decreases linearly with µ [1], so that regularization

becomes unnecessary as µ→ 0 if the true objective is wounreg.

2.2 Related Works

2.2.1 Differentiable Cost Functions

When the cost function at each agent k is differentiable, i.e., Rk(w) = 0 for all k, the

minimizer of (2.1) can be sought through a variety of distributed strategies, such as con-

sensus [26, 74–76] or diffusion [1, 22, 25]. For example, in the Adapt-then-Combine form of

diffusion [1], each agent k runs the following recursion:

φk,i = wk,i−1 − µ∇̂wJk(wk,i−1) (2.4a)

wk,i =
N∑
`=1

a`kφ`,i (2.4b)

In (2.4b), the symbol wk,i denotes the iterate that is computed by agent k at iteration i,

while ψk,i is an intermediate state resulting from the self-learning step (2.4a). It is shown

in [1,22] that, under some reasonable technical conditions on the cost functions and gradient

noise, the iterate wk,i by each agent k converges in the mean-square sense to the unique

16



minimizer, wo, of the following weighted aggregate cost:

wo = arg min
w

N∑
k=1

pkJk(w) (2.5)

within O(µ), namely,

lim sup
i→∞

E‖wo −wk,i‖2 = O(µ) (2.6)

so that all agents are able to approach the same global minimizer for a sufficiently small

step-size.

2.2.2 Non-Differentiable Cost Functions

There are several useful works in the literature that study optimization problems with non-

smooth regularizers. For example, the work [26] relies on the use of sub-gradient iterations

but requires that the sub-gradients of the regularized risks, Jk(w) + Rk(w), should be uni-

formly bounded. However, this condition is not satisfied in many important cases of interest,

for example, even when Jk(w) is simply quadratic in w (as happens in mean-square-error

designs) or when the Rk(w) are indicator functions used to encode constraints. Variations

for specific choices of Jk(·) are examined in [41–44] where only the sub-gradients of Rk(·)
are required to be bounded. For the case when the Rk(w) are chosen as indicator functions

in constrained problem formulations, a distributed diffusion strategy based on the use of

suitable penalty functions is proposed and studied in [33].

Some other studies examine the performance of inexact proximal methods for particular

sources of uncertainties in the gradient information. For example, in [77] regret bounds

for stochastic proximal sub-gradient descent are derived under the assumption of Lipschitz

continuous costs; the bounds there were limited to a single-agent implementation. The work

in [45] considers inexact proximal gradient descent where the errors in the computation of

the gradient and/or proximal operator are assumed to be deterministic and decay to zero.

The work [46] builds on this analysis and develops a fast distributed implementation that

enforces agreement among agents by embedding i communication steps between iterations

17



i and i + 1 and letting i → ∞. This construction can be reasonable in the deterministic

context, where a given accuracy can be tolerated after finite time i, but is infeasible in the

context of continuous adaptation and learning from streaming data since it will require the

number of communication steps to grow unbounded. The authors of [30] remedy the need

for increasing the number of communication steps between successive gradient updates by

adding a correction term which ensures that the network converges to consensus for constant

step-sizes and single communication exchanges as long as the cost functions are deterministic.

Distributed stochastic variations for mean-square error costs with bounded regularizer

sub-gradients are proposed in [47, 48] for single-task problems and in [35] for multi-task

environments.

Most of these prior works involve requirements that limit their application to important

scenarios, whether in terms of requiring bounded sub-gradients, or focusing on quadratic

costs. The purpose of this work is to propose a general distributed strategy and a line of

analysis that is applicable to a wide class of stochastic costs and non-differentiable regular-

izers. For further review of the literature we refer the reader to Chapter 3.

2.3 Proximal Diffusion Strategy

To begin with, we recall that, in the purely deterministic context, the proximal operator

relative to Rk(·) with step-size µ is defined by [49]:

proxµRk(x) , arg min
u

(
Rk(u) +

1

2µ
‖x− u‖2

2

)
(2.7)

Evaluating Eq. (2.7) at x = wk,i−1−µ∇wJk(wk,i−1), which is the result of a gradient-descent

step applied to Jk(w), yields the proximal gradient descent iteration:

wk,i = proxµRk {wk,i−1 − µ∇wJk(wk,i−1)} (2.8)

18



From the optimality condition for Eq. (2.7), namely that the sub-gradient set at the mini-

mizer contains the zero-vector, it follows that [49, 78]:

wk,i ∈ wk,i−1 − µ∇wJk(wk,i−1)− µ ∂wRk (wk,i) (2.9)

where ∂wRk (wk,i) denotes the set of sub-gradients of Rk(w) at wk,i. The proximal operation

(2.8) returns a particular sub-gradient vector, which we denote by ∂̂wRk(wk,i). In this way,

the resulting iterate can be written as

wk,i = wk,i−1 − µ∇wJk(wk,i−1)− µ ∂̂wRk (wk,i) (2.10)

Observe from (2.9) and (2.10) that ∇wJk(·) is evaluated at wk,i−1, whereas ∂wRk(·) is eval-

uated at wk,i. This property sometimes motivates the alternative designation “forward-

backward” operator for the proximal gradient step. Proximal gradient descent is of partic-

ular interest when (2.7) can be evaluated efficiently or even in closed form – see [79] for an

overview of closed form solutions of (2.7) for particular Rk(·). In the case of the `1-norm,

for example, the proximal operator reduces to soft-thresholding [80,81].

Returning to (2.4a)–(2.4b), the above discussion motivates us to introduce the following

proximal implementation of diffusion:

φk,i = proxµRk

{
wk,i−1 − µ∇̂wJk(wk,i−1)

}
(2.11a)

wk,i =
N∑
`=1

a`kφ`,i (2.11b)

where a proximal step has been added to (2.4a) as shown by (2.11a). This adjustment

is meant to address the presence of the regularization term added in (2.3). Observe that

(2.11a)–(2.11b) responds immediately to streaming data; it does not require repeated iter-

ations between two successive time instants. We will further see that this implementation

does also not require the gradient noise to be deterministic or to decay to zero.

The analysis in the subsequent sections will establish the following facts about the

19



stochastic implementation (2.11a)–(2.11b):

• In Section 2.5.1, it will be shown that, when the true gradient vectors are employed in

(2.11a), then each agent in the diffusion strategy will converge to a unique fixed point,

denoted by wk,∞.

• In Section 2.5.2, we will relate wk,∞ to the global minimizer wounreg of (2.5) and show

that ‖wounreg − wk,∞‖2 ≤ O(µ2ν) +O(µ2).

• In Section 2.5.3, we will conclude that, for ν ≥ 1/2, recursion (2.11a)–(2.11b) with

gradient noise converges to wounreg within O(µ) in the mean-square-error sense.

The following two assumptions are needed in establishing the results — see [1] for explana-

tions and motivation.

Assumption 2.1 (Lipschitz gradients). For any k, the gradient ∇wJk(·) is Lipschitz

0 < λminIN ≤ Hk(w) ≤ λmaxIN (2.12)

Assumption 2.2 (Gradient Noise Process). For any k, the gradient noise process is defined

as

sk,i(wk,i−1) = ∇̂wJk(wk,i−1)−∇wJk(wk,i−1) (2.13)

and satisfies

E [sk,i(wk,i−1)|F i−1] = 0 (2.14a)

E
[
‖sk,i(wk,i−1)‖2|F i−1

]
≤ β2‖wk,i−1‖2 + σ2

s (2.14b)

for some non-negative constants {β2, σ2
s}, and where F i−1 denotes the filtration generated

by the random processes {w`,j} for all ` = 1, 2, . . . , N and j ≤ i − 1, i.e., F i−1 represents

the information that is available about the random processes {w`,j} up to time i− 1.

20



2.4 Operator Representation of Proximal Diffusion

We first show that the proximal diffusion strategy (2.11a)–(2.11b) can be represented as

the concatenation of three operators, in a manner that extends the representation developed

in [25] for the conventional diffusion iteration without proximal steps. We subsequently show

that this mapping is contractive and invoke Banach’s fixed-point theorem [82] to conclude

that the proximal diffusion mapping has a unique fixed-point. We first introduce some

notation and definitions. Thus, let

x = col {x1, x2, . . . , xN} ∈ RMN (2.15)

denote an N × 1 block-column vector, where each xk is M × 1.

Definition 2.1. (Combination Operator) The combination operator TA : RMN → RMN is

defined as the linear mapping:

TA(x) , (AT ⊗ IM)x = col

{
N∑
`=1

a`kx`

}
(2.16)

where A = [a`k] is an N × N left-stochastic matrix and ⊗ denotes the Kronecker product

operation.

Definition 2.2. (Block Gradient Descent Operator) The block gradient descent operator

TG : RMN → RMN is defined as the non-linear mapping:

TG(x) ,


x1 − µ∇wJ1(x1)

...

xN − µ∇wJN(xN)

 (2.17)

21



Definition 2.3. (Stochastic Block Gradient Descent Operator) The stochastic block gradient

descent operator T̂G : RMN → RMN is defined as the non-linear mapping:

T̂G(x) ,


x1 − µ∇̂wJ1(x1)

...

xN − µ∇̂wJN(xN)

 = TG(x) + µs(x) (2.18)

where

s(x) , col {s1(x1), . . . , sN(xN)} (2.19)

is the (block) gradient noise vector.

Definition 2.4. (Block Proximal Operator) The block proximal operator TP : RMN → RMN

is defined as the non-linear mapping:

TP (x) ,


proxµR1

(x1)
...

proxµRN (xN)

 (2.20)

Using these operators, we can then rewrite the proximal diffusion algorithm (2.11a)–(2.11b)

more compactly as the following concatenation of operators in terms of the network vector

wi = col {w1,i, . . . ,wN,i}:

wi = T̂ pd(wi−1) , TA ◦ TP ◦ T̂G(wi−1) (2.21)

Without gradient noise, this relation reduces to:

wi = Tpd(wi−1) , TA ◦ TP ◦ TG(wi−1) (2.22)

Fig. 2.4 displays the stochastic proximal diffusion implementation as a cascade of operators.

The following operator properties were derived in [25] for diffusion without proximal steps:

22



Figure 2.1: Proximal diffusion as a cascade of operators.

1. (Linearity): TA(·) is a linear operator.

2. (Non-negativity): P [x] � 0.

3. (Scaling): For any a ∈ R, P [ax] = a2P [x].

4. (Additivity): Suppose x = col {x1, . . . ,xN} and y = col {y1, . . . ,yN} are random

N × 1 block vectors and furthermore ExT
kyk = 0. Then

EP [x+ y] = EP [x] + EP [x]. (2.23)

5. (Variance relations):

P [TA(x)] � ATP [x] (2.24)

P [TG(x)− TG(y)] � γ2P [x− y] (2.25)

where

γ2 , 1− 2µλmin + µ2λ2
max (2.26)

23



6. (Block Maximum Norm): The ∞−norm of P [x] is the squared block maximum

norm of x:

‖P [x]‖∞ = ‖x‖2
b,∞ , max

1≤k≤N
‖xk‖2 (2.27)

7. (Preservation of Inequality): Suppose vectors x, y and matrix F have non-negative

entries, then x � y implies Fx � Fy.

In order to incorporate the proximal operator into the analysis, we need an additional prop-

erty:

Lemma 2.1 (Variance of Proximal Operator). Suppose each Rk(·) is a closed, convex func-

tion (i.e., its epigraph is a closed, convex set), then

P [TP (x)− TP (y)] � P [x− y]. (2.28)

Proof. See Appendix 2.A.

2.5 Main Results

2.5.1 Fixed-Point of Deterministic Recursion

Lemma 2.2 (Contractive Mapping). The deterministic proximal diffusion operator Tpd(·)
defined in (2.22) satisfies

‖Tpd(x)− Tpd(y)‖b,∞ ≤ γ · ‖x− y‖b,∞ (2.29)

with γ2 , 1−2µλmin +µ2λ2
max, and where ‖ · ‖b,∞ denotes the block maximum norm [1]. The

condition on µ to guarantee γ2 < 1 is:

0 < µ <
2λmin

λ2
max

(2.30)

24



It then follows from Banach’s fixed point theorem [82, 83] that wi = Tpd(wi−1) converges to

a unique fixed-point, w∞, geometrically.

Proof. See Appendix 2.B.

2.5.2 Bias Analysis

Now we analyze how far this fixed point w∞ is from the desired global solution, wounreg. In

steady-state, the deterministic fixed-point equation (2.22) can be unfolded as follows:

φk,∞ = proxµRk {wk,∞ − µ∇wJk(wk,∞)} (2.31a)

wk,∞ =
N∑
`=1

a`kφ`,∞ (2.31b)

To proceed, we introduce an assumption of bounded sub-gradients, which is common in the

sub-gradient [26,77] and distributed proximal gradient [46] literature, namely, that for every

agent k, the set of sub-differentials ∂wR
org
k (w) is uniformly bounded, i.e. for all w:

‖∂wRorg
k (w)‖ ≤ ηorg

k (2.32)

for some non-negative constant ηorg
k . For convex functions, the statement is equivalent to

requiring Rorg
k (w) to be Lipschitz continuous with constant ηorg

k . For the scaled costs Rk(w) ,

µνRorg
k (w), condition (2.32) translates to:

‖∂wRk(w)‖ ≤ µνηorg
k , ηk = O(µν) (2.33)

Now we subtract Eqs. (2.31a) and (2.31b) from wounreg and define the error variables w̃k,∞ =

wounreg − wk,∞. This leads to the error recursion:

φ̃k,∞ = w̃k,∞ + µ∇wJk(wk,∞) + µ∂̂wRk(φk,∞) (2.34a)

w̃k,∞ =
N∑
`=1

a`kφ̃`,∞ (2.34b)

25



Using the mean-value theorem [1,84], we can write:

∇wJk(wk,∞) = ∇wJk(w
o
unreg)−Hk,∞w̃k,∞ (2.35)

where Hk,∞ denotes the Hessian of Jk(w) at wk,∞. We get

φ̃k,∞= (IM−µHk,∞) w̃k,∞+µ∇wJk(w
o
unreg)+µ∂̂wRk(φk,∞) (31a)

w̃k,∞=
N∑
`=1

a`kφ̃`,∞ (31b)

We next introduce the following extended vectors and matrices:

w̃∞ , col {w̃1,∞, . . . , w̃N,∞} (2.37)

A , A⊗ IM (2.38)

H∞ , diag {H1,∞, . . . , HN,∞} (2.39)

B∞ , AT(IMN − µH∞) (2.40)

go , col
{
∇wJ1(wounreg), . . . ,∇wJN(wounreg)

}
(2.41)

r∞ , col
{
∂̂wR1(φ1,∞), . . . , ∂̂wRN(φN,∞)

}
(2.42)

With these quantities, relations (31a)–(31b) lead to:

w̃∞ = B∞w̃∞ + µAT (go + r∞) . (2.43)

Because A is a left-stochastic and primitive matrix, it admits a Jordan decomposition of the

form A = VεJV
−1
ε

Vε =
[
p VR

]
, J =

 1 0

0 Jε

 , V −1
ε =

 1T

V T
L

 (2.44)

where all diagonal entries of Jε are inside the unit circle and Jε consists of Jordan blocks

with the value ε on the first lower diagonal instead of ones [1,23]. Pre-multiplying both sides

26



of (2.43) by VT
ε = V T

ε ⊗ IM gives:

w∞ = B∞w∞ + µVT
ε AT (go + r∞) (2.45)

where w∞ = VT
ε w̃∞ and B∞ = VT

ε B∞(V−1
ε )T. It follows that

w∞ = µ
(
IMN − B∞

)−1 VT
ε AT (go + r∞) . (2.46)

It was shown in [1, p. 541, Lemma 9.4] that, for sufficiently small step-sizes, it holds that

(
IMN − B∞

)−1
=

 O(1/µ) O(1)

O(1) O(1)

 (2.47)

where the leading (1, 1) block has dimensions M ×M . It can further be verified from the

decomposition of Vε in (2.44), that

VT
ε AT (go + r∞) =

 ∑N
`=1 p`∂̂wR`(φ`,∞)

O(1) + VT
RATr∞

 (2.48)

Theorem 2.1. Under assumption (2.32) and for small µ, the steady-state bias of the deter-

ministic proximal diffusion recursion is bounded as:

‖wounreg − wk,∞‖2 ≤ O
(
µ2ν
)

+O(µ2) (2.49)

Proof. The result follows from (2.33) and (2.47)–(2.48).

2.5.3 Evolution of Stochastic Recursion

We now examine how close the stochastic recursion wi = T̂ pd(wi−1) approaches wounreg. For

this purpose, we introduce the mean-square perturbation vector at time i relative to w∞:

MSPi , col
{
E‖wk,i − wk,∞‖2

}
∈ RN (2.50)

27



Lemma 2.3. The MSP at time i can be recursively bounded as:

MSPi �
(
γ2 + 2µ2β2

)
ATMSPi−1 + µ2d (2.51)

where d = O(1). A sufficient condition on µ for stability of (2.51) is:

0 < µ <
2λmin

λ2
max + 2β2

(2.52)

It follows that

lim sup
i→∞

‖MSPi‖∞ = O(µ). (2.53)

Proof. See Appendix 2.C.

The following theorem ties all results together.

Theorem 2.2. For sufficiently small step-sizes and ν≥1/2, the steady-state MSD of the

proximal diffusion algorithm (2.11a)–(2.11b) is

lim sup
i→∞

E‖wounreg −wk,i‖2 = O(µ) (2.54)

Proof. The result follows from (2.49) and (2.53).

2.6 Numerical Results

Consider a network of N = 10 agents and M = 20. The network topology is shown in

Fig. 2.2. Observations {dk(i),uk,i} for each agent k are generated according to the linear

regression model dk = ukw
o
unreg + vk, where uk,i and vk(i) are zero-mean Gaussian random

variables with power shown in Fig. 2.3. The true wounreg is sparse with only one non-zero

element. For the special case with Jk(w) = E‖dk−ukw‖2 and Rorg
k (w) = ‖w‖1, we compare

the performance of the regularized proximal diffusion implementation (2.11a)–(2.11b) and

the unregularized diffusion implementation (2.4a)–(2.4b). Fig. 2.6 displays the steady-state

MSD for different choices of the step-size parameter.

28



Figure 2.2: Network topology. Figure 2.3: Data statistics.

2.A Proof of Lemma 2.1

We first note that for some generic regularization term that closed and convex, the solution

of the proximal operator exists, is unique, and satisfies the following non-expansiveness

property [85]:

‖proxµR(x)− proxµR(y)‖ ≤ ‖x− y‖. (2.55)

Now, from the definitions of TP (·) and P [·] in:

P [TP (x)− TP (y)] =


‖proxµR1

(x1)− proxµR1
(y1) ‖2

...

‖proxµRN (xN)− proxµRN (yN) ‖2



�


‖x1 − y1‖2

...

‖xN − yN‖2


� TP [x− y] (2.56)

29



Figure 2.4: Performance comparison for ν = 1.

2.B Proof of Lemma 2.2

Apply the operator properties from the previous section

P [Tpd(x)− Tpd(y)] =P [TA ◦ TP ◦ TG(x)− TA ◦ TP ◦ TG(y)]

(a)

≤ATP [TP ◦ TG(x)− TP ◦ TG(y)]

(b)

≤ATP [TG(x)− TG(y)]

(c)

≤ATγ2P [x− y] (2.57)

where (a) and (c) are due to the variance relations of operators and (b) is due to Lemma 2.1.

Now,

‖P [Tpd(x)− Tpd(y)]‖∞ ≤ ‖ATγ2P [x− y] ‖∞

≤ ‖ATγ2‖∞ · ‖P [x− y] ‖∞

= γ2 · ‖AT‖∞ · ‖P [x− y] ‖∞

= γ2 · ‖P [x− y] ‖∞ (2.58)

30



Inequality (2.29) follows after applying the block maximum norm property (2.27). The

condition on µ follows from the expression for γ2 (2.26).

2.C Proof of Lemma 2.3

The entries of this perturbation vector satisfy the following inequality recursion:

MSPi , EP [wi − w∞]

= EP
[
TA ◦ TP ◦ T̂G(wi−1)− TA ◦ TP ◦ TG(w∞)

]
= EP

[
TA

(
TP ◦ T̂G(wi−1)− TP ◦ TG(w∞)

)]
(a)

� ATEP
[
TP ◦ T̂G(wi−1)− TP ◦ TG(w∞)

]
(b)

� ATEP
[
T̂G(wi−1)− TG(w∞)

]
(c)
= ATEP [TG(wi−1) + µsi (wi−1)− TG(w∞)]

(d)
= ATEP [TG(wi−1)− TG(w∞)] + µ2ATEP [si (wi−1)]

(e)

� γ2ATEP [wi−1 − w∞] + µ2ATEP [si (wi−1)]

= γ2AT ·MSPi−1 + µ2ATEP [si (wi−1)] (2.59)

where (a) and (e) are due to the variance properties, (b) is due to Lemma 2.1, (c) is due to

the definition of T̂G(·), and (d) is due the additivity property. Computing the ∞−norm of

both sides of (2.51) on both sides yields:

‖MSPi‖∞ ≤ ‖
(
γ2 + 2µ2β2

)
ATMSPi−1 + µ2d‖∞

≤
(
γ2 + 2µ2β2

)
‖MSPi−1‖∞ + µ2‖d‖∞

so that

lim sup
i→∞

‖MSPi‖∞ ≤
µ‖d‖∞

2λmin − µ (λ2
max + β2

max)
= O(µ) (2.60)

31



CHAPTER 3

General Regularizers

We now consider general convex regularizers Rk(w), which are no longer required to be small

or have bounded sub-gradients. We will further relax assumptions on the differentiable parts

of the cost function Jk(w) and consider a broader class of updates with respect to Rk(w)

than the proximal step. The material in this chapter is largely based on the works [51,68].

The purpose of this chapter is to develop and study a distributed strategy for Pareto

optimization of an aggregate cost consisting of regularized risks. Each risk is modeled as the

expectation of some loss function with unknown probability distribution while the regulariz-

ers are assumed deterministic, but are not required to be differentiable or even continuous.

The individual, regularized, cost functions are distributed across a strongly-connected net-

work of agents and the Pareto optimal solution is sought by appealing to a multi-agent dif-

fusion strategy. To this end, the regularizers are smoothed by means of infimal convolution

and it is shown that the Pareto solution of the approximate, smooth problem can be made

arbitrarily close to the solution of the original, non-smooth problem. Performance bounds

are established under conditions that are weaker than assumed before in the literature, and

hence applicable to a broader class of adaptation and learning problems.

3.1 Introduction

The objective of distributed learning is the solution of global, stochastic optimization prob-

lems across networks of agents through localized interactions and without information about

the statistical properties of the data. Using streaming data, the resulting strategies are adap-

tive in nature and able to track drifts in the location of the minimizers due to variations in

32



the statistical properties of the data. Regularization is one useful technique to encourage or

enforce structural properties on the sought after minimizer, such as sparsity or constraints.

A substantial number of regularizers are inherently non-smooth, while many cost functions

are differentiable. These article proposes a fully-decentralized and adaptive strategy that

is able to minimize an aggregate sum of regularized costs. To do so, we fully exploit the

structure of the individual objectives as sums of differentiable costs and non-differentiable

regularizers.

Notation: Throughout the manuscript, random quantities are denoted in boldface. Matrices

are denoted in capital letters while vectors and scalars are denoted in small-case letters. The

symbol ≤ denotes a regular inequality, while � denotes an element-wise inequality.

3.1.1 Problem Formulation

We consider a strongly-connected network consisting ofN agents. For any two agents k and `,

we attach a pair of non-negative coefficients {a`k, ak`} to the edge linking them. The scalar

a`k is used to scale data moving from agent ` to k; likewise, for ak`. Strong-connectivity

means that it is always possible to find a path, in either direction, with nonzero scaling

weights linking any two agents (either directly if they are neighbors or indirectly through

other agents). In addition, at least one agent k in the network possesses a self-loop with

akk > 0. This condition ensures that at least one agent in the network has some confidence

in its local information. Let Nk denote the set of neighbors of agent k. The coefficients {a`k}
are convex combination weights that satisfy

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (3.1)

If we introduce the combination matrix A = [a`k], it then follows from (3.1) and the strong-

connectivity property that A is a left-stochastic primitive matrix. In view of the Perron-

Frobenius Theorem [1,23,24], this ensures that A has a single eigenvalue at one while all other

eigenvalues are inside the unit circle, so its spectral radius is given by ρ(A) = 1. Moreover,

if we let p denote the right-eigenvector of A that is associated with the eigenvalue at one,

33



and if we normalize the entries of p to add up to one, then it also holds that all entries of p

are strictly positive, i.e.,

Ap = p, 1Tp = 1, pk > 0 (3.2)

where the {pk} denote the individual entries of the Perron vector, p [1].

We associate with each agent k a risk function Jk(w) : RM → R, assumed differentiable.

In most adaptation and learning problems, risk functions are expressed as the expectation of

loss functions. Hence, we assume that each risk function is of the form Jk(w) = EQ(w;x),

where Q(·) is the loss function and x denotes random data. The expectation is computed

over the distribution of this data (note that, in our notation, we use boldface letters for ran-

dom quantities and normal letters for deterministic quantities or data realizations). We also

associate with agent k a regularization term, Rk(w) : RM → R, which is a known determinis-

tic function although possibly non-differentiable. Regularization factors of this form can, for

example, help induce sparsity properties (such as using `1 or elastic-net regularizers) [86–88].

The objective we are interested in is to devise a fully distributed strategy to seek the

minimizer of the following weighted aggregate cost, denoted by wo:

wo = arg min
w∈RM

N∑
k=1

pk {Jk(w) +Rk(w)} (3.3)

The weights {pk} indicate that the resulting minimizer wo can be interpreted as a Pareto

solution for the collection of regularized risks {Jk(w) +Rk(w)} [1,25] and will depend on the

entries of the Perron eigenvector in a manner specified further below. We are particularly

interested in determining this Pareto solution in the stochastic setting when the distribution

of the data x is unknown. This means that the risks Jk(w), or their gradient vectors, are

also unknown. As such, approximate gradient vectors will need to be employed. A common

construction in stochastic approximation theory is to employ the following choice at each

iteration i [1, 8]:

∇̂Jk(w) = ∇Qk(w;xi) (3.4)

where xi represents the data that is available (observed) at time i. The difference between

34



the true gradient vector and its approximation is called gradient noise. This noise will seep

into the operation of the distributed algorithm and one main challenge is to show that,

despite its presence, the proposed solution is able to approach wo asymptotically. A second

challenge we face in constructing an effective distributed solution is the non-smoothness

(non-differentiability) of the regularizers. Motivated by a technique proposed in [89] in the

context of single agent optimization, we will address this difficulty in the multi-agent case

by introducing a smoothed version of the regularizers and then showing that the solution

wo can still be recovered under this substitution as the size of the smoothing parameter is

reduced. We adopt a general formulation that will be shown to include proximal iterations

as a special case.

3.1.2 Related Works in the Literature

The literature on distributed optimization is extensive. Some early strategies include in-

cremental [90], consensus or decentralized gradient descent [26, 29, 91, 92], and the diffusion

algorithm [1,22,25,27,93]. When exact gradients are employed, these strategies converge to a

small area around the minimizer of the aggregate cost at a linear rate [25,29]. Exact conver-

gence requires diminishing step-sizes, resulting in sublinear rates of convergence. A number

of more recent works focusing primarily on deterministic optimization, have proposed vari-

ations yielding linear rates of convergence pursued either by employing corrections in the

primal domain [28, 30, 94–102] or primal-dual strategies [103–112] where [28, 101, 104, 111]

allow for stochastic gradient approximations and [97, 107] consider empirical risk minimiza-

tion problems. In many applications, the choice pk = 1
N

for all k is desirable, corresponding

to an equally weighted Pareto solution. A number of works develop algorithms for pk = 1
N

over directed graphs [113–115].

One common method for handling non-differentiable cost functions is the utilization of

sub-gradient recursions, where the ordinary gradient is replaced by sub-gradients [26, 91,

92, 104, 105, 111]. Most often, these works assume the sub-gradients are bounded. This

condition is not satisfied in many important cases of interest, for example, even when Jk(w)

35



is simply quadratic in w (as happens in mean-square-error designs) or when the Rk(w)

are indicator functions used to encode constraints. Variations for specific choices of costs

functions are examined in [41–44] where only the subgradients of Rk(·) are required to be

bounded. The work [34] generalized these conditions to allow for (sub-)gradients that are

“affine-Lipschitz”, which holds for many, but not all costs and regularizers of interest, such

as indicator functions. For the case when the Rk(w) are chosen as indicator functions in

constrained problem formulations, as an alternative to projection based schemes [91,92,104,

105], a distributed diffusion strategy based on the use of suitable penalty functions was

proposed and studied in [33].

Some other studies pursue distributed solutions by relying instead on the use of proxi-

mal iterations (as opposed to sub-gradient iterations); an accessible survey on the proximal

operator and its properties appears in [49]. For example, for purely deterministic costs,

distributed proximal strategies are developed in [30, 46, 95, 96, 98]. Stochastic variations for

mean-square error costs with bounded regularizer subgradients are proposed in [47, 48] for

single-task problems and in [35] for multi-task environments. A strategy for general stochas-

tic costs with small, Lipschitz continuous regularizers is studied in [50].

3.1.3 Contributions

The purpose of this chapter is to propose a general distributed strategy and a line of analysis

that is applicable to a wide class of stochastic costs and non-differentiable regularizers. The

first step in the solution will involve replacing each non-differentiable component, Rk(w), by

a differentiable approximation Rδ
k(w), parameterized by δ > 0, such that

‖wo − woδ‖2 ≤ O(δ) (3.5)

36



The accuracy of the approximation is controlled through the smoothing parameter δ. Sub-

sequently, we will solve for the minimizer:

woδ = arg min
w

N∑
k=1

pk
{
Jk(w) +Rδ

k(w)
}

(3.6)

Smoothing non-differentiable costs via infimal convolution [89,116,117] is a popular technique

in the deterministic optimization literature, and it can be used to motivate some known

algorithms, such as the proximal point algorithm [49]. The technique has been mainly

developed for deterministic optimization by single stand-alone agents. In this chapter, we

pursue an extension in two non-trivial directions. First, we consider networked agents (rather

than a single agent) working together to solve the aggregate optimization problem (3.3)

(or (3.6)) and, second, the risk functions involved are a combination of stochastic costs

defined as the expectations of certain loss functions and deterministic regularizers. Moreover,

the probability distribution of the data is assumed unknown and, therefore, the aggregate

risks themselves are not known but can only be approximated. The challenge is to devise

a distributed strategy that is able to converge to the desired Pareto solution despite these

difficulties.

We note that an alternative smoothing procedure by means of adding small stochastic

perturbations is considered in [118] and extended to decentralized stochastic optimization

in [119], requiring bounded subgradients. In contrast, our focus is on smooth stochastic

risks regularized by non-smooth, deterministic risks. Splitting the smooth stochastic part

from the non-differentiable deterministic risk, and smoothing only the deterministic risk via

a deterministic procedure will allow us to only require looser bounds on both components.

In the next sections we will explain how to construct the smooth approximation, Rδ
k(w),

by appealing to conjugate functions and will show that the distance ‖wo−woδ‖ can be made

arbitrarily small for δ → 0. We then present an algorithm to solve for the minimizer of (3.6)

in a distributed manner and derive bounds on its performance. The analysis in future sections

will rely on the following common assumptions [1, 22,27]:

Assumption 3.1 (Lipschitz gradients). For each k, the gradient ∇Jk(·) is Lipschitz, namely,

37



there exists λU ≥ 0 such that for any x, y ∈ RM :

‖∇Jk(x)−∇Jk(y)‖ ≤ λU‖x− y‖ (3.7)

Assumption 3.2 (Strong Convexity). The weighted aggregate of the differentiable risks is

strongly convex, namely, there exists λL ≥ 0 such that for any x, y ∈ RM :

(x− y)T ·
N∑
k=1

pk (∇wJk(x)−∇wJk(y)) ≥ λL‖x− y‖2 (3.8)

Assumption 3.3 (Regularizers). For each k, Rk(·) is closed convex.

3.2 Algorithm Formulation

3.2.1 Construction of Smooth Approximation

To begin with, following the works [89, 116], we explain how smoothing of the regularizers

is performed. Thus, recall that the conjugate function, denoted by R?
k(w), of a regularizer

Rk(w) is defined as

R?
k(w) , sup

u∈domRk

{
wTu−Rk(u)

}
. (3.9)

A useful property of conjugate functions is that R?
k(w) is always closed convex regardless of

whether Rk(w) is convex or not.

Definition 3.1 (Proximity function [89]). A proximity function d(·) for a closed convex set

C is a continuous, strongly-convex function with C ⊆ dom d(·). We center and normalize

the function so that

min
w∈C

d(w) = 0 (3.10)

38



and

arg min
w∈C

d(w) = 0 (3.11)

which exists and is unique, since d(w) is strongly-convex. Furthermore, the proximity func-

tion is scaled to satisfy the following normalization (which means that its strong-convexity

constant is set to one):

d(w) ≥ 1

2
‖w‖2. (3.12)

Definition 3.2 (Smooth approximation [89]). We choose a proximity function over C =

domR?
k(w) and define the smooth approximation of Rk(·) as:

Rδ
k(w) , max

u∈domR?k

{
wTu−R?

k(u)− δ · d(u)
}

=(R?
k + δ · d)? (w) (3.13)

The maximum in (3.13) is attained for all w since R?
k(u) + δ · d(u) is strongly convex. Thus,

observe that the smooth approximation for Rk(w), which we are denoting by Rδ
k(w), is

obtained by first perturbing the conjugate function R?
k(u) by δ · d(u) and then conjugating

the result again. The perturbation makes the sum R?
k(u)+δ ·d(u) a strongly-convex function.

The motivation behind this construction is the fact that the conjugate of a strongly-convex

function is differentiable everywhere and, therefore, Rδ
k(w) is differentiable everywhere. This

intuition is formalized in the following known theorem [89], preceded by an elementary

lemma [120].

Lemma 3.1 (Conjugate subgradients [120]). If G(·) is some closed and convex function, the

subgradients of G(·) and its conjugate G?(·) are related as:

v ∈ ∂G(w)←→ w ∈ ∂G?(v) (3.14)

Proof. The theorem is from [120]. For reference, the proof is repeated in Appendix 3.A.

39



Theorem 3.1 (Gradient of smooth approximation [89]). Any Rδ
k(w) constructed according

to (3.13) is differentiable with gradient vector

∇Rδ
k(w) = arg max

u∈domR?k

{
wTu−R?

k(u)− δ · d(u)
}
. (3.15)

Furthermore, the gradient is co-coercive, i.e., it satisfies:

(x− y)T
(
∇Rδ

k(x)−∇Rδ
k(y)

)
≥ δ‖∇Rδ

k(x)−∇Rδ
k(y)‖2 (3.16)

By Cauchy-Schwarz, this implies Lipschitz continuity, i.e.,

‖∇Rδ
k(x)−∇Rδ

k(y)‖ ≤ 1

δ
‖x− y‖. (3.17)

Proof. The theorem is from [89]. For reference, the proof is repeated in Appendix 3.B.

The feasibility of stochastic-gradient algorithms for the minimization of (3.6) hinges on the

assumption that (3.15) can be evaluated in closed form or at least easily. Fortunately, this

is the case for a large class of regularizers of interest — see [79] for an overview of closed

form solutions in the special case d(·) = 1
2
‖ · ‖2 and [89, 116] for other distance choices. For

example, for every function where the proximal operator [49]:

Rδ
k(w) = min

u

(
Rk(w) +

1

2δ
‖w − u‖2

)
(3.18)

can be evaluated in closed form, we can let d(·) , 1
2
‖ · ‖2 and obtain [49]:

∇Rδ
k(w) =

1

δ

(
w − proxδRk(w)

)
. (3.19)

Depending on the regularizers Rk(·), other proximity functions may be more appropriate [89].

We point out that the smooth approximation (3.13) can equivalently be written as [116]:

Rδ
k(w) = min

u∈domRk

{
Rk(u) + δ · d?

(
w − u
δ

)}
(3.20)

40



To verify this, observe that

Rδ
k(w) = min

u∈domRk

{
Rk(u) + δ · sup

z

{
zT
(
w − u
δ

)
− d (z)

}}
= min

u∈domRk

{
Rk(u) + sup

z

{
zT (w − u)− δ · d (z)

}}
= sup

z

{
inf
u

{
−zTu+Rk(u)

}
+ zTw − δ · d (z)

}
= sup

z

{
− sup

u

{
Rk(u)− zTu

}
+ zTw − δ · d (z)

}
= max

z

{
zTw −R?

k(z)− δ · d (z)
}

(3.21)

Expression (3.20) is known as the infimal convolution.

3.2.2 Accuracy of the Smooth Approximation

Replacing the original optimization problem (3.3) by the smoothed cost (3.6) naturally re-

sults in a bias, since the new minimizer woδ will generally be different from the original

minimizer wo. This bias, when not properly controlled, can degrade the performance of the

algorithm. For this reason, a number of works have examined the smoothing bias introduced

through conjugate smoothing under various conditions on the cost functions. In the cen-

tralized setting, when N = 1, it has been established that Rδ
k(w) → Rk(w) both pointwise

and epigraphically, which implies woδ → wo as δ → 0 [121], while [122] showed a sum of

costs
∑N

k=1 pkRk(w), when smoothed individually, will continue to converge epigraphically.

While encouraging, these results do not guarantee a rate at which woδ → wo, complicating

the choice of the smoothing parameter δ. Pointwise convergence has been strengthened to

uniform convergence, i.e.,
∣∣Rk(w)−Rδ

k(w)
∣∣ ≤ O(δ) for costs with bounded subgradients for

N = 1 [89,116] and for a collection of costs, each with bounded subgradients in [117].

We present here a variation of these results by restricting ourselves to strongly-convex

costs, but allowing for regularizers with unbounded sub-gradients and establishing ‖wo −
woδ‖2 ≤ O(δ) rather than simply woδ → wo.

Theorem 3.2 (Accuracy of smooth approximation). The bias introduced by smoothing the

41



original problem diminishes linearly with δ, i.e.,

‖wo − woδ‖2 ≤ 2

λL

N∑
k=1

pkδd (rok) = O(δ) (3.22)

where rok ∈ ∂Rk(w
o) such that

N∑
k=1

pk {∇Jk(wo) + rok} = 0 (3.23)

This collection of {rok} is guaranteed to exist, since wo , arg min
∑N

k=1 pk {Jk(w) +Rk(w)}.

Proof. Appendix 3.C.

3.2.3 Regularized Diffusion Strategy

Now that we have established a method for constructing a differentiable approximation for

each regularizer, we can solve for the minimizer of (3.6) by resorting to the following (adapt-

then-combine form of the) diffusion strategy [1, 22,27]:

φk,i = wk,i−1−µ∇̂Jk(wk,i−1)− µ∇Rδ
k(wk,i−1) (3.24)

wk,i =
N∑
`=1

a`kφ`,i (3.25)

where µ > 0 is a small step-size parameter. In this implementation, each agent k first

performs the stochastic-gradient update (3.24), starting from its existing iterate valuewk,i−1,

and obtains an intermediate iterate φk,i. Subsequently, agent k consults with its neighbors

and combines their intermediate iterates into wk,i according to (3.25). Motivated by the

construction in [33], we can refine (3.24)–(3.25) further as follows. We first introduce an

42



auxiliary variable ψk,i and rewrite (3.24) in the equivalent form:

φk,i = wk,i−1−µ∇̂Jk(wk,i−1) (3.26)

ψk,i = φk,i − µ∇Rδ
k(wk,i−1) (3.27)

wk,i =
N∑
`=1

a`kψ`,i (3.28)

We can now appeal to an incremental-type argument [90,123] by noting that it is reasonable

to expect φk,i to be an improved estimate for woδ compared to wk,i−1. Therefore, we replace

wk,i−1 in (3.27) by φk,i and arrive at the following regularized diffusion implementation.

Algorithm 3.1 Regularized Diffusion Strategy

φk,i = wk,i−1−µ∇̂Jk(wk,i−1) (3.29)

ψk,i = φk,i − µ∇Rδ
k(φk,i) (3.30)

wk,i =
N∑
`=1

a`kψ`,i (3.31)

Example 3.1 (Proximal Diffusion Learning). Choosing d(w) = 1
2
‖w‖2 turns the smooth

approximation (3.13) into

Rδ
k(w) =

(
R?
k(w) +

δ

2
‖w‖2

)?
(3.32)

which is the well-known Moreau envelope [49]. It can be rewritten equivalently as

Rδ
k(w) = min

u

(
Rk(w) +

1

2δ
‖w − u‖2

)
(3.33)

where the minimizing argument is identified as the proximal operator:

proxδRk(w) = arg min
u

(
Rk(w) +

1

2δ
‖w − u‖2

)
(3.34)

For many costs Rk(w), the proximal operator can be evaluated in closed form. The gradient

43



of the Moreau envelope can also be written as

∇Rδ
k(w) =

1

δ

(
w − proxδRk(w)

)
. (3.35)

This allows us to rewrite iterations (3.29)–(3.31) as

φk,i = wk,i−1−µ∇̂Jk(wk,i−1) (3.36)

ψk,i =
(

1− µ

δ

)
φk,i +

µ

δ
proxδRk(φk,i) (3.37)

wk,i =
N∑
`=1

a`kφ`,i (3.38)

which is a damped variation of the proximal diffusion algorithm studied in [50] under the

stronger assumption of small Lipschitz continuous regularizers.

3.3 Convergence Analysis

3.3.1 Centralized Recursion

We now examine the convergence properties of the diffusion strategy (3.29)–(3.31). To do

so, and motivated by the approach introduced in [27], it is useful to introduce the following

centralized recursion to serve as a frame of reference:

wi = wi−1 − µ
N∑
k=1

pk∇Jk(wi−1)− µ
N∑
k=1

pk∇Rδ
k(wi−1) (3.39)

This recursion amounts to a gradient-descent iteration applied to the smoothed aggregate

cost in (3.6) under the assumption that the risk functions (and therefore their gradients) are

known. For convenience of presentation, we introduce the central operator Tc(x) : RM → RM

defined as follows:

Tc(x) , x− µ
N∑
k=1

pk∇Jk(x)− µ
N∑
k=1

pk∇Rδ
k(x) (3.40)

44



so that the reference recursion (3.39) becomes wi = Tc(wi−1).

Lemma 3.2 (Contraction mapping). Assume µ ≤ 2δ. Then, the centralized recursion (3.39)

satisfies

‖Tc(x)− Tc(y)‖ ≤ γc‖x− y‖ (3.41)

where γc > 0 can be made strictly less than one by selecting sufficiently small µ and is given

by:

γc = 1− µλL + µ2

(
λ2
U

2− µ
δ

)
. (3.42)

From Banach’s fixed point theorem [82] and (3.40), we conclude that for sufficiently small µ,

wi = Tc(wi−1) converges exponentially to the unique fixed-point woδ , the minimizer of (3.6).

Proof. Appendix 3.D.

3.3.2 Network Basis Transformation

We are now ready to examine the behavior of the diffusion strategy (3.29)–(3.31), which

employs stochastic gradients. Structurally, our argument follows those in [27] in the absence

of regularizers. We begin by introducing the following extended vectors and matrices, which

collect quantities of interest from across all agents in the network:

Wi , col {w1,i, . . . ,wN,i} (3.43)

A , A⊗ IM (3.44)

g(Wi) , col {∇wJ1(w1,i), . . . ,∇wJN(wN,i)} (3.45)

ĝ(Wi) , col
{
∇̂wJ1(w1,i), . . . , ∇̂wJN(wN,i)

}
(3.46)

r(Wi) , col
{
∇wR

δ
1(w1,i), . . . ,∇wR

δ
N(wN,i)

}
(3.47)

q(Wi) , r(Wi−µg(Wi)) (3.48)

q̂(Wi) , r(Wi−µĝ(Wi)) (3.49)

45



Using these definitions, iterations (3.29)–(3.31) show that the network vector Wi evolves

according to the following dynamics:

Wi = ATWi−1−µAT (ĝ(Wi−1) + q̂(Wi−1)) (3.50)

By construction, the combination matrix A is left-stochastic and primitive and hence admits

a Jordan decomposition of the form A = VεJV
−1
ε with [1, 27]:

Vε =
[
p VR

]
, J =

 1 0

0 Jε

 , V −1
ε =

 1T

V T
L

 (3.51)

where Jε is a block Jordan matrix with the eigenvalues λ2(A) through λN(A) on the diagonal

and ε on the first lower sub-diagonal. The extended matrix A then satisfies A = VεJV−1
ε

with Vε = Vε ⊗ IN , J = J ⊗ IN , V−1
ε = V −1

ε ⊗ IN . Multiplying both sides of (3.50) by VT
ε

and introducing the transformed iterate vector W′i , VT
ε Wi, we obtain

W′i = J TW′i−1−µJ TVT
ε (ĝ(Wi−1) + q̂(Wi−1)) (3.52)

Following [1,27], we can exploit the structure of the decomposition (3.51) to provide further

insight into this transformed recursion. Let Wi = col {wc,i,We,i}, where wc,i ∈ RN×1 and

We,i ∈ R(N−1)M×1. Then, recursion (3.52) can be decomposed as

wc,i = wc,i−1−µ
(
pT ⊗ IN

)
(ĝ(Wi−1) + q̂(Wi−1)) (3.53)

We,i = J T
ε We,i−1−µJ T

ε VT
R (ĝ(Wi−1) + q̂(Wi−1)) (3.54)

Note from W′i = VT
ε Wi, that [27]:

wc,i =
(
pT ⊗ IM

)
Wi =

N∑
k=1

pkwk,i (3.55)

46



Hence, wc,i is the weighted centroid vector of all iterates wk,i across the network. From

Wi = (V−1
ε )

T
W′i on the other hand, one obtains [27]:

Wi = 1⊗wc,i +VLWe,i (3.56)

so that We,i can be interpreted as the deviation of individual estimates from the weighted

centroid vector wc,i across the network.

We examine the centroid recursion (3.53) in greater detail. Thus, note that

wc,i = wc,i−1−µ
(
pT ⊗ IM

)
(ĝ(Wi−1) + q̂(Wi−1))

= wc,i−1−µ
(
pT ⊗ IM

)
(g(1⊗wc,i−1) + r(1⊗wc,i−1))

− µ
(
pT ⊗ IM

)
(g(Wi−1) + q(Wi−1)− g(1⊗wc,i−1)− q(1⊗wc,i−1))

− µ
(
pT ⊗ IM

)
(ĝ(Wi−1) + q̂(Wi−1)− g(Wi−1)− q(Wi−1))

− µ
(
pT ⊗ IM

)
(q(Wi−1)− r(Wi−1))

= Tc(wc,i−1)− µ
(
pT ⊗ IM

) (
ti−1 + si +ui−1

)
(3.57)

where we replaced

wc,i−1 − µ
(
pT ⊗ IM

)
(g(1⊗wc,i−1) + r(1⊗wc,i−1))

= wc,i−1−µ
N∑
k=1

pk∇Jk(wc,i−1)− µ
N∑
k=1

pk∇Rδ
k(wc,i−1)

(3.40)
= Tc(wc,i−1) (3.58)

and introduced the perturbation terms:

ti−1 = g(Wi−1) + q(Wi−1)− g(1⊗wc,i−1)− q(1⊗wc,i−1) (3.59)

si = ĝ(Wi−1) + q̂(Wi−1)− g(Wi−1)− q(Wi−1) (3.60)

ui−1 = q(Wi−1)− r(Wi−1) (3.61)

47



It follows from (3.57) that the centroid recursion is a perturbed version of the central recur-

sion introduced earlier in (3.40). The perturbation arising from disagreement across agents in

the network is captured in ti−1, while stochastic perturbations due to instantaneous gradient

approximations is captured in si. The incremental implementation causes ui−1. It is there-

fore reasonable to expect that wc,i will evolve close to the central variable wi from (3.39),

which was already shown to converge to woδ in Lemma 3.2. This intuition was formalized

for the classical diffusion algorithm without regularizers in [27]. Motivated by that work, we

define w̃c,i−1 = woδ − wc,i−1. Since woδ is a fixed-point of Tc(·), i.e., woδ = Tc(w
o
δ), the error

w̃c,i−1 satisfies the recursion

w̃c,i−1 = Tc(w
o
δ)− Tc(wc,i−1) + µ

(
pT ⊗ IM

) (
ti−1 + si +ui−1

)
(3.62)

With the same perturbation terms, expression (3.54) turns into

We,i =J T
ε We,i−1−µJ T

ε VT
R

(
ti−1 + si +ui−1 − g(1⊗wc,i−1)− r(1⊗wc,i−1)

)
(3.63)

We employ the following common assumption on the perturbations caused by the gradient

noise [1, 22,27].

Assumption 3.4 (Gradient noise process). For each k, the gradient noise process is defined

as

sk,i(wk,i−1) = ∇̂Jk(wk,i−1)−∇Jk(wk,i−1) (3.64)

and satisfies

E [sk,i(wk,i−1)|F i−1] = 0 (3.65a)

E
[
‖ sk,i(wk,i−1)‖2|F i−1

]
≤ β2‖wk,i−1 ‖2 + σ2 (3.65b)

for some non-negative constants {β2, σ2}, and where F i−1 denotes the filtration generated

by the random processes {w`,j} for all ` = 1, 2, . . . , N and j ≤ i − 1, i.e., F i−1 represents

the information that is available about the random processes {w`,j} up to time i− 1.

48



For a block-vector x ∈ RMN×1 consisting of N blocks of size M × 1, let [27]:

P [x] = col
{
E ‖x1‖2, . . . ,E ‖xN‖2

}
∈ RN×1 (3.66)

Note that 1TP [x] = E ‖x‖2. Furthermore, let vL,k denote the k-th row of VL and let

ν = maxk ‖vL,k ⊗ IM‖, which is independent of µ and δ.

Lemma 3.3 (Bounds on perturbation terms). The perturbation terms in (3.62) satisfy the

following bounds:

P [ti−1] �
(

2λ2
U + 4

1 + µ2

δ2

)
ν211TP [We,i−1] (3.67)

P [ui−1] � µ2

δ2

(
3λ2

Uν
211TP [We,i−1] + 3λ2

UP [1⊗ w̃c,i−1] + 3P [g(1⊗ woδ)]
)

(3.68)

P [si−E si] � 3β2P [1⊗ w̃c,i−1] + 3β2ν211TP [We,i−1] + 3β2P [1⊗ woδ ] + σ21 (3.69)

P [E si] � 3β2µ
2

δ2
P [1⊗ w̃c,i−1] + 3β2µ

2

δ2
ν211TP [We,i−1] + 3β2µ

2

δ2
P [1⊗ woδ ] +

µ2

δ2
σ21

(3.70)

P [g(1⊗wc,i−1)] � 2λ2
UP [1⊗ w̃c,i−1] + 2P [g(1⊗ woδ)] (3.71)

P [r(1⊗wc,i−1)] � 2

δ2
P [1⊗ w̃c,i−1] + 2P [r(1⊗ woδ)] (3.72)

Proof. Appendix 3.E.

3.3.3 Mean-Square-Error Bounds

Using the bounds on the perturbation terms obtained in Lemma 3.3, we can formulate a

recursive bound on the mean-square error.

Lemma 3.4 (Mean-Square-Error Recursion). The variances of w̃c,i and We,i are coupled

and recursively bounded as

E ‖w̃c,i‖2

E ‖We,i ‖2

 � Γ

E ‖w̃c,i−1‖2

E ‖We,i−1 ‖2

+

µ3δ2 b1 + µ3

δ2
b2 + µ2b3

µ2

δ2
b4 + µ2b5 + µ4

δ2
b6

 (3.73)

49



where

Γ =

 γc + µ3

δ2
h1 + µ2h2

µ
δ2
h3 + µh4 + µ3

δ2
h5 + µ2h6

µ2

δ2
h7 + µ2h8 + µ4

δ2
h9 ‖Jε‖+ µ2

δ2
h10 + µ2h11 + µ4

δ2
h12

 (3.74)

γc , 1− µλL + µ2

(
λ2
U

2− µ
δ

)
(3.75)

a1 ,
1

λL − µ λ2U
2−µ

δ

= O(1) (3.76)

a2 ,
25N‖Jε‖2‖VR‖2

1− ‖Jε‖
= O(1) (3.77)

h1 , 9(β2 + λ2
U)a1 = O(1) (3.78)

h2 , 3β2 = O(1) (3.79)

h3 , 3ν2a1 = O(1) (3.80)

h4 , 6ν2λ2
Ua1 = O(1) (3.81)

h5 , 9ν2(λ2
U + β2)a1 = O(1) (3.82)

h6 , 3ν2β2 = O(1) (3.83)

h7 , 2a2 = O(1) (3.84)

h8 ,

(
2λ2

U +
1− ‖Jε‖

25
3β2

)
a2 = O(1) (3.85)

h9 , 3
(
λ2
U + β2

)
a2 = O(1) (3.86)

h10 , ν2a2 = O(1) (3.87)

h11 , ν2

(
2λ2

U +
1− ‖Jε‖

25
3β2

)
a2 = O(1) (3.88)

h12 , ν2
(
1 + 3λ2

U + 3β2
)
a2 = O(1) (3.89)

b1 , 9a1‖g(woδ)‖2 = O(1) (3.90)

b2 , 3a1(3β2‖woδ‖2 + σ2) = O(1) (3.91)

b3 , 3β2‖woδ‖2 + σ2 = O(1) (3.92)

b4 , 2a2

(
δ2‖r(1⊗ woδ)‖2

)
= O(1) (3.93)

b5 , 2a2‖g(1⊗ woδ)‖2 + ‖Jε‖2‖VR‖2
(
3β2N‖woδ‖2 +Nσ2

)
= O(1) (3.94)

50



b6 , a2

(
3‖g(1⊗ woδ)‖2 + 3β2N‖woδ‖2 +Nσ2

)
= O(1) (3.95)

Proof. Appendix 3.F.

It is evident from expression (3.74) that the stability of the driving matrix Γ depends critically

on the fraction between the step-size µ and the smoothing parameter δ. Motivated by this

observation, let us set, for a small κ > 0:

δ = µ
1
2
−κ (3.96)

so that
µ

δ2
= µ2κ → 0 as µ→ 0 (3.97)

Under this construction, the driving matrix satisfies

Γ =

γc +O(µ2) O(µ2κ)

O(µ1+2κ) ‖Jε‖+O(µ1+2κ)

 (3.98)

which ensures that the off-diagonal coupling terms diminish as µ, δ → 0.

Lemma 3.5. Let δ = µ
1
2
−κ, 1

2
> κ > 0. Then there exists a small enough µ, such that

ρ(Γ) < 1. Furthermore,

lim sup
i→∞

E ‖w̃c,i‖2

E ‖We,i ‖2

 �
O(µ) +O(µ4κ)

O(µ1+2κ)

 (3.99)

Proof. See Appendix 3.G.

Theorem 3.3. Let δ = µ
1
2
−κ, 1

2
> κ > 1

4
. Then it holds that for sufficiently small µ,

lim sup
i→∞

E ‖woδ −wk,i ‖2 = O(µ) (3.100)

51



Proof. We have

E ‖woδ −wk,i ‖2 = E ‖w̃c,i + (vL,k ⊗ IM)We,i ‖2

≤ 2E ‖w̃c,i‖2 + 2ν2E ‖We,i ‖2 (3.101)

so that the theorem follows after taking the limit and applying Lemma 3.5.

3.4 Application: Division of Labor in Machine Learning

We illustrate the performance of the algorithm in an online machine learning problem over

a heterogeneous network. Given random binary class variables γ = ±1 and feature vectors

h ∈ RM , the general objective in single-agent machine learning is to find a classifier c?(h),

such that

c? , arg min
c

Prob {c(h) 6= γ} . (3.102)

We restrict the class of permissible classifiers to linear classifiers of the form c(h) = hTw

with w ∈ RM and approximate (3.102) by the logistic cost to obtain

wo , arg min
w

E ln
[
1 + e−γh

Tw
]

(3.103)

3.4.1 Group Lasso

Regularization is an effective technique to incorporate prior structural knowledge about the

classifier into the optimization problem as a means to avoiding overfitting and improving

generalization ability. For example, when the linear classifier is known to be sparse, reg-

ularization through the `1-norm, also known as Lasso-regularization, has been shown to

encourage sparse solutions [88]. When there is further knowledge about the structure of the

sparsity, the group-Lasso has been proposed [124,125]. It takes the form

R(w) =
∑
k

λk‖Dkw‖1 =
∑
k

λk‖wkg‖1 (3.104)

52



where

wkg , Dkw (3.105)

and Dk denotes a diagonal selection matrix with entries 0 or 1 where 1’s appear for entries

of w belonging to a group. The resulting regularizer then encourages all elements of a group

to either be active or equal to zero jointly [124, 125]. Note that (3.104) is in the form of a

sum-of-costs and hence immediately decomposable.

3.4.2 Network Structure

We consider a network consisting of 3 types of agents: fully-informed (F), data-informed

(D), and structure-informed (S) agents. Fully-informed agents have access to streaming

realizations {γk(i),hk,i} as well as knowledge about a subset of covariates of w which are

likely to be sparse, collected in wkg . These agents are equipped with the regularized cost

Jk(w) +Rk(w), where

Jk(w) = E ln
[
1 + e−γkh

T
kw
]

+ ρ2‖w‖2
2 (3.106)

Rk(w) = ρ1‖wkg‖1 (3.107)

for k ∈ F . Data-informed agents have access to streaming realizations {γk(i),hk,i}, but no

knowledge about the structure of sparsity in w. They are equipped with

Jk(w) = E ln
[
1 + e−γkh

T
kw
]

+ ρ2‖w‖2
2 (3.108)

Rk(w) = 0 (3.109)

for k ∈ D. Structure-informed agents have information about the sparsity of w, but no

access to realizations of feature vectors. They are equipped with

Jk(w) = 0 (3.110)

Rk(w) = ρ1‖wkg‖1
(3.111)

53



for k ∈ S. Similar to ordinary `1-norm regularization, the proximal operator of ρ1‖wkg‖1

is available in closed form as a variation of soft-thresholding. Note that ‖wkg‖1 = ‖Dkw‖1,

where Dk is a diagonal matrix with D(ii) = 1, if the i− th element of w is likely to be sparse

and 0 otherwise. We then obtain

proxδρ1‖wkg‖1 (w) = Dkproxδρ1‖w‖1 (w) . (3.112)

It is hence possible for each agent k to run (3.29)–(3.31). As long as at least one agent in

the network is either fully-informed or data-informed, the weighted sum of costs across the

network is strongly convex and assumptions 3.1 through 3.3 are satisfied. We conclude from

Theorem 3.3 that all agents in the network will converge to the neighborhood of:

wo = arg min
w

∑
k∈F∪D

pk

{
E ln

[
1 + e−γkh

T
kw
]}

+ρ2 · card(F ∪ D)‖w‖2
2 +

∑
k∈F∪S

pk‖wkg‖1 (3.113)

where card(F ∪ D) denotes the cardinality of the set F ∪ D, i.e. the number of agents who

are either fully or data-informed. This classifier minimizes the weighted average logistic cost

across the network, hence incorporating data from all agents, regularized by the `2-norm and

weighted group Lasso. Through local interactions, both data and structural information is

diffused across the entire network, allowing all agents, irrespective of their type and available

information, to arrive at an accurate classification decision.

3.4.3 Numerical Results

Performance is illustrated on the network depicted in Fig. 3.1, consisting of a total of N = 40

agents, 20 of which are data-informed and 10 each of which are fully and structure informed

respectively. The network is heterogeneous in both the types of available information and

the noise profile of feature realizations, when data is available. Features are generated as

hk,i = γ(i)
(

1 1 · · · 0 0
)T

+ vk(i) (3.114)

54



Fully informed 

Data informed 

Structure informed 

Figure 3.1: Sample network consisting of N = 40 agents, card(F) = 10, card(D) = 20,
card(S) = 10. Fully-informed agents have access to data as well as partial structural infor-
mation. Data-informed agents observe realizations of the feature vector along with class-la-
bels, but have no information on the structure of the classifier. Structure-informed agents
do not have access to data, but do have partial information on sparse elements.

55



0 5 10 15 20 25 30 35 40
20

25

30

35

40

Agent index k

N
o

is
e 

v
ar

ia
n

ce
 σ

v
,k

2

Figure 3.2: Noise profile across the network for training (if k ∈ F ∪ D) and testing.

where vk(i) ∼ N (0, σ2
v,k) and

(
1 1 · · · 0 0

)T
consists of 50 leading 1’s followed by 50

trailing 0’s. It is evident, that all class information is contained in the first half of the feature

vector. This information is dispersed across the network as follows. The noise profile across

the network is depicted in Fig. 3.4.3.

Each agent with k ∈ F ∪ S, i.e., fully and data-informed agents, are supplied with 5

indices, chosen uniformly at random, of irrelevant feature covariates. They use this infor-

mation to augment their cost by an appropriate regularization as in (3.107) and (3.111).

3.A Proof of Lemma 3.1

Let v ∈ ∂G(w). From the definition of the conjugate:

G?(v) = sup
u

(
vTu−G(u)

)
(3.115)

The optimality condition of the above supremum dictates that

0 ∈ v − ∂G(w)⇐⇒ w = arg max
u

(
vTu−G(u)

)
(3.116)

56



0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

T
es

ti
n
g
 A

cc
u
ra

cy

 

 

Average diffusion accuracy

Average diffusion accuracy without group−lasso

Average single−agent accuracy

Optimal linear classifier

Individual accuracy

Figure 3.3: Classifier performance on separate testing set.

57



so for v ∈ ∂G(w), the supremum (3.115) is attained at w. Then

G?(v) = vTw −G(w). (3.117)

Now for any x (where the supremum might in general not be attained):

G?(x) = sup
u

(
xTu−G(u)

)
≥ xTw −G(w)

= vTw −G(w) + wT(x− v)

= G?(v) + wT(x− v) (3.118)

By definition, any vector that satisfies G?(x)−G?(v) ≥ wT(x− v) for all x is a subgradient

of G?(·) at v, i.e., w ∈ ∂G?(v). The other direction follows analogously, after noting that for

closed, convex functions (G?(·))? = G(·).

3.B Proof of Theorem 3.1

Let uo ∈ ∂(R?
k + δ · d)?(w) = ∂Rδ

k(w). From Lemma 3.1, this is equivalent to

w ∈ ∂R?
k(u

o) + δ · d(uo) (3.119)

which due to optimality conditions is equivalent to

uo = arg max
u∈domR?k

{
wTu−R?

k(u)− δ · d(u)
}
. (3.120)

Since R?
k(w) + δ · d(w) is strongly-convex, the minimizer uo is unique and the above holds

for any uo ∈ ∂Rδ
k(w). We conclude that the set ∂Rδ

k(w) and hence

{
∂Rδ

k(w)
}

= ∇Rδ
k(w) = uo. (3.121)

58



To prove the bound on the gradient of the smooth approximation, let uo1 = ∇Rδ
k(w1) and

uo2 = ∇Rδ
k(w2) for any w1, w2. From Lemma 3.1, this implies w1 ∈ ∂R?

k(u
o
1) + δ · ∂ d(uo1) and

w2 ∈ ∂R?
k(u

o
2) + δ · ∂ d(uo2). From the strong-convexity of δ · d(·), we have:

(R?
k(u

o
1) + δ · ∂ d(uo1)− ∂R?

k(u
o
2) + δ · ∂ d(uo2))T(uo1 − uo2) ≥ δ‖uo1 − uo2‖2 (3.122)

Plugging in w1 ∈ ∂R?
k(u

o
1)+δ ·∂ d(uo1) and w2 ∈ ∂R?

k(u
o
2)+δ ·∂ d(uo2) as well as uo1 = ∇Rδ

k(w1)

and uo2 = ∇Rδ
k(w2) yields

(w1 − w2)T(∇Rδ
k(w1)−∇Rδ

k(w2)) ≥ δ‖∇Rδ
k(w1)−∇Rδ

k(w2)‖2 (3.123)

which is the co-coercitivity property (3.16).

3.C Proof of Theorem 3.2

For ease of exposition, let us introduce

F (w) ,
N∑
k=1

pk {Jk(w) +Rk(w)} (3.124)

F δ(w) ,
N∑
k=1

pk
{
Jk(w) +Rδ

k(w)
}

(3.125)

59



We establish a string of inequalities around the difference in function values F (wo)−F δ(woδ).

On one hand, we have

F (wo)− F δ(woδ)

=
N∑
k=1

pk {Jk(wo) +Rk(w
o)} −

N∑
k=1

pk
{
Jk(w

o
δ) +Rδ

k(w
o
δ)
}

=
N∑
k=1

pk {Jk(wo)− Jk(woδ)}+
N∑
k=1

pk
{
Rk(w

o)−Rδ
k(w

o
δ)
}

(a)
=

N∑
k=1

pk {Jk(wo)− Jk(woδ)}+
N∑
k=1

pk

{
Rk(w

o)−max
u

(
uTwoδ −R?

k(u)− δd(u)
)}

(b)
=

N∑
k=1

pk {Jk(wo)− Jk(woδ)}

+
N∑
k=1

pk

{
Rk(w

o)−
(
∇Rδ

k(w
o
δ)
)T
woδ +R?

k(∇Rδ
k(w

o
δ)) + δd

(
∇Rδ

k(w
o
δ)
)}

(c)

≥
N∑
k=1

pk {Jk(wo)− Jk(woδ)}+
N∑
k=1

pk

{
∇Rδ

k(w
o
δ)

T
wo −

(
∇Rδ

k(w
o
δ)
)T
woδ + δd

(
∇Rδ

k(w
o
δ)
)}

(d)

≥
N∑
k=1

pk∇Jk(woδ)T (wo − woδ) +
λL
2
‖wo − woδ‖2

+
N∑
k=1

pk

{
∇Rδ

k(w
o
δ)

T
wo −

(
∇Rδ

k(w
o
δ)
)T
woδ + δd

(
∇Rδ

k(w
o
δ)
)}

=
N∑
k=1

pk
(
∇Jk(woδ) +∇Rδ

k(w
o
δ)
)T

(wo − woδ) +
λL
2
‖wo − woδ‖2 +

N∑
k=1

pkδd
(
∇Rδ

k(w
o
δ)
)

(e)
=
λL
2
‖wo − woδ‖2 +

N∑
k=1

pkδd
(
∇Rδ

k(w
o
δ)
)

(3.126)

Here, (a) follows from the definition of the smooth approximation (3.13), (b) follows from

the expression for the gradient of the smooth approximation (3.15), (c) follows from the

property R?(x) , supu
(
uTx−R(u)

)
≥ yTx − R(y) ∀ x, y, (d) follows from the aggregate

strong convexity (3.8) and (e) follows from the definition of woδ and the minimizer of the

smoothed aggregate cost.

To prove the upper bound, we bound the bias for each agent individually. To begin with,

60



note that convexity of Jk(·) and Rk(·) yields for all rk(w
o) ∈ ∂Rk(w

o):

Jk(w
o
δ)− Jk(wo) ≥ (∇Jk(wo))T (woδ − wo)⇐⇒ Jk(w

o)− Jk(woδ) ≤ (∇Jk(wo))T (wo − woδ)
(3.127)

Rk(u)−Rk(w
o) ≥ (rk(w

o))T (u− wo) (3.128)

Then,

Jk(w
o) +Rk(w

o)− Jk(woδ)−Rδ
k(w

o
δ)

= Jk(w
o) +Rk(w

o)− Jk(woδ)−min
u

{
Rk(u) + δd?

(
woδ − u
δ

)}
= Jk(w

o)− Jk(woδ)−min
u

{
Rk(u)−Rk(w

o) + δd?
(
woδ − u
δ

)}
≤ (∇Jk(wo))T (wo − woδ)−min

u

{
(rk(w

o))T (uk − wo) + δd?
(
woδ − u
δ

)}
= (∇Jk(wo) + rk(w

o))T (wo − woδ)−min
u

{
(rk(w

o))T (u− woδ) + δd?
(
woδ − u
δ

)}
(a)
= (∇Jk(wo) + rk(w

o))T (wo − woδ)− δmin
v

{
−(rk(w

o))Tv + d? (v)
}

= (∇Jk(wo) + rk(w
o))T (wo − woδ) + δmax

v

{
(rk(w

o))Tv − d? (v)
}

(b)
= (∇Jk(wo) + rk(w

o))T (wo − woδ) + δd (rk(w
o)) (3.129)

where (a) follows after a change of variables v , woδ−u
δ

and (b) is a result of the definition of

the conjugate function. Returning to the aggregate cost, we then have

N∑
k=1

pk {Jk(wo) +Rk(w
o)} −

N∑
k=1

pk
{
Jk(w

o
δ) +Rδ

k(w
o
δ)
}

=
N∑
k=1

pk
{
Jk(w

o) +Rk(w
o)− Jk(woδ) +Rδ

k(w
o
δ)
}

≤
N∑
k=1

pk

{
(∇Jk(wo) + rk(w

o))T (wo − woδ)
}

+
N∑
k=1

pkδd (rk(w
o))

=

{
N∑
k=1

pk (∇Jk(wo) + rk(w
o))

}T

(wo − woδ) +
N∑
k=1

pkδd (rk(w
o)) (3.130)

61



By definition, wo is the minimizer of
∑N

k=1 pk {Jk(wo) +Rk(w
o)}, so there exist subgradients

rok ∈ ∂Rk(w
o), such that

N∑
k=1

pk (∇Jk(wo) + rok) = 0 (3.131)

Then,

N∑
k=1

pk {Jk(wo) +Rk(w
o)} −

N∑
k=1

pk
{
Jk(w

o
δ) +Rδ

k(w
o
δ)
}
≤

N∑
k=1

pkδd (rok) = O(δ) (3.132)

We conclude from (3.126):

λL
2
‖wo − woδ‖2 +

N∑
k=1

pkδd
(
∇Rδ

k(w
o
δ)
)
≤ F (wo)− F δ(woδ) ≤

N∑
k=1

pkδd (rok) (3.133)

The result follows after rearranging.

62



3.D Proof of Lemma 3.2

Let α be an arbitrary real number such that 0 < α < 1. Then

‖Tc(x)− Tc(y)‖2

=
∥∥∥x− y − µ N∑

k=1

pk

{
∇Jk(x)−∇Jk(y) +∇Rδ

k(x)−∇Rδ
k(y)

}∥∥∥2

=‖x− y‖2 + µ2
∥∥∥ N∑
k=1

pk

{
∇Jk(x)−∇Jk(y) +∇Rδ

k(x)−∇Rδ
k(y)

}∥∥∥2

− 2µ
N∑
k=1

pk(x− y)T (∇Jk(x)−∇Jk(y))− 2µ
N∑
k=1

pk(x− y)T
(
∇Rδ

k(x)−∇Rδ
k(y)

)
(a)

≤‖x− y‖2 + µ2

N∑
k=1

pk

∥∥∥∇Jk(x)−∇Jk(y) +∇Rδ
k(x)−∇Rδ

k(y)
∥∥∥2

− 2µλL‖x− y‖2 − 2µδ
N∑
k=1

pk
∥∥∇Rδ

k(x)−∇Rδ
k(y)

∥∥2

(b)

≤‖x− y‖2 + µ2

N∑
k=1

pk
1

α

∥∥∥∇Jk(x)−∇Jk(y)
∥∥∥2

+ µ2

N∑
k=1

pk
1

1− α
∥∥∥∇Rδ

k(x)−∇Rδ
k(y)

∥∥∥2

− 2µλL ‖x− y‖2 − 2µδ
N∑
k=1

pk
∥∥∇Rδ

k(x)−∇Rδ
k(y)

∥∥2
(3.134)

where (a) follows from Jensen’s inequality, strong convexity (3.8), and co-coercitivity (3.16),

and (b) from ‖a+ b‖2 ≤ 1
α
‖a‖2 + 1

1−α‖b‖2 for any a, b ∈ RM . Since, by assumption, µ < 2δ,

we select α = 1− µ
2δ

. This results in µ2

1−α = 2µδ and allows us to cancel all terms involving

63



∇wR
δ
k(·) in the above inequality. Hence,

‖Tc(x)− Tc(y)‖2

≤‖x− y‖2 + µ2

N∑
k=1

pk
1

1− µ
2δ

∥∥∥∇Jk(x)−∇Jk(y)
∥∥∥2

− 2µλL ‖x− y‖2

(a)

≤‖x− y‖2 +
µ2λ2

U

1− µ
2δ

‖x− y‖2 − 2µλL ‖x− y‖2

=

(
1− 2µλL + µ2 λ2

U

1− µ
2δ

)
‖x− y‖2

(b)

≤
(

1− µλL + µ2 λ2
U

2− µ
δ

)2

‖x− y‖2 (3.135)

where (a) is due to the Lipschitz property (3.7) and (b) is due to 1 − a ≤ (1− 1
2
a)

2
for all

a ∈ R. From Banach’s fixed-point theorem, we know that as long as γc < 1, wi = Tc(wi−1)

converges exponentially to a unique fixed point, which satisfies w∞ = Tc(w∞). From (3.40),

we conclude that
N∑
k=1

pk∇Jk(w∞) +
N∑
k=1

pk∇Rδ
k(w∞) = 0 (3.136)

so that from (3.6), w∞ = woδ .

3.E Proof of Lemma 3.3

The proof of the first three inequalities relies on the Lipschitz properties of the gradients and

the decomposition (3.53)–(3.54). First, we bound the terms arising from the disagreement

across the network. Denote the k-th element of P [·] by P(k)[·]. Then

P(k)[ti−1]

= E ‖∇Jk(wc,i−1)−∇Jk(wk,i−1)

+∇Rδ
k(wc,i−1−µ∇Jk(wc,i−1))−∇Rδ

k(wk,i−1−µ∇Jk(wk,i−1))‖2

(a)

≤ 2E ‖∇Jk(wc,i−1)−∇Jk(wk,i−1)‖2

+ 2E ‖∇Rδ
k(wc,i−1−µ∇Jk(wc,i−1))−∇Rδ

k(wk,i−1−µ∇Jk(wk,i−1))‖2

64



(b)

≤ 2λ2
U E ‖wc,i−1−wk,i−1 ‖2 +

2

δ2
E ‖wc,i−1−µ∇Jk(wc,i−1)−wk,i−1 +µ∇Jk(wk,i−1)‖2

(c)

≤
(

2λ2
U + 4

1 + µ2

δ2

)
E ‖wc,i−1−wk,i−1 ‖2

(d)
=

(
2λ2

U + 4
1 + µ2

δ2

)
E ‖ (vL,k ⊗ IM)We,i−1 ‖2

≤
(

2λ2
U + 4

1 + µ2

δ2

)
ν2E ‖We,i−1 ‖2

=

(
2λ2

U + 4
1 + µ2

δ2

)
ν21TP [We,i−1] (3.137)

where (a) is due Jensen’s inequality, (b) and (c) are due to Lipschitz continuity of the

gradients and (d) is due to Wi = 1 ⊗ wc,i +VLWe,i. Stacking both sides of the above

inequality yields (3.67).

Now consider ui−1, which arises from the incremental implementation:

P(k)[ui−1]

= E ‖∇Rδ
k(wk,i−1)−∇Rδ

k(wk,i−1−µ∇Jk(wk,i−1))‖2

(a)

≤ µ2

δ2
E ‖∇Jk(wk,i−1)‖2

=
µ2

δ2
E ‖∇Jk(wk,i−1)−∇Jk(wc,i−1) +∇Jk(wc,i−1)−∇Jk(woδ) +∇Jk(woδ)‖2

(b)

≤ µ2

δ2

(
3λ2

Uν
21TP [We,i−1] + 3λ2

U E ‖w̃c,i−1‖2 + 3‖∇Jk(woδ)‖2
)

(3.138)

where (a) is due to Lipschitz continuity of ∇Rδ
k(w) and (b) is due to Jensen’s inequality and

Lipschitz continuity of ∇Jk(w). Upon stacking we obtain (3.68).

Next, we bound the perturbations caused by the gradient noise sk,i(wk,i) = ∇̂Jk(wk,i−1)−
∇Jk(wk,i−1). While a loose upper bound can be obtained immediately from Jensen’s inequal-

ity, it turns out that the incremental implementation (3.30) along with the co-coercivity (3.16)

of ∇Rδ
k(w) have a variance reducing effect on the recursion:

P(k)[s
g
i + spi −E spi ]

(a)

≤P(k)[s
g
i + spi ]

65



=E
∥∥∥∇Jk(wk,i−1)− ∇̂Jk(wk,i−1)

∥∥∥2

+ E
∥∥∥∇Rδ

k(wk,i−1−µ∇Jk(wk,i−1))−∇Rδ
k(wk,i−1−µ∇̂Jk(wk,i−1))

∥∥∥2

+ 2E
(
∇Jk(wk,i−1)− ∇̂Jk(wk,i−1)

)T
×
(
∇Rδ

k(wk,i−1−µ∇Jk(wk,i−1))−∇Rδ
k(wk,i−1−µ∇̂Jk(wk,i−1))

)
=E

∥∥∥∇Jk(wk,i−1)− ∇̂Jk(wk,i−1)
∥∥∥2

+ E
∥∥∥Rδ

k(wk,i−1−µ∇Jk(wk,i−1))−∇Rδ
k(wk,i−1−µ∇̂Jk(wk,i−1))

∥∥∥2

− 2

µ
E
(
wk,i−1−µ∇Jk(wk,i−1)−

(
wk,i−1−µ∇̂Jk(wk,i−1)

))T
×
(
∇Rδ

k(wk,i−1−µ∇Jk(wk,i−1))−∇Rδ
k(wk,i−1−µ∇̂Jk(wk,i−1))

)
(b)

≤E
∥∥∥∇Jk(wk,i−1)− ∇̂Jk(wk,i−1)

∥∥∥2

+ E
∥∥∥Rδ

k(wk,i−1−µ∇Jk(wk,i−1))−∇Rδ
k(wk,i−1−µ∇̂Jk(wk,i−1))

∥∥∥2

− 2δ

µ
E

∥∥∥∇Rδ
k(wk,i−1−µ∇Jk(wk,i−1))−∇Rδ

k(wk,i−1−µ∇̂Jk(wk,i−1))
∥∥∥2

=E
∥∥∥∇Jk(wk,i−1)− ∇̂Jk(wk,i−1)

∥∥∥2

−
(

2δ

µ
− 1

)
E

∥∥∥Rδ
k(wk,i−1−µ∇Jk(wk,i−1))−∇Rδ

k(wk,i−1−µ∇̂Jk(wk,i−1))
∥∥∥2

(c)

≤ E

∥∥∥∇Jk(wk,i−1)− ∇̂Jk(wk,i−1)
∥∥∥2

=E ‖ sk,i(wk,i−1)‖2

(d)

≤β2E ‖wk,i−1 ‖2 + σ2 (3.139)

where (a) follows from E ‖x−Ex‖2 ≤ E ‖x‖2 for any x, (b) follows from co-coercitivity (3.16),

(c) follows from µ < 2δ and (d) is due to (3.65b). Now fromwk,i−1 = wc,i−1 + (vL,k ⊗ I)We,i−1,

we can bound

‖wk,i−1 ‖2 = ‖wc,i−1 + (vL,k ⊗ I)We,i−1 ‖2

= ‖wc,i−1−woδ + (vL,k ⊗ I)We,i−1 +woδ‖2

≤ 3‖w̃c,i−1‖2 + 3ν21TP [We,i−1] + 3‖woδ‖2. (3.140)

66



where we appealed to Jensen’s inequality again. Eq. (3.69) follows after stacking. Next, note

that because ‖Ex‖2 ≤ E ‖x‖2

P [E spi ] � P [spi ]. (3.141)

Subsequently,

P(k)[s
p
i ] = E ‖∇Rδ

k(wk,i−1−µ∇Jk(wk,i−1))−∇Rδ
k(wk,i−1−µ∇̂Jk(wk,i−1))‖2

(a)

≤ µ2

δ2
E ‖∇Jk(wk,i−1)− ∇̂Jk(wk,i−1)‖2

=
µ2

δ2
‖ sk,i(wk,i−1)‖2 (3.142)

where (a) is due to (3.17), so that similarly to the above

P [E spi ] � 3β2µ
2

δ2
P [1⊗ w̃c,i−1] + 3β2µ

2

δ2
ν211TP [We,i−1]

+ 3β2µ
2

δ2
P [1⊗ woδ ] +

µ2

δ2
σ21 (3.143)

which is (3.70). Next,

P(k)[g(1⊗wc,i−1)] =E ‖∇Jk(wc,i−1)‖2

= E ‖∇Jk(wc,i−1)−∇Jk(woδ) +∇Jk(woδ)‖2

≤ 2λ2
U E ‖wc,i−1−woδ‖2 + 2‖∇Jk(woδ)‖2 (3.144)

which implies (3.71) after stacking. Eq. (3.72) follows analogously.

3.F Proof of Lemma 3.4

We make use of Jensen’s inequality ‖x+ y‖2 ≤ 1
α
‖x‖2 + 1

1−α‖y‖2 for all x, y and 0 < α < 1:

E ‖w̃c,i‖2

= E

∥∥∥Tc(wc,i−1)− Tc(woδ) + µ
(
pT ⊗ IM

) (
ti−1 + ui−1 + si−E si +E si

)∥∥∥2

67



(a)
= E

∥∥∥Tc(wc,i−1)− Tc(woδ) + µ
(
pT ⊗ IM

) (
ti−1 + ui−1 + E si

)∥∥∥2

+ µ2E

∥∥∥ (pT ⊗ IM) ( si−E si )∥∥∥2

(b)

≤ 1

γc
E

∥∥∥Tc(wc,i−1)− Tc(woδ)
∥∥∥2

+
µ2

1− γc
E

∥∥∥ (pT ⊗ IM) (ti−1 + ui−1 + E si
)∥∥∥2

+ µ2E

∥∥∥ (pT ⊗ IM) ( si−E si )∥∥∥2

(c)

≤ γcE ‖w̃c,i−1‖2 +
µ2

1− γc
E

∥∥∥ (pT ⊗ IM) (ti−1 + ui−1 + E si
)∥∥∥2

+ µ2E

∥∥∥ (pT ⊗ IM) ( si−E si )∥∥∥2

(d)

≤ γcE ‖w̃c,i−1‖2 +
µ2

1− γc
pTP [ti−1 + ui−1 + E si] + µ2pTP [si−E si]

(e)

≤ γcE ‖w̃c,i−1‖2 +
3µ2

1− γc
pT
(
P [ti−1] + P [ui−1] + P [E si]

)
+ µ2pTP [si−E si]

(f)

≤ γcE ‖w̃c,i−1‖2 +
3µ2

1− γc
pT
((

2λ2
U +

1 + µ2

δ2

)
ν211TP [We,i−1]

+
µ2

δ2

(
3λ2

Uν
211TP [We,i−1] + 3λ2

UP [1⊗ w̃c,i−1] + 3P [g(1⊗ woδ)]
)

+ 3β2µ
2

δ2
P [1⊗ w̃c,i−1] + 3β2µ

2

δ2
ν211TP [We,i−1] + 3β2µ

2

δ2
P [1⊗ woδ ] +

µ2

δ2
σ21

)
+ µ2pT

(
3β2P [1⊗ w̃c,i−1] + 3β2ν211TP [We,i−1] + 3β2P [1⊗ woδ ] + σ21

)
(g)
= γcE ‖w̃c,i−1‖2 +

3µ2

1− γc

((
2λ2

U +
1 + µ2

δ2

)
ν2E ‖We,i−1 ‖2

+
µ2

δ2

(
3λ2

Uν
2E ‖We,i−1 ‖2 + 3λ2

U E ‖w̃c,i−1‖2 + 3‖g(woδ)‖2
)

+ 3β2µ
2

δ2
E ‖w̃c,i−1‖2 + 3β2µ

2

δ2
ν2E ‖We,i−1 ‖2 + 3β2µ

2

δ2
‖woδ‖2 +

µ2

δ2
σ2
)

+ µ2
(

3β2E ‖w̃c,i−1‖2 + 3β2ν2E ‖We,i−1 ‖2 + 3β2‖woδ‖2 + σ2
)

(h)
=

(
γc +

9µ4(β2 + λ2
U)

(1− γc)δ2
+ 3µ2β2

)
E ‖w̃c,i−1‖2

+

(
3µ2ν2

1− γc

(
2λ2

U +
1 + µ2 + 3µ2λ2

U + 3µ2β2

δ2

)
+ 3µ2β2ν2

)
E ‖We,i−1 ‖2

+
3µ4

(1− γc)δ2

(
3‖g(woδ)‖2 + 3β2‖woδ‖2 + σ2

)
+ µ2

(
3β2‖woδ‖2 + σ2

)
(i)
=

γc +
µ3

δ2

9(β2 + λ2
U)

λL − µ λ2U
2−µ

δ

+ 3µ2β2

E ‖w̃c,i−1‖2

68



+

 µ

δ2

3ν2

λL − µ λ2U
2−µ

δ

+ µ
6ν2

λL − µ λ2U
2−µ

δ

λ2
U +

µ3

δ2

9ν2

λL − µ λ2U
2−µ

δ

(λ2
U + β2) + 3µ2β2ν2

E ‖We,i−1 ‖2

+
µ3

δ2

9

λL − µ λ2U
2−µ

δ

‖g(woδ)‖2 +
µ3

δ2

3

λL − µ λ2U
2−µ

δ

(
3β2‖woδ‖2 + σ2

)
+ µ2

(
3β2‖woδ‖2 + σ2

)
(3.145)

In step (a), cross-terms are eliminated because E {si−E si} = 0. Step (b) is due to γc < 1

and Jensen’s inequality, (c) is due to Lemma 3.2, (d) and (e) follow from Jensen’s inequality.

The bounds from Lemma 3.3 are used in (f) and (g) is due to 1TP [x] = E ‖x‖2 for x ∈ RMN

and pTP [1 ⊗ y] = E ‖y‖2 for y ∈ RM . In (i), the terms are rearranged to expose the

dependence on µ and δ more clearly.

Now let us turn to the mean-square recursion of We,i. First note that ρ(Jε) = λ2(A) < 1.

Since Jε has a Jordan structure, this means that we can chose ε small enough, such that

‖Jε‖2 = ρ(J T
ε Jε) ≤ ‖J T

ε Jε‖∞ < 1. Then,

E ‖We,i ‖2

= E

∥∥∥J T
ε We,i−1 +µJ T

ε VT
R

(
ti−1 + ui−1 + si−E si +E si−g(1⊗wc,i−1)− r(1⊗wc,i−1)

)∥∥∥2

(a)
= E

∥∥∥J T
ε We,i−1 +µJ T

ε VT
R

(
ti−1 + ui−1 + E si−g(1⊗wc,i−1)− r(1⊗wc,i−1)

)∥∥∥2

+µ2E
∥∥J T

ε VT
R (si−E si)

∥∥2

(b)

≤ 1

‖Jε‖
E
∥∥J T

ε We,i−1

∥∥2
+

µ2

1− ‖Jε‖
E

∥∥∥J T
ε VT

R

(
ti−1 + ui−1 + E si

−g(1⊗wc,i−1)− r(1⊗wc,i−1)
)∥∥∥2

+ µ2E
∥∥J T

ε VT
R (si−E si)

∥∥2

(c)

≤ ‖Jε‖ E ‖We,i−1‖2 +
µ2‖Jε‖2‖VR‖2

1− ‖Jε‖
E

∥∥∥ti−1 + ui−1 + E si

−g(1⊗wc,i−1)− r(1⊗wc,i−1)
∥∥∥2

+ µ2‖Jε‖2‖VR‖2E ‖si−E si‖2

(d)

≤ ‖Jε‖ E ‖We,i−1‖2 +
25µ2‖Jε‖2‖VR‖2

1− ‖Jε‖
(
E ‖ti−1‖2 + E ‖ui−1‖2

+E ‖E spi ‖2 + E ‖g(1⊗wc,i−1)‖2 + E ‖r(1⊗wc,i−1)‖2
)

+ µ2‖Jε‖2‖VR‖2E ‖si−E si‖2

(e)
= ‖Jε‖ E ‖We,i−1‖2 +

25µ2‖Jε‖2‖VR‖2

1− ‖Jε‖
1T
(
P [ti−1] + P [ui−1] + P [E si]

69



+ P [g(1⊗wc,i−1)] + P [r(1⊗wc,i−1)]
)

+ µ2‖Jε‖2‖VR‖21TP [si−E si]
(f)

≤ ‖Jε‖ E ‖We,i−1‖2 +
25µ2‖Jε‖2‖VR‖2

1− ‖Jε‖
1T
((

2λ2
U +

1 + µ2

δ2

)
ν211TP [We,i−1]

+
µ2

δ2

(
3λ2

Uν
211TP [We,i−1] + 3λ2

UP [1⊗ w̃c,i−1] + 3P [g(1⊗ woδ)]
)

+3β2µ
2

δ2
P [1⊗ w̃c,i−1] + 3β2µ

2

δ2
ν211TP [We,i−1] + 3β2µ

2

δ2
P [1⊗ woδ ] +

µ2

δ2
σ21

+2λ2
UP [1⊗ w̃c,i−1] + 2P [g(1⊗ woδ)] +

2

δ2
P [1⊗ w̃c,i−1] + 2P [r(1⊗ woδ)]

)
+µ2‖Jε‖2‖VR‖21T

(
3β2P [1⊗ w̃c,i−1] + 3β2ν211TP [We,i−1] + 3β2P [1⊗ woδ ] + σ21

)
(g)
= ‖Jε‖ E ‖We,i−1‖2 +

25µ2‖Jε‖2‖VR‖2

1− ‖Jε‖
((

2λ2
U +

1 + µ2

δ2

)
ν2N E ‖We,i−1 ‖2

+
µ2

δ2

(
3λ2

Uν
2N E ‖We,i−1 ‖2 + 3λ2

UN E ‖w̃c,i−1‖2 + 3‖g(1⊗ woδ)‖2
)

+3β2µ
2

δ2
N E ‖w̃c,i−1‖2 + 3β2µ

2

δ2
ν2N E ‖We,i−1 ‖2 + 3β2µ

2

δ2
N‖woδ‖2 +

µ2

δ2
Nσ2

+2λ2
UN E ‖w̃c,i−1‖2 + 2‖g(1⊗ woδ)‖2 +

2

δ2
N E ‖w̃c,i−1‖2 + 2‖r(1⊗ woδ)‖2

)
+µ2‖Jε‖2‖VR‖2

(
3β2N E ‖w̃c,i−1‖2 + 3β2ν2N E ‖We,i−1 ‖2 + 3β2N‖woδ‖2 +Nσ2

)
=

(
‖Jε‖+ µ2ν2N‖Jε‖2‖VR‖2

(
25

1− ‖Jε‖

(
2λ2

U +
1 + µ2

δ2
+ 3

µ2

δ2
(λ2

U + β2)

)
+ 3β2

))
× E ‖We,i−1‖2

+µ2N‖Jε‖2‖VR‖2

(
25

1− ‖Jε‖

(
3λ2

U

µ2

δ2
+ 3β2µ

2

δ2
+ 2λ2

U +
2

δ2

)
+ 3β2

)
E ‖w̃c,i−1‖2

+
25µ2‖Jε‖2‖VR‖2

1− ‖Jε‖

((
2 + 3

µ2

δ2

)
‖g(1⊗ woδ)‖2 + 3β2µ

2

δ2
N‖woδ‖2 +

µ2

δ2
Nσ2 + 2‖r(1⊗ woδ)‖2

)
+µ2‖Jε‖2‖VR‖2

(
3β2N‖woδ‖2 +Nσ2

)
=

(
‖Jε‖+

µ2

δ2

25ν2N‖Jε‖2‖VR‖2

1− ‖Jε‖
+ µ2 25ν2N‖Jε‖2‖VR‖2

1− ‖Jε‖

(
2λ2

U +
1− ‖Jε‖

25
3β2

)

+
µ4

δ2

25ν2N‖Jε‖2‖VR‖2

1− ‖Jε‖
(
1 + 3β2 + 3λ2

U

))
E ‖We,i−1‖2

+

(
µ2

δ2

50N‖Jε‖2‖VR‖2

1− ‖Jε‖
+ µ2 25N‖Jε‖2‖VR‖2

1− ‖Jε‖

(
2λ2

U +
1− ‖Jε‖

25
3β2

)

+
µ4

δ2

75N‖Jε‖2‖VR‖2

1− ‖Jε‖
(
λ2
U + β2

))
E ‖w̃c,i−1‖2

70



+
25µ2‖Jε‖2‖VR‖2

1− ‖Jε‖

((
2 + 3

µ2

δ2

)
‖g(1⊗ woδ)‖2 + 3β2µ

2

δ2
N‖woδ‖2 +

µ2

δ2
Nσ2 + 2‖r(1⊗ woδ)‖2

)
+µ2‖Jε‖2‖VR‖2

(
3β2N‖woδ‖2 +Nσ2

)
(3.146)

In step (a), cross-terms are eliminated because E {si−E si} = 0. Step (b) is due to ‖Jε‖ < 1

and Jensen’s inequality, (c) is due to the sub-multiplicative property of norms, (d) follows

from Jensen’s inequality, and (e) is due to 1TP [x] = E ‖x‖2. The bounds from Lemma 3.3

are used in (f) and (g) is due to 1TP [x] = E ‖x‖2 for x ∈ RMN and 1TP [1⊗y] = N ·E ‖y‖2

for y ∈ RM .

3.G Proof of Lemma 3.5

For δ = µ
1
2
−κ and small step-sizes µ,

Γ =

1− µλL +O(µ2) O(µ2κ)

O(µ1+2κ) ‖Jε‖+O(µ1+2κ)

 (3.147)

so that

‖Γ‖1 = max
{

1− µλL +O(µ1+2κ), ‖Jε‖+O(µ2κ)
}
< 1 (3.148)

for small enough µ. Since ρ(Γ) ≤ ‖Γ‖1 < 1, Γ is stable. It is also invertible and we obtain

lim sup
i→∞

E ‖w̃c,i‖2

E ‖We,i ‖2

 � (I − Γ)−1

 O(µ2)

O(µ1+2κ)

 (3.149)

Using the matrix inversion lemma, we have

(I − Γ)−1 =

µλL −O(µ2) −O(µ2κ)

−O(µ1+2κ) 1− ‖Jε‖ −O(µ1+2κ)

−1

=

 O(µ) −O(µ2κ)

−O(µ1+2κ) O(1)

−1

71



=

O(µ−1) O(µ−1+2κ)

O(µ2κ) O(1)

 (3.150)

The result follows after multiplication and cancellation.

72



CHAPTER 4

Extension to Matrix Variables

4.1 Problem and Algorithm Formulation

Up to this point, we have restricted the optimization variable w and the iterates wk,i to be

vector-valued. We now broaden our scope to consider problems of the form

W o = arg min
W

N∑
k=1

pk {Jk(W ) +Rk(W )} (4.1)

where W ∈ RN1×N2 and Jk(·) : RN1×N2 → R, Rk(·) : RN1×N2 → R. Problems of this form

frequently appear, for example, in image processing, when the structure of W is important.

We will illustrate an application from image reconstruction further below in section 4.3. Our

discussion in Chapter 3, motivates the following algorithm.

Algorithm 4.1 Regularized Diffusion Strategy for Matrix Variables

Φk,i = W k,i−1 − µ∇̂WJk(W k,i−1) (4.2)

Ψk,i = Φk,i − µ∇wR
δ
k(Φk,i) (4.3)

W k,i =
N∑
`=1

a`kΨ`,i (4.4)

4.2 Analogy to Vector Optimization

There is no need to repeat the analysis from Chapter 3, since any problem of the form (4.1)

can be mapped to an auxiliary problem, where the optimization variable is vector valued.

73



To this end, define for W = (w1, w2, · · · , wN2) ∈ RN1×N2 with columns w1, w2, . . . , wN2 :

vec(W ) ,


w1

w2

...

wN2

 ∈ R
N1×N2 (4.5)

and the corresponding inverse operation

unvec




w1

w2

...

wN2



 , W. (4.6)

We can then define auxiliary functions

Jaux
k (w) = Jk(unvec(w)) : RN1N2×1 → R (4.7)

Raux
k (w) = Rk(unvec(w)) : RN1N2×1 → R (4.8)

and an auxiliary problem

wo = arg min
w

N∑
k=1

pk {Jaux
k (w) +Raux

k (w)} (4.9)

Running the original regularized diffusion strategy (4.2)–(4.4) on (4.9) is then equivalent to

running the regularized diffusion strategy for matrix variables (4.2)–(4.4) on (4.1). As such,

our conclusions and performance guarantees continue to hold.

4.3 Distributed Image Reconstruction

We consider a scenario, where an image A ∈ RN1 ×RN2 is observed partially by a collection

of M agents labeled 1 through M . To formalize this, define a sampling set S, consisting of

74



index pairs (r, c) of A and a sampling operator SS [·] : RN1×N2 → RN1×N2 . The (r, c)-th

element of S[A] is given by:

SS [A](r,c) ,


A(r,c) if (r, c) ∈ S

0 otherwise

. (4.10)

The problem of reconstructing A from S[A], when S[A] is available at a centralized location

is well-studied. It is known matrix completion in the general setting, or image reconstruction

in image processing. Under the assumption that the image is smooth in the sense that A is

low-rank, the image can be reconstructed using [126]:

W o = arg min
W

1

2
‖SS [A−W ]‖2

F + ρ1‖W‖∗ +
ρ2

2
‖W‖2

F (4.11)

Here, ‖W‖∗ denotes the nuclear norm, i.e. the sum of the singular values of W :

‖W‖∗ =

rank(W )∑
i=1

σi(W ) (4.12)

The nuclear norm of W corresponds to the `1-norm on the singular values of W , which

encourages sparse (i.e. low-rank) solutions.

If instead of A directly, we only have access to noisy perturbations of A through

Ai = A+ V i (4.13)

we can formulate a stochastic variation of (4.11):

W o = arg min
W

1

2
E ‖SS [Ai −W ]‖2

F + ρ1‖W‖∗ +
ρ2

2
‖W‖2

F (4.14)

To distribute (4.14), define additionally for every agent k, an agent specific sampling set Sk
and assume Sk ∩ S` = ∅ for all k, ` and ∪Mk=1Sk = S. In other words, every agent observes

a different part of the image, while the network as a whole observes all of S. At each time

75



instance i, agent k then observes

Ak,i = SS∩Sk [A] + V i (4.15)

where V i is a zero-mean noise term. The centralized problem (4.11) can then be decomposed

as

W o = arg min
W

N∑
k=1

pk

{
1

2
E ‖SS∩Sk [A−W ]‖2

F +
ρ2

2
‖SSk [W ]‖2

F + ρ1‖W‖∗
}

(4.16)

If we let

Jk(W ) ,
1

2
E ‖SS∩Sk [A−W ]‖2

F +
ρ2

2
‖SSk [W ]‖2

F (4.17)

Rk(W ) , ρ1‖W‖∗ (4.18)

then (4.16) is of the form of (4.1), and hence lends itself to a distributed solution using (4.2)–

(4.4). If we let d(W ) = 1
2
‖W‖2

F in the construction of the smooth approximation, we have

∇̂Jk(W ) = −SS∩Sk [Ak,i −W ] + ρ2SSk [W ] (4.19)

∇Rδ
k(W ) =

1

δ

(
W − proxδ‖·‖∗(W )

)
(4.20)

The proximal operator of ‖·‖∗ is available in closed form and corresponds to soft-thresholding

on the singular values of W [127]. We arrive at the algorithm.

Algorithm 4.2 Regularized Diffusion Strategy for Matrix Completion

Φk,i = W k,i−1 + µSS∩Sk [A−W ]− µρ2SSk [W ] (4.21)

Ψk,i =
(

1− µ

δ

)
Φk,i +

µ

δ
proxδ‖·‖∗(Φk,i) (4.22)

W k,i =
N∑
`=1

a`kΨ`,i (4.23)

76



4.3.1 Numerical Results

We present the algorithm with the image A, shown in Fig. 4.1, which has been corrupted

by passing it through a sampling operator SS [·], where each index pair (r, c) is either 0 or 1

with probabilities 0.2 and 0.8 respectively. The corrupted image SS [A] is shown in Fig. 4.2.

In addition to the fact that the image is globally corrupted through SS [·], each agent only

Figure 4.1: Original image A. Figure 4.2: Corrupted image SS [A].

observes a noisy subset of SS [A]. To illustrate the flow of information, we chose the number

of agents to be M = 12 and decompose the image into 3 rows and 4 columns of blocks of

equal size. This is illustrated in Fig. 4.3.

Each agent observes then at iteration i:

Ak,i = SS∩Sk [A] + V i (4.24)

where V i consists of i.i.d. elements drawn from a normal distribution with zero mean and

unit variance. Algorithm parameters are set to µ = 0.9, δ = 2, ρ1 = 1, rho2 = 100 and

agents give equal weight to data received from each of their neighbors. The evolution of the

algorithm is shown in Figs. 4.4–4.7.

77



Figure 4.3: The sampled image is decomposed into 12 blocks of size 150× 200. Each agent
only has access to the block it has been assigned. For example, the top-left agent only sees
the top-left block of the sampled image. Agents are allowed to exchange estimates, if their
respective blocks share an edge.

78



Figure 4.4: Each agent’s estimate of the full image after a single iteration.

79



Figure 4.5: After 20 iterations, it can be observed how the information from each agent is
radiated into its neighborhood.

80



Figure 4.6: After 100 iterations, the agents have almost reached consensus and continue to
refine their solution to move closer to the global minimizer.

81



Figure 4.7: After 300 iterations, the full image has been recovered at every agent.

82



CHAPTER 5

Decentralized Non-Convex Learning — Short-Term

Model

Driven by the need to solve increasingly complex optimization problems in signal processing

and machine learning, there has been increasing interest in understanding the behavior of

gradient-descent algorithms in non-convex environments. In this and the following Chap-

ter 6, we consider stochastic cost functions, where exact gradients are replaced by stochastic

approximations and the resulting gradient noise persistently seeps into the dynamics of the

algorithm. We establish that the diffusion learning strategy continues to yield meaningful

estimates non-convex scenarios in the sense that the iterates by the individual agents will

cluster in a small region around the network centroid in the mean-fourth sense. We use this

insight to motivate a short-term model for network evolution over a finite-horizon. In Chap-

ter 6, we leverage this model to establish descent of the diffusion strategy through saddle

points in O(1/µ) steps and the return of approximately second-order stationary points in a

polynomial number of iterations. The materials in this chapter are based on the works [69,70].

5.1 Introduction

The broad objective of distributed adaptation and learning is the solution of global, stochastic

optimization problems by networked agents through localized interactions and in the absence

of information about the statistical properties of the data. When constant, rather than

diminishing, step-sizes are employed, the resulting algorithms are adaptive in nature and

are able to adapt to drifts in the data statistics. In this chapter, we consider a collection

of N agents, where each agent k is equipped with a stochastic risk of the form Jk(w) =

83



ExQk(w;xk) with Qk(w;xk) referring to the loss function, w ∈ RM denoting a parameter

vector, and xk referring to the stochastic data. The expectation is over the probability

distribution of the data. The objective of the network is to seek the Pareto solution:

min
w
J(w), where J(w) ,

N∑
k=1

pkJk(w) (5.1)

where the pk are positive weights that are normalized to add up to one and will be speci-

fied further below; in particular, in the special case when the {pk} are identical, they can

be removed from (5.1). Algorithms for the solution of (5.1) have been studied extensively

over recent years both with inexact [1, 26–28] and exact [29–31] gradients. Here, we focus

on the following diffusion strategy, which has been shown in previous works to provide en-

hanced performance and stability guarantees under constant step-size learning and adaptive

scenarios [1, 22]:

φk,i = wk,i−1−µ∇̂Jk(wk,i−1) (5.2a)

wk,i =
N∑
`=1

a`kφ`,i (5.2b)

where ∇̂Jk(·) denotes a stochastic approximation for the true local gradient ∇Jk(·). The

intermediate estimate φk,i is obtained at agent k by taking a stochastic gradient update

relative to the local cost Jk(·). The intermediate estimates are then fused across local

neighborhoods where a`k are convex combination weights satisfying:

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (5.3)

The symbol Nk denotes the set of neighbors of agent k.

Assumption 5.1 (Strongly-connected graph). We shall assume that the graph described

by the weighted combination matrix A = [a`k] is strongly-connected [1]. This means that there

exists a path with nonzero weights between any two agents in the network and, moreover, at

least one agent has a nontrivial self-loop, akk > 0.

84



It then follows from the Perron-Frobenius theorem [1,23,24] that A has a single eigenvalue at

one while all other eigenvalues are strictly inside the unit circle, so that ρ(A) = 1. Moreover,

if we let p denote the right-eigenvector of A that is associated with the eigenvalue at one,

and if we normalize the entries of p to add up to one, then it also holds that all entries of p

are strictly positive, i.e.,

Ap = p, 1Tp = 1, pk > 0 (5.4)

where the {pk} denote the individual entries of the Perron vector, p.

5.1.1 Related Works

The performance of the diffusion algorithm (5.2a)–(5.2b) has been studied extensively in

differentiable settings [22,27], with extensions to multi-task [128], constrained [33], and non-

differentiable [34] environments. A common assumption in these works, along with others

studying the behavior of distributed optimization algorithms in general, is that of convexity

(or strong-convexity) of the aggregate risk J(w). While many problems of interest such as

least-squares estimation [1], logistic regression [1], and support vector machines [129] are

convex, there has been increased interest in the optimization of non-convex cost functions.

Such problems appear frequently in the design of robust estimators [130] and the training of

more complex machine learning architectures such as those involving dictionary learning [131]

and artificial neural networks [62].

Motivated by these applications, recent works have pursued the study of optimization

algorithms for non-convex problems, both in the centralized and distributed settings [52–54,

54, 55, 57–61,132–143]. While some works focus on establishing convergence to a stationary

point [52–57], there has been growing interest in examining the ability of gradient descent

implementations to escape from saddle points, since such points represent bottlenecks to

the underlying learning problem [62]. We defer a detailed discussion on the plethora of

related works on second-order guarantees [59–61, 132–140, 144] to Chapter 6, where we will

be establishing the ability of the diffusion strategy (5.2a)–(5.2b) to escape strict-saddle points

efficiently. For ease of reference, the modeling conditions and results from this and related

85



works are summarized in Table 5.1.

The key contributions of Chapters 5 and 6 are three-fold. To the best of our knowledge,

we present the first analysis establishing efficient (i.e., polynomial) escape from strict-saddle

points in the distributed setting. Second, we establish that the gradient noise process is

sufficient to ensure efficient escape without the need to alter it by adding artificial forms of

perturbations, interlacing steps with small and large step-sizes, or imposing a dispersive noise

assumption as long as a gradient noise component is present in the descent direction. Third,

relative to the existing literature on centralized non-convex optimization, where the focus is

mostly on deterministic or finite-sum optimization, our modeling conditions are specifically

tailored to the scenario of learning from stochastic streaming data. In particular, we only

impose bounds on the gradient noise variance in expectation, rather than assume a bound

with probability one [134,138] or a sub-Gaussian distribution [139]. Furthermore, we assume

that any Lipschitz conditions only hold on the expected stochastic gradient approximation,

rather than for every realization, with probability one [135–137].

86



M
o
d

el
in

g
co

n
d

it
io

n
s

R
es

u
lt

s

G
ra

d
ie

n
t

H
es

si
a
n

In
it

ia
li
za

ti
o
n

P
er

tu
rb

a
ti

o
n
s

S
te

p
-s

iz
e

S
ta

ti
o
n

a
ry

S
a
d

d
le

C
e
n
tr

a
li

z
e
d

[1
3
2
]

L
ip

sc
h

it
z

—
—

S
G

D
+

A
n

n
ea

li
n

g
d

im
in

is
h

in
g

X
a
sy

m
p

to
ti

c†

[5
9
]

L
ip

sc
h

it
z

&
b

o
u

n
d

ed
?

L
ip

sc
h

it
z

—
i.
i.

d
.

a
n

d
b

o
u

n
d

ed
w

.p
.

1
co

n
st

a
n
t

X
p

o
ly

n
o
m

ia
l

[1
3
3
]

L
ip

sc
h

it
z

—
R

a
n

d
o
m

—
co

n
st

a
n
t

X
a
sy

m
p

to
ti

c

[6
0
]

L
ip

sc
h

it
z

L
ip

sc
h

it
z

—
S

el
ec

ti
v
e

&
b

o
u

n
d

ed
w

.p
.

1
co

n
st

a
n
t

X
p

o
ly

n
o
m

ia
l

[1
3
4
]

L
ip

sc
h

it
z

L
ip

sc
h

it
z

—
S

G
D

,
b

o
u

n
d

ed
w

.p
.

1
a
lt

er
n

a
ti

n
g

X
p

o
ly

n
o
m

ia
l

[1
3
5
]

L
ip

sc
h

it
z

L
ip

sc
h

it
z

—
B

o
u

n
d

ed
v
a
ri

a
n

ce
,

L
ip

sc
h

it
z

w
.p

.
1

co
n

st
a
n
t

X
p

o
ly

n
o
m

ia
l

[1
3
6
]

L
ip

sc
h

it
z

L
ip

sc
h

it
z

—
B

o
u

n
d

ed
v
a
ri

a
n

ce
,

L
ip

sc
h

it
z

w
.p

.
1

co
n

st
a
n
t

X
p

o
ly

n
o
m

ia
l

[1
3
7
]

L
ip

sc
h

it
z

L
ip

sc
h

it
z

—
B

o
u

n
d

ed
v
a
ri

a
n

ce
,

L
ip

sc
h

it
z

w
.p

.
1

co
n

st
a
n
t

X
p

o
ly

n
o
m

ia
l

[1
3
8
]

L
ip

sc
h

it
z

L
ip

sc
h

it
z

—
S

G
D

,
b

o
u

n
d

ed
w

.p
.

1
co

n
st

a
n
t

X
p

o
ly

n
o
m

ia
l

[1
3
9
]

L
ip

sc
h

it
z

L
ip

sc
h

it
z

—
S

G
D

+
G

a
u

ss
ia

n
co

n
st

a
n
t

X
p

o
ly

n
o
m

ia
l

D
e
c
e
n
tr

a
li

z
e
d

[5
2
]

C
o
n
t.

d
iff

er
en

ti
a
b

le
—

—
S

G
D

d
im

in
is

h
in

g
X

—

[5
3
]

L
ip

sc
h

it
z

&
b

o
u

n
d

ed
—

—
—

co
n

st
a
n
t

X
—

[5
4
]

B
o
u

n
d

ed
d

is
a
g
re

em
en

t
b

o
u

n
d

ed
m

o
m

en
ts

—
S

G
D

co
n

st
a
n
t

X
—

[5
6
]

L
ip

sc
h

it
z

b
o
u

n
d

ed
m

o
m

en
ts

—
S

G
D

co
n

st
a
n
t

X
—

[5
7
]

L
ip

sc
h

it
z

—
—

—
co

n
st

a
n
t

X
—

[5
5
]

L
ip

sc
h

it
z

+
p

ro
x

—
—

—
co

n
st

a
n
t

X
—

[5
8
]

L
ip

sc
h

it
z

&
b

o
u

n
d

ed
—

—
i.
i.
d

.
d

im
in

is
h

in
g

X
—

[6
1
]

L
ip

sc
h

it
z

E
x
is

ts
R

a
n

d
o
m

—
co

n
st

a
n
t

X
a
sy

m
p

to
ti

c

[1
4
0
]

B
o
u

n
d

ed
d

is
a
g
re

em
en

t
—

—
S

G
D

+
A

n
n

ea
li
n

g
d

im
in

is
h

in
g

X
a
sy

m
p

to
ti

c†

T
h

is
w

o
r
k

B
o
u

n
d

e
d

d
is

a
g
r
e
e
m

e
n
t

L
ip

sc
h

it
z

—
B

o
u

n
d
e
d

m
o
m

e
n
ts

c
o
n

st
a
n
t

X
p

o
ly

n
o
m

ia
l

T
ab

le
5.

1:
C

om
p
ar

is
on

of
m

o
d
el

in
g

as
su

m
p
ti

on
s

an
d

re
su

lt
s

fo
r

gr
ad

ie
n
t-

b
as

ed
m

et
h
o
d
s.

S
ta

te
m

en
ts

m
ar

ke
d

w
it

h
?

ar
e

n
ot

ex
p
li
ci

tl
y

st
at

ed
b
u
t

ar
e

im
p
li
ed

b
y

ot
h
er

co
n
d
it

io
n
s.

T
h
e

w
or

k
s

m
ar

ke
d

w
it

h
†

es
ta

b
li
sh

gl
ob

al
(a

sy
m

p
to

ti
c)

co
n
ve

rg
en

ce
,

w
h
ic

h
of

co
u
rs

e
im

p
li
es

es
ca

p
e

fr
om

sa
d
d
le

-p
oi

n
ts

.

87



5.1.2 Preview of Results

We first establish that in non-convex environments, as was already shown earlier in [27] for

convex environments, the evolution of the individual iterates wk,i at the agents continues

to be well-described by the evolution of the weighted centroid vector
∑N

k=1 pkwk,i in the

sense that the iterates from across the network will cluster around this centroid after suf-

ficient iterations in the mean-fourth sense. We subsequently consider two cases separately

and establish descent in both of them. The first case corresponds to the region where the

gradient at the network centroid is large and establish that descent can occur in one iter-

ation. The second and more challenging case occurs when the gradient norm is small, but

there is a sufficiently negative eigenvalue in the Hessian matrix. We establish in Chapter 6

that the recursion will continue to descend along the aggregate cost at a rate of O(µ) per

O(1/µ) iterations. Combined with the first result, this descent relation allows us to provide

guarantees about the second-order optimality of the returned iterates.

The flow of the argument is summarized in Fig. 5.1. We decompose RM into the set of

approximate first-order stationary points, i.e., those with ‖∇J(w)‖2 ≤ O(µ) and the com-

plement, i.e., the large-gradient regime. For the large-gradient regime, descent is established

in Theorem 5.2. Motivated by prior works establishing second-order guarantees [59,60,144],

we proceed to further decompose the set of approximate first-order stationary points into

those that are τ -strict-saddle, i.e., those that have a Hessian with significant negative eigen-

value λmin (∇2J(w)) ≤ −τ , and the complement, which are approximately second-order

stationary points. For τ -strict-saddle points we establish descent in Theorem 6.1. Finally,

in Theorem 6.2, we conclude that the centroid will reach an approximately second-order

stationary point in a polynomial number of iterations.

88



N
et

w
or

k
ce

n
tr

oi
d

w
c,
i

at
ti

m
e
i

N
O

T
O

(µ
)-

st
at

io
n
ar

y
‖∇

J
(w

c,
i)
‖2
>
O

(µ
)

D
es

ce
n
t

in
on

e
it

er
at

io
n

b
y

T
h
eo

re
m

5.
2:

E
{J

(w
c,
i)
−
J

(w
c,
i+

1
)|
w
c,
i
∈
G}
≥
O

(µ
2
)

O
(µ

)-
st

at
io

n
ar

y
‖∇

J
(w

c,
i)
‖2
≤
O

(µ
)

τ
-s

tr
ic

t-
sa

d
d
le

D
es

ce
n
t

in
is

=
O

(1
/(
µ
τ
))

it
er

at
io

n
s

in
T

h
eo

re
m

6.
1:

E
{J

(w
c,
i)
−
J

(w
c,
i+
is

)|
w
c,
i
∈
H
}
≥
O

(µ
)

λ
m

in
(∇

2
J

(w
c,
i)
>
−
τ

w
c,
i

is
ap

p
ro

x
im

at
el

y
se

co
n
d
-o

rd
er

st
at

io
n
ar

y.

F
ig

u
re

5.
1:

C
la

ss
ifi

ca
ti

on
of

ap
p
ro

x
im

at
el

y
st

at
io

n
ar

y
p

oi
n
ts

.
T

h
eo

re
m

5.
2

in
th

is
ch

ap
te

r
es

ta
b
li
sh

es
d
es

ce
n
t

in
th

e
gr

ee
n

b
ra

n
ch

.
T

h
e

re
d

b
ra

n
ch

is
tr

ea
te

d
in

C
h
ap

te
r

5.
T

h
e

tw
o

re
su

lt
s

ar
e

co
m

b
in

ed
in

T
h
eo

re
m

6.
2

to
es

ta
b
li
sh

th
e

re
tu

rn
of

a
se

co
n
d
-o

rd
er

st
at

io
n
ar

y
p

oi
n
t

w
it

h
h
ig

h
p
ro

b
ab

il
it

y.

89



5.2 Evolution Analysis

We shall perform the analysis under the following common assumptions on the gradients

and their approximations.

Assumption 5.2 (Lipschitz gradients). For each k, the gradient ∇Jk(·) is Lipschitz,

namely, for any x, y ∈ RM :

‖∇Jk(x)−∇Jk(y)‖ ≤ δ‖x− y‖ (5.5)

In light of (5.1) and Jensen’s inequality, this implies for the aggregate cost:

‖∇J(x)−∇J(y)‖ ≤ δ‖x− y‖ (5.6)

The Lipschitz gradient conditions (5.5) and (5.6) imply bounds on the both the function

value and the Hessian matrix (when it exists), which will be used regularly throughout the

derivations. In particular, we have for the function values:

J(y) ≤ J(x) +∇J(x)T (y − x) +
δ

2
‖x− y‖2 (5.7)

For the Hessian matrix we have [1]:

−δI ≤ ∇2J(x) ≤ δI (5.8)

Assumption 5.3 (Bounded gradient disagreement). For each pair of agents k and `,

the gradient disagreement is bounded, namely, for any x ∈ RM :

‖∇Jk(x)−∇J`(x)‖ ≤ G (5.9)

90



This assumption is similar to the one used in [54] to establish first-order stationarity under

constant step-size selection and [140] for global optimality under a diminishing step-size with

annealing. Note that condition (5.9) is weaker than the more common assumption of bounded

gradients. Condition (5.9) is automatically satisfied in cases where the expected risks Jk(·)
are common (though agents still may see different realizations of data), or in the case of

centralized stochastic gradient descent where the number of agents is one. This condition

is also satisfied whenever agent-specific risks with bounded gradients are regularized by

common regularizers with potentially unbounded gradients, as is common in many machine

learning applications. Observe that (5.9) implies a similar condition on the deviation from

the centralized gradient via Jensen’s inequality:

‖∇Jk(x)−∇J(x)‖ =

∥∥∥∥∥
N∑
`=1

p` (∇Jk(x)−∇J`(x))

∥∥∥∥∥
≤

N∑
`=1

p` ‖∇Jk(x)−∇J`(x)) ‖ ≤ G (5.10)

Definition 5.1 (Filtration). We denote by F i the filtration generated by the random pro-

cesses wk,j for all k and j ≤ i:

F i , {W0,W1, . . . ,Wi} (5.11)

where Wj , col {w1,j, . . . ,wk,j} contains the iterates across the network at time j. Infor-

mally, F i captures all information that is available about the stochastic processes wk,j across

the network up to time i.

Throughout the following derivations, we will frequently rely on appropriate conditionings

to make the analysis tractable. A frequent theme will be the exchange of conditioning

on filtrations by conditioning on events. To this end, the following lemma will be used

repeatedly.

Lemma 5.1 (Conditioning). Suppose w ∈ RM is a random variable measurable by F . In

91



other words, w is deterministic conditioned on F and

E {w |F} = w (5.12)

Then,

E {E {x |F} |w ∈ S} = E {x |w ∈ S} (5.13)

for any deterministic set S ⊆ RM and random x ∈ RM .

Proof. Denote by IS(w) the random indicator function:

IS(w) =


1, if w ∈ S

0, otherwise.

(5.14)

Since w is measurable by F , then IS(w) is measurable by F as well. In other words,

the event w ∈ S is deterministic conditioned on F . Furthermore, for the random variable

x IS(w), we have:

E {x IS(w)} = E {x IS(w)|w ∈ S} · Pr {w ∈ S}

+ E {x IS(w)|w /∈ S} · Pr {w /∈ S}

= E {x |w ∈ S} · Pr {w ∈ S} (5.15)

Rearranging yields:

E {x |w ∈ S} =
E {x IS(w)}
Pr {w ∈ S} (5.16)

Similarly, for the random variable E {x |F} IS(w), we have:

E {E {x |F} IS(w)}

= E {E {x |F} IS(w)|w ∈ S} · Pr {w ∈ S}

+ E {E {x |F} IS(w)|w /∈ S} · Pr {w /∈ S}

= E {E {x |F} |w ∈ S} · Pr {w ∈ S} (5.17)

92



It then follows that:

E {E {x |F} |w ∈ S} (5.17)
=

E {E {x |F} IS(w)}
Pr {w ∈ S}

(a)
=
E {E {x IS(w)|F}}

Pr {w ∈ S}
(b)
=
E {x IS(w)}
Pr {w ∈ S}

(5.16)
= E {x |w ∈ S} (5.18)

where in step (a) we pulled IS(w) into the inner expectation, since it is deterministic condi-

tioned on F and (b) follows from the law of total expectation.

Assumption 5.4 (Gradient noise process). For each k, the gradient noise process is

defined as

sk,i(wk,i−1) = ∇̂Jk(wk,i−1)−∇Jk(wk,i−1) (5.19)

and satisfies

E {sk,i(wk,i−1)|F i−1} = 0 (5.20a)

E
{
‖ sk,i(wk,i−1)‖4|F i−1

}
≤ σ4 (5.20b)

for some non-negative constant σ4. We also assume that the gradient noise processes are

pairwise uncorrelated over the space conditioned on F i−1, i.e.:

E
{
sk,i(wk,i−1) s`,i(w`,i−1)T|F i−1

}
= 0 (5.21)

Property (5.20a) means that the gradient noise construction is unbiased on average. Prop-

erty (5.20b) means that the fourth-moment of the gradient noise is bounded. These proper-

ties are automatically satisfied for several costs of interest [1, 22]. Note, that the bound on

93



the fourth-order moment, in light of Jensen’s inequality, immediately implies:

E
{
‖ sk,i(wk,i−1)‖2|F i−1

}
= E

{√
‖ sk,i(wk,i−1)‖4|F i−1

}
≤
√
E {‖ sk,i(wk,i−1)‖4|F i−1}

(5.20b)

≤ σ2 (5.22)

While our primary interest is in the development of algorithms that allow for learning from

streaming data, we remark briefly that the results obtained in this work are equally appli-

cable to empirical risk minimization via stochastic gradient descent, by assuming that the

streaming data is selected according to a particular distribution.

Example 5.1 (Empirical Risk Minimization). Suppose the costs Jk(·) are empirical based

on locally collected data {xk,s}Ss=1 and take the form:

Jk(w) =
1

S

S∑
s=1

Q(w, xk,s) (5.23)

In empirical risk minimization (ERM) problems, we are interested in finding a vector wo

that minimizes the following empirical risk over the data across the entire network:

wo , arg min
w

1

N

N∑
k=1

(
1

S

S∑
s=1

Q(w, xk,s)

)
(5.24)

If we introduce the uniformly-distributed random variable xk = xk,s with probability 1
S

for

all s, then the cost (5.24) is equivalent to solving:

wo = arg min
w

1

N

N∑
k=1

Exk Q(w,xk) (5.25)

which is of the same form as (5.1) with pk = 1
N

. The resulting gradient noise process satis-

fies the assumptions imposed in this chapter under appropriate conditions on the risk Q(·, ·).
This observation has been leveraged to accurately quantify the performance of stochastic gra-

dient descent, as well as mini-batch and importance sampling generalizations, for empirical

minimization of convex risks in [9].

94



5.2.1 Network basis transformation

In analyzing the dynamics of the distributed algorithm (5.2a)–(5.2b), it is useful to introduce

the following extended quantities by collecting variables from across the network:

Wi , col {w1,i, . . . ,wN,i} (5.26)

A , A⊗ IM (5.27)

ĝ(Wi) , col
{
∇̂J1(w1,i), . . . , ∇̂JN(wN,i)

}
(5.28)

where ⊗ denotes the Kronecker product operation. We can then write the diffusion recur-

sion (5.2a)–(5.2b) compactly as

Wi = AT (Wi−1−µĝ(Wi−1)) (5.29)

By construction, the combination matrix A is left-stochastic and primitive and hence admits

a Jordan decomposition of the form A = VεJV
−1
ε with [1, 27]:

Vε =
[
p VR

]
, J =

 1 0

0 Jε

 , V −1
ε =

 1T

V T
L

 (5.30)

where Jε is a block Jordan matrix with the eigenvalues λ2(A) through λN(A) on the diagonal

and ε on the first lower sub-diagonal. The extended matrix A then satisfies A = VεJV−1
ε

with Vε = Vε ⊗ IN , J = J ⊗ IN , V−1
ε = V −1

ε ⊗ IN . The spectral properties of A and

its corresponding eigendecomposition have been exploited extensively in the study of the

diffusion learning strategy in the convex setting [1, 27], and will continue to be useful in

non-convex scenarios.

Multiplying both sides of (5.29) by
(
pT ⊗ I

)
from the left, we obtain in light of (5.4):

(
pT ⊗ I

)
Wi =

(
pT ⊗ I

)
Wi−1−µ

(
pT ⊗ I

)
ĝ(Wi−1) (5.31)

Letting wc,i ,
∑K

k=1 pkwk,i =
(
pT ⊗ I

)
Wi and exploiting the block-structure of the gradient

95



term, we find:

wc,i = wc,i−1−µ
N∑
k=1

pk∇̂Jk(wk,i−1) (5.32)

Note that wc,i is a convex combination of iterates across the network and can be viewed

as a weighted centroid. The recursion for wc,i is reminiscent of a stochastic gradient step

associated with the aggregate cost
∑N

k=1 pkJk(w) with the exact gradients ∇Jk(·) replaced

by stochastic approximations ∇̂Jk(·) and with the stochastic gradients evaluated at wk,i−1,

rather than wc,i−1. In fact, we can write:

wc,i = wc,i−1−µ
N∑
k=1

pk∇Jk(wc,i−1)− µdi−1 − µ si (5.33)

where we defined the perturbation terms:

di−1 ,
N∑
k=1

pk (∇Jk(wk,i−1)−∇Jk(wc,i−1)) (5.34)

si ,
N∑
k=1

pk

(
∇̂Jk(wk,i−1)−∇Jk(wk,i−1)

)
(5.35)

We use the subscript i − 1 for di−1 to emphasize that it depends on data up to time i − 1,

in contrast to si which is also dependent on the most recent data from time i. Observe that

di−1 arises from the disagreement within the network, and in particular that if each wk,i−1

remains close to the network centroid wc,i−1, this perturbation will be small in light of the

Lipschitz condition (5.5) on the gradients. The second perturbation term si arises from the

noise introduced by stochastic gradient approximations at each agent. We now establish

that recursion (5.33) will continue to exhibit some of the desired properties of (centralized)

gradient descent, despite the presence of persistent and coupled perturbation terms.

5.2.2 Network disagreement

To begin with, we study more closely the evolution of the individual estimates wk,i relative

to the network centroid wc,i. Multiplying (5.29) by VT
R ,

(
V T
R ⊗ I

)
from the left yields in

96



light of (5.30):

VT
RWi = VT

RATWi−1−µVT
RATĝ(Wi−1)

= VT
RATVLVT

RWi−1−µVT
RATVLVT

Rĝ(Wi−1)

= JT
ε VT

RWi−1−µJT
ε VT

Rĝ(Wi−1) (5.36)

Then, for the deviation from the network centroid:

Wi−Wc,i = Wi−
(
1pT ⊗ I

)
Wi

=
(
I −

(
1pT ⊗ I

))
Wi

=
((
Vε
−1 ⊗ I

)T
(Vε ⊗ I)T −

(
1pT ⊗ I

))
Wi

(5.30)
= VLVT

RWi (5.37)

so that the deviation from the centroid can be easily recovered from VT
RWi in (5.36). Pro-

ceeding with (5.36), we find:

∥∥VT
RWi

∥∥4
=
∥∥JT

ε VT
RWi−1−µJT

ε VT
Rĝ(Wi−1)

∥∥4

(a)

≤
∥∥JT

ε

∥∥4∥∥VT
RWi−1−µVT

Rĝ(Wi−1)
∥∥4

(b)

≤
∥∥JT

ε

∥∥∥∥VT
RWi−1

∥∥4
+ µ4

∥∥JT
ε

∥∥4

(1− ‖JT
ε ‖)3

∥∥VT
Rĝ(Wi−1)

∥∥4
(5.38)

where (a) follows from the sub-multiplicative property of norms, and (b) follows from Jensen’s

inequality ‖a+ b‖4 ≤ 1
α3‖a‖4 + 1

(1−α)3
‖b‖4 with

α =
∥∥JT

ε

∥∥ ,
√
ρ (JεJT

ε ) ≤
√
‖JεJT

ε ‖1 ≤
√
λ2

2 + ε2 < 1 (5.39)

for sufficiently small ε due to Assumption 5.1, where λ2 , ρ
(
A− 1pT

)
. We observe that the

term
∥∥VT

RWi

∥∥4
contracts at an exponential rate given by

∥∥JT
ε

∥∥ ≈ λ2 for small ε, also known

as the mixing rate of the graph. Iterating this relation and applying Assumptions 5.1–5.4,

we obtain the following result. We note that similar results have been obtained before in the

97



literature, see for example [27] for strongly convex costs and extended later in [54] for the

non-convex setting.

Theorem 5.1 (Network disagreement (4th order)). Under assumptions 5.1–5.4, the

network disagreement is bounded after sufficient iterations i ≥ io by:

E
∥∥Wi−

(
1pT ⊗ I

)
Wi

∥∥4

≤ µ4‖VL‖4

∥∥JT
ε

∥∥4

(1− ‖JT
ε ‖)4‖VT

R‖
4
N2
(
G4 + σ4

)
+ o(µ4) (5.40)

where

io =
log (o(µ4))

log (‖JT
ε ‖)

(5.41)

and o(µ4) denotes a term that is higher in order than µ4.

Proof. Appendix 5.A.

Note again, that Jensen’s inequality immediately implies for the second-order moment:

E
∥∥Wi−

(
1pT ⊗ I

)
Wi

∥∥2
= E

√
‖Wi− (1pT ⊗ I)Wi‖4

≤
√
E ‖Wi− (1pT ⊗ I)Wi‖4

(a)

≤ µ2‖VL‖2

∥∥JT
ε

∥∥2

(1− ‖JT
ε ‖)2‖VT

R‖
2
N
(
G2 + σ2

)
+ o(µ2) (5.42)

where (a) follows from (5.40) and sub-additivity of the square root, i.e.
√
x+ y ≤ √x+

√
y.

This result establishes that, for every agent k, we have after sufficient iterations i ≥ io:

E ‖wk,i−wc,i ‖2 ≤ O(µ2) (5.43)

or, by Markov’s inequality [145]:

Pr
{
‖wk,i−wc,i ‖2 ≥ O(µ)

}
≤ O(µ) (5.44)

and hence wk,i will be arbitrarily close to wc,i with arbitrarily high probability for all agents.

98



This result has two implications. First, it allows us to use the network centroid wc,i as a

proxy for all iterates wk,i in the network, since all agents will cluster around the network

centroid after sufficient iterations. Second, it allows us to bound the perturbation terms

encountered in (5.33).

Lemma 5.2 (Perturbation bounds (2nd and 4th order)). Under assumptions 5.1–5.4

and for sufficiently small step-sizes µ, the perturbation terms are bounded as:

(
E ‖di−1‖2)2 ≤ E ‖di−1‖4 ≤ O(µ4) (5.45)(

E
{
‖si‖2|F i−1

})2 ≤ E
{
‖si‖4|F i−1

}
≤ σ4 (5.46)

after sufficient iterations i ≥ i0.

Proof. Appendix 5.B.

Definition 5.2 (Sets). To simplify the notation in the sequel, we introduce following sets:

G ,

{
w : ‖∇J(w)‖2 ≥ µ

c2

c1

(
1 +

1

π

)}
(5.47)

GC ,

{
w : ‖∇J(w)‖2 < µ

c2

c1

(
1 +

1

π

)}
(5.48)

H ,
{
w : w ∈ GC , λmin

(
∇2J(w)

)
≤ −τ

}
(5.49)

M ,
{
w : w ∈ GC , λmin

(
∇2J(w)

)
> −τ

}
(5.50)

where τ is a small positive parameter, c1 and c2 are constants:

c1 ,
1

2
(1− 2µδ) = O(1) (5.51)

c2 , δσ2/2 = O(1) (5.52)

and 0 < π < 1 is a parameter to be chosen. Note that GC = H ∪M. We also define the

probabilities πGi , Pr {wc,i ∈ G}, πHi , Pr {wc,i ∈ H} and πMi , Pr {wc,i ∈M}. Then for

all i, we have πGi + πHi + πMi = 1.

99



The definitions (5.47)–(5.50) decompose the parameter-space RM into two disjoint sets G
and GC , and further sub-divides GC into H and M. The set G denotes the set all points w

where the norm of the gradient is large, while GC = H ∪M denotes the set of all points

where the norm of the gradient is small, i.e., approximately first-order stationary points.

In a manner similar to related works on the escape from strict-saddle points, we further

decompose the set GC of approximate first-order stationary points into those points w ∈ H
that do have a significant negative eigenvalue, and those in M that do not [59, 60, 144].

Points in the parameter space that have a small gradient norm and no significant negative

eigenvalue are referred to as second-order stationary points, while points in H are known

as strict saddle-points due to the presence of a strictly negative eigenvalue in the Hessian

matrix. In the sequel, we will establish descent for centroids in G in Theorem 5.2 and

centroids inH in Theorem 6.1, and hence the approach of a point inM with high probability

after a polynomial number of iterations in Theorem 6.2. Second-order stationary points are

generally more likely to be “good” minimizers than first-order stationary points, which could

even correspond to local maxima. Furthermore, for a certain class of cost functions, known as

“strict-saddle” functions, second-order stationary points always correspond to local minima

for sufficiently small τ [59].

5.2.3 Evolution of the network centroid

Having established in (5.42), that after sufficient iterations, all agents in the network will

have contracted around the centroid in a small cluster for small step-sizes, we can now

leverage wc,i as a proxy for all wk,i. From Assumption 5.2 and (5.7), we have the following

bound:

J(wc,i) ≤ J(wc,i−1) +∇J(wc,i−1)T (wc,i−wc,i−1) +
δ

2
‖wc,i−wc,i−1‖2 (5.53)

100



From (5.33), we then obtain:

J(wc,i) ≤ J(wc,i−1)− µ‖∇J(wc,i−1)‖2

− µ∇J(wc,i−1)T (di−1 + si)

+ µ2 δ

2
‖∇J(wc,i−1) + di−1 + si‖2 (5.54)

This relation, along with (5.33) and the results from Lemma 5.2, allow us to establish the

following theorem.

Theorem 5.2 (Descent relation). Beginning at wc,i−1 in the large gradient regime G, we

can bound:

E {J(wc,i)|wc,i−1 ∈ G} ≤ E {J(wc,i−1)|wc,i−1 ∈ G} − µ2 c2

π
+
O(µ3)

πGi−1

(5.55)

as long as πGi−1 = Pr {wc,i−1 ∈ G} 6= 0 where the relevant constants are listed in definition 5.2.

On the other hand, beginning at wc,i−1 ∈M, we can bound:

E {J(wc,i)|wc,i−1 ∈M} ≤ E {J(wc,i−1)|wc,i−1 ∈M}+ µ2c2 +
O(µ3)

πMi−1

(5.56)

as long as πMi−1 = Pr {wc,i−1 ∈M} 6= 0.

Proof. Appendix 5.D.

Relation (5.55) guarantees a lower bound on the expected improvement when the gradient

norm at the current iterate is sufficiently large, i.e. wc,i−1 ∈ G is not an approximately

first-order stationary point. On the other hand, when wc,i−1 ∈ M, inequality (5.56) it

establishes an upper bound on the expected ascent. The respective bounds can be balanced

by appropriately choosing π, which will be leveraged in Chapter 6. We are left to treat the

third possibility, namely wc,i−1 ∈ H. In this case, since the norm of the gradient is small, it

is no longer possible to guarantee descent in a single iteration. We shall study the dynamics

in more detail in the sequel.

101



5.2.4 Behavior around stationary points

In the vicinity of saddle-points, the norm of the gradient is not sufficiently large to guarantee

descent at every iteration as indicated by (5.55). Instead, we will study the cumulative

effect of the gradient, as well as perturbations, over several iterations. For this purpose, we

introduce the following second-order condition on the cost functions, which is common in

the literature [1, 59,60].

Assumption 5.5 (Lipschitz Hessians). Each Jk(·) is twice-differentiable with Hessian

∇2Jk(·) and, there exists ρ ≥ 0 such that:

‖∇2Jk(x)−∇2Jk(y)‖ ≤ ρ‖x− y‖ (5.57)

By Jensen’s inequality, this implies that J(·) =
∑N

k=1 pkJk(·) also satisfies:

‖∇2J(x)−∇2J(y)‖ ≤ ρ‖x− y‖ (5.58)

Let i? denote an arbitrary point in time. We use i? in order to emphasize approximately first-

order stationary points, where the norm of the gradient is small. Such first-order stationary

points wc,i? ∈ GC could either be in the set of second-order stationary pointsM or in the set

of strict-saddle points H. Our objective is to show that when wc,i? ∈ H, we can guarantee

descent after several iterations. To this end, starting at i?, we have for i ≥ 0:

wc,i?+i+1 = wc,i?+i−µ∇J(wc,i?+i)− µdi?+i − µ si?+i+1 (5.59)

Subsequent analysis will rely on an auxiliary model, referred to as a short-term model. It

will be seen that this model is more tractable and evolves “close” to the true recursion

under the second-order smoothness condition on the Hessian matrix (5.58) and as long as

the iterates remain close to a stationary point. A similar approach has been introduced and

used to great advantage in the form of a “long-term model” to derive accurate mean-square

102



deviation performance expressions for strongly-convex costs in [1,22,32,146]. The approach

was also used to provide a “quadratic approximation” to establish the ability of stochastic

gradient based algorithms to escape from strict saddle-points in the single-agent case under

i.i.d. perturbations in [59].

For the driving gradient term in (5.59), we have from the mean-value theorem [1]:

∇J(wc,i?+i)−∇J(wc,i?) = H i?+i (wc,i?+i−wc,i?) (5.60)

where

H i?+i ,
∫ 1

0

∇2J ((1− t)wc,i?+i +twc,i?) dt (5.61)

Subtracting (5.59) from wc,i? , we obtain:

wc,i? −wc,i?+i+1 =wc,i? −wc,i?+i +µ∇J(wc,i?+i) + µdi?+i + µ si?+i+1

= (I − µH i?+i) (wc,i? −wc,i?+i) + µ∇J(wc,i?)

+ µdi?+i + µ si?+i+1 (5.62)

We introduce short-hand notation for the deviation:

w̃i?

i , wc,i? −wc,i?+i (5.63)

Note that w̃i?

i denotes the deviation of the network centroid wc,i?+i at time i? + i from the

initial, approximately first-order stationary point wc,i? . Establishing escape from saddle-

points is equivalent to establishing the growth of w̃i?

i whenever wc,i? ∈ H. We hence expect

the deviation to grow over time, but would like to establish that wc,i?+i moves away from

wc,i? in a direction of descent. We can then write more compactly:

w̃i?

i+1 = (I − µH i?+i) w̃
i?

i + µ∇J(wc,i?)

+ µdi?+i + µ si?+i+1 (5.64)

103



The time-varying nature ofH i?+i makes this recursion difficult to study. We hence introduce

the following auxiliary recursion, initialized at w′c,i? = wc,i? , where H i?+i is replaced by

∇2J(wc,i?) and the perturbation term µdi?+i is omitted:

wc,i? −w′c,i?+i+1 =
(
I − µ∇2J(wc,i?)

) (
wc,i? −w′c,i?+i

)
+ µ∇J(wc,i?) + µ si?+i+1 (5.65)

or, more compactly, with w̃′i
i? , wc,i? −w′c,i?+i

w̃′i
?

i+1 =
(
I − µ∇2J(wc,i?)

)
w̃′i

i? + µ∇J(wc,i?) + µ si?+i+1 (5.66)

Of course, this second model is only useful in studying the behavior of the original recur-

sion (5.59) if the iterates generated by both models remain close to each other, which we

shall prove to be true. Specifically, if we write:

w′i?+i+1 = wi?+i+1 + ui?+i+1 (5.67)

then ui?+i+1 will be shown to be negligible in some sense. Results along this line have been

established in the centralized and distributed contexts for strongly-convex costs [1, 22] and

in the centralized setting for strict saddle points [59]. We show here that this conclusion

holds more generally in the vicinity of O(µ)-first-order stationary points. Before establishing

deviation bounds, we establish a short lemma which will be used repeatedly.

Lemma 5.3 (A limiting result). For T, µ, δ > 0 and k ∈ Z+ with µ < 1
δ
, we have:

lim
µ→0

(
(1 + µδ)k

(1− µδ)k−1

)T
µ

= e−Tδ+2kTδ = O(1) (5.68)

Proof. Appendix 5.C.

Lemma 5.4 (Deviation bounds). Suppose Pr {wc,i? ∈ H} 6= 0. Then, the following quanti-

104



ties are conditionally bounded:

E

{∥∥∥w̃i?

i

∥∥∥2

|wc,i? ∈ H
}
≤ O(µ) +

O(µ2)

πHi?
(5.69)

E

{∥∥∥w̃i?

i

∥∥∥3

|wc,i? ∈ H
}
≤ O(µ3/2) +

O(µ3)

πHi?
(5.70)

E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}
≤ O(µ2) +

O(µ4)

πHi?
(5.71)

E

{∥∥∥w̃i?

i − w̃′ii
?
∥∥∥2

|wc,i? ∈ H
}
≤ O(µ2) +

O(µ2)

πHi?
(5.72)

E
{∥∥w̃′ii?∥∥2|wc,i? ∈ H

}
≤ O(µ) +

O(µ2)

πHi?
(5.73)

for i ≤ T
µ

, where T denotes an arbitrary constant that is independent of the step-size µ.

Proof. Appendix 5.E.

These deviation bounds establish that, beginning at a strict-saddle point wc,i? at time i? the

iterates will remain close to wc,i? for the next O(1/µ) iterations. Consequently, the short-

term model will be sufficiently accurate for the next O(1/µ) iterations. We will establish

formally in Chapter 6 that the small-deviation bounds in Lemma 5.4 ensure descent of the

true recursion can be inferred by studying only the evolution of the short-term model, which

is significantly more tractable.

5.3 Application: Robust Regression

Consider a scenario where each agent k in the network observes streaming realizations

{γ(k, i),hk,i} from the linear model γ(k) = hT
kw

o + v(k) where γ(k) denotes scalar ob-

servations and v(k) denotes measurement noise. One common approach for estimating wo

in a distributed setting is via least-mean-square error estimation, resulting in the local cost

functions:

JMSE
k (w) = E

∥∥γ(k)− hT
kw
∥∥2

(5.74)

105



The resulting problem is convex and has been studied extensively in the literature. While

effective under the assumption of Gaussian noise, and similar well-behaved noise conditions,

this approach is susceptible to outliers caused by heavy-tailed distributions for v(k) [130].

This is caused by the fact that the quadratic risk penalizes errors proportionally to their

squared norm, and as such has a tendency to over-correct outliers, even if they are rare.

Several alternative robust cost functions have been suggested in the literature. We consider

two in particular in order to illustrate the advantages of allowing for non-convex costs in the

context of robust estimation, namely the Huber loss QH
k (w;xk) and Tukey’s biweight loss

QB
k (w;xk) [130]. For ease of notation, let e(w) , γ(k)− hT

kw. Then:

QH
k (w;xk) =


1
2
|e(w)|2, for |e(w)| ≤ cH

cH |e(w)| − 1
2
c2
H , for |e(w)| > cH .

(5.75)

QB
k (w;xk) =


c2B
6

(
1−

(
1− |e(w)|2

c2B

)3
)
, for |e(w)| ≤ cB

c2B
6

otherwise

(5.76)

where cH , cB are tuning constants. The Huber cost is merely convex (and not strongly-

convex), while the Tukey loss is non-convex. Both losses satisfy assumptions 5.1–5.4 imposed

in this chapter. In particular, since the Huber risk JH
k (w) has a unique, local minimum,

which also happens to be locally strongly-convex, we can conclude that despite the absence

of strong-convexity, the algorithm will converge to within O(µ) of the global minimum. The

Tukey loss on the other hand, is non-convex, and is therefore a more challenging problem.

The setting for the simulation results is shown in Figures 5.2–5.3.

Performance is illustrated in Fig. 5.4–5.5. We first show the performance of each cost

in the nominal scenario, where v(k) ∼ N (0, σ2
v). We observe that the distributed strategies

outperform the non-cooperative ones, and that despite differences in the rate of convergence,

there is negligible difference in the performance of the mean-square-error, Huber and Tukey

variations. In the presence of outliers, modeled as a bimodal distribution with v(k) ∼
(1− ε)N (0, σ2

v) + εN (10, σ2
v) and ε = 0.1, the performance of the mean-square-error solution

106



Figure 5.2: Graph with N = 20 nodes.

2 4 6 8 10 12 14 16 18 20
Agent index

40

45

50

55

60

65

70

R
eg
re
ss
or
 p
ow

er

Figure 5.3: Regressor power Tr (Rh,k) at each agent.

107



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration ×103

−70

−60

−50

−40

−30

−20

−10

0

10

M
SD

 in
 d
B

Non-cooperative LS
Diffusion LS
Non-cooperative Huber
Diffusion Huber
Non-cooperative Tukey
Diffusion Tukey

Figure 5.4: Performance in the nominal case.

dramatically deteriorates, as is to be expected in the presence of deviations from the nominal

model.

5.A Proof of Lemma 5.1

Starting from (5.36), taking norms of both sides and computing the fourth power, we find:

∥∥VT
RWi

∥∥4
=
∥∥JT

ε VT
RWi−1 +µJT

ε VT
Rĝ(Wi−1)

∥∥4

≤
∥∥JT

ε

∥∥4∥∥VT
RWi−1 +µVT

Rĝ(Wi−1)
∥∥4

(a)

≤
∥∥JT

ε

∥∥∥∥VT
RWi−1

∥∥4
+ µ4

∥∥JT
ε

∥∥4

(1− ‖JT
ε ‖)3

∥∥VT
Rĝ(Wi−1)

∥∥4
(5.77)

where step (a) follows from convexity of ‖ · ‖4 and Jensen’s inequality, i.e. ‖a+ b‖4 =

1
α3‖a‖4 + 1

(1−α)3
‖b‖4. To begin with, we study the stochastic gradient term in some greater

108



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration ×103

−50

−40

−30

−20

−10

0

10

M
SD

 in
 d

B

Non-cooperative LS
Diffusion LS
Non-cooperative Huber
Diffusion Huber
Non-cooperative Tukey
Diffusion Tukey

Figure 5.5: Performance in the corrupted case.

detail. We have:

∥∥VT
Rĝ(Wi−1)

∥∥4
=
∥∥VT

Rg(Wi−1) + VT
Rcol {sk,i(wk,i−1)}

∥∥4

≤ 8
∥∥VT

Rg(Wi−1)
∥∥4

+ 8
∥∥VT

Rcol {sk,i(wk,i−1)}
∥∥4

(5.78)

For the first term we have:

8
∥∥VT

Rg(Wi−1)
∥∥4 (a)

= 8
∥∥VT

Rg(Wi−1)−
(
1pT ⊗ I

)
g(Wi−1)

∥∥4

(b)

≤ 8
∥∥VT

R

∥∥4∥∥g(Wi−1)−
(
1pT ⊗ I

)
g(Wi−1)

∥∥4

(c)
= 8
∥∥VT

R

∥∥4

(
N∑
k=1

‖∇Jk(wk,i−1)−∇J(wk,i−1)‖2

)2

(5.9)

≤ 8
∥∥VT

R

∥∥4

(
N∑
k=1

G2

)2

≤ 8
∥∥VT

R

∥∥4
N2G4 (5.79)

where (a) follows from the fact that (5.30) implies V T
R 1 = 0, (b) follows from the sub-

multiplicity of norms and (c) expands ‖ · ‖2. For the gradient noise term we find under

109



expectation:

8E
∥∥VT

Rcol {sk,i(wk,i−1)}
∥∥4

= 8
∥∥VT

R

∥∥4
E ‖col {sk,i(wk,i−1)}‖4

= 8
∥∥VT

R

∥∥4
E

(
N∑
k=1

‖sk,i(wk,i−1)‖2

)2

(a)

≤ 8
∥∥VT

R

∥∥4
N

N∑
k=1

E ‖sk,i(wk,i−1)‖4

(5.20b)

≤ 8
∥∥VT

R

∥∥4
N

N∑
k=1

σ4 = 8
∥∥VT

R

∥∥4
N2σ4 (5.80)

where (a) follows from Cauchy-Schwarz, which implies
(∑N

k=1 xk

)2

≤ N
∑N

k=1 x
2
k. Plugging

these relations back into (5.77), we obtain:

E
∥∥VT

RWi

∥∥4 ≤
∥∥JT

ε

∥∥E∥∥VT
RWi−1

∥∥4
+ µ4 8

∥∥JT
ε

∥∥4

(1− ‖JT
ε ‖)3‖VT

R‖
4
N2
(
G4 + σ4

)
(5.81)

We can iterate, starting from i = 0, to obtain:

E
∥∥VT

RWi

∥∥4 ≤
∥∥JT

ε

∥∥iE∥∥VT
R W0

∥∥4
+ µ4 8

∥∥JT
ε

∥∥4

(1− ‖JT
ε ‖)3‖VT

R‖
4
N2
(
G4 + σ4

) i∑
n=1

‖JT
ε ‖n−1

(a)

≤
∥∥JT

ε

∥∥iE∥∥VT
R W0

∥∥4
+ µ4 8

∥∥JT
ε

∥∥4

(1− ‖JT
ε ‖)4‖VT

R‖
4
N2
(
G4 + σ4

)
(b)

≤ o(µ4) + µ4 8
∥∥JT

ε

∥∥4

(1− ‖JT
ε ‖)4‖VT

R‖
4
N2
(
G4 + σ4

)
(5.82)

where (a) follows from
∑i

n=1 ‖JT
ε ‖n−1 ≤ ∑∞

n=1 ‖JT
ε ‖n−1 =

(
1− ‖JT

ε ‖
)−1

, and (b) holds

whenever:

∥∥JT
ε

∥∥iE∥∥VT
R W0

∥∥4 ≤ o(µ4)⇐⇒
∥∥JT

ε

∥∥i ≤ o(µ4)

⇐⇒ i log
(∥∥JT

ε

∥∥) ≤ log
(
o(µ4)

)
⇐⇒ i ≥ log (o(µ4))

log (‖JT
ε ‖)

(5.83)

110



Finally, we have from (5.37) under (5.83):

E
∥∥Wi−

(
1pT ⊗ I

)
Wi

∥∥4
= E

∥∥VLVT
RWi

∥∥4

(a)

≤ ‖VL‖4
E
∥∥VT

RWi

∥∥4

(5.82)

≤ µ4‖VL‖4

∥∥JT
ε

∥∥4

(1− ‖JT
ε ‖)4‖VT

R‖
4
N2
(
G4 + σ4

)
+ o(µ4) (5.84)

where (a) follows from the sub-multiplicative property of norms.We conclude that all agents

in the network will contract around the centroid vector
(
1pT ⊗ I

)
Wi after sufficient itera-

tions.

5.B Proof of Lemma 5.2

We begin by studying the perturbation term si. We have:

E
{
‖si‖4|F i−1

}
= E


∥∥∥∥∥

N∑
k=1

pk

(
∇̂Jk(wk,i−1)−∇Jk(wk,i−1)

)∥∥∥∥∥
4

|F i−1


(a)

≤
N∑
k=1

pk E

{∥∥∥∇̂Jk(wk,i−1)−∇Jk(wk,i−1)
∥∥∥4

|F i−1

}
(b)

≤
N∑
k=1

pkσ
4 = σ4 (5.85)

111



where (a) follows from
∑N

k=1 pk = 1 and Jensen’s inequality and (b) follows from the fourth-

order moment condition in Assumption 5.4. For the second perturbation term, we have

‖di−1‖4 =

∥∥∥∥∥
N∑
k=1

pk (∇Jk(wk,i−1)−∇Jk(wc,i−1))

∥∥∥∥∥
4

(a)

≤
N∑
k=1

pk‖∇Jk(wk,i−1)−∇Jk(wc,i−1)‖4

(b)

≤ δ4

N∑
k=1

pk‖wk,i−1−wc,i−1‖4

≤ δ4pmax

N∑
k=1

‖wk,i−1−wc,i−1‖4

≤ δ4pmax

(
N∑
k=1

‖wk,i−1−wc,i−1‖2

)2

= δ4pmax‖Wi−1−Wc,i−1‖4 (5.86)

where (a) again follows from Jensen’s inequality, (b) follows from the Lipschitz gradient

condition in Assumption 5.2, and we introduced Wc,i−1 , 1 ⊗wc,i−1. Result (5.45) follows

by applying (5.84) to (5.86).

5.C Proof of Lemma 5.3

For the natural logarithm of the expression, we have:

log

(
(1 + µδ)k

(1− µδ)k−1

)T
µ

=
T

µ
(k log (1 + µδ)− (k − 1) log (1− µδ)) (5.87)

112



Since the logarithm is continuous over R+, we have:

log

lim
µ→0

(
(1 + µδ)k

(1− µδ)k−1

)T
µ


= lim

µ→0
log

( (1 + µδ)k

(1− µδ)k−1

)T
µ


= lim

µ→0

T

µ
(k log (1 + µδ)− (k − 1) log (1− µδ))

= kT lim
µ→0

log (1 + µδ)

µ
− (k − 1)T lim

µ→0

log (1− µδ)
µ

(5.88)

We examine the fraction inside the limit more closely. Since both the numerator and de-

nominator of the fraction approach zero as µ→ 0, we apply L’Hôpital’s rule:

lim
µ→0

log (1± µδ)
µ

= lim
µ→0

±δ
1± µδ = ±δ (5.89)

Hence, we find:

lim
µ→0

(
(1 + µδ)k

(1− µδ)k−1

)T
µ

= ekTδ+(k−1)Tδ = e−Tδ+2kTδ (5.90)

113



5.D Proof of Theorem 5.2

We begin with (5.54) and take expectations conditioned on Wi−1 to obtain:

E {J(wc,i)|Wi−1}
(a)

≤ J(wc,i−1)− µ‖∇J(wc,i−1)‖2 − µ∇J(wc,i−1)Tdi−1

+ µ2 δ

2
‖∇J(wc,i−1) + di−1‖2 + µ2 δ

2
E
{
‖si‖2|Wi−1

}
(b)

≤ J(wc,i−1)− µ‖∇J(wc,i−1)‖2 +
µ

2
‖∇J(wc,i−1)‖2

+
µ

2
‖di−1‖2 + µ2δ‖∇J(wc,i−1)‖2 + µ2δ‖di−1‖2

+ µ2 δ

2
E
{
‖si‖2|Wi−1

}
(c)

≤ J(wc,i−1)− µ

2
(1− 2µδ) ‖∇J(wc,i−1)‖2

+
µ

2
(1 + 2µδ) ‖di−1‖2 + µ2 δ

2
σ2 (5.91)

where cross-terms were removed in (a) due to the conditional zero-mean condition (5.20a),

(b) follows from ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 and from −2aTb ≤ ‖a‖2 + ‖b‖2 and (c) is a result

of grouping terms and Lemma 5.2.

Note that (5.91) continues to be random due to the conditioning onWi−1, but that it holds

for every choice of Wi−1 with probability 1. Furthermore, since wc,i−1 =
∑N

k=1 pkwk,i−1, the

centroid wc,i−1 is deterministic conditioned on Wi−1. As such, the event wc,i−1 ∈ G is

deterministic conditioned on Wi−1, and (5.91) holds for every wc,i−1 ∈ G. We can hence take

114



expectations over wc,i−1 ∈ G and apply Lemma 5.1 to find:

E {J(wc,i)|wc,i−1 ∈ G} ≤ E {J(wc,i−1)|wc,i−1 ∈ G}

− µ

2
(1− 2µδ)E

{
‖∇J(wc,i−1)‖2|wc,i−1 ∈ G

}
+
µ

2
(1 + 2µδ)E

{
‖di−1‖2|wc,i−1 ∈ G

}
+ µ2 δ

2
σ2

(a)

≤ E {J(wc,i−1)|wc,i−1 ∈ G} − µ2c1
c2

c1

(
1 +

1

π

)
+O(µ)E

{
‖di−1‖2|wc,i−1 ∈ G

}
+ µ2c2

(b)

≤ E {J(wc,i−1)|wc,i−1 ∈ G} − µ2 c2

π

+
µ

2
(1 + 2µδ)E

{
‖di−1‖2|wc,i−1 ∈ G

}
(5.92)

In step (a) we applied definition 5.2, and in particular, that from (5.47) ‖∇J(wc,i−1)‖2 ≥
µ c2
c1

(
1 + 1

π

)
whenever wc,i−1 ∈ G, which implies:

E
{
‖∇J(wc,i−1)‖2|wc,i−1 ∈ G

}
≥ µ

c2

c1

(
1 +

1

π

)
(5.93)

We also collected constants into c1 and c2 defined in (5.51)–(5.52) for brevity. Step (b) is

obtained by grouping terms. Note that from lemma 5.2, we have a bound on E ‖di−1‖2,

but not on the partial expectation conditioned over wc,i−1 ∈ G. We can decompose the full

expectation:

E
{
‖di−1‖2} = E

{
‖di−1‖2|wc,i−1 ∈ G

}
· πGi−1

+ E
{
‖di−1‖2|wc,i−1 ∈ GC

}
· πGCi−1

(5.45)

≤ O(µ2) (5.94)

which implies

E
{
‖di−1‖2|wc,i−1 ∈ G

}
≤ O(µ2)

πGi−1

(5.95)

115



so that we obtain for (5.92):

E {J(wc,i)|wc,i−1 ∈ G} ≤ E {J(wc,i−1)|wc,i−1 ∈ G} − µ2 c2

π
+
O(µ3)

πGi−1

(5.96)

Similarly:

E {J(wc,i)|wc,i−1 ∈M} ≤ E {J(wc,i−1)|wc,i−1 ∈M}

− µ

2
(1− 2µδ)E

{
‖∇J(wc,i−1)‖2|wc,i−1 ∈M

}
+
µ

2
(1 + 2µδ)E

{
‖di−1‖2|wc,i−1 ∈M

}
+ µ2 δ

2
σ2

(a)

≤ E {J(wc,i−1)|wc,i−1 ∈M}+ µ2c2

+
µ

2
(1 + 2µδ)E

{
‖di−1‖2|wc,i−1 ∈M

}
(b)

≤ E {J(wc,i−1)|wc,i−1 ∈M}+ µ2c2 +
O(µ3)

πMi−1

(5.97)

where (a) follows from the fact that ‖∇J(wc,i−1)‖2 ≥ 0 with probability 1 and (b) made use

of the same argument that led to (5.96).

116



5.E Proof of Lemma 5.4

We refer to (5.64). Suppose i ≤ T
µ

, where T is an arbitrary constant independent of µ. We

then have for i ≥ 0:

E

{∥∥∥w̃i?

i+1

∥∥∥2

|F i?+i

}
(5.64)
= E

{∥∥∥ (I − µH i?+i) w̃
i?

i + µ∇J(wc,i?)

+ µdi?+i + µ si?+i+1

∥∥∥2

|F i?+i

}
(a)
=
∥∥∥(I − µH i?+i) w̃

i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥2

+ µ2E
{
‖si?+i+1‖2|F i?+i

}
(b)
=

1

1− µδ
∥∥∥(I − µH i?+i) w̃

i?

i

∥∥∥2

+
µ

δ
‖∇J(wc,i?) + di?+i‖2

+ µ2E
{
‖si?+i+1‖2|F i?+i

}
(c)
=

1

1− µδ
∥∥∥(I − µH i?+i) w̃

i?

i

∥∥∥2

+ 2
µ

δ
‖∇J(wc,i?)‖2

+ 2
µ

δ
‖di?+i‖2 + µ2E

{
‖si?+i+1‖2|F i?+i

}
(d)

≤ (1 + µδ)2

1− µδ
∥∥∥w̃i?

i

∥∥∥2

+ 2
µ

δ
‖∇J(wc,i?)‖2

+ 2
µ

δ
‖di?+i‖2 + µ2E

{
‖si?+i+1‖2|F i?+i

}
(5.98)

where (a) follows from the conditional zero-mean property of the gradient noise term in

Assumption 5.4, (b) follows from Jensen’s inequality

‖a+ b‖2 ≤ 1

α
‖a‖2 +

1

1− α‖b‖
2 (5.99)

with α = µδ < 1 and (c) follows from the same inequality with α = 1
2
. Step (d) follows

from the sub-multiplicative property of norms along with −δI ≤ ∇2J(wc,i?) ≤ δI, which

follows from the Lipschitz gradient condition in Assumption 5.2. Since wc,i? is deterministic

117



conditioned on F i?+i we can now take expectations over wc,i? ∈ H to obtain:

E

{∥∥∥w̃i?

i+1

∥∥∥2

|wc,i? ∈ H
}

≤ (1 + µδ)2

1− µδ E

{∥∥∥w̃i?

i

∥∥∥2

|wc,i? ∈ H
}

+ 2
µ

δ
E
{
‖di?+i‖2|wc,i? ∈ H

}
+ 2

µ

δ
E
{
‖∇J(wc,i?)‖2|wc,i? ∈ H

}
+ µ2E

{
‖si?+i+1‖2|wc,i? ∈ H

}
(a)

≤ (1 + µδ)2

1− µδ E

{∥∥∥w̃i?

i

∥∥∥2

|wc,i? ∈ H
}

+ 2
µ

δ
· O(µ2)

πHi?

+ 2
µ

δ
·O(µ) +O(µ2)

≤ (1 + µδ)2

1− µδ E

{∥∥∥w̃i?

i

∥∥∥2

|wc,i? ∈ H
}

+O(µ2) +
O(µ3)

πHi?
(5.100)

where (a) follows from the perturbation bounds in Lemma 5.2 and the starting assumption

that wc,i? is an O(µ)-square stationary point. Note that, at time i = 0, we have:

w̃i?

0 = wc,i? −wc,i?+0 = 0 (5.101)

118



and hence the initial deviation is zero, by definition. Iterating, starting at i = 0 yields:

E

{∥∥∥w̃i?

i

∥∥∥2

|wc,i? ∈ H
}

≤
(

i−1∑
n=0

(
(1 + µδ)2

1− µδ

)n)(
O(µ2) +

O(µ3)

πHi?

)

=
1−

(
(1+µδ)2

1−µδ

)i
1− (1+µδ)2

1−µδ

(
O(µ2) +

O(µ3)

πHi?

)

=

((
(1+µδ)2

1−µδ

)i
− 1

)
(1− µδ)

1 + 2µδ + µ2δ2 − 1 + µδ

(
O(µ2) +

O(µ3)

πHi?

)

=

((
(1+µδ)2

1−µδ

)i
− 1

)
(1− µδ)

3δ + µδ2

(
O(µ) +

O(µ2)

πHi?

)

≤

((
(1+µδ)2

1−µδ

)T
µ − 1

)
(1− µδ)

3δ + µδ2

(
O(µ) +

O(µ2)

πHi?

)
=O(µ) +

O(µ2)

πHi?
(5.102)

where the last line follows from Lemma 5.3 after noting that:

((
(1+µδ)2

1−µδ

)T
µ − 1

)
(1− µδ)

3δ + µδ2

≤

((
(1+µδ)2

1−µδ

)T
µ − 1

)
(1− µδ)

3δ

≤

(
(1+µδ)2

1−µδ

)T
µ −

(
(1+µδ)2

1−µδ

)T
µ
µδ − 1 + µδ

3δ

≤

(
(1+µδ)2

1−µδ

)T
µ − 1

3δ
(5.103)

119



This establishes (5.69). We proceed to establish a bound on the fourth-order moment. Using

the inequality [1]:

‖a+ b‖4 ≤ ‖a‖4 + 3‖b‖4 + 8‖a‖2‖b‖2 + 4‖a‖2
(
aTb
)

(5.104)

we have:

E

{∥∥∥w̃i?

i+1

∥∥∥4

|F i?+i

}
≤
∥∥∥(I − µH i?+i) w̃

i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥4

+ 3µ4E
{
‖si?+i+1‖4 |F i?+i

}
+ 8µ2

∥∥∥(I − µH i?+i) w̃
i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥2

× E
{
‖si?+i+1‖2 |F i?+i

}
+ 4µ

∥∥∥(I − µH i?+i) w̃
i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥2

×
(

(I − µH i?+i) w̃
i?

i + µ∇J(wc,i?) + µdi?+i

)T
× (E {si?+i+1 |F i?+1})

(a)
=
∥∥∥(I − µH i?+i) w̃

i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥4

+ 3µ4E
{
‖si?+i+1‖4 |F i?+i

}
+ 8µ2

∥∥∥(I − µH i?+i) w̃
i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥2

× E
{
‖si?+i+1‖2 |F i?+i

}
(b)
=
∥∥∥(I − µH i?+i) w̃

i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥4

+O(µ4)

+
∥∥∥(I − µH i?+i) w̃

i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥2

O(µ2)

(c)
=
∥∥∥(I − µH i?+i) w̃

i?

i + µ∇J(wc,i?) + µdi?+i

∥∥∥4

+O(µ4)

+
(∥∥∥(I − µH i?+i) w̃

i?

i

∥∥∥2

+ µ2‖∇J(wc,i?)‖2 + µ2‖di?+i‖2
)
O(µ2) (5.105)

120



where in step (a) we dropped cross-terms due to the conditional zero-mean property of the

gradient noise in Assumption 5.4, step (b) follows from the fourth-order conditions on the

gradient noise in Assumption 5.4 along with the perturbation bounds in Lemma 5.2, and

(c) follows from Jensen’s inequality, i.e. ‖a+ b+ c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2. Taking

expectations over wc,i? ∈ H on both sides and collecting constant factors along with µ in

appropriate O(·) terms:

E

{∥∥∥w̃i?

i+1

∥∥∥4

|wc,i? ∈ H
}

≤ E
{∥∥∥ (I − µH i?+i) w̃

i?

i + µ∇J(wc,i?)

+ µdi?+i

∥∥∥4

|wc,i? ∈ H
}

+O(µ4)

+
(
E

{∥∥∥(I − µH i?+i) w̃
i?

i

∥∥∥2

|wc,i? ∈ H
}

+ µ2E
{
‖∇J(wc,i?)‖2|wc,i? ∈ H

}
+ µ2E

{
‖di?+i‖2|wc,i? ∈ H

})
O(µ2)

≤ E
{∥∥∥ (I − µH i?+i) w̃

i?

i + µ∇J(wc,i?)

+ µdi?+i

∥∥∥4

|wc,i? ∈ H
}

+O(µ4)

+
(

(1 + µδ)2
E
{∥∥w̃i

i?

∥∥2|wc,i? ∈ H
}

+ µ2E
{
‖∇J(wc,i?)‖2|wc,i? ∈ H

}
+ µ2E

{
‖di?+i‖2|wc,i? ∈ H

})
O(µ2)

≤ E
{∥∥∥ (I − µH i?+i) w̃

i?

i + µ∇J(wc,i?)

+ µdi?+i

∥∥∥4

|wc,i? ∈ H
}

+O(µ4)

+

(
(1 + µδ)2O(µ) + µ2O(µ) + µ2O(µ2)

πHi?

)
O(µ2)

= E

{∥∥∥ (I − µH i?+i) w̃
i?

i + µ∇J(wc,i?)

+ µdi?+i

∥∥∥4

|wc,i? ∈ H
}

+O(µ3) +
O(µ6)

πHi?
(5.106)

121



Finally, from Jensen’s inequality, we find for 0 < α < 1:

‖a+ b‖4 =
1

α3
‖a‖4 +

1

(1− α)3 ‖b‖
4 (5.107)

and hence for α = 1− µδ and 0 < µ < 1
δ
:

E

{∥∥∥ (I − µH i?+i) w̃
i?

i + µ∇J(wc,i?)

+ µdi?+i

∥∥∥4

|wc,i? ∈ H
}

(5.107)

≤ (1 + µδ)4

(1− µδ)3 E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}

+
µ4

µ3δ3
E
{
‖∇J(wc,i?) + di?+i‖4|wc,i? ∈ H

}
(5.107)

≤ (1 + µδ)4

(1− µδ)3 E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}

+ 8
µ

δ3

(
E
{
‖∇J(wc,i?)‖4|wc,i? ∈ H

}
+ E

{
‖di?+i‖4|wc,i? ∈ H

})
≤ (1 + µδ)4

(1− µδ)3 E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}

+ 8
µ

δ3

(
O(µ2) +

O(µ4)

πHi

)
≤ (1 + µδ)4

(1− µδ)3 E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}

+O(µ3) +
O(µ5)

πHi
(5.108)

Hence,

E

{∥∥∥w̃i?

i+1

∥∥∥4

|wc,i? ∈ H
}

≤ (1 + µδ)4

(1− µδ)3 E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}

+O(µ3) +
O(µ5)

πHi
(5.109)

122



Recall again that w̃i?

0 = 0 and therefore iterating yields:

E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}

≤
(

i−1∑
n=0

(
(1 + µδ)4

(1− µδ)3

)n)(
O(µ3) +

O(µ5)

πHi

)

=
1−

(
(1+µδ)4

(1−µδ)3

)i
1− (1+µδ)4

(1−µδ)3

(
O(µ3) +

O(µ5)

πHi

)

=

((
(1+µδ)4

(1−µδ)3

)i
− 1

)
(1− µδ)3

(1 + µδ)4 − (1− µδ)3

(
O(µ3) +

O(µ5)

πHi

)

≤

(
(1+µδ)4

(1−µδ)3

)i
− 1

(1 + µδ)4 − (1− µδ)3

(
O(µ3) +

O(µ5)

πHi

)
(a)

≤

(
(1+µδ)4

(1−µδ)3

)i
− 1

O(µ)

(
O(µ3) +

O(µ5)

πHi

)

=

((1 + µδ)4

(1− µδ)3

)i

− 1

O(µ2)

≤

((1 + µδ)4

(1− µδ)3

)T
µ

− 1

(O(µ2) +
O(µ4)

πHi

)

≤O(µ2) +
O(µ4)

πHi
(5.110)

where in (a) we expanded:

(1 + µδ)4 − (1− µδ)3

= 1 + 4µδ +O(µ2)− 1 + 3µδ −O(µ2) = O(µ) (5.111)

123



and the last step follows from Lemma 5.3. This establishes (5.71). Eq. (5.70) then follows

from Jensen’s inequality via:

E

{∥∥∥w̃i?

i

∥∥∥3

|wc,i? ∈ H
}

≤
(
E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
})3/4

≤
(
O(µ2) +

O(µ4)

πHi?

)3/4

=O(µ3/2) +
O(µ3)

(πHi? )
4/3

≤O(µ3/2) +
O(µ3)

πHi?
(5.112)

We now study the difference between the short-term model (5.66) and the true recur-

sion (5.64). We have:

wc,i?+i+1−w′c,i?+i+1

= − w̃i?

i+1 + w̃′i
?

i+1

= − (I − µH i?+i) w̃
i?

i − µ∇J(wc,i?)− µdi?+i − µ si?+i+1

+
(
I − µ∇2J(wc,i?)

)
w̃′i

?

i + µ∇J(wc,i?) + µ si?+i+1

= − (I − µH i?+i) w̃
i?

i − µdi?+i +
(
I − µ∇2J(wc,i?)

)
w̃′i

?

i

=
(
I − µ∇2J(wc,i?)

) (
wc,i?+i−w′c,i?+i

)
− µdi?+i

+ µ
(
H i?+i −∇2J(wc,i?)

)
w̃i?

i (5.113)

124



Before proceeding, note that the difference between the Hessians in the driving term can be

bounded as:

∥∥∇2J(wc,i?)−H i?+i

∥∥
=

∥∥∥∥∇2J(wc,i?)−
∫ 1

0

∇2J ((1− t)wc,i?+i +twc,i?) dt

∥∥∥∥
=

∥∥∥∥∫ 1

0

(
∇2J(wc,i?)−∇2J ((1− t)wc,i?+i +twc,i?)

)
dt

∥∥∥∥
(a)

≤
∫ 1

0

∥∥∇2J(wc,i?)−∇2J ((1− t)wc,i?+i +twc,i?)
∥∥ dt

(b)

≤ ρ
∫ 1

0

‖(1− t)wc,i? −(1− t)wc,i?+i‖ dt

= ρ
∥∥∥w̃i?

i

∥∥∥∫ 1

0

(1− t)dt =
ρ

2

∥∥∥w̃i?

i

∥∥∥ (5.114)

where (a) follows Jensen’s inequality and (b) follows form the Lipschitz Hessian assump-

tion 5.5. Returning to (5.113) and taking norms yields:

‖wc,i?+i+1−w′c,i?+i+1 ‖2

=
∥∥∥ (I − µ∇2J(wc,i?)

) (
wc,i?+i−w′c,i?+i

)
− µdi?+i + µ

(
H i?+i −∇2J(wc,i?)

)
w̃i?

i

∥∥∥2

(a)

≤ 1

1− µδ
∥∥(I − µ∇2J(wc,i?)

) (
wc,i?+i−w′c,i?+i

)∥∥2

+
µ2

µδ

∥∥∥di?+i +
(
H i?+i −∇2J(wc,i?)

)
w̃i?

i

∥∥∥2

(b)

≤ 1

1− µδ
∥∥(I − µ∇2J(wc,i?)

) (
wc,i?+i−w′c,i?+i

)∥∥2

+ 2
µ

δ

(
‖di?+i‖2 +

∥∥∥(H i?+i −∇2J(wc,i?)
)
w̃i?

i

∥∥∥2
)

(5.114)

≤ (1 + µδ)2

1− µδ
∥∥wc,i?+i−w′c,i?+i

∥∥2

+ 2
µ

δ

(
‖di?+i‖2 +

ρ

2

∥∥∥w̃i?

i

∥∥∥4
)

(5.115)

125



where (a) again follows from Jensen’s inequality (5.99) with α = 1−µδ and (b) follows from

the same inequality with α = 1
2
. Taking expectations over wc,i? ∈ H yields:

E
{
‖wc,i?+i+1−w′c,i?+i+1 ‖2|wc,i? ∈ H

}
≤ (1 + µδ)2

1− µδ E
{∥∥wc,i?+i−w′c,i?+i

∥∥2|wc,i? ∈ H
}

+ 2
µ

δ
E
{
‖di?+i‖2 |wc,i? ∈ H

}
+
ρµ

δ
E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}

(a)

≤ (1 + µδ)2

1− µδ E
∥∥wc,i?+i−w′c,i?+i

∥∥2
+O(µ3) +

O(µ3)

πHi?
(5.116)

where (a) follows from the bound on the network disagreement in Lemma 5.4.

Since both the true and the short-term model are initialized atwc,i? , we havewc,i?+0−w′c,i?+0 =

0. Iterating and applying the same argument as above leads to:

E ‖wc,i?+i+1−w′c,i?+i+1 ‖2 ≤ O(µ2) +
O(µ2)

πHi?
(5.117)

which is (5.72).

126



CHAPTER 6

Decentralized Non-Convex Learning — Escape from

Saddle-Points

The diffusion strategy for distributed learning from streaming data employs local stochastic

gradient updates along with exchange of iterates over neighborhoods. In Chapter 5 we estab-

lished that agents cluster around a network centroid and proceeded to study the dynamics of

this point. We established expected descent in non-convex environments in the large-gradient

regime and introduced a short-term model to examine the dynamics over finite-time hori-

zons. Using this model, we establish in this chapter that the diffusion strategy is able to

escape from strict saddle-points in O(1/µ) iterations; it is also able to return approximately

second-order stationary points in a polynomial number of iterations. Relative to prior works

on the polynomial escape from saddle-points, most of which focus on centralized perturbed or

stochastic gradient descent, our approach requires less restrictive conditions on the gradient

noise process. The materials in this chapter are based on [71].

6.1 Introduction

We consider a network of N agents. Each agent k is equipped with a local, stochastic cost of

the form Jk(w) = ExQk(w;xk), where w ∈ RM denotes a parameter vector and xk denotes

random data. In Chapter 5, we consider a global optimization problem of the form:

min
w
J(w), where J(w) ,

N∑
k=1

pkJk(w) (6.1)

127



where the weights pk are a function of the combination weights a`k and will be specified

further below in (6.4).

Solutions to such problems via distributed strategies can be pursued through a variety of

algorithms, including those of the consensus and diffusion type [1, 26–31]. In Chapter 5, we

studied the diffusion strategy strategy due to its proven enhanced performance in adaptive

environments in response to streaming data and drifting conditions [1, 147]. The strategy

takes the form:

φk,i = wk,i−1−µ∇̂Jk(wk,i−1) (6.2a)

wk,i =
N∑
`=1

a`kφ`,i (6.2b)

Note that the gradient step (6.2a) employs a stochastic gradient approximation ∇̂Jk(wk,i−1),

rather than the true gradient ∇Jk(wk,i−1). The random approximation of the true gradient

based on sampled data introduces persistent gradient noise, which seeps into the evolution of

the algorithm. A commonly employed construction is ∇̂Jk(wk,i−1) = ∇Qk(wk,i−1;xk); nev-

ertheless, we consider general stochastic gradient approximations ∇̂Jk(wk,i−1) under suitable

conditions on the induced gradient noise process (Assumptions 6.4 and 6.7 further ahead).

Prior works have studied the dynamics of the diffusion strategy (6.2a)–(6.2b) and examined

the implications of the gradient noise term in the strongly-convex setting [1,27,146]. In par-

ticular, it has been shown that despite the presence of gradient noise, the iterates wk,i will

approach the global solution w? , arg minw J(w) to the problem (6.1) in the mean-square-

error sense, namely it will hold that lim supi→∞E ‖w? −wk,i ‖2 = O(µ).

In Chapter 5 we showed that many of the desirable properties of the diffusion algorithm

continue to hold in the more challenging non-convex setting. We established that all agents

will cluster around a common network centroid after sufficient iterations and established

expected descent of the network centroid in the large-gradient regime. In this part of the

work we establish that the diffusion strategy is able to escape strict-saddle points and return

second-order stationary points in polynomial time.

128



6.1.1 Related Works

A general discussion on decentralized algorithms for optimization and learning can be found

in Chapter 5. In this section, we focus on works studying the ability of algorithms to escape

strict saddle-points and reach second-order stationary points, which is the focus of this

part. The desire to obtain guarantees for the escape from saddle-points is motivated by the

observation that in many problems of interest, such as neural networks, saddle-points can

correspond to bottlenecks of the optimization problem. As such, guarantees of convergence

to first-order stationary points, i.e., points where the norm of the gradient is small, need

not be sufficient to establish good performance. For this reason, there has been interest in

the guarantee of convergence to second-order stationary points. Approximate second-order

stationary points, like first-order stationary points, are required to have a small gradient

norm, but are also restricted in terms of the smallest eigenvalues of their Hessian matrices.

Works that study the ability of gradient descent algorithms to escape strict saddle-points

can broadly be classified into two approaches. The first class is based on the fact that there

is at least one direction of descent at every saddle-point and leverage either second-order

information [144] or first-order strategies for identifying a negative-curvature direction [135–

137] to identify the descent direction. Our work falls into a second class of strategies, which

exploit the fact that strict saddle-points (defined later) are unstable in the sense that small

perturbations allow for the iterates to escape from the saddle point almost surely. Along these

lines, it has been shown in [133] that under an appropriately chosen random initialization

scheme, the gradient descent algorithm converges to minimizers almost surely. The work [61]

further leveraged this fact to establish that distributed gradient descent with appropriately

chosen initialization escapes saddle points. When subjected to persistent, but diminishing

perturbations, known as annealing, asymptotic almost sure convergence to global minimizers

of gradient descent-type algorithms has also been established in the centralized [132] and

more recently in the distributed setting [140]. All these useful results, while powerful in

theory, still do not provide a guarantee that the procedures are efficient in the sense that they

would return accurate solutions after a finite number of iterations. Actually, despite the fact

129



that gradient descent with random initialization escapes saddle-points almost surely [133],

it has been established that this process can take exponentially long [148], rendering the

procedure impractical.

These observations have sparked interest in the design of methods that have the ability

to escape saddle-points efficiently, where efficiency is loosely defined as yielding success in

polynomial, rather than exponential time. The authors in [59] add persistent, i.i.d. per-

turbations to the exact gradient descent algorithm and establish polynomial escape from

saddle-points, while the work [60] adds perturbations only when the presence of a saddle-

point is detected. It is important to note that in most of these works, perturbations or

random initializations are selected and introduced with the explicit purpose of allowing the

algorithm to escape from unstable stationary points. For example, random initialization is

followed by exact gradient updates in the works [61, 133], while the perturbations in [60]

are applied only when a saddle-point is detected via the norm of the gradient. All of these

techniques still require knowledge of the exact gradient. While the authors of [59] consider

persistent gradient perturbations, these are nevertheless assumed to be independently and

identically distributed.

Motivated by these considerations, in this chapter, we focus on implementations that

employ stochastic gradient approximations and constant step-sizes. This is driven by the

fact that computation of the exact gradients ∇Jk(·) is generally infeasible in practice because

(a) data may be streaming in, making it impossible to compute∇Exk Qk(·;xk) in the absence

of knowledge about the distribution of the data or (b) the data set, while available as a batch,

may be so large that efficient computation of the full gradient is infeasible. As such, the

exact gradient will need to be replaced by an approximate stochastic gradient, which ends

up introducing in a natural manner some form of gradient noise into the operation of the

algorithm; this noise is the difference between the true gradient and its approximation. The

gradient noise seeps into the operation of the algorithm continually and becomes coupled

with the evolution of the iterates, resulting in perturbations that are neither identically

nor independently distributed over time. For instance, the presence of the gradient noise

process complicates the dynamics of the iterate evolution relative to the centralized recursions

130



considered in [59].

There have been some recent works that study stochastic gradient scenarios as well.

However, these methods alter the gradient updates in specific ways or require the gradient

noise to satisfy particular conditions. For example, the work [139] proposes the addition of

Gaussian noise to the naturally occurring gradient noise, while the authors of [134] leverage

alternating step-sizes. The works [135–137] introduce an intermediate negative-curvature-

search step. All of these works alter the traditional stochastic gradient algorithm in order to

ensure efficient escape from saddle-points. The work [138] studies the traditional stochastic

gradient algorithm under a dispersive noise assumption.

The key contributions of this work are three-fold. To the best of our knowledge, we

present the first analysis establishing efficient (i.e., polynomial) escape from strict-saddle

points in the distributed setting. Second, we establish that the gradient noise process is

sufficient to ensure efficient escape without the need to alter it by adding artificial forms of

perturbations, interlacing steps with small and large step-sizes or imposing a dispersive noise

assumption, as long as there is a gradient noise component present in some descent direction

for every strict saddle-point. Third, relative to the existing literature on centralized non-

convex optimization, where the focus is mostly on deterministic or finite-sum optimization,

our modeling conditions are specifically tailored to the scenario of learning from stochastic

streaming data. In particular, we only impose bounds on the gradient noise variance in

expectation, rather than assume a bound with probability 1 [134, 138] or a sub-Gaussian

distribution [139]. Furthermore, we assume that any Lipschitz conditions only hold on the

expected stochastic gradient approximation, rather than for every realization, with probabil-

ity 1 [135–137].

For reference, we refer the reader back to Table 5.1 in Chapter 5 for a summary of related

works and modeling conditions.

131



6.2 Review of Chapter 5

6.2.1 Modeling Conditions

In this section, we briefly list the modeling conditions employed in Chapter 5 for reference.

Assumption 6.1 (Strongly-connected graph). The combination weights in (6.2b) are

convex combination weights satisfying:

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (6.3)

The symbol Nk denotes the set of neighbors of agent k. We shall assume that the graph

described by the weighted combination matrix A = [a`k] is strongly-connected [1]. This means

that there exists a path with nonzero weights between any two agents in the network and,

moreover, at least one agent has a nontrivial self-loop, akk > 0.

The Perron-Frobenius theorem [1, 23, 24] then implies that A has a spectral radius of one

and a single eigenvalue at one. The corresponding eigenvector can be normalized to satisfy:

Ap = p, 1Tp = 1, pk > 0 (6.4)

where the {pk} denote the individual entries of the Perron vector, p.

Assumption 6.2 (Lipschitz gradients). For each k, the gradient ∇Jk(·) is Lipschitz,

namely, for any x, y ∈ RM :

‖∇Jk(x)−∇Jk(y)‖ ≤ δ‖x− y‖ (6.5)

In light of (6.1) and Jensen’s inequality, this implies for the aggregate cost:

‖∇J(x)−∇J(y)‖ ≤ δ‖x− y‖ (6.6)

132



The Lipschitz gradient conditions (6.5) and (6.6) imply

J(y) ≤ J(x) +∇J(x)T (y − x) +
δ

2
‖x− y‖2 (6.7)

For the Hessian matrix we have [1]:

−δI ≤ ∇2J(x) ≤ δI (6.8)

Assumption 6.3 (Bounded gradient disagreement). For each pair of agents k and `,

the gradient disagreement is bounded, namely, for any x ∈ RM :

‖∇Jk(x)−∇J`(x)‖ ≤ G (6.9)

Definition 6.1 (Filtration). We denote by F i the filtration generated by the random pro-

cesses wk,j for all k and j ≤ i:

F i , {W0,W1, . . . ,Wi} (6.10)

where Wj , col {w1,j, . . . ,wk,j} contains the iterates across the network at time j. Infor-

mally, F i captures all information that is available about the stochastic processes wk,j across

the network up to time i.

Assumption 6.4 (Gradient noise process). For each k, the gradient noise process is

defined as

sk,i(wk,i−1) = ∇̂Jk(wk,i−1)−∇Jk(wk,i−1) (6.11)

and satisfies

E {sk,i(wk,i−1)|F i−1} = 0 (6.12a)

E
{
‖ sk,i(wk,i−1)‖4|F i−1

}
≤ σ4 (6.12b)

133



for some non-negative constant σ4. We also assume that the gradient noise processes are

pairwise uncorrelated over the space conditioned on F i−1, i.e.:

E
{
sk,i(wk,i−1) s`,i(w`,i−1)T|F i−1

}
= 0 (6.13)

The fourth-order condition also implies via Jensen’s inequality:

E
{
‖ sk,i(wk,i−1)‖2|F i−1

}
≤ σ2 (6.14)

Definition 6.2 (Sets). To simplify the notation in the sequel, we introduce following sets:

G ,

{
w : ‖∇J(w)‖2 ≥ µ

c2

c1

(
1 +

1

π

)}
(6.15)

GC ,

{
w : ‖∇J(w)‖2 < µ

c2

c1

(
1 +

1

π

)}
(6.16)

H ,
{
w : w ∈ GC , λmin

(
∇2J(w)

)
≤ −τ

}
(6.17)

M ,
{
w : w ∈ GC , λmin

(
∇2J(w)

)
> −τ

}
(6.18)

where τ is a small positive parameter, c1 and c2 are constants:

c1 ,
1

2
(1− 2µδ) = O(1) (6.19)

c2 , δσ2/2 = O(1) (6.20)

and 0 < π < 1 is a parameter to be chosen. Note that GC = H ∪M. We also define the

probabilities πGi , Pr {wc,i ∈ G}, πHi , Pr {wc,i ∈ H} and πMi , Pr {wc,i ∈M}. Then for

all i, we have πGi + πHi + πMi = 1.

Assumption 6.5 (Lipschitz Hessians). Each Jk(·) is twice-differentiable with Hessian

∇2Jk(·) and, there exists ρ ≥ 0 such that:

‖∇2Jk(x)−∇2Jk(y)‖ ≤ ρ‖x− y‖ (6.21)

134



By Jensen’s inequality, this implies that J(·) =
∑N

k=1 pkJk(·) also satisfies:

‖∇2J(x)−∇2J(y)‖ ≤ ρ‖x− y‖ (6.22)

Similarly to the quadratic upper bound that follows from the Lipschitz condition on the

first-derivative (6.7), this new Lipschitz condition on the second-derivative implies a cubic

upper bound on the function values [144]:

J(y) ≤ J(x) +∇J(x)T(y − x) +
1

2
(y − x)T∇2J(x)(y − x) +

ρ

6
‖y − x‖3 (6.23)

6.2.2 Review of Results

An important quantity in the network dynamics of (6.2a)–(6.2b) is the weighted network

centroid:

wc,i ,
N∑
k=1

pkwk,i (6.24)

where the weights pk are elements of the Perron vector, defined in (6.4), which in turn is a

function of the graph topology and weights. The network centroid can be shown to evolve

according to a perturbed, centralized, exact gradient descent recursion [27]:

wc,i = wc,i−1−µ
N∑
k=1

pk∇Jk(wc,i−1)− µdi−1 − µ si (6.25)

where we defined the perturbation terms:

di−1 ,
N∑
k=1

pk (∇Jk(wk,i−1)−∇Jk(wc,i−1)) (6.26)

si ,
N∑
k=1

pk

(
∇̂Jk(wk,i−1)−∇Jk(wk,i−1)

)
(6.27)

135



In Chapter 5 we established that, under assumptions 6.1–6.4, all agents will cluster around

the network centroid in the mean-fourth sense:

E
∥∥Wi−

(
1pT ⊗ I

)
Wi

∥∥4 ≤ µ4‖VL‖4

∥∥JT
ε

∥∥4

(1− ‖JT
ε ‖)4‖VT

R‖
4
N2
(
G4 + σ4

)
+ o(µ4) (6.28)

for i ≥ io where io , log (o(µ4))/log
(∥∥JT

ε

∥∥). This result has two implications. First, it

establishes that, despite the fact that agents may be descending along different cost functions,

and despite the fact that they may have been initialized close to different local minima, the

entire network will eventually agree on a common iterate in the mean-fourth sense (and

via Markov’s inequality with high probability). Furthermore, it allows us to bound the

perturbation terms appearing in (6.25) as:

(
E ‖di−1‖2)2 ≤ E ‖di−1‖4 ≤ O(µ4) (6.29)(

E
{
‖si‖2|F i−1

})2 ≤ E
{
‖si‖4|F i−1

}
≤ σ4 (6.30)

after sufficient iterations i ≥ i0. We conclude that all iterates, after sufficient iterations,

approximately track the network centroid wc,i, which in turn follows a perturbed gradient

descent recursion, where the perturbation terms can be appropriately bounded.

We then proceeded to study the evolution of the network centroid and establish expected

descent in the large gradient regime, i.e.:

E {J(wc,i)|wc,i−1 ∈ G} ≤ E {J(wc,i−1)|wc,i−1 ∈ G} − µ2 c2

π
+
O(µ3)

πGi−1

(6.31)

where the set G introduced in Definition 6.2 denotes the set of points with sufficiently large

gradients ‖∇J(w)‖2 ≥ O(µ).

While this argument could have been continued to establish the return of approximately

first-order stationary points in the complement GC =M∪H, our objective here is to establish

the return of second-order stationary points in M, which is a subset of GC . This requires

the escape from strict-saddle points in H. In the vicinity of first-order stationary points, a

single gradient step is no longer sufficient to guarantee descent, and as such it is necessary to

136



study the cumulative effect of the gradient, as well as perturbations, over several iterations.

We laid the ground work for this in Chapter 5 by introducing a short-term model, which is

more tractable and sufficiently accurate for a limited number of iterations. This approach

has been used successfully to accurately quantify the performance of adaptive networks in

convex environments [1] and establish the ability of centralized perturbed gradient descent

to escape saddle-points [59]. Around a first-order stationary points wc,i? at time i?, the

short-term model is obtained by first applying the mean-value theorem to (6.25) and obtain:

w̃i?

i+1 = (I − µH i?+i) w̃
i?

i + µ∇J(wc,i?) + µdi?+i + µ si?+i+1 (6.32)

where w̃i?

i denotes the deviation from the initial point wc,i? , i.e. w̃i?

i = wc,i? −wc,i?+i and

H i?+i ,
∫ 1

0

∇2J ((1− t)wc,i?+i +twc,i?) dt (6.33)

The short-term model is then obtained by replacing H i?+i by ∇2J(wc,i?) and dropping the

driving term µdi?+i:

w̃′i
?

i+1 =
(
I − µ∇2J(wc,i?)

)
w̃′i

i? + µ∇J(wc,i?) + µ si?+i+1 (6.34)

where again w̃′i
?

i denotes the deviation from the initialization w̃′i
i? = wc,i? −w′c,i?+i. In [70,

Lemma 4], we established that the short-term model (6.34) is a meaningful approximation

of (6.32) in the sense that for a limited number of iterations i ≤ T
µ

, we have the following

137



bounds:

E

{∥∥∥w̃i?

i

∥∥∥2

|wc,i? ∈ H
}
≤ O(µ) +

O(µ2)

πHi?
(6.35)

E

{∥∥∥w̃i?

i

∥∥∥3

|wc,i? ∈ H
}
≤ O(µ3/2) +

O(µ3)

πHi?
(6.36)

E

{∥∥∥w̃i?

i

∥∥∥4

|wc,i? ∈ H
}
≤ O(µ2) +

O(µ4)

πHi?
(6.37)

E

{∥∥∥w̃i?

i − w̃′ii
?
∥∥∥2

|wc,i? ∈ H
}
≤ O(µ2) +

O(µ2)

πHi?
(6.38)

E
{∥∥w̃′ii?∥∥2|wc,i? ∈ H

}
≤ O(µ) +

O(µ2)

πHi?
(6.39)

We will now proceed to argue that these deviation bounds allow us to establish decent

of (6.32) by means of studying descent of (6.34) and leverage this fact to show that the

diffusion strategy will continue to descend through strict-saddle points in Theorem 6.1. This

result, along with the descent for large gradients established in Theorem 5.2 will allow us

to guarantee the return of an approximately second-order stationary points in Theorem 6.2.

The argument is summarized in Fig. 6.1.

138



N
et

w
or

k
ce

n
tr

oi
d

w
c,
i

at
ti

m
e
i

N
O

T
O

(µ
)-

st
at

io
n
ar

y
‖∇

J
(w

c,
i)
‖2
>
O

(µ
)

D
es

ce
n
t

in
on

e
it

er
at

io
n

in
T

h
eo

re
m

5.
2:

E
{J

(w
c,
i)
−
J

(w
c,
i+

1
)|
w
c,
i
∈
G}
≥
O

(µ
2
)

O
(µ

)-
st

at
io

n
ar

y
‖∇

J
(w

c,
i)
‖2
≤
O

(µ
)

τ
-s

tr
ic

t-
sa

d
d
le

D
es

ce
n
t

in
is

=
O

(1
/(
µ
τ
))

it
er

at
io

n
s

in
T

h
eo

re
m

6.
1:

E
{J

(w
c,
i)
−
J

(w
c,
i+
is

)|
w
c,
i
∈
H
}
≥
O

(µ
)

λ
m

in
(∇

2
J

(w
c,
i)
>
−
τ

w
c,
i

is
ap

p
ro

x
im

at
el

y
se

co
n
d
-o

rd
er

st
at

io
n
ar

y.

F
ig

u
re

6.
1:

C
la

ss
ifi

ca
ti

on
of

ap
p
ro

x
im

at
el

y
st

at
io

n
ar

y
p

oi
n
ts

.
T

h
eo

re
m

6.
1

in
th

is
ch

ap
te

r
es

ta
b
li
sh

es
d
es

ce
n
t

in
th

e
gr

ee
n

b
ra

n
ch

.
T

h
e

re
d

b
ra

n
ch

is
tr

ea
te

d
in

C
h
ap

te
r

5.
T

h
e

tw
o

re
su

lt
s

ar
e

co
m

b
in

ed
in

T
h
eo

re
m

6.
2

to
es

ta
b
li
sh

th
e

re
tu

rn
of

a
se

co
n
d
-o

rd
er

st
at

io
n
ar

y
p

oi
n
t

w
it

h
h
ig

h
p
ro

b
ab

il
it

y.

139



6.3 Escape from Saddle-Points

The deviation bounds (6.35)–(6.39) establish that, for the first O(1/µ) iterations following

a first-order stationary points wc,i? , the trajectories of the true recursion (6.32) the short-

term model (6.34) will remain close. As a consequence, we are able to guarantee descent of

J(wc,i?+i) by studying J(w′c,i?+i). Note from (6.7) that

J(wc,i?+i) ≤ J(w′c,i?+i) +∇J
(
w′c,i?+i

)T (
wc,i?+i−w′c,i?+i

)
+
δ

2

∥∥wc,i?+i−w′c,i?+i

∥∥2
(6.40)

Taking conditional expectation yields:

E {J(wc,i?+i)|wc,i? ∈ H} ≤ E
{
J(w′c,i?+i)|wc,i? ∈ H

}
+ E

{
∇J

(
w′c,i?+i

)T (
wc,i?+i−w′c,i?+i

)
|wc,i? ∈ H

}
+
δ

2
E
{∥∥wc,i?+i−w′c,i?+i

∥∥2|wc,i? ∈ H
}

(6.41)

The two terms appearing on the right-hand side can be bounded as:

E
{
∇J

(
w′c,i?+i

)T (
wc,i?+i−w′c,i?+i

)
|wc,i? ∈ H

}
(a)

≤
√
E
{∥∥∇J (w′c,i?+i

)∥∥2|wc,i? ∈ H
}

×
√
E
{∥∥wc,i?+i−w′c,i?+i

∥∥2|wc,i? ∈ H
}

(6.38)

≤
√
O(µ)

√
O(µ2) +

O(µ2)

πHi?

=O
(
µ3/2

)
+
O(µ3/2)√

πHi?
(b)

≤ O
(
µ3/2

)
+
O(µ3/2)

πHi?
(6.42)

140



where (a) follows from Cauchy-Schwarz, (b) follows from
√
πHi? ≥ πHi? since πHi? ≤ 1 so that:

E {J(wc,i?+i)|wc,i? ∈ H}

≤ E
{
J(w′c,i?+i)|wc,i? ∈ H

}
+O

(
µ3/2

)
+
O(µ3/2)

πHi?
(6.43)

We conclude that the function value at wc,i?+i after i iterations is upper-bounded by the

function evaluated at the short-term model w′c,i?+i with an additional approximation error

that is bounded. We conclude that it is sufficient to study the dynamics of the short-term

model, which is more tractable. Specifically, in light of the bound (6.23) following from the

Lipschitz-Hessian Assumption 6.5, we have:

J(w′c,i?+i) ≤ J(wc,i?)−∇J(wc,i?)
Tw̃′i

i?

+
1

2

∥∥w̃′ii?∥∥2

∇2J(wc,i? )
+
ρ

6

∥∥w̃′ii?∥∥3
(6.44)

In order to establish escape from saddle-points, we need to carefully bound each term ap-

pearing on the right-hand side of (6.44), and to this end, we will need study the effect to

the gradient noise term over several iterations. For this purpose, we introduce the following

smoothness condition on the gradient noise covariance [1]:

Assumption 6.6 (Lipschitz covariances). The gradient noise process has a Lipschitz

covariance matrix, i.e.,

Rs,k(wk,i−1) , E
{
sk,i(wk,i−1)sk,i(wk,i−1)T|F i−1

}
(6.45)

satisfies

‖Rs,k(x)−Rs,k(y)‖ ≤ βR‖x− y‖γ (6.46)

for some βR and 0 < γ ≤ 4.

Definition 6.3. We define the aggregate gradient noise covariance as:

Rs,i (Wi−1) = E
{
si s

T
i |F i−1

}
(6.47)

141



where si ,
∑N

k=1 pk sk,i (wk,i−1) denotes the aggregate gradient noise term introduced earlier

in (6.27).

Note that in light of this definition and the assumption that the gradient noise process is

conditionally uncorrelated over space as in (6.13), we have:

Rs,i (Wi−1) = E
{
si s

T
i |F i−1

}
= E


(

N∑
k=1

pk sk,i (wk,i−1)

)(
N∑
k=1

pk sk,i (wk,i−1)

)T

|F i−1


= E

{
N∑
k=1

p2
k sk,i (wk,i−1) sk,i (wk,i−1)T |F i−1

}

=
N∑
k=1

p2
k E
{
sk,i (wk,i−1) sk,i (wk,i−1)T |F i−1

}
=

N∑
k=1

p2
kRs,k (wk,i−1) (6.48)

so that the aggregate gradient noise covariance is a weighted combination of the individual

gradient noise covariances, albeit evaluated at different iterates. In light of the smoothness

assumption 6.6, we are nevertheless able to approximate the aggregate noise covariance by

one that is evaluated at the centroid.

Lemma 6.1 (Noise covariance at centroid). Under assumptions 6.1–6.6 and for suffi-

ciently small step-sizes µ, we have for all i and w ∈ RM :

‖Rs,i (1⊗wc,i−1)−Rs,i (1⊗ w)‖ ≤ pmaxβR ‖wc,i−1−w‖γ (6.49)

‖Rs,i (Wc,i−1)−Rs,i (Wi−1)‖ ≤ pmaxβR ‖Wc,i−1−Wi−1‖γ (6.50)

Proof. Appendix 6.A.

Note that from the bound on the aggregate gradient noise variance (6.14), we can upper

142



bound the gradient noise covariance:

‖Rs,i (W)‖ =
∥∥E si sTi ∥∥ (a)

≤ E
∥∥si sTi ∥∥ = E ‖si‖2

(6.14)

≤ σ2 (6.51)

where (a) follows from Jensen’s inequality. In order to ensure escape from saddle-points, we

introduce a similar, lower-bound condition.

Assumption 6.7 (Gradient noise in strict saddle-points). Suppose w is an approxi-

mate strict-saddle points, i.e., w ∈ H and denote the eigendecomposition of the Hessian as

∇2J(w) = V ΛV T. We introduce the decomposition:

V =
[
V ≥0 V <0

]
, Λ =

 Λ≥0 0

0 Λ<0

 (6.52)

where Λ≥0 ≥ 0 and Λ<0 < 0. Then, we assume that:

λmin

((
V <0

)TRs (1⊗ w)V <0
)
≥ σ2

` (6.53)

for some σ2
` > 0 and all w ∈ H.

Assumption 6.7 is similar to the condition in [134], where alternating step-sizes are employed,

and essentially states than for every strict-saddle point in the set H, there is gradient noise

present along some descent direction, spanned by the eigenvectors corresponding to the

negative eigenvalues of the Hessian ∇2J(·).

Theorem 6.1 (Descent through strict saddle-points). Suppose Pr {wc,i? ∈ H} 6= 0, i.e.,

wc,i? is approximately stationary with significant negative eigenvalue. Then, iterating for is

iterations after i? with

is =
log
(

2M σ2

σ2
`

+ 1
)

log(1 + 2µτ)
≤ O

(
1

µτ

)
(6.54)

143



guarantees

E {J(wc,i?+is)|wc,i? ∈ H}

≤ E {J(wc,i?)|wc,i? ∈ H} −
µ

2
Mσ2 + o(µ) +

o(µ)

πHi?
(6.55)

Proof. Appendix 6.B.

This result establishes that, even if wc,i? is an O(µ)-square-stationary point and Theorem 5.2

can no longer guarantee sufficient descent, the expected function value at the network cen-

troid will continue to decrease, as long as the Hessian matrix has a sufficiently negative

eigenvalue.

6.4 Main Result

In Theorem 5.2, we established a descent condition for points with large gradient norm

wc,i ∈ G, while Theorem 6.1 guarantees descent in is iterations for strict-saddle points

wc,i ∈ H. Together, they establish descent whenever wc,i ∈ G ∪ H = MC . Hence, we

conclude that, as long as the cost is bounded from below, the algorithm must necessarily

reach a point in M after a finite amount of iterations. This intuition is formalized in the

following theorem.

Theorem 6.2. For sufficiently small step-sizes µ, we have with probability 1−π, that wc,io ∈
M, i.e., ‖∇J(wc,io)‖2 ≤ O(µ) and λmin (∇2J(wc,io)) ≥ −τ in at most io iterations, where

io ≤ (J(wc,0)− Jo)
µ2c2π

is (6.56)

and is denotes the escape time from Theorem 6.1, i.e.,

is =
log
(

2M σ2

σ2
`

+ 1
)

log(1 + 2µτ)
≤ O

(
1

µτ

)
(6.57)

Proof. Appendix 6.C.

144



This final result states that with probability 1 − π, where we are free to choose the de-

sired confidence level, the diffusion strategy (6.2a)–(6.2b) will have visited an approximately

second-order stationary point after at most io iterations.

6.5 Simulation Results

In this section, we consider an example that will allow us to visualize the ability of the

diffusion strategy to escape saddle-points. Given a binary class label γ ∈ {0, 1} and feature

vector h ∈ RM , we consider a neural network with a single, linear hidden layer and a logistic

activation function leading into the output layer:

γ̂ (h) ,
1

1 + e−w
T
1W2 h

(6.58)

with weights w1 ∈ RL,W2 ∈ RL×M of appropriate dimensions. A popular risk function for

training is the cross-entropy loss:

Q(w1,W2;γ,h) , −γ log(γ̂)− (1− γ) log(1− γ̂) (6.59)

Note that, the first term is non-zero, while the second term is zero if, and only if, γ = 1, in

which case we have:

−γ log(γ̂) = log
(

1 + e−w
T
1W2 h

)
(6.60)

145



Similarly, the second term is non-zero while the first term is zero if, and only if, γ = 0, which

implies:

−(1− γ) log(1− γ̂) = − log

(
1− 1

1 + e−w
T
1W2 h

)
= − log

(
e−w

T
1W2 h

1 + e−w
T
1W2 h

)

= − log

(
1

1 + ew
T
1W2 h

)
= log

(
1 + ew

T
1W2 h

)
(6.61)

Letting γ ′ ∈ {−1, 1} such that:

γ ′ ,


−1, if γ = 0

1, if γ = 1.

(6.62)

we can hence simplify (6.59) to an equivalent logistic loss:

Q(w1,W2;γ ′,h) = log
(

1 + e−γ
′wT

1W2 h
)

(6.63)

The regularized learning problem can then be formulated as:

J(w1,W2) = EQ(w1,W2;γ ′,h) +
ρ

2
‖w1‖2 +

ρ

2
‖W2‖2

F (6.64)

which fits into the framework (6.1) treated in this chapter. In order to be able to visualize

and enumerate all stationary points of (6.64), we assume in the sequel that M = L = 1 so

that all involved quantities are scalar variables. We can then find:

∇J(w1,W2) = E

ρw1 − γ′W2 h

eγ
′w1W2 h

ρW2 − γ′w1 h

eγ
′w1W2 h

 (6.65)

The cost surface is depicted in Fig. 6.2. It can be observed from the figure, and analytically

verified, that J(·) has two local minima in the positive and negative quadrants, respectively,

146



2
1

0

w1

-1
-2

-2

-1

0

W2

1

0.4

0.5

0.6

0.7

0.8

0.9

1

2

J
(w

1
,
W

2
)

Figure 6.2: Cost surface of a simple neural network with ρ = 0.1.

and a single saddle-point at w1 = W2 = 0. The Hessian matrix of J(·) at w1 = W2 = 0

evaluates to:

∇2J(0, 0) =

 ρ −E γ′h
2

−E γ′h
2

ρ

 (6.66)

For this example, we let Pr {γ ′ = −1} = Pr {γ ′ = 1} = 1
2

and h ∼ N (γ ′, 1). Then, we

obtain Eγ ′ h = 1. We also let ρ = 0.1, so that:

∇2J(0, 0) =

 0.1 −0.5

−0.5 0.1

 (6.67)

which has an eigenvalue at −0.4 with corresponding eigenvector col {1, 1}. This implies that

w1 = W2 = 0 is a strict saddle-point with local descent direction col {1, 1}. It turns out,

147



however, that the gradient noise induced by the immediate stochastic gradient approximation

∇̂J(·) = ∇Q(·;γ ′,h) does not have a gradient noise component in the descent direction

col {1, 1} at the strict saddle-point w1 = W2 = 0. Indeed, note that with probability one

we have ∇Q(0, 0;γ ′,h) = col{0, 0} = ∇J(0, 0) so that the gradient noise vanishes at w1 =

W2 = 0. Hence, initializing all agents at w1 = W2 = 0 and iterating (6.2a)–(6.2b) would

cause them to remain there with probability 1. This suggests that assumption 6.7 is not

merely a technical condition but indeed necessary. To satisfy the assumption we construct

the stochastic gradient approximation as:

∇̂J(w1,W2) , ∇Q(w1,W2;γ ′,h) + v · col {1, 1} (6.68)

where v ∼ N (0, 1) acts only in the direction col {1, 1} and ensures that gradient noise is

present in the descent direction around the strict saddle-point at w1 = W2 = 0. Two

realizations of the evolution are shown in Figures 6.3–6.4.

6.A Proof of Lemma 6.1

Recall that

si ,
N∑
k=1

pk sk,i (wk,i−1) (6.69)

148



Figure 6.3: Agents are initialized at different points in space, but nevertheless quickly cluster.
They then jointly travel away from the strict saddle-point and towards one of the local
minimizers.

and hence (6.48) holds. Using the smoothness assumption on the gradient noise term (6.46),

we can write:

E
{
si s

T
i |F i−1

}
=

N∑
k=1

p2
kRs,k (wk,i−1)

=
N∑
k=1

p2
kRs,k (wc,i−1)

+

(
N∑
k=1

p2
kRs,k (wk,i−1)−

N∑
k=1

p2
kRs,k (wc,i−1)

)
(6.70)

149



w1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

W
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

J(w1,W2)

Agent 1

Agent 2

Agent 3

Figure 6.4: Agents are initialized together precisely in the strict saddle-point. The presence
of the gradient perturbation allows them to jointly escape the saddle-point.

so that:

‖Rs (1⊗wc,i−1)−Rs (1⊗ w)‖

=

∥∥∥∥∥
N∑
k=1

p2
kRs,k (wc,i−1)−

N∑
k=1

p2
kRs,k (w)

∥∥∥∥∥
=

∥∥∥∥∥
N∑
k=1

p2
k (Rs,k (wc,i−1)−Rs,k (w))

∥∥∥∥∥
(a)

≤
N∑
k=1

pk ‖pk (Rs,k (wc,i−1)−Rs,k (w))‖

≤ pmax

N∑
k=1

pk ‖Rs,k (wc,i−1)−Rs,k (w)‖

150



(b)

≤ pmaxβR ‖wc,i−1−w‖γ (6.71)

where (a) follows from Jensen’s inequality and (b) follows from the Lipschitz condition on

the gradient noise covariance (6.46) and
∑N

k=1 pk = 1. Similarly:

‖Rs (Wi−1)−Rs (Wc,i−1)‖

=

∥∥∥∥∥
N∑
k=1

p2
kRs,k (wk,i−1)−

N∑
k=1

p2
kRs,k (wc,i−1)

∥∥∥∥∥
=

∥∥∥∥∥
N∑
k=1

p2
k (Rs,k (wk,i−1)−Rs,k (wc,i−1))

∥∥∥∥∥
≤

N∑
k=1

pk ‖pk (Rs,k (wk,i−1)−Rs,k (wc,i−1))‖

≤ pmaxβR

N∑
k=1

pk ‖wk,i−1−wc,i−1‖γ

(a)

≤ pmaxβR

N∑
k=1

pk ‖Wi−1−Wc,i−1‖γ

= pmaxβR ‖Wi−1−Wc,i−1‖γ (6.72)

where (a) follows from the fact that xγ is monotonically increasing in γ for x, γ > 0 and:

‖Wi−1−Wc,i−1‖2 =
N∑
k=1

‖wk,i−1−wc,i−1‖2

≥ ‖w`,i−1−wc,i−1‖2 , ∀ ` (6.73)

151



6.B Proof of Theorem 6.1

We shall carefully bound each of the terms appearing on the right-hand side of (6.44), which

we repeat here again for reference:

J(w′c,i?+i) ≤ J(wc,i?)−∇J(wc,i?)
Tw̃′i

i?

+
1

2

∥∥w̃′ii?∥∥2

∇2J(wc,i? )
+
ρ

6

∥∥w̃′ii?∥∥3
(6.74)

We begin by establishing a bound on the linear term in (6.74). Iterating the recursive relation

for the short-term model (6.34) and taking expectations conditioned on F i?+i yields:

E
{
w̃′i

?

i+1|F i?+i

}
=
(
I − µ∇2J(wc,i?)

)
w̃′i

?

i

+ µ∇J(wc,i?) + µE {si?+i+1 |F i?+i}

=
(
I − µ∇2J(wc,i?)

)
w̃′i

?

i + µ∇J(wc,i?) (6.75)

where the gradient-noise term disappeared in light of

E {si?+i+1 |F i?+i} = 0 (6.76)

by Assumption 6.4. Note that F i?+i denotes the information captured in wk,j up to time

i? + i, while F i? denotes the information available up to time i?. Hence:

F i?+i = F i? ∪ filtration {wk,i?+1, . . . ,wk,i?+i} (6.77)

Hence, taking expectation of (6.75) conditioned on F i? removes the elements not contained

in F i? and yields:

E
{
w̃′i

?

i+1|F i?
}

=
(
I − µ∇2J(wc,i?)

)
E
{
w̃′i

?

i |F i?
}

+ µ∇J(wc,i?) (6.78)

152



Since w̃′i
?

0 = 0, iterating starting at i = 0 yields:

E
{
w̃′i

?

i |F i?
}

= µ

(
i∑

k=1

(
I − µ∇2J(wc,i?)

)k−1

)
∇J(wc,i?) (6.79)

This allows us to bound the linear term appearing in (6.74) as:

− E
{
∇J(wc,i?)

Tw̃′i
i?|F i?

}
= −∇J(wc,i?)

T
E
{
w̃′i

i?|F i?
}

(6.79)
= − µ∇J(wc,i?)

T

(
i∑

k=1

(
I − µ∇2J(wc,i?)

)k−1

)
∇J(wc,i?)

= − µ‖∇J(wc,i?)‖2∑i
k=1 (I−µ∇2J(wc,i? ))

k−1 (6.80)

We now examine the quadratic term in (6.74). To this end, we introduce the eigenvalue

decomposition of the Hessian around the iterate at time i?:

∇2J(wc,i?) , V i?Λi?V
T
i? (6.81)

Note that both V i? and Λi? inherit their randomness from wc,i? . As such, they are random

but become deterministic when conditioning on F i? . This fact will be exploited further

below. To begin with, note that:

∥∥w̃′i?i+1

∥∥2

∇2J(wc,i? )
=
∥∥w̃′i?i+1

∥∥2

V i?Λi?V
T
i?

=
∥∥V T

i?wc,i? − V T
i?w

′
c,i?+i+1

∥∥2

Λi?

=
∥∥w′i?i+1

∥∥2

Λi?
(6.82)

where we introduced:

w′i
?

i+1 , V
T
i?w̃

′i?
i+1 (6.83)

153



Under this transformation, recursion (6.34) is also diagonalized, yielding:

w′i
?

i+1 , V
T
i?w̃

′i?
i+1

= V T
i?

(
I − µ∇2J(wc,i?)

)
V i?V

T
i?w̃

′i?
i

+ µV T
i?∇J(wc,i?) + µV T

i? si?+i+1

= (I − µΛi?)w
′i?
i + µ∇J(wc,i?) + µsi?+i+1 (6.84)

with ∇J(wc,i?) , V T
i?∇J(wc,i?) and si?+i+1 , V T

i? si?+i+1. The presence of the gradient

term, which is deterministic conditioned on F i? complicates the analysis of the evolution.

It can be removed by (conditionally) centering the random variable. Specifically, apply-

ing the same transformation to the conditional mean recursion (6.78), and subtracting the

transformed conditional mean on both sides of (6.84), we find:

w′i
?

i+1 − E
{
w′i

?

i+1|F i?
}

= (I − µΛi?)
(
w′i

?

i − E
{
w′i

?

i |F i?
})

+ µsi?+i+1 (6.85)

which allows us to cancel the driving term involving the gradient. For brevity, define the

(conditionally) centered random variable:

w̌′i
?

i+1 = w′i
?

i+1 − E
{
w′i

?

i+1|F i?
}

(6.86)

so that:

w̌′i
?

i+1 = (I − µΛi?) w̌
′i?
i + µsi?+i+1 (6.87)

Before proceeding, note that we can express:

E
{∥∥w̌′i?i ∥∥2

Λi?
|F i?

}
= E

{∥∥w′i?i − E{w′i?i |F i?
}∥∥2

Λi?
|F i?

}
= E

{∥∥w′i?i ∥∥2

Λi?
|F i?

}
−
∥∥E{w′i?i |F i?

}∥∥2

Λi?
(6.88)

154



Hence, we have:

E
{∥∥w̃′i?i ∥∥2

∇2J(wc,i? )
|F i?

}
= E

{∥∥w′i?i ∥∥2

Λi?
|F i?

}
= E

{∥∥w̌′i?i ∥∥2

Λi?
|F i?

}
+
∥∥E{w′i?i |F i?

}∥∥2

Λi?
(6.89)

In order to make claims about E
{∥∥w̃′i?i ∥∥2

∇2J(wc,i? )
|F i?

}
by studying E

{∥∥w̌′i?i ∥∥2

Λi?
|F i?

}
, we

need to establish a bound on
∥∥E{w′i?i |F i?

}∥∥2

Λi?
. We have:

∥∥E{w′i?i |F i?
}∥∥2

Λi?

=
∥∥E{V T

i?w̃
′i?
i |F i?

}∥∥2

Λi?

(6.79)
= µ2

∥∥∥∥∥V T
i?

(
i∑

k=1

(
I − µ∇2J(wc,i?)

)k−1

)
∇J(wc,i?)

∥∥∥∥∥
2

Λi?

= µ2

∥∥∥∥∥
(

i∑
k=1

(I − µΛi?)
k−1

)
∇J(wc,i?)

∥∥∥∥∥
2

Λi?

= µ2∇J(wc,i?)
T

(
i∑

k=1

(I − µΛi?)
k−1

)
Λi?

(
i∑

k=1

(I − µΛi?)
k−1

)
∇J(wc,i?) (6.90)

We shall order the eigenvalues of ∇2J(wc,i?), such that its eigendecomposition has a block

structure:

V i? =
[
V ≥0

i? V <0
i?

]
, Λi? =

 Λ≥0
i? 0

0 Λ<0
i?

 (6.91)

with δI ≥ Λ≥0
i? ≥ 0 and Λ<0

i? < 0. Note that since ∇2J(wc,i?) is random, the decomposition

itself is random as well. Nevertheless, it exists with probability one. We also decompose the

transformed gradient vector with appropriate dimensions:

∇J(wc,i?) = col
{
∇J(wc,i?)

≥0
,∇J(wc,i?)

<0
}

(6.92)

We can then decompose (6.90):

∥∥E{w′i?i |F i?
}∥∥2

Λi?

155



= µ2∇J(wc,i?)
T

(
i∑

k=1

(I − µΛi?)
k−1

)
Λi?

×
(

i∑
k=1

(I − µΛi?)
k−1

)
∇J(wc,i?)

= µ2
(
∇J(wc,i?)

≥0
)T( i∑

k=1

(
I − µΛ≥0

i?

)k−1

)
Λ≥0
i?

×
(

i∑
k=1

(
I − µΛ≥0

i?

)k−1

)
∇J(wc,i?)

≥0

+ µ2
(
∇J(wc,i?)

<0
)T( i∑

k=1

(
I − µΛ<0

i?

)k−1

)
Λ<0
i?

×
(

i∑
k=1

(
I − µΛ<0

i?

)k−1

)
∇J(wc,i?)

<0

(a)

≤ µ2
(
∇J(wc,i?)

≥0
)T( i∑

k=1

(
I − µΛ≥0

i?

)k−1

)
Λ≥0
i?

×
(

i∑
k=1

(
I − µΛ≥0

i?

)k−1

)
∇J(wc,i?)

≥0

(b)

≤ µ2
(
∇J(wc,i?)

≥0
)T( ∞∑

k=1

(
I − µΛ≥0

i?

)k−1

)
Λ≥0
i?

×
(

i∑
k=1

(
I − µΛ≥0

i?

)k−1

)
∇J(wc,i?)

≥0

(c)
= µ2

(
∇J(wc,i?)

≥0
)T (

µΛ≥0
i?

)−1
Λ≥0
i?

×
(

i∑
k=1

(
I − µΛ≥0

i?

)k−1

)
∇J(wc,i?)

≥0

= µ
(
∇J(wc,i?)

≥0
)T( i∑

k=1

(
I − µΛ≥0

i?

)k−1

)
∇J(wc,i?)

≥0

(d)

≤ µ
(
∇J(wc,i?)

≥0
)T( i∑

k=1

(
I − µΛ≥0

i?

)k−1

)
∇J(wc,i?)

≥0

+ µ
(
∇J(wc,i?)

<0
)T( i∑

k=1

(
I − µΛ<0

i?

)k−1

)
∇J(wc,i?)

<0

≤ µ∇J(wc,i?)
T

(
i∑

k=1

(I − µΛi?)
k−1

)
∇J(wc,i?)

156



= µ
∥∥∇J(wc,i?)

∥∥2∑i
k=1 (I−µΛi? )k−1 (6.93)

where (a) follows from Λ<0
i? < 0, (b) follows from:

k∑
k=1

(
I − µΛ≥0

i?

)k−1 ≤
∞∑
k=1

(
I − µΛ≥0

i?

)k−1
(6.94)

for µ < 1
δ
. Step (c) follows from the formula for the geometric matrix series, and (d) follows

from:

µ
(
∇J(wc,i?)

≥0
)T( i∑

k=1

(
I − µΛ≥0

i?

)k−1

)
∇J(wc,i?)

≥0 ≥ 0 (6.95)

Comparing (6.93) to (6.80), we find that we can bound:

−E
{
∇J(wc,i?)

Tw̃′i
i? |F i?

}
+
∥∥E{w′i?i |F i?

}∥∥2

Λi?
≤ 0 (6.96)

To recap, we can simplify (6.74) as:

E
{
J(w′c,i?+i)|F i?

}
≤ J(wc,i?) +

1

2
E
{∥∥w̌′i?i ∥∥2

Λi?
|F i?

}
+
ρ

6
E
{∥∥w̃′ii?∥∥3|F i?

}
(6.97)

We proceed with the now simplified quadratic term. Motivated by a technique employed

for the analysis of adaptive filters and stochastic gradient algorithms in convex environ-

ments [1, 149], we square both sides of (6.87) under an arbitrary diagonal weighting matrix

Σi, deterministic conditioned on wc,i? and wc,i?+i, to obtain:

∥∥w̌′i?i+1

∥∥2

Σi
=
∥∥(I − µΛi?) w̌

′i?
i + µsi?+i+1

∥∥2

Σi

=
∥∥(I − µΛi?) w̌

′i?
i

∥∥2

Σi
+ µ2‖si?+i+1‖2

Σi
+ 2µw̌′i

?

i

T
(I − µΛi?) Σisi?+i+1 (6.98)

157



Note that upon conditioning on F i?+i, all elements of the cross-term, aside from si?+i+1,

become deterministic, and as such the term disappears when taking expectations. We obtain:

E
{∥∥w̌′i?i+1

∥∥2

Σi
|F i?+i

}
=
∥∥(I − µΛi?) w̌

′i?
i

∥∥2

Σi
+ µ2E

{
‖si?+i+1‖2

Σi
|F i?+i

}
=
∥∥w̌′i?i ∥∥2

Σi−2µΛi?Σi+µ2Λi?ΣiΛi?
+ µ2Tr

(
V i?ΣiV

T
i?Rs (Wi?+i)

)
=
∥∥w̌′i?i ∥∥2

Σi−2µΛi?Σi
+ µ2Tr

(
V i?ΣiV

T
i?Rs (Wc,i?)

)
+ µ2Tr

(
V i?ΣiV

T
i? (Rs (Wi?+i)−Rs (Wc,i?))

)
+ µ2

∥∥w̌′i?i ∥∥2

Λi?ΣiΛi?
(6.99)

We proceed to bound the last two terms. First, we have:

Tr
(
V i?ΣiV

T
i? (Rs (Wi?+i)−Rs (Wc,i?))

)
(a)

≤
∥∥V i?ΣiV

T
i?

∥∥ ‖Rs (Wi?+i)−Rs (Wc,i?)‖

≤
∥∥V i?ΣiV

T
i?

∥∥ ‖Rs (Wi?+i)−Rs (Wc,i?+i) +Rs (Wc,i?+i)−Rs (Wc,i?) ‖

≤
∥∥V i?ΣiV

T
i?

∥∥ ‖Rs (Wi?+i)−Rs (Wc,i?+i)‖

+
∥∥V i?ΣiV

T
i?

∥∥ ‖Rs (Wc,i?+i)−Rs (Wc,i?)‖
(b)

≤ ρ (Σi) βRpmax (‖wc,i?+i−wc,i?‖γ + ‖Wc,i?+i−Wi?+i‖γ)

= ρ (Σi) βRpmax

(∥∥∥w̃i?

i

∥∥∥γ + ‖Wc,i?+i−Wi?+i‖γ
)

(6.100)

where (a) follows from Cauchy-Schwarz, since Tr(ATB) is an inner product over the space

of symmetric matrices, and hence, |Tr(ATB)| ≤ ‖A‖‖B‖, and (b) follows from Lemma (6.1).

For the second term, we have:

∥∥w̌′i?i ∥∥2

Λi?ΣiΛi?
≤ ρ (Λi?ΣiΛi?)

∥∥w̌′i?i ∥∥2

≤ δ2ρ (Σi)
∥∥w̌′i?i ∥∥2

(6.101)

158



We conclude that

E
{∥∥w̌′i?i+1

∥∥2

Σi
|F i?

}
= E

{∥∥w̌′i?i ∥∥2

Σi−2µΛi?Σi
|F i?

}
+ µ2Tr

(
V i?ΣiV

T
i?Rs (Wc,i?)

)
+ µ2ρ (Σi)E

{
qi?+i|F i?

}
(6.102)

where

qi?+i , βRpmax

(∥∥∥w̃i?

i

∥∥∥γ + ‖Wc,i?+i−Wi?+i‖γ
)

+ δ2
∥∥w̌′i?i ∥∥2

(6.103)

For brevity, we define

D , I − 2µΛi? (6.104)

Y , V T
i?Rs (Wc,i?)V i? (6.105)

With these substitutions we obtain:

E
{∥∥w̌′i?i+1

∥∥2

Σi
|F i?

}
= E

{∥∥w̌′i?i ∥∥2

DΣi
|F i?

}
+ µ2Tr (ΣiY ) + µ2ρ (Σi)E

{
qi?+i|F i?

}
(6.106)

At i = 0, we have:

w̌′i
?

0 = w′i
?

0 − E
{
w′i

?

0 |F i?
}

= 0− 0 = 0 (6.107)

Letting Σi = Λi?D
i, we can iterate to obtain:

E
{∥∥w̌′i?i+1

∥∥2

Λi?
|F i?

}
= µ2

i∑
n=0

Tr (Λi?D
nY ) + µ2

i∑
n=0

ρ (Λi?D
n) · E

{
qi?+n|F i?

}
= µ2Tr

(
Λi?

(
i∑

n=0

Dn

)
Y

)
+ µ2

i∑
n=0

ρ (Λi?D
n) · E

{
qi?+n|F i?

}
(6.108)

159



since w′c,i?+i+1 = wc,i? at i = 0. Our objective is to show that the first term on the

right-hand side yields sufficient descent (i.e., will be sufficiently negative), while the second

term is small enough to be negligible. To this end, we again make use of the structured

eigendecomposition (6.91). We have:

µ2Tr

(
Λi?

(
i∑

n=0

Dn

)
V T

i?Rs (Wc,i?)V i?

)
(a)
= µ2Tr

(
Λ≥0
i?

(
i∑

n=0

(
I − 2µΛ≥0

i?

)n)

×
(
V ≥0

i?

)TRs (Wc,i?)V
≥0
i?

)

+ µ2Tr

(
Λ<0
i?

(
i∑

n=0

(
I − 2µΛ<0

i?

)n)

×
(
V <0

i?

)TRs (Wc,i?)V
<0
i?

)
(b)
= µ2Tr

(
Λ≥0
i?

(
i∑

n=0

(
I − 2µΛ≥0

i?

)n)

×
(
V ≥0

i?

)TRs (Wc,i?)V
≥0
i?

)

− µ2Tr

((
−Λ<0

i?

)( i∑
n=0

(
I − 2µΛ<0

i?

)n)

×
(
V <0

i?

)TRs (Wc,i?)V
<0
i?

)
(c)

≤ µ2Tr

(
Λ≥0
i?

(
i∑

n=0

(
I − 2µΛ≥0

i?

)n))
× λmax

((
V ≥0

i?

)TRs (Wc,i?)V
≥0
i?

)
− µ2Tr

((
−Λ<0

i?

)( i∑
n=0

(
I − 2µΛ<0

i?

)n))
× λmin

((
V <0

i?

)TRs (Wc,i?)V
<0
i?

)
(d)

≤ µ2Tr

(
Λ≥0
i?

(
i∑

n=0

(
I − 2µΛ≥0

i?

)n))
σ2

160



− µ2Tr

((
−Λ<0

i?

)( i∑
n=0

(
I − 2µΛ<0

i?

)n))
σ2
` (6.109)

where in (a) we decomposed the trace since Λi?

(∑i
n=0D

n
)

is a diagonal matrix, (b) applies

−
(
−Λ<0

i?

)
= Λ<0

i? . Step (b) follows from Tr(A)λmin(B) ≤ Tr(AB) ≤ Tr(A)λmax(B) which

holds for A = AT, B = BT ≥ 0, and (c) follows from the bounded covariance property (6.51)

and Assumption 6.7. For the positive term, we have:

µ2Tr

(
Λ≥0
i?

(
i∑

n=0

(
I − 2µΛ≥0

i?

)n))
σ2

(a)

≤ µ2Tr

(
Λ≥0
i?

(
∞∑
n=0

(
I − 2µΛ≥0

i?

)n))
σ2

(b)

≤ µ2Tr
(
Λ≥0
i?

(
2µΛ≥0

i?

)−1
)
σ2

(c)

≤ µ

2
Mσ2 (6.110)

where (a) follows since I − 2µΛ≥0
i? is elementwise non-negative for µ ≤ 2

δ
, (b) follows from∑∞

n=0A
n = (I − A)−1 and (c) follows since ∇2J(wc,i?) is of dimension M .

For the negative term, we have under expectation conditioned on wc,i? ∈ H:

E

{
Tr

((
−Λ<0

i?

)( i∑
n=0

(
I − 2µΛ<0

i?

)n))
σ2
`

∣∣∣∣∣wc,i? ∈ H
}

(a)

≥ E

{
τ

(
i∑

n=0

(1 + 2µτ)n
)
σ2
`

∣∣∣∣∣wc,i? ∈ H
}

(b)
= τ

(
i∑

n=0

(1 + 2µτ)n
)
σ2
`

(c)
= τ

1− (1 + 2µτ)i+1

1− (1 + 2µτ)
σ2
`

=
1

2µ

(
(1 + 2µτ)i+1 − 1

)
σ2
` (6.111)

Step (a) makes use of the fact that
(
−Λ<0

i?

) (∑i
n=0

(
I − 2µΛ<0

i?

)n)
is a diagonal matrix,

where all elements are non-negative. Hence, its trace can be bounded by any of its diagonal

161



elements:

Tr

((
−Λ<0

i?

)( i∑
n=0

(
I − 2µΛ<0

i?

)n))
(6.17)

≥ τ

(
i∑

n=0

(1 + 2µτ)n
)

(6.112)

In (b) we dropped the expectation since the expression is no longer random, and (c) is the

result of a geometric series. We return to the full expression (6.109) and find:

µ2E

{
Tr

(
Λi?

(
i∑

n=0

Dn

)

× V T
i?Rs (Wc,i?)V i?

)
|wc,i? ∈ H

}

≤ µ

2
Mσ2 − µ

2

(
(1 + 2µτ)i+1 − 1

)
σ2
`

(a)

≤ −µ
2
Mσ2 (6.113)

where (a) holds if, and only if,

µ

2
Mσ2 − µ

2

(
(1 + 2µτ)i+1 − 1

)
σ2
` ≤ −

µ

2
Mσ2

⇐⇒ 2M
σ2

σ2
`

+ 1 ≤ (1 + 2µτ)i+1

⇐⇒ log

(
2M

σ2

σ2
`

+ 1

)
≤ (i+ 1)log (1 + 2µτ)

⇐⇒
log
(

2M σ2

σ2
`

+ 1
)

log (1 + 2µτ)
≤ i+ 1

⇐⇒
log
(

2M σ2

σ2
`

+ 1
)

O(µτ)
≤ i+ 1 (6.114)

where the last line follows from limx→0 1/x log(1 + x) = 1. We conclude that there exists a

bounded is such that:

µ2E

{
Tr

(
Λi?

(
is∑
n=0

Dn

)
V T

i?Rs (Wc,i?)V i?

)}
≤ −µ

2
Mσ2 (6.115)

162



Applying this relation to (6.108) and taking expectations over wc,i? ∈ H, we obtain:

E
{∥∥w̌′i?is+1

∥∥2

Λi?
|wc,i? ∈ H

}
≤ µ2

is∑
n=0

E
{(

Tr (Λi?D
n) · E

{
qi?+n|F i?

})
|wc,i? ∈ H

}
− µ

2
Mσ2 (6.116)

We now bound the perturbation term:

µ2

is∑
n=0

E
{(
ρ (Λi?D

n) · E
{
qi?+n|F i?

})
|wc,i? ∈ H

}
≤ µ2

is∑
n=0

E
{(
ρ (δI(I + 2µδI)n) · E

{
qi?+n|F i?

})
|wc,i? ∈ H

}
= µ2

is∑
n=0

(
δ(1 + 2µδ)n · E

{
qi?+n|wc,i? ∈ H

})
(6.103)

= µ2

is∑
n=0

δ(1 + 2µδ)n ·
(
βRpmax

(
E
{∥∥∥w̃i?

i

∥∥∥γ|wc,i? ∈ H
}

+ E {‖Wc,i?+i−Wi?+i‖γ |wc,i? ∈ H}
)

+ δ2E
{∥∥w̌′i?i ∥∥2|wc,i? ∈ H

})

≤ µ2

is∑
n=0

δ(1 + 2µδ)n ·
(
O(µγ) +

O(µγ)

πHi?
+O(µ2)

)

≤ δ
(

is∑
n=0

(1 + 2µδ)n
)(

O(µ2+γ) +
O(µ2+γ)

πHi?

)
(a)

≤ O(µ1+γ) +
O(µ1+γ)

πHi?
= o(µ) +

o(µ)

πHi?
(6.117)

where (a) follows from Lemma [70, Lemma 3]. We conclude:

E
{∥∥w̌′i?is+1

∥∥2

Λi?
|wc,i? ∈ H

}
≤ −µ

2
Mσ2 + o(µ) +

o(µ)

πHi?
(6.118)

163



Returning to (6.97), we find:

E
{
J(w′c,i?+i)|wc,i? ∈ H

}
≤ E {J(wc,i?)|wc,i? ∈ H}+

1

2
E
{∥∥w̌′i?i ∥∥2

Λi?
|wc,i? ∈ H

}
+
ρ

6
E
{∥∥w̃′ii?∥∥3|wc,i? ∈ H

}
≤ E {J(wc,i?)|wc,i? ∈ H} −

µ

2
Mσ2 + o(µ) +

o(µ)

πHi?
(6.119)

6.C Proof of Theorem 6.2

The proof follows by constructing a particular telescoping sum and subsequently applying [70,

Theorem 2] and 6.1. In a manner similar to [59], we define the stochastic process:

t(k + 1) =


t(k) + 1, if wc,t(k) ∈ G,

t(k) + 1, if wc,t(k) ∈M,

t(k) + is, if wc,t(k) ∈ H.

(6.120)

where t(0) = 0. We then have:

E
{
J(wc,t(k))− J(wc,t(k+1))|wc,t(k) ∈ G

}
= E

{
J(wc,t(k))− J(wc,t(k)+1)|wc,t(k) ∈ G

}
≥ µ2 c2

π
−O(µ3)− O(µ3)

πGi
(6.121)

and

E
{
J(wc,t(k))− J(wc,t(k+1))|wc,t(k) ∈ H

}
= E

{
J(wc,t(k))− J(wc,t(k)+is)|wc,t(k) ∈ H

}
≥ µ

2
Mσ2 − o(µ)− o(µ)

πHi
(6.122)

164



Finally, we have:

E
{
J(wc,t(k))− J(wc,t(k+1))|wc,t(k) ∈M

}
= E

{
J(wc,t(k))− J(wc,t(k)+1)|wc,t(k) ∈M

}
≥ − µ2c2 −O(µ3)− O(µ3)

πMi
(6.123)

where (a) follows since t(k+1)−t(k) = 1 when wc,t(k) ∈M. We can combine these relations

to obtain:

E
{
J(wc,t(k))− E J(wc,t(k+1))

}
= E

{
J(wc,t(k))− E J(wc,t(k+1))|wc,t(k) ∈ G

}
· πGt(k)

+ E
{
J(wc,t(k))− E J(wc,t(k+1))|wc,t(k) ∈ H

}
· πHt(k)

+ E
{
J(wc,t(k))− E J(wc,t(k+1))|wc,t(k) ∈M

}
· πMt(k)

=

(
µ2 c2

π
−O(µ3)− O(µ3)

πGi

)
· πGt(k)

+

(
µ

2
Mσ2 − o(µ)− o(µ)

πHi

)
· πHt(k)

+

(
−µ2c2 −O(µ3)− O(µ3)

πMi

)
· πMt(k)

= µ2 c2

π
· πGt(k) +

(µ
2
Mσ2 − o(µ)

)
· πHt(k)

− µ2c2 · πMt(k) − o(µ2) (6.124)

Suppose πMt(k) ≤ 1− π for all i. Then πGt(k) + πHt(k) ≥ π for all i, and

E
{
J(wc,t(k))− E J(wc,t(k+1))

}
≥ µ2 c2

π
·
(
π − πHt(k)

)
+
(µ

2
Mσ2 − o(µ)

)
· πHt(k)

− µ2c2 · (1− π)− o(µ2)

= µ2c2π +
(µ

2
Mσ2 − µ2 c2

π
− o(µ)

)
πHt(k) − o(µ2)

(a)

≥ µ2c2π − o(µ2) (6.125)

165



where (a) holds whenever µ
2
Mσ2 − µ2 c2

π
− o(µ) ≥ 0, which holds whenever µ is sufficiently

small. We hence have by telescoping:

J(wc,0)− Jo

≥ E J(wc,t(0))− E J(wc,t(k))

= E J(wc,t(0))− E J(wc,t(1))

+ E J(wc,t(1))− E J(wc,t(2))

+ · · ·

+ E J(wc,t(k−1))− E J(wc,t(k))

≥ µ2c2πk (6.126)

Rearranging yields:

k ≤ J(wc,0)− Jo
µ2c2π

(6.127)

We conclude by definition of the stochastic process tk:

i = t(k) ≤ k · is ≤ (J(wc,0)− Jo)
µ2c2π

is (6.128)

166



CHAPTER 7

Centralized Non-Convex Optimization

Recent years have seen increased interest in performance guarantees of gradient descent al-

gorithms for non-convex optimization. A number of works have uncovered that gradient

noise plays a critical role in the ability of gradient descent recursions to efficiently escape

saddle-points and reach second-order stationary points. Most available works limit the gra-

dient noise component to be bounded with probability one or sub-Gaussian and leverage

concentration inequalities to arrive at high-probability results. We present an alternate ap-

proach, relying primarily on mean-square arguments and show that a more relaxed relative

bound on the gradient noise variance is sufficient to ensure efficient escape from saddle-points

without the need to inject additional noise, employ alternating step-sizes or rely on a global

dispersive noise assumption, as long as a gradient noise component is present in a descent

direction for every saddle-point. The material in this chapter are based on [72].

In this chapter, we consider optimization problems of the form:

wo , arg min
w∈RM

J(w) (7.1)

where J(w) is a risk function defined as the expectation of a loss function, i.e.,

J(w) , ExQ(w;x) (7.2)

where the expectation is over the distribution of the data variable x. We wish to study

first-order methods for pursuing solutions of (7.1), i.e., recursions of the form:

wi = wi−1−µ∇̂J (wi−1) (7.3)

167



where ∇̂J (wi−1) denotes some suitable update direction. When the gradient of J(·) can be

evaluated, which in general requires the distribution of x to be known, then one popular and

effective construction is to employ the actual gradient vector:

∇̂JG
(wi−1) , ∇J (wi−1) (7.4)

When the distribution of x is unknown, we can instead rely on the stochastic gradient

approximation [8]:

∇̂JSG
(wi−1) , ∇Q (wi−1,xi) (7.5)

where∇Q (wi−1,xi) denotes an instantaneous approximation of∇J (wi−1) based on the real-

ization xi observed at time i. For strongly convex cost functions J(·), both gradient (7.4) and

stochastic gradient (7.5) implementations of (7.3) are very well behaved and well studied in

the literature – see, e.g., [22,84] and the references therein. One particular conclusion is that,

under suitable conditions on the loss function and data distribution, descent along the true

gradient ∇J (wi−1) results in linear convergence to the minimizer wo, while stochastic “de-

scent” along the instantaneous gradient approximation (7.5) results in a small performance

degradation in steady-state for small step-sizes, i.e., lim supi→∞E ‖wo −wi‖2 ≤ O(µ) [1].

One surprising fact that arises when considering non-convex cost functions is that em-

ploying stochastic or perturbed gradient directions is generally beneficial and can in fact

improve the ability of an algorithm to escape saddle-points. For example, recursion (7.3)

with true gradients (7.4) can take exponentially long to escape from saddle-points [148].

However, by simply perturbing the gradient by adding i.i.d. noise will allow the algorithm

to escape strict saddle-points in polynomial time [59]. More formally, perturbed gradient

descent takes the form [59]:

∇̂JPG
(wi−1) , ∇J (wi−1) + vi (7.6)

where vi is some i.i.d. perturbation term with positive definite covariance matrix. When

the true gradient ∇J (wi−1) is unavailable, the perturbation can be added instead to the

168



instantaneous gradient approximation [139]:

∇̂JPSG
(wi−1) , ∇Q (wi−1,xi) + vi (7.7)

In this chapter, we will study a generic update direction ∇̂J (wi−1) and examine the dynamics

of (7.3) in non-convex environments under conditions that are more relaxed than typically

assumed in the recent literature. To this end, we introduce the gradient noise process:

si(wi−1) , ∇J(wi−1)− ∇̂J (wi−1) (7.8)

and write (7.3) as:

wi = wi−1−µ∇J(wi−1)− µ si(wi−1) (7.9)

Any particular choice for the gradient estimate ∇̂J (wi−1) will induce a different gradient

noise process (7.8) with varying properties. For example, while employing construction (7.6)

results in i.i.d. gradient noise, a general construction of the form (7.5) will generally result

in a gradient noise process that is no longer i.i.d.

7.1 Related Works

The results and proof techniques presented in this chapter are related to Chapters 5 and 6,

which considered instead distributed optimization problems under an absolute variance bound

on the gradient noise. The contribution of this current work in relation to these earlier

studies is two-fold. First, we focus here solely on the case of single-agent optimization, i.e.,

on centralized as opposed to decentralized implementations. Second, and more importantly,

by limiting our analysis to the single-agent setting, we are able to relax the absolute variance

condition employed in [70, 71] to a mixed variance bound consisting of a mixture of relative

and absolute components, thus leading to new performance guarantees in the centralized

case.

There have of course been several other useful works on non-convex optimization using

169



first-order methods in the literature. The primary focus in these earlier works has been

establishing convergence to first-order stationary points, i.e., points where the gradient van-

ishes so that ∇J (wi−1) = 0 as i → ∞ [142, 150–152]. First-order stationarity by itself

however, is generally not a sufficient guarantee of a desirable solution since the set of first-

order stationary points includes saddle-points and even local maxima. For this reason, in

more recent years, there has been growing interest in convergence guarantees that exclude

such undesirable first-order stationary points. To do so, one also examines second-order

conditions. In particular, recall that second-order stationary points are those where not

only the gradient vector is zero, but there are also restrictions on the smallest eigenvalue

of the Hessian matrix at their locations [141]. These restrictions, when chosen to exclude

local maxima and strict saddle-points can help ensure convergence towards local minima.

Actually, under such restrictions, the stationary points can be shown to always correspond

to local minima for some functions of interest [59, 62,153–155].

One approach for ensuring convergence to these desirable second-order stationary points

is by incorporating second-order information via the Hessian matrix into the update rela-

tion [144, 156]. Such a construction helps ensure that a descent direction can be identified

even when the gradient vanishes and no longer carries directional information. For many,

especially large-scale problems, evaluating the Hessian matrix at every iteration can be pro-

hibitively costly. This fact has spawned a number of works that continue to employ first-order

schemes for identifying a descent direction around saddle-points for both deterministic and

stochastic optimization [135–137].

A second class of methods for the escape from saddle-points exploits the fact that strict

saddle-points (defined later) are unstable, in the sense that small perturbations, either in-

duced during initialization [61,133] or added to the true gradient direction [59,60,157], will

cause iterates to approach second-order stationary points almost surely. These algorithms

require knowledge of the true gradient∇J(wi−1), which generally requires information about

the distribution of x. Strategies for stochastic optimization, where instantaneous approxi-

mations ∇Q (wi−1,xi) are employed in place of the true gradient ∇J(wi−1) have also been

studied recently. The works [132,140] and [139] consider perturbed stochastic gradients (7.7)

170



with diminishing and constant step-sizes, respectively, while [134] employs (7.5) by interlac-

ing small and large step-sizes and the works [70, 71, 138] descend along (7.5) with constant

step-sizes. This chapter is most related to these latter references — we shall make a detailed

distinction when discussing the modeling conditions below. We also note that a number of

recent works consider variance reduced strategies for the setting where J(·) corresponds to

an empirical risk based on a finite number of samples [137, 142, 143]. In contrast, our focus

is on the streaming data setting, where the sample size tends to infinity and traditional

variance reduction techniques are inapplicable.

7.2 Modeling Conditions

7.2.1 Smoothness Conditions

We employ the following smoothness assumptions.

Assumption 7.1 (Lipschitz gradients). The gradient ∇J(·) is Lipschitz, namely, there

exists δ > 0 such that for any x, y:

‖∇J(x)−∇J(y)‖ ≤ δ‖x− y‖ (7.10)

Assumption 7.2 (Lipschitz Hessians). The cost J(·) is twice-differentiable and there

exists ρ ≥ 0 such that:

‖∇2J(x)−∇2J(y)‖ ≤ ρ‖x− y‖ (7.11)

Assumption 7.1 is common in the study of gradient algorithms, even for the minimization

of convex function [1] and first-order stationarity in non-convex environments [150, 151]. It

171



implies a quadratic upper bound on the cost:

J(y) ≤ J(x) +∇J(x)T (y − x) +
δ

2
‖x− y‖2 (7.12)

and uniform lower and upper bounds on the Hessian matrix:

− δI ≤ ∇2J(x) ≤ δI (7.13)

The stronger Assumption 7.2 is not necessary to establish convergence to first-order station-

ary points [150]. It is frequently employed to characterize more granularly the dynamics of

(stochastic) gradient algorithms around first-order stationary points, both to establish the

ability of various gradient algorithms to escape saddle-points [59, 133, 137, 139] or to study

the mean-square deviation of stochastic gradient implementations from minimizers in the

strongly-convex setting [1]. It implies a tighter upper bound than (7.12) [144]:

J(y) ≤ J(x) +∇J(x)T(y − x) +
1

2
(y − x)T∇2J(x)(y − x) +

ρ

6
‖y − x‖3 (7.14)

7.2.2 Gradient Noise Conditions

We shall employ the following conditions on the gradient noise process (7.8).

Definition 7.1 (Filtration). We denote by F i the filtration generated by the random pro-

cesses wj for all j ≤ i:

F i , {w0,w1, . . . ,wi} (7.15)

Informally, F i captures all information that is available about the stochastic processes wj

up to time i.

Assumption 7.3 (Gradient noise process). The gradient noise process (7.8) satisfies:

E {si(wi−1)|F i−1} = 0 (7.16)

E
{
‖ si(wi−1)‖4|F i−1

}
≤ β4‖∇J(wi−1)‖4 + σ4 (7.17)

172



for some non-negative constants β4, σ4.

The fourth-order condition (7.17) also implies a bound on the second-order moment via

Jensen’s inequality:

E
{
‖ si(wi−1)‖2|F i−1

}
≤
√
β4‖∇J(wi−1)‖4 + σ4

(a)

≤ β2‖∇J(wi−1)‖2 + σ2 (7.18)

where (a) follows from the sub-additivity of the square root. Condition (7.18) is the same

as the one employed in [151] to study first-order stationarity under a diminishing step-size

rule and corresponds to a mixture of the absolute and relative noise components appearing

in [84]. It is weaker than the condition assumed in works on second-order stationarity. For

example, the works [59,138] require the gradient noise process to be uniformly bounded for

all wi with probability one. This condition is relaxed in [139] by requiring the difference

∇J(wi−1)−∇Q (wi−1,xi) to be sub-Gaussian and further in [70,71] by allowing for a uniform

bound on the fourth-order moment. Works that employ bounded or sub-Gaussian gradient

perturbation generally rely on concentration relations, which explicitly exploit the bounded

or sub-Gaussian nature of the gradient noise process [139].

In this chapter, we take a different approach by anchoring our analysis around mean-

square arguments. This allows us to track the evolution of the iterates wi in the mean-square

sense, rather than with high probability and avoid the need for restrictive probability bounds

on the gradient noise process. Observe that condition (7.17) is weaker than a uniform bound

on the fourth moment of the gradient noise process, since we allow for a relative component

in the form of β4‖∇J(wi−1)‖4. This condition allows for the gradient noise variance to

grow away from first-order stationary points and in particular does not enforce a uniform

bound on the gradient noise variance as seen from (7.18). In place of stronger bounds

on the gradient noise variance, we employ a smoothness condition on the gradient noise

covariance, previously employed for characterizing the mean-square deviation of stochastic

gradient algorithms around the minimizer in strongly convex optimization [1].

173



Assumption 7.4 (Lipschitz covariances). The gradient noise process has a Lipschitz

covariance matrix, i.e.,

Rs(wi−1) , E
{
si(wi−1)si(wi−1)T|F i−1

}
(7.19)

satisfies

‖Rs(x)−Rs(y)‖ ≤ βR‖x− y‖γ (7.20)

for some βR and 0 < γ ≤ 4.

This condition essentially ensures that the second-order moment of the gradient noise process

is approximately invariant so long as the iterates wi−1 remain sufficiently close. From the

bound on the aggregate gradient noise variance (7.18), we can upper bound the gradient

noise covariance as follows:

‖Rs (wi−1)‖

≤ E
{∥∥si(wi−1) si(wi−1)T

∥∥ |F i

}
= E

{
‖si(wi−1)‖2 |F i

}
(7.18)

≤ β2‖∇J(wi−1)‖2 + σ2 (7.21)

Before introducing the final assumption, we formally define first and second-order stationary

points, similar to prior works on second-order stationary guarantees [59, 70, 71, 144]. We

decompose the space w ∈ RM into four sets.

Definition 7.2 (Sets). To simplify the notation in the sequel, we introduce following sets:

G ,

{
w : ‖∇J(w)‖2 ≥ µ

c2

c1

(
1 +

1

π

)}
(7.22)

GC ,

{
w : ‖∇J(w)‖2 < µ

c2

c1

(
1 +

1

π

)}
(7.23)

H ,
{
w : w ∈ GC , λmin

(
∇2J(w)

)
≤ −τ

}
(7.24)

M ,
{
w : w ∈ GC , λmin

(
∇2J(w)

)
> −τ

}
(7.25)

174



where τ is a small positive parameter, c1 and c2 are constants:

c1 , 1− µδ
2

(
1 + β2

)
= O(1) (7.26)

c2 ,
δ

2
σ2 = O(1) (7.27)

and 0 < π < 1 is a parameter to be chosen. Note that GC = H ∪M. We also define the

probabilities πGi , Pr {wi ∈ G}, πHi , Pr {wi ∈ H} and πMi , Pr {wi ∈M}. Then, for all

i, we have πGi + πHi + πMi = 1.

As explained in [70, 71], the above definition first decomposes the space RM into the set G,

where the squared norm of the gradient is larger than O(µ) and its complement GC . Since the

squared norm of the gradient in GC is not precisely equal to zero, but nevertheless small for

small step-sizes µ, we refer to these points as approximately first-order stationary. The set of

approximate first-order stationary points is further decomposed into those where the Hessian

matrix has a strictly negative eigenvalue H, and those who do not M. The set of points

H correspond to approximate strict saddle-points, and are points where a descent direction

could be identified from the Hessian matrix. Points in M are referred to as approximately

second-order stationary, since they are indistinguishable from minima based on first and

second-order information.

Assumption 7.5 (Gradient noise in strict saddle-points). Suppose w is an approximate

strict-saddle point, i.e., w ∈ H. Introduce the eigendecomposition of the Hessian matrix as

∇2J(w) = V ΛV T and let the decomposition:

V =
[
V ≥0 V <0

]
, Λ =

 Λ≥0 0

0 Λ<0

 (7.28)

where Λ≥0 ≥ 0 and Λ<0 < 0. Then, we assume that:

λmin

((
V <0

)T
Rs (w)V <0

)
≥ σ2

` (7.29)

for some σ2
` > 0 and all w ∈ H.

175



As explained in [70,71], assumption 7.5 is similar to the condition in [134], where alternating

step-sizes are employed, and ensures that at every strict saddle-point there is a gradient

noise component in a descent direction with non-zero probability. It will be leveraged to

establish the ability of recursion (7.3) to escape strict saddle-points. Note that, in contrast

to the global dispersive noise assumption [138], condition (7.29) is only required to hold

locally in the vicinity of strict saddle-points. When there is no prior information, condi-

tion (7.29) can always be guaranteed by choosing the update direction to be the perturbed

stochastic gradient direction (7.7) with vi ∼ N (0, σ2
` I), as is done in [139]. Under this con-

struction, the additional perturbation vi plays a similar role to ridge regularization, which

is frequently added to convex optimization problems to ensure strong convexity and hence

improved convergence behavior in the absence of a priori strong convexity guarantees. An

alternative construction is to add perturbations selectively, when a saddle-point is detected

by calculating the gradient norm, resulting in an algorithm similar to [60].

Remark #1: In order to make the notation more compact, and whenever it is clear from

context, we shall omit the argument wi−1 from the gradient noise term and write instead

si , si(wi−1) with the understanding that the gradient noise at time i is a function of the

iterate wi−1 at time i− 1 in addition to the data xi at time i.

Remark #2: The proof technique used to establish the main theorems in the next

section are motivated by the arguments used in the works [70,71] for distributed optimization

in non-convex environments. The main difference is that the arguments need to be adjusted

to accommodate the more relaxed relative variance bound (7.17) in the single-agent case.

7.3 Performance Analysis

7.3.1 Preliminary Lemmas

Before proceeding with the analysis, we list some preliminary lemmas, which will be used

repeatedly throughout.

Lemma 7.1 (Conditioning [70]). Suppose w ∈ RM is a random variable measurable by

176



F . In other words, w is deterministic conditioned on F and E {w |F} = w. Then,

E
{
E {x |F} |w ∈ S

}
= E {x |w ∈ S} (7.30)

for any deterministic set S ⊆ RM and random x ∈ RM .

Lemma 7.2 (A limiting result). For T, µ, δ > 0 and k ∈ Z+ with µ < 1
δ
, we have:

lim
µ→0

(
(1 + µδ)k +O(µ2)

(1− µδ)k−1

)T
µ

= e−Tδ+2kTδ = O(1) (7.31)

Proof. This lemma is a minor variation of the result in [70]. The adjusted proof is listed in

Appendix 7.A.

7.3.2 Large-Gradient Regime

Theorem 7.1. For sufficiently small step-sizes:

µ ≤ 2

δ (1 + β2)
(7.32)

and when the gradient at wi is sufficiently large, i.e., wi ∈ G, the stochastic gradient recur-

sion (7.3) yields descent in expectation in one iteration, namely,

E {J(wi+1)|wi ∈ G} ≤ E {J(wi)|wi ∈ G} − µ2 c2

π
(7.33)

On the other hand, when wi ∈M, we can bound the expected ascent:

E {J(wi+1)|wi ∈M} ≤ E {J(wi)|wi ∈M}+ µ2c2 (7.34)

Proof. Appendix 7.B.

Theorem 7.1 ensures that, whenever wi ∈ G, i.e., whenever the gradient is sufficiently large,

one can expect descent in one iteration. This descent relation is similar to those used to es-

177



tablish convergence to first-order stationary points [151]. In fact, repeatedly applying (7.33)

would allow us to conclude that wi must eventually reach GC with high probability, as long

as J(·) is bounded from below. In contrast to strongly convex optimization however, where

a small gradient norm always implies vicinity to the global minimizer, first-order stationary

points can be arbitrarily far from a local minimum in non-convex surfaces. For this reason,

we will proceed to study the behavior around strict-saddle points in the sequel.

7.3.3 Escape from Saddle-Points

Beginning at a strict saddle-point wi ∈ H and for any j ≥ 0, we have from (7.3):

wi+j+1 = wi+j −µ∇J(wi+j)− µ si+j+1(wi+j) (7.35)

Subtracting this relation from wi, we find:

wi−wi+j+1 = wi−wi+j +µ∇J(wi+j) + µ si+j+1(wi+j) (7.36)

We shall study the evolution of the deviation wi−wi+j+1 over several iterations j ≥ 0. For

brevity, we define:

w̃i
j+1 , wi−wi+j+1 (7.37)

so that (7.36) becomes:

w̃i
j+1 = w̃i

j + µ∇J(wi+j) + µ si+j+1(wi+j) (7.38)

From the mean-value theorem we find [1]:

∇J(wi+j)−∇J(wi) = H i+j (wi+j −wi)
(7.37)
= −H i+jw̃

i
j (7.39)

where

H i+j ,
∫ 1

0

∇2J ((1− t)wi+j +twi) dt (7.40)

178



so that (7.38) can be reformulated to:

w̃i
j+1 = (I − µH i+j) w̃

i
j + µ∇J(wi) + µ si+j+1(wi+j) (7.41)

In a manner similar to [1, 25, 59], we replace the random and time-varying matrix H i+j by

the Hessian matrix ∇2J(wi) evaluated at the starting point i. This substitution obviously

leads to an approximate recursion in place of (7.41); we shall denote its state vector by w̃
′i
j+1

instead of w̃i
j+1, as seen below in (7.42). The point is that while the Hessian ∇2J(wi) is

random and depends on the time instance i, it becomes deterministic and constant when

conditioning on F i and iterating over j ≥ 0. We thus arrive at the following recursion, which

we shall refer to as the short-term model:

w̃′ij+1 =
(
I − µ∇2J(wi)

)
w̃′ij + µ∇J(wi) + µ si+j+1(wi+j) (7.42)

where

w̃′ij+1 , wi−w′i+j+1 (7.43)

The fact that the driving matrix I − µ∇2J(wi) is constant for all j ≥ 0 ensures that (7.42)

is a more tractable recursion than (7.41). In order for this model to be useful, however, we

need to ensure that the function J(w′i+j) evaluated at the iterate of the short-term model

carries sufficient information about the actual recursion of interest, i.e., J(wi+j). We begin

by establishing a set of deviation bounds over a finite time horizon. These ensure that the

iterates w′i+j and wi+j remain close for a bounded number of iterations, which will allow us

to relate J(w′i+j) and J(wi+j) further below.

179



Lemma 7.3 (Deviation bounds). The following quantities are conditionally bounded:

E
{∥∥w̃i

j

∥∥2|wi ∈ H
}
≤ O(µ) (7.44)

E
{∥∥w̃i

j

∥∥3|wi ∈ H
}
≤ O(µ3/2) (7.45)

E
{∥∥w̃i

j

∥∥4|wi ∈ H
}
≤ O(µ2) (7.46)

E
{∥∥w̃i

j − w̃′ij
∥∥2|wi ∈ H

}
≤ O(µ2) (7.47)

E
{∥∥w̃′ij∥∥2|wi ∈ H

}
≤ O(µ) (7.48)

for j ≤ T
µ

, where T denotes an arbitrary constant that is independent of the step-size µ.

Proof. Appendix 7.C.

These deviation bounds, along with the smoothness conditions on J(·) allow us to establish

the following corollary.

Corollary 7.1 (Short-term model accuracy). Beginning at wi ∈ H, the short term

model is accurate over a finite horizon j ≤ T
µ

, i.e.,

E {J(wi+j)|wi ∈ H} ≤ E
{
J(w′i+j)|wi ∈ H

}
+O(µ3/2) (7.49)

for j ≤ T
µ

, where T denotes an arbitrary constant that is independent of the step-size µ.

Proof. Appendix 7.D.

We conclude that J(·) evaluated at the true iterate wi+j is upper bounded by J(·) evaluated

at the short-term model w′i+j (up to an approximation error O(µ3/2) that will turn out to

be negligible for small step-sizes), so long as both recursions are initialized at strict-saddle

points wi ∈ H.

Theorem 7.2 (Descent through strict saddle-points). Beginning at a strict saddle-

180



point wi ∈ H and iterating for is iterations after i with

is =
log
(

2M σ2

σ2
`

+ 1 +O(µ)
)

log(1 + 2µτ)
≤ O

(
1

µτ

)
(7.50)

guarantees

E {J(wi+is)|wi ∈ H}

≤ E {J(wi)|wi ∈ H} −
µ

2
Mσ2 + o(µ) (7.51)

Proof. Appendix 7.E.

We conclude that when wi reaches an approximately strict-saddle points in H, where the

gradient norm alone is no longer sufficient to guarantee descent in a single iteration, we can

nevertheless guarantee descent after O(1/µ) iterations. Recall that Theorem 7.1 guarantees

descent for points in G. As such, Theorems 7.1 and 7.2 together guarantee (expected) descent

whenever wi /∈ M and, as long as J(·) is bounded from below, they ensure that wi must

eventually reach a point in M. This argument is formalized in the final theorem.

Theorem 7.3. Suppose J(w) ≥ Jo. Then, for sufficiently small step-sizes µ, we have with

probability 1− π, that wio ∈ M, i.e., ‖∇J(wio)‖2 ≤ O(µ) and λmin (∇2J(wio)) ≥ −τ in at

most io iterations, where

io ≤ (J(w0)− Jo)
µ2c2π

is (7.52)

and is denotes the escape time from Theorem 7.2.

Proof. Appendix 7.F.

7.4 Simulation Results

In this section, we consider a simple example, arising from a single-hidden-layer neural

network with a linear hidden layer and a logistic activation function leading into the output

181



Figure 7.1: Cost surface of a simple neural network with ρ = 0.1 and sample trajectories.
The symmetric nature of the loss and initialization result in an equal probability of escaping
towards the local minimum in the positive or negative quadrant.

layer. The cross-entropy loss for such a structure can be simplified to an equivalent logistic

loss [71]:

Q(w1,W2;γ,h) = log
(

1 + e−γw
T
1W2 h

)
(7.53)

The regularized learning problem can then be formulated as:

J(w1,W2) = EQ(w1,W2;γ,h) +
ρ

2
‖w1‖2 +

ρ

2
‖W2‖2

F (7.54)

The cost surface is depicted in Fig. 7.1. The cost J(·) has two local minima in the positive

and negative quadrants, respectively, and a single strict saddle-point at w1 = W2 = 0. We

initialize w0 = col {−0.5, 0.5} and compare the direct stochastic gradient descent implemen-

tation (7.5) with:

∇̂J(w1,W2) , ∇Q(w1,W2;γ,h) + s · col {1, 1} (7.55)

where s ∼ N (0, 1) and the direction col {1, 1} corresponds to the local descent direction at

the strict saddle-point w1 = W2 = 0. The particular choice of the direction is informed by the

182



Figure 7.2: Evolution of the function value.

analysis and Assumption 7.5 and will allow us to verify whether condition (7.29) is indeed

necessary. A realization of the learning curve is depicted in Fig. 7.2. It can be observed

that the stochastic gradient recursion is outperformed by (7.55), since Assumption 7.5 is

not satisfied for (7.5). Furthermore, it is evident that the escape time increases at a rate of

O(1/µ) as µ decreases, suggesting the tightness of the escape time (7.50).

7.A Proof of Lemma 7.2

The proof techniques in these appendices are generally similar to the ones used in our

works [70, 71] albeit after some necessary adjustments to account for the relative variance

bound (7.17) and the adjusted relations in Definition 7.2.

To begin with, for the natural logarithm of the expression, we have:

log

(
(1 + µδ)k +O(µ2)

(1− µδ)k−1

)T
µ

=
T

µ

(
log
(

(1 + µδ)k +O(µ2)
)
− (k − 1) log (1− µδ)

)
(7.56)

183



Since the logarithm is continuous over R+, we have:

log

lim
µ→0

(
(1 + µδ)k +O(µ2)

(1− µδ)k−1

)T
µ


= lim

µ→0
log

((1 + µδ)k +O(µ2)

(1− µδ)k−1

)T
µ


= lim

µ→0

T

µ

(
log
(

(1 + µδ)k +O(µ2)
)
− (k − 1) log (1− µδ)

)
= lim

µ→0

T

µ

(
log
(

(1 + µδ)k
)
− (k − 1) log (1− µδ)

)
= lim

µ→0

T

µ
(k log ((1 + µδ))− (k − 1) log (1− µδ))

= kT lim
µ→0

log (1 + µδ)

µ
− (k − 1)T lim

µ→0

log (1− µδ)
µ

(7.57)

We examine the fraction inside the limit more closely. Since both the numerator and de-

nominator of the fraction approach zero as µ→ 0, we apply L’Hôpital’s rule:

lim
µ→0

log (1± µδ)
µ

= lim
µ→0

±δ
1± µδ = ±δ (7.58)

Hence, we find:

lim
µ→0

(
(1 + µδ)k +O(µ2)

(1− µδ)k−1

)T
µ

= ekTδ+(k−1)Tδ = e−Tδ+2kTδ (7.59)

7.B Proof of Lemma 7.1

Since J(·) has δ-Lipschitz gradients:

J(wi+1) ≤ J(wi) +∇J(wi)
T (wi+1−wi) +

δ

2
‖wi+1−wi‖2 (7.60)

184



From (7.3), we find:

J(wi+1)

≤ J(wi) +∇J(wi)
T
(
−∇̂J(wi)

)
+
δ

2

∥∥∥−µ∇̂J(wi)
∥∥∥2

≤ J(wi)− µ∇J(wi)
T∇J(wi)− µ∇J(wi)

T si+1(wi)

+ µ2 δ

2
‖∇J(wi) + si+1(wi)‖2 (7.61)

Under conditional expectation, we have:

E {J(wi+1)|F i}

≤ J(wi)− µ‖∇J(wi)‖2 − µ∇J(wi)
T
E {si+1(wi)|F i}

+ µ2 δ

2
E
{
‖∇J(wi) + si+1(wi)‖2|F i

}
= J(wi)− µ

(
1− µδ

2

)
‖∇J(wi)‖2

+ µ2 δ

2
E
{
‖si+1(wi)‖2|F i

}
≤ J(wi)− µ

(
1− µδ

2

(
1 + β2

))
‖∇J(wi)‖2 + µ2 δ

2
σ2

(a)
= J(wi)− µc1‖∇J(wi)‖2 + µ2c2 (7.62)

where (a) follows from (7.26)–(7.27). Taking expectations conditioned on wi ∈ G, we find:

E {J(wi+1)|wi ∈ G}

≤ E {J(wi)|wi ∈ G} − µc1E
{
‖∇J(wi)‖2|wi ∈ G

}
+ µ2c2

≤ E {J(wi)|wi ∈ G} − µc1 · µ
c2

c1

(
1 +

1

π

)
+ µ2c2

= E {J(wi)|wi ∈ G} − µ2 c2

π
(7.63)

185



On the other hand, starting from (7.62) and taking expectations conditioned on wi ∈ M,

we have:

E {J(wi+1)|wi ∈M}

≤ E {J(wi)|wi ∈M}− µc1E
{
‖∇J(wi)‖2|wi ∈M

}
+ µ2c2

(a)

≤ E {J(wi)|wi ∈M}+ µ2c2 (7.64)

where (a) follows since c1 = 1− µ δ
2

(1 + β2) ≥ 0 whenever µ ≤ 2
δ(1+β2)

.

186



7.C Proof of Lemma 7.3

We refer to (7.41). Suppose j ≤ T
µ

, where T is an arbitrary constant independent of µ. We

then have for j ≥ 0:

E
{∥∥w̃i

j+1

∥∥2|F i+j

}
(7.41)
= E

{∥∥∥ (I − µH i+j) w̃
i
j + µ∇J(wi) + µ si+j+1

∥∥∥2

|F i+j

}
(a)
=
∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥2

+ µ2E
{
‖si+j+1‖2|F i+j

}
(b)
=

1

1− µδ
∥∥(I − µH i+j) w̃

i
j

∥∥2
+
µ

δ
‖∇J(wi)‖2

+ µ2E
{
‖si+j+1‖2|F i+j

}
(c)

≤ (1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

+ µ2E
{
‖si+j+1‖2|F i+j

}
(d)

≤ (1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

+ µ2β2‖∇J(wi+j)‖2 + µ2σ2

=
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

+ µ2β2‖∇J(wi) +∇J(wi+j)−∇J(wi)‖2 + µ2σ2

(e)

≤ (1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2 + 2µ2β2‖∇J(wi)‖2

+ 2µ2β2‖∇J(wi+j)−∇J(wi)‖2 + µ2σ2

(f)

≤ (1 + µδ)2 + (1− µδ)2µ2β2δ2

1− µδ
∥∥w̃i

j

∥∥2

+ µ

(
1

δ
+ 2µβ2

)
‖∇J(wi)‖2 + µ2σ2

(g)

≤ (1 + µδ)2 +O(µ2)

1− µδ
∥∥w̃i

j

∥∥2
+O(µ)‖∇J(wi)‖2 + µ2σ2 (7.65)

187



where (a) follows from the conditional zero-mean property of the gradient noise term in

Assumption 7.3, (b) follows from Jensen’s inequality

‖a+ b‖2 ≤ 1

α
‖a‖2 +

1

1− α‖b‖
2 (7.66)

with α = µδ < 1 and (c) follows from the sub-multiplicative property of norms along with

−δI ≤ ∇2J(wi) ≤ δI, which follows from the Lipschitz gradient condition in Assumption 7.1.

We can now take expectations over wi ∈ H to obtain:

E
{∥∥w̃i

j+1

∥∥2|wi ∈ H
}

≤ (1 + µδ)2 +O(µ2)

1− µδ E
{∥∥w̃i

j

∥∥2|wi ∈ H
}

+O(µ)E
{
‖∇J(wi)‖2|wi ∈ H

}
+O(µ2)

(a)

≤ (1 + µδ)2 +O(µ2)

1− µδ E
{∥∥w̃i

j

∥∥2|wi ∈ H
}

+O(µ2) (7.67)

where (a) follows from the definition of the set H (7.24). Note that, at time i = 0, we have:

w̃i
0 = wi−wi+0 = 0 (7.68)

188



and hence the initial deviation is zero, by definition. Iterating, starting at j = 0 yields:

E
{∥∥w̃i

j

∥∥2|wi ∈ H
}

≤
(
j−1∑
n=0

(
(1 + µδ)2 +O(µ2)

1− µδ

)n)
O(µ2)

=
1−

(
(1+µδ)2+O(µ2)

1−µδ

)j
1− (1+µδ)2+O(µ2)

1−µδ

O(µ2)

=

((
(1+µδ)2+O(µ2)

1−µδ

)j
− 1

)
(1− µδ)

1 + 2µδ + µ2δ2 − 1 + µδ
O(µ2)

=

((
(1+µδ)2+O(µ2)

1−µδ

)j
− 1

)
(1− µδ)

3δ + µδ2
O(µ)

≤

((
(1+µδ)2+O(µ2)

1−µδ

)T
µ − 1

)
(1− µδ)

3δ + µδ2
O(µ)

=O(µ) (7.69)

where the last line follows from Lemma 7.2 after noting that:

((
(1+µδ)2+O(µ2)

1−µδ

)T
µ − 1

)
(1− µδ)

3δ + µδ2

≤

((
(1+µδ)2+O(µ2)

1−µδ

)T
µ − 1

)
(1− µδ)

3δ

≤

(
(1+µδ)2+O(µ2)

1−µδ

)T
µ

3δ
(7.70)

This establishes (7.44). We proceed to establish a bound on the fourth-order moment. Using

the inequality [1]:

‖a+ b‖4 ≤ ‖a‖4 + 3‖b‖4 + 8‖a‖2‖b‖2 + 4‖a‖2
(
aTb
)

(7.71)

189



we have:

E
{∥∥w̃i

j+1

∥∥4|F i+j

}
≤
∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥4

+ 3µ4E
{
‖si+j+1‖4 |F i+j

}
+ 8µ2

∥∥(I − µH i+j) w̃
i
j + µ∇J(wi)

∥∥2

× E
{
‖si+j+1‖2 |F i+j

}
+ 4µ

∥∥(I − µH i+j) w̃
i
j + µ∇J(wi)

∥∥2

×
(
(I − µH i+j) w̃

i
j + µ∇J(wi)

)T
× (E {si+j+1 |F i+1})

(a)
=
∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥4

+ 3µ4E
{
‖si+j+1‖4 |F i+j

}
+ 8µ2

∥∥(I − µH i+j) w̃
i
j + µ∇J(wi)

∥∥2

× E
{
‖si+j+1‖2 |F i+j

}
(b)

≤
∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥4

+ 3µ4
(
‖∇J(wi+j)‖4 + σ4

)
+ 8µ2

∥∥(I − µH i+j) w̃
i
j + µ∇J(wi)

∥∥2

×
(
‖∇J(wi+j)‖2 + σ2

)
(7.72)

where in step (a) we dropped cross-terms due to the conditional zero-mean property of the

gradient noise in Assumption 7.3, step (b) follows from the fourth-order conditions on the

gradient noise in Assumption 7.3. We shall bound each term one by one. From Jensen’s

inequality, we find for 0 < α < 1:

‖a+ b‖4 =
1

α3
‖a‖4 +

1

(1− α)3 ‖b‖
4 (7.73)

190



and hence for the first term on the right-hand side of (7.72) with α = 1−µδ and 0 < µ < 1
δ
:

∥∥(I − µH i+j) w̃
i
j + µ∇J(wi)

∥∥4

≤ (1 + µδ)4

(1− µδ)3

∥∥w̃i
j

∥∥4
+

µ4

µ3δ3
‖∇J(wi)‖4

=
(1 + µδ)4

(1− µδ)3

∥∥w̃i
j

∥∥4
+O(µ)‖∇J(wi)‖4 (7.74)

After taking expectations conditioned on wi ∈ H, we find:

E
{∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥4|wi ∈ H
}

≤ (1 + µδ)4

(1− µδ)3 E
{∥∥w̃i

j

∥∥4|wi ∈ H
}

+O(µ)E
{
‖∇J(wi)‖4|wi ∈ H

}
(7.24)

≤ (1 + µδ)4

(1− µδ)3 E
{∥∥w̃i

j

∥∥4|wi ∈ H
}

+O(µ3) (7.75)

For the second term we have, again from (7.73) with α = 1
2
:

3µ4
(
‖∇J(wi+j)‖4 + σ4

)
= 3µ4

(
‖∇J(wi) +∇J(wi+j)−∇J(wi)‖4 + σ4

)
(7.73)

≤ 3µ4
(
8‖∇J(wi)‖4 + 8‖∇J(wi+j)−∇J(wi)‖4 + σ4

)
(7.73)

≤ 3µ4
(

8‖∇J(wi)‖4 + 8δ4
∥∥w̃i

j

∥∥4
+ σ4

)
=O(µ4)‖∇J(wi)‖4 +O(µ4)

∥∥w̃i
j

∥∥4
+O(µ4) (7.76)

191



After taking expectations over wi ∈ H we have:

E
{

3µ4
(
‖∇J(wi+j)‖4 + σ4

)
|wi ∈ H

}
≤O(µ4)E

{
‖∇J(wi)‖4|wi ∈ H

}
+O(µ4)E

{∥∥w̃i
j

∥∥4|wi ∈ H
}

+O(µ4)

≤O(µ4)E
{∥∥w̃i

j

∥∥4|wi ∈ H
}

+O(µ4) (7.77)

192



For the last term, we have:

8µ2
∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥2 (‖∇J(wi+j)‖2 + σ2
)

= 8µ2
∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥2‖∇J(wi+j)‖2

+ 8µ2
∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥2
σ2

(7.66)

≤ 8µ2

(
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

)
‖∇J(wi+j)‖2

+ 8µ2

(
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

)
σ2

= 8µ2

(
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

)
× ‖∇J(wi) +∇J(wi+j)−∇J(wi)‖2

+ 8µ2

(
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

)
σ2

(7.66)

≤ 8µ2

(
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

)
×
(
2‖∇J(wi)‖2 + 2‖∇J(wi+j)−∇J(wi)‖2)

+ 8µ2

(
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

)
σ2

(7.66)

≤ 8µ2

(
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

)
×
(

2‖∇J(wi)‖2 + 2δ2
∥∥w̃i

j

∥∥2
)

+ 8µ2

(
(1 + µδ)2

1− µδ
∥∥w̃i

j

∥∥2
+
µ

δ
‖∇J(wi)‖2

)
σ2

=O(µ2)
∥∥w̃i

j

∥∥4
+O(µ3)‖∇J(wi)‖4

+O(µ2)‖∇J(wi)‖2
∥∥w̃i

j

∥∥2
+O(µ2)

∥∥w̃i
j

∥∥2

+O(µ3)‖∇J(wi)‖2 (7.78)

193



After taking conditional expectations:

E

{
8µ2
∥∥(I − µH i+j) w̃

i
j + µ∇J(wi)

∥∥2

×
(
‖∇J(wi+j)‖2 + σ2

)
|wi ∈ H

}
≤O(µ2)E

{∥∥w̃i
j

∥∥4|wi ∈ H
}

+O(µ3)E
{
‖∇J(wi)‖4|wi ∈ H

}
+O(µ2)E

{
‖∇J(wi)‖2

∥∥w̃i
j

∥∥2|wi ∈ H
}

+O(µ2)E
{∥∥w̃i

j

∥∥2|wi ∈ H
}

+O(µ3)E
{
‖∇J(wi)‖2|wi ∈ H

}
≤O(µ2)E

{∥∥w̃i
j

∥∥4|wi ∈ H
}

+O(µ3) ·O(µ2)

+O(µ2)E
{
O(µ)

∥∥w̃i
j

∥∥2|wi ∈ H
}

+O(µ2) ·O(µ)

+O(µ3) ·O(µ)

≤O(µ2)E
{∥∥w̃i

j

∥∥4|wi ∈ H
}

+O(µ3) (7.79)

Returning to (7.72), after taking expectations over wi ∈ H on both sides and grouping terms

we find:

E
{∥∥w̃i

j+1

∥∥4|wi ∈ H
}

≤ (1 + µδ)4 +O(µ2)

(1− µδ)3 E
{∥∥w̃i

j

∥∥4|wi ∈ H
}

+O(µ3) (7.80)

194



Recall again that w̃i
0 = 0 and therefore iterating yields:

E
{∥∥w̃i

j

∥∥4|wi ∈ H
}

≤
(
j−1∑
n=0

(
(1 + µδ)4 +O(µ2)

(1− µδ)3

)n)
O(µ3)

=
1−

(
(1+µδ)4+O(µ2)

(1−µδ)3

)j
1− (1+µδ)4+O(µ2)

(1−µδ)3
O(µ3)

=

((
(1+µδ)4+O(µ2)

(1−µδ)3

)j
− 1

)
(1− µδ)3

(1 + µδ)4 +O(µ2)− (1− µδ)3 O(µ3)

≤

(
(1+µδ)4+O(µ2)

(1−µδ)3

)j
− 1

(1 + µδ)4 +O(µ2)− (1− µδ)3O(µ3)

≤

(
(1+µδ)4+O(µ2)

(1−µδ)3

)j
(1 + µδ)4 +O(µ2)− (1− µδ)3O(µ3)

(a)

≤

(
(1+µδ)4+O(µ2)

(1−µδ)3

)j
O(µ)

O(µ3)

=

(
(1 + µδ)4 +O(µ2)

(1− µδ)3

)j

O(µ2)

≤
(

(1 + µδ)4 +O(µ2)

(1− µδ)3

)T
µ

O(µ2)

≤O(µ2) (7.81)

where in (a) we expanded:

(1 + µδ)4 +O(µ2)− (1− µδ)3

= 1 + 4µδ +O(µ2)− 1 + 3µδ −O(µ2) = O(µ) (7.82)

195



and the last step follows from Lemma 7.2. This establishes (7.46). Eq. (7.45) then follows

from Jensen’s inequality via:

E
{∥∥w̃i

j

∥∥3|wi ∈ H
}
≤
(
E
{∥∥w̃i

j

∥∥4|wi ∈ H
})3/4

≤
(
O(µ2)

)3/4
= O(µ3/2) (7.83)

We now study the difference between the short-term model (7.42) and the true recur-

sion (7.41). We have:

wi+j+1−w′i+j+1

= − w̃i
i+1 + w̃′ii+1

= − (I − µH i+i) w̃
i
j − µ∇J(wi)− µ si+j+1

+
(
I − µ∇2J(wi)

)
w̃′ii + µ∇J(wi) + µ si+j+1

= − (I − µH i+i) w̃
i
j +
(
I − µ∇2J(wi)

)
w̃′ii

=
(
I − µ∇2J(wi)

) (
wi+j −w′i+j

)
+ µ

(
H i+j −∇2J(wi)

)
w̃i
j (7.84)

Before proceeding, note that the difference between the Hessians in the driving term can be

bounded as:

∥∥∇2J(wi)−H i+i

∥∥
=

∥∥∥∥∇2J(wi)−
∫ 1

0

∇2J ((1− t)wi+j +twi) dt

∥∥∥∥
=

∥∥∥∥∫ 1

0

(
∇2J(wi)−∇2J ((1− t)wi+j +twi)

)
dt

∥∥∥∥
(a)

≤
∫ 1

0

∥∥∇2J(wi)−∇2J ((1− t)wi+j +twi)
∥∥ dt

(b)

≤ ρ
∫ 1

0

‖(1− t)wi−(1− t)wi+j‖ dt

= ρ
∥∥w̃i

j

∥∥∫ 1

0

(1− t)dt =
ρ

2

∥∥w̃i
j

∥∥ (7.85)

196



where (a) follows Jensen’s inequality and (b) follows form the Lipschitz Hessian assump-

tion 7.2. Returning to (7.84) and taking norms yields:

‖wi+j+1−w′i+j+1 ‖2

=
∥∥∥ (I − µ∇2J(wi)

) (
wi+j −w′i+j

)
+ µ

(
H i+j −∇2J(wi)

)
w̃i
j

∥∥∥2

(a)

≤ 1

1− µδ
∥∥(I − µ∇2J(wi)

) (
wi+j −w′i+j

)∥∥2

+
µ2

µδ

∥∥(H i+j −∇2J(wi)
)
w̃i
j

∥∥2

(b)

≤ 1

1− µδ
∥∥(I − µ∇2J(wi)

) (
wi+j −w′i+j

)∥∥2

+
µ

δ

∥∥(H i+j −∇2J(wi)
)
w̃i
j

∥∥2

(7.85)

≤ (1 + µδ)2

1− µδ
∥∥wi+j −w′i+j

∥∥2
+
µ

δ

ρ

2

∥∥w̃i
j

∥∥4
(7.86)

where (a) again follows from Jensen’s inequality (7.66) with α = 1−µδ and (b) follows from

the same inequality with α = 1
2
. Taking expectations over wi ∈ H yields:

E
{
‖wi+j+1−w′i+j+1 ‖2|wi ∈ H

}
≤ (1 + µδ)2

1− µδ E
{∥∥wi+j −w′i+j

∥∥2|wi ∈ H
}

+
µ

δ

ρ

2
E
{∥∥w̃i

j

∥∥4 |wi ∈ H
}

(7.81)

≤ (1 + µδ)2

1− µδ E
∥∥wi+j −w′i+j

∥∥2
+O(µ3) (7.87)

Since both the true and the short-term model are initialized at wi, we have wi+0−w′i+0 = 0.

Iterating and applying the same argument as above leads to:

E ‖wi+j+1−w′i+j+1 ‖2 ≤ O(µ2) (7.88)

which is (7.47).

197



7.D Proof of Lemma 7.1

Recall that J(·) has δ-Lipschitz gradients, which implies:

J(wi+j) ≤ J(w′i+j) +∇J
(
w′i+j

)T (
wi+j −w′i+j

)
+
δ

2

∥∥wi+j −w′i+j
∥∥2

(7.89)

In the vicinity of saddle-points, we can refine the upper bound (7.89) by taking expectations

conditioned on wi ∈ H:

E {J(wi+j)|wi ∈ H}

≤ E
{
J(w′i+j)|wi ∈ H

}
+ E

{
∇J

(
w′i+j

)T (
wi+j −w′i+j

)
|wi ∈ H

}
+
δ

2
E
{∥∥wi+j −w′i+j

∥∥2|wi ∈ H
}

(a)

≤ E
{
J(w′i+j)|wi ∈ H

}
+

√
E
{∥∥∇J (w′i+j)∥∥2|wi ∈ H

}
×
√
E
{∥∥wi+j −w′i+j

∥∥2|wi ∈ H
}

+
δ

2
E
{∥∥wi+j −w′i+j

∥∥2|wi ∈ H
}

(a)

≤ E
{
J(w′i+j)|wi ∈ H

}
+

√
E
{

2‖∇J (wi)‖2 + 2δ2
∥∥w̃′ij∥∥2|wi ∈ H

}
×
√
E
{∥∥wi+j −w′i+j

∥∥2|wi ∈ H
}

+
δ

2
E
{∥∥wi+j −w′i+j

∥∥2|wi ∈ H
}

(b)

≤ E
{
J(w′i+j)|wi ∈ H

}
+O

(
µ1/2

)√
E
{∥∥wi+j −w′i+j

∥∥2|wi ∈ H
}

+
δ

2
E
{∥∥wi+j −w′i+j

∥∥2|wi ∈ H
}

(c)

≤ E
{
J(w′i+j)|wi ∈ H

}
+O(µ3/2) (7.90)

198



where (a) follows from:

∥∥∇J (w′i+j)∥∥2

=
∥∥∇J (wi) +∇J

(
w′i+j

)
−∇J (wi)

∥∥2

≤ 2‖∇J (wi)‖2 + 2
∥∥∇J (w′i+j)−∇J (wi)

∥∥2

≤ 2‖∇J (wi)‖2 + 2δ2
∥∥w′i+j −wi

∥∥2
(7.91)

Step (b) follows from Cauchy-Schwarz inequality and (c) is a result of the definition of H as

approximately strict-saddle points (7.24) and (7.48) and (c) is a result of (7.47).

7.E Proof of Theorem 7.2

The argument generally mirrors the proof to [71, Theorem 1] after accounting for the rela-

tive variance bound (7.17) by noting that, around first-order stationary points, the relative

component β4‖∇J(wi)‖4 will necessarily be small.

From Corollary 7.1, we have:

E {J(wi+j)|wi ∈ H} ≤ E
{
J(w′i+j)|wi ∈ H

}
+O(µ3/2) (7.92)

so long as j ≤ T
µ

. We can hence proceed by studying E
{
J(w′i+j)|H

}
and will add the

approximation error O(µ3/2) to the end result. From (7.14) we find:

J(w′i+j) ≤ J(wi)−∇J(wi)
Tw̃′ij +

1

2

∥∥w̃′ij∥∥2

∇2J(wi)

+
ρ

6

∥∥w̃′ij∥∥3
(7.93)

We will bound each term appearing on the right-hand side. From (7.42) we find after

199



conditioning on F i+j:

E
{
w̃′ij+1|F i+j

}
=
(
I − µ∇2J(wi)

)
w̃′ij + µ∇J(wi) + µE {si+j+1 |F i+j}

(7.16)
=

(
I − µ∇2J(wi)

)
w̃′ij + µ∇J(wi) (7.94)

Note that F i+j denotes the information captured in wk,j up to time i+ j, while F i denotes

the information available up to time i. Hence:

F i+j = F i ∪ filtration {wk,i+1, . . . ,wk,i+j} (7.95)

Hence, taking expectation of (7.94) conditioned on F i removes the elements not contained

in F i and yields:

E
{
w̃′ij+1|F i

}
=
(
I − µ∇2J(wi)

)
E
{
w̃′ij|F i

}
+ µ∇J(wi) (7.96)

Since w̃′i0 = 0, iterating starting at j = 0 yields:

E
{
w̃′ij|F i

}
= µ

(
j∑

k=1

(
I − µ∇2J(wi)

)k−1

)
∇J(wi) (7.97)

This allows us to bound the linear term appearing in (7.93) as:

− E
{
∇J(wi)

Tw̃′ij|F i

}
= −∇J(wi)

T
E
{
w̃′ij|F i

}
(7.97)
= − µ∇J(wi)

T

(
j∑

k=1

(
I − µ∇2J(wi)

)k−1

)
∇J(wi)

= − µ‖∇J(wi)‖2∑j
k=1 (I−µ∇2J(wi))

k−1 (7.98)

To study the quadratic term in (7.93), we introduce the eigenvalue decomposition of the

200



Hessian around the iterate at time i:

∇2J(wi) , V iΛiV
T
i (7.99)

which motivates the transformation:

∥∥w̃′ij+1

∥∥2

∇2J(wi)
=
∥∥w̃′ij+1

∥∥2

V iΛiV
T
i

=
∥∥V T

i wi − V T
i w
′
i+j+1

∥∥2

Λi

=
∥∥w′ij+1

∥∥2

Λi
(7.100)

where we introduced:

w′ij+1 , V
T
i w̃
′i
j+1 (7.101)

Under this transformation, recursion (7.42) is also diagonalized, yielding:

w′ij+1

, V T
i w̃
′i
j+1

= V T
i

(
I − µ∇2J(wi)

)
V iV

T
i w̃
′i
j

+ µV T
i ∇J(wi) + µV T

i si+j+1

= (I − µΛi)w
′i
j + µ∇J(wi) + µsi+j+1 (7.102)

with ∇J(wi) , V T
i ∇J(wi) and si+j+1 , V T

i si+j+1. Applying the same transformation to

the conditional mean recursion (7.96), and subtracting the transformed conditional mean on

both sides of (7.102), we find:

w′ij+1 − E
{
w′ij+1|F i

}
= (I − µΛi)

(
w′ij − E

{
w′ij|F i

})
+ µsi+j+1 (7.103)

which allows us to cancel the driving term involving the gradient. For brevity, define the

201



(conditionally) centered random variable:

w̌′ij+1 = w′ij+1 − E
{
w′ij+1|F i

}
(7.104)

so that:

w̌′ij+1 = (I − µΛi) w̌
′i
j + µsi+j+1 (7.105)

Before proceeding, note that we can express:

E
{∥∥w̌′ij∥∥2

Λi
|F i

}
= E

{∥∥w′ij − E{w′ij|F i

}∥∥2

Λi
|F i

}
= E

{∥∥w′ij∥∥2

Λi
|F i

}
−
∥∥E{w′ij|F i

}∥∥2

Λi
(7.106)

Hence, we have:

E
{∥∥w̃′ij∥∥2

∇2J(wi)
|F i

}
= E

{∥∥w′ij∥∥2

Λi
|F i

}
= E

{∥∥w̌′ij∥∥2

Λi
|F i

}
+
∥∥E{w′ij|F i

}∥∥2

Λi
(7.107)

In order to make claims about E
{∥∥w̃′ij∥∥2

∇2J(wi)
|F i

}
by studying E

{∥∥w̌′ij∥∥2

Λi
|F i

}
, we need

202



to establish a bound on
∥∥E{w′ij|F i

}∥∥2

Λi
. We have:

∥∥E{w′ij|F i

}∥∥2

Λi

=
∥∥E{V T

i w̃
′i
j|F i

}∥∥2

Λi

(7.97)
= µ2

∥∥∥∥∥V T
i

(
j∑

k=1

(
I − µ∇2J(wi)

)k−1

)
∇J(wi)

∥∥∥∥∥
2

Λi

= µ2

∥∥∥∥∥
(

j∑
k=1

(I − µΛi)
k−1

)
∇J(wi)

∥∥∥∥∥
2

Λi

= µ2∇J(wi)
T

(
j∑

k=1

(I − µΛi)
k−1

)
Λi

×
(

j∑
k=1

(I − µΛi)
k−1

)
∇J(wi) (7.108)

We shall order the eigenvalues of ∇2J(wi), such that its eigendecomposition has a block

structure:

V i =
[
V ≥0

i V <0
i

]
, Λi =

 Λ≥0
i 0

0 Λ<0
i

 (7.109)

with δI ≥ Λ≥0
i ≥ 0 and Λ<0

i < 0. Note that since ∇2J(wi) is random, the decomposition

itself is random as well. Nevertheless, it exists with probability one. We also decompose the

transformed gradient vector with appropriate dimensions:

∇J(wi) = col
{
∇J(wi)

≥0
,∇J(wi)

<0
}

(7.110)

We can then decompose (7.108):

∥∥E{w′ij|F i

}∥∥2

Λi

= µ2∇J(wi)
T

(
j∑

k=1

(I − µΛi)
k−1

)
Λi

×
(

j∑
k=1

(I − µΛi)
k−1

)
∇J(wi)

203



= µ2
(
∇J(wi)

≥0
)T( j∑

k=1

(
I − µΛ≥0

i

)k−1

)
Λ≥0
i

×
(

j∑
k=1

(
I − µΛ≥0

i

)k−1

)
∇J(wi)

≥0

+ µ2
(
∇J(wi)

<0
)T( j∑

k=1

(
I − µΛ<0

i

)k−1

)
Λ<0
i

×
(

j∑
k=1

(
I − µΛ<0

i

)k−1

)
∇J(wi)

<0

(a)

≤ µ2
(
∇J(wi)

≥0
)T( j∑

k=1

(
I − µΛ≥0

i

)k−1

)
Λ≥0
i

×
(

j∑
k=1

(
I − µΛ≥0

i

)k−1

)
∇J(wi)

≥0

(b)

≤ µ2
(
∇J(wi)

≥0
)T( ∞∑

k=1

(
I − µΛ≥0

i

)k−1

)
Λ≥0
i

×
(

j∑
k=1

(
I − µΛ≥0

i

)k−1

)
∇J(wi)

≥0

(c)
= µ2

(
∇J(wi)

≥0
)T (

µΛ≥0
i

)−1
Λ≥0
i

×
(

j∑
k=1

(
I − µΛ≥0

i

)k−1

)
∇J(wi)

≥0

= µ
(
∇J(wi)

≥0
)T( j∑

k=1

(
I − µΛ≥0

i

)k−1

)
∇J(wi)

≥0

(d)

≤ µ
(
∇J(wi)

≥0
)T( j∑

k=1

(
I − µΛ≥0

i

)k−1

)
∇J(wi)

≥0

+ µ
(
∇J(wi)

<0
)T( j∑

k=1

(
I − µΛ<0

i

)k−1

)
∇J(wi)

<0

≤ µ∇J(wi)
T

(
j∑

k=1

(I − µΛi)
k−1

)
∇J(wi)

= µ
∥∥∇J(wi)

∥∥2∑j
k=1 (I−µΛi)

k−1 (7.111)

204



where (a) follows from Λ<0
i < 0, (b) follows from:

j∑
k=1

(
I − µΛ≥0

i

)k−1 ≤
∞∑
k=1

(
I − µΛ≥0

i

)k−1
(7.112)

for µ < 1
δ
. Step (c) follows from the formula for the geometric matrix series, and (d) follows

from:

µ
(
∇J(wi)

≥0
)T( j∑

k=1

(
I − µΛ≥0

i

)k−1

)
∇J(wi)

≥0 ≥ 0 (7.113)

Comparing (7.111) to (7.98), we find that we can bound:

−E
{
∇J(wi)

Tw̃′ij|F i

}
+
∥∥E{w′ij|F i

}∥∥2

Λi
≤ 0 (7.114)

To recap, we can simplify (7.93) as:

E
{
J(w′i+j)|F i

}
≤ J(wi) +

1

2
E
{∥∥w̌′ij∥∥2

Λi
|F i

}
+
ρ

6
E
{∥∥w̃′ij∥∥3|F i

}
(7.115)

We proceed with the now simplified quadratic term. Motivated by a technique employed for

the analysis of adaptive filters and stochastic gradient algorithms in convex environments [1,

149], we square both sides of (7.105) under an arbitrary diagonal weighting matrix Σi,

deterministic conditioned on wi and wi+j, to obtain:

∥∥w̌′ij+1

∥∥2

Σi

=
∥∥(I − µΛi) w̌

′i
j + µsi+j+1

∥∥2

Σi

=
∥∥(I − µΛi) w̌

′i
j

∥∥2

Σi
+ µ2‖si+j+1‖2

Σi

+ 2µw̌′ij
T

(I − µΛi) Σisi+j+1 (7.116)

Note that upon conditioning on F i+j, all elements of the cross-term, aside from si+j+1,

205



become deterministic, and as such the term disappears when taking expectations. We obtain:

E
{∥∥w̌′ij+1

∥∥2

Σi
|F i+j

}
=
∥∥(I − µΛi) w̌

′i
j

∥∥2

Σi
+ µ2E

{
‖si+j+1‖2

Σi
|F i+j

}
=
∥∥w̌′ij∥∥2

Σi−2µΛiΣi+µ2ΛiΣiΛi

+ µ2Tr
(
V iΣiV

T
i Rs (wi+j)

)
=
∥∥w̌′ij∥∥2

Σi−2µΛiΣi
+ µ2Tr

(
V iΣiV

T
i Rs (wi)

)
+ µ2Tr

(
V iΣiV

T
i (Rs (wi+j)−Rs (wi))

)
+ µ2

∥∥w̌′ij∥∥2

ΛiΣiΛi
(7.117)

We proceed to bound the last two terms. First, we have:

Tr
(
V iΣiV

T
i (Rs (wi+j)−Rs (wi))

)
(a)

≤
∥∥V iΣiV

T
i

∥∥ ‖Rs (wi+j)−Rs (wi)‖
(b)

≤ ρ (Σi) βR
∥∥w̃i

j

∥∥γ (7.118)

where (a) follows from Cauchy-Schwarz, since Tr(ATB) is an inner product over the space of

symmetric matrices, and hence, |Tr(ATB)| ≤ ‖A‖‖B‖, and (b) follows from Assumption 7.4.

For the second term, we have:

∥∥w̌′ij∥∥2

ΛiΣiΛi
≤ ρ (ΛiΣiΛi)

∥∥w̌′ij∥∥2

≤ δ2ρ (Σi)
∥∥w̌′ij∥∥2

(7.119)

We conclude that

E
{∥∥w̌′ij+1

∥∥2

Σi
|F i

}
= E

{∥∥w̌′ij∥∥2

Σi−2µΛiΣi
|F i

}
+ µ2Tr

(
V iΣiV

T
i Rs (wi)

)
+ µ2ρ (Σi)E

{
qi+j|F i

}
(7.120)

206



where

qi+j , βR
∥∥w̃i

j

∥∥γ + δ2
∥∥w̌′ij∥∥2

(7.121)

For brevity, we define

D , I − 2µΛi (7.122)

Y , V T
i Rs (wi)V i (7.123)

With these substitutions we obtain:

E
{∥∥w̌′ij+1

∥∥2

Σi
|F i

}
= E

{∥∥w̌′ij∥∥2

DΣi
|F i

}
+ µ2Tr (ΣiY ) + µ2ρ (Σi)E

{
qi+j|F i

}
(7.124)

At j = 0, we have w̌′i0 = 0. Letting Σj = ΛiD
j, we can iterate to obtain:

E
{∥∥w̌′ij+1

∥∥2

Λi
|F i

}
= µ2

j∑
n=0

Tr (ΛiD
nY )

+ µ2

j∑
n=0

ρ (ΛiD
n) · E

{
qi+n|F i

}
= µ2Tr

(
Λi

(
j∑

n=0

Dn

)
Y

)

+ µ2

j∑
n=0

ρ (ΛiD
n) · E

{
qi+n|F i

}
(7.125)

since w′i+j+1 = wi at j = 0. Our objective is to show that the first term on the right-hand

side yields sufficient descent (i.e., will be sufficiently negative), while the second term is small

enough to be negligible. To this end, we again make use of the structured eigendecomposi-

207



tion (7.109). We have:

µ2Tr

(
Λi

(
j∑

n=0

Dn

)
V T

i Rs (wi)V i

)
(a)
= µ2Tr

(
Λ≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n)

×
(
V ≥0

i

)T
Rs (wi)V

≥0
i

)

+ µ2Tr

(
Λ<0
i

(
j∑

n=0

(
I − 2µΛ<0

i

)n)

×
(
V <0

i

)T
Rs (wi)V

<0
i

)
(b)
= µ2Tr

(
Λ≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n)

×
(
V ≥0

i

)T
Rs (wi)V

≥0
i

)

− µ2Tr

((
−Λ<0

i

)( j∑
n=0

(
I − 2µΛ<0

i

)n)

×
(
V <0

i

)T
Rs (wi)V

<0
i

)
(c)

≤ µ2Tr

(
Λ≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n))
× λmax

((
V ≥0

i

)T
Rs (wi)V

≥0
i

)
− µ2Tr

((
−Λ<0

i

)( j∑
n=0

(
I − 2µΛ<0

i

)n))
× λmin

((
V <0

i

)T
Rs (wi)V

<0
i

)
(d)

≤ µ2Tr

(
Λ≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n))(
β2‖∇J(wi)‖2 + σ2

)
− µ2Tr

((
−Λ<0

i

)( j∑
n=0

(
I − 2µΛ<0

i

)n))
σ2
` (7.126)

where in (a) we decomposed the trace since Λi

(∑j
n=0D

n
)

is a diagonal matrix, (b) applies

208



−
(
−Λ<0

i

)
= Λ<0

i . where in (a) we decomposed the trace since Λi

(∑j
n=0D

n
)

is a diagonal

matrix and applied −
(
−Λ<0

i

)
= Λ<0

i . Step (b) follows from Tr(A)λmin(B) ≤ Tr(AB) ≤
Tr(A)λmax(B) which holds for A = AT, B = BT ≥ 0, and (c) follows from the bounded

covariance property (7.21) and Assumption 7.5.For the positive term, we have:

µ2Tr

(
Λ≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n))(
β2‖∇J(wi)‖2 + σ2

)
(a)

≤ µ2Tr

(
Λ≥0
i

(
∞∑
n=0

(
I − 2µΛ≥0

i

)n))(
β2‖∇J(wi)‖2 + σ2

)
(b)

≤ µ2Tr
(
Λ≥0
i

(
2µΛ≥0

i

)−1
) (
β2‖∇J(wi)‖2 + σ2

)
(c)

≤ µ

2
M
(
β2‖∇J(wi)‖2 + σ2

)
(7.127)

where (a) follows since I − 2µΛ≥0
i is elementwise non-negative for µ ≤ 2

δ
, (b) follows from∑∞

n=0A
n = (I − A)−1 and (c) follows since ∇2J(wi) is of dimension M . Hence, under

expectation:

µ2E

{
Tr

(
Λ≥0
i

(
j∑

n=0

(
I − 2µΛ≥0

i

)n))

×
(
β2‖∇J(wi)‖2 + σ2

)
|wi ∈ H

}
≤ µ

2
M
(
β2E

{
‖∇J(wi)‖2|wi ∈ H

}
+ σ2

)
(7.24)

≤ µ

2
M
(
β2 ·O(µ) + σ2

)
=
µ

2
Mσ2 +O(µ2) (7.128)

209



For the negative term, we have under expectation conditioned on wi ∈ H:

E

{
Tr

((
−Λ<0

i

)( j∑
n=0

(
I − 2µΛ<0

i

)n))
σ2
`

∣∣∣∣∣wi ∈ H
}

(a)

≥ E

{
τ

(
j∑

n=0

(1 + 2µτ)n
)
σ2
`

∣∣∣∣∣wi ∈ H
}

(b)
= τ

(
j∑

n=0

(1 + 2µτ)n
)
σ2
`

(c)
= τ

1− (1 + 2µτ)i+1

1− (1 + 2µτ)
σ2
`

=
1

2µ

(
(1 + 2µτ)j+1 − 1

)
σ2
` (7.129)

Step (a) makes use of the fact that
(
−Λ<0

i

) (∑j
n=0

(
I − 2µΛ<0

i

)n)
is a diagonal matrix,

where all elements are non-negative. Hence, its trace can be bounded by any of its diagonal

elements:

Tr

((
−Λ<0

i

)( j∑
n=0

(
I − 2µΛ<0

i

)n))
(7.24)

≥ τ

(
j∑

n=0

(1 + 2µτ)n
)

(7.130)

In (b) we dropped the expectation since the expression is no longer random, and (c) is the

result of a geometric series. We return to the full expression (7.126) and find:

µ2E

{
Tr

(
Λi

(
j∑

n=0

Dn

)
V T

i Rs (wi)V i

)
|wi ∈ H

}
≤ µ

2
Mσ2 +O(µ2)− µ

2

(
(1 + 2µτ)j+1 − 1

)
σ2
`

(a)

≤ − µ

2
Mσ2 (7.131)

210



where (a) holds if, and only if,

µ

2
Mσ2 +O(µ2)− µ

2

(
(1 + 2µτ)j+1 − 1

)
σ2
` ≤ −

µ

2
Mσ2

⇐⇒ 2M
σ2

σ2
`

+O(µ) + 1 ≤ (1 + 2µτ)j+1

⇐⇒ log

(
2M

σ2

σ2
`

+ 1 +O(µ)

)
≤ (j + 1)log (1 + 2µτ)

⇐⇒
log
(

2M σ2

σ2
`

+ 1 +O(µ)
)

log (1 + 2µτ)
≤ j + 1

⇐⇒
log
(

2M σ2

σ2
`

+ 1 +O(µ)
)

O(µτ)
≤ j + 1 (7.132)

where the last line follows from limx→0 1/x log(1 + x) = 1. We conclude that there exists a

bounded is such that:

µ2E

{
Tr

(
Λi

(
is∑
n=0

Dn

)
V T

i Rs (wi)V i

)}
≤ − µ

2
Mσ2 (7.133)

Applying this relation to (7.125) and taking expectations over wi ∈ H, we obtain:

E
{∥∥w̌′iis+1

∥∥2

Λi
|wi ∈ H

}
≤ µ2

is∑
n=0

E
{(

Tr (ΛiD
n) · E

{
qi+n|F i

})
|wi ∈ H

}
− µ

2
Mσ2 (7.134)

211



We now bound the perturbation term:

µ2

is∑
n=0

E
{(
ρ (ΛiD

n) · E
{
qi+n|F i

})
|wi ∈ H

}
≤ µ2

is∑
n=0

E
{(
ρ (δI(I + 2µδI)n) · E

{
qi+n|F i

})
|wi ∈ H

}
= µ2

is∑
n=0

(
δ(1 + 2µδ)n · E

{
qi+n|wi ∈ H

})
(7.121)

= µ2

is∑
n=0

δ(1 + 2µδ)n ·
(
βRE

{∥∥w̃i
j

∥∥γ|wi ∈ H
}

+ δ2E
{∥∥w̌′ij∥∥2|wi ∈ H

})

≤ µ2

is∑
n=0

δ(1 + 2µδ)n ·
(
O(µγ) +O(µ2)

)
≤ δ

(
is∑
n=0

(1 + 2µδ)n
)
O(µ2+γ)

(a)

≤ O(µ1+γ) = o(µ) (7.135)

where (a) follows from Lemma 7.2. We conclude:

E
{∥∥w̌′iis+1

∥∥2

Λi
|wi ∈ H

}
≤ −µ

2
Mσ2 + o(µ) (7.136)

Returning to (7.115), we find:

E
{
J(w′i+j)|wi ∈ H

}
≤ E {J(wi)|wi ∈ H}+

1

2
E
{∥∥w̌′ij∥∥2

Λi
|wi ∈ H

}
+
ρ

6
E
{∥∥w̃′ij∥∥3|wi ∈ H

}
≤ E {J(wi)|wi ∈ H} −

µ

2
Mσ2 + o(µ) (7.137)

and with (7.92) we prove the result.

212



7.F Proof of Theorem 7.3

In a manner similar to [59], we define the stochastic process:

t(k + 1) =


t(k) + 1, if wt(k) ∈ G,

t(k) + 1, if wt(k) ∈M,

t(k) + is, if wt(k) ∈ H.

(7.138)

where t(0) = 0. From Theorem 7.1, we have:

E
{
J(wt(k))− J(wt(k+1))|wt(k) ∈ G

}
= E

{
J(wt(k))− J(wt(k)+1)|wt(k) ∈ G

}
≥ µ2 c2

π
(7.139)

and

E
{
J(wt(k))− J(wt(k+1))|wt(k) ∈M

}
= E

{
J(wt(k))− J(wt(k)+1)|wt(k) ∈M

}
≥ − µ2c2 (7.140)

while Theorem 7.2 ensures:

E
{
J(wt(k))− J(wt(k+1))|wt(k) ∈ H

}
= E

{
J(wt(k))− J(wt(k)+is)|wt(k) ∈ H

}
≥ µ

2
Mσ2 − o(µ) (7.141)

213



Together, they yield:

E
{
J(wt(k))− E J(wt(k+1))

}
= E

{
J(wt(k))− E J(wt(k+1))|wt(k) ∈ G

}
· πGt(k)

+ E
{
J(wt(k))− E J(wt(k+1))|wt(k) ∈ H

}
· πHt(k)

+ E
{
J(wt(k))− E J(wt(k+1))|wt(k) ∈M

}
· πMt(k)

≥ µ2 c2

π
· πGt(k) +

(µ
2
Mσ2 − o(µ)

)
· πHt(k) − µ2c2 · πMt(k) (7.142)

Suppose πMt(k) ≤ 1− π for all i. Then πGt(k) + πHt(k) ≥ π and

E
{
J(wt(k))− E J(wt(k+1))

}
≥ µ2 c2

π
·
(
π − πHt(k)

)
+
(µ

2
Mσ2 − o(µ)

)
· πHt(k)

− µ2c2 · (1− π)

= µ2c2π +
(µ

2
Mσ2 − µ2 c2

π
− o(µ)

)
πHt(k)

(a)

≥ µ2c2π (7.143)

where (a) holds whenever µ
2
Mσ2 − µ2 c2

π
− o(µ) ≥ 0, which holds whenever µ is sufficiently

small. We hence have by telescoping:

J(w0)− Jo ≥ E J(wt(0))− E J(wt(k))

= E J(wt(0))− E J(wt(1))

+ E J(wt(1))− E J(wt(2))

+ · · ·

+ E J(wt(k−1))− E J(wt(k))

≥ µ2c2πk (7.144)

Rearranging yields:

k ≤ J(w0)− Jo
µ2c2π

(7.145)

214



We conclude by definition of the stochastic process t(k):

i = t(k) ≤ k · is ≤ (J(w0)− Jo)
µ2c2π

is (7.146)

215



CHAPTER 8

Graph Learning from Streaming Data

Graphs provide a powerful framework to represent high-dimensional but structured data,

and to make inferences about relationships between subsets of the data. In this chapter we

consider graph signals that evolve dynamically according to a heat diffusion process and are

subject to persistent perturbations. We develop an online algorithm that is able to learn

the underlying graph structure from observations of the signal evolution. The algorithm is

adaptive in nature and in particular able to respond to changes in the graph structure and

the perturbation statistics. The material in this chapter appeared in [67].

8.1 Related Works

The earliest works related to graph learning are based on sparse estimation of precision

matrices, i.e., inverse covariance matrices [158,159]. The work in [160] introduced structural

constraints to ensure that the learned (regularized Laplacian) matrix describes a valid graph.

A string of subsequent works [161–163] leverage the concept of a “smooth signal over a

graph”. The drawback of these approaches is that the smoothness assumption may not

be satisfied in some important applications, particularly if the graph signal is dynamic or

perturbed by events on the graph.

The interpretation of graph-shifts as a generalization of the traditional shift operation in

digital signal processing has motivated a number of generalizations of DSP concepts to the

graph domain. Autoregressive graph filters in terms of polynomials of the adjacency matrix

are used in [164] to model the signal evolution over the graph and infer the adjacency matrix.

The heat diffusion model is considered in [66], where an algorithm is proposed to leverage a

216



collection of independent samples which are modeled as the superposition of a small number

of perturbations that diffuse over the graph.

Both of these recent works allow for dynamic signals that evolve according to some graph

topology that is subsequently learned. This is achieved by collecting all available samples

and solving an optimization problem based on a batch of data. As such, even though the

model allows for dynamic signals, the algorithms themselves are not dynamic; the underlying

assumption is that the model parameters are fixed. In contrast, in this work, we develop a

truly adaptive solution that responds to streaming data and has the potential to track drifts

in both the graph and data statistics under the heat diffusion model. Dynamic algorithms

for the estimation of edge probabilities in social interactions are developed in [165,166] and

for autoregressive graph processes in [167].

8.2 Framework

8.2.1 Graph Model

We consider weighted, undirected graphs without self-loops. Every pair of vertices i and j

is assigned a weight aij = aji, which quantifies their relative influence, in a manner made

precise in the signal model further below. We collect these weights into an adjacency matrix

A = [aij] that satisfies the following properties:

Symmetry: A = AT (8.1)

Non-negativity: aij ≥ 0, ∀ i, j (8.2)

No self-loops: aii = 0, ∀ i (8.3)

A common and useful matrix to describe and study graphs is the Laplacian matrix, defined

as:

L , diag (A1)− A (8.4)

217



Under conditions (8.1)–(8.3) on the adjacency matrix, the graph Laplacian L satisfies the

following properties [168]:

Symmetry: L = LT (8.5)

Non-positive off-diagonal elements: `ij ≤ 0, ∀ i 6= j (8.6)

Positive definite: L � 0 (8.7)

Nullspace: L
1√
N
1 = 0 (8.8)

8.2.2 Signal Model

We shall assume that we observe discrete samples of a continuous time graph process s(t) ∈
RN , which evolves according to the differential equation [64]:

s′(t) = −L?s(t) + p(t) (8.9)

where L? ∈ RN×N denotes the Laplacian matrix of the underlying graph linking the entries

of s(t), and p(t) ∈ RN describes a process that drives the signal dynamics. The variable

p(t) can either be viewed as an outside force, which influences the evolution of the signal, or

some internal events that subsequently diffuse over the graph.

The homogeneous solution to

s′h(t) = −L?sh(t) (8.10)

is given by

sh(t) = e−tL
?

s(0) (8.11)

and the particular solution amounts to

sp(t) =

∫ t

0

e−(t−u)L?p(u)du (8.12)

218



The solution to the differential equation (8.9) has the form:

s(t) = e−tL
?

s(0) +

∫ t

0

e−(t−u)L?p(u)du (8.13)

Example 8.1 (Heat Diffusion with a Single Event). Assume that the system is initially at

rest (s(0) = 0) and p(t) = p1δ(t− t1). Then for t ≥ t1:

s(t) =

∫ t

0

e−(t−u)L?p1δ(u− t1)du = e−(t−t1)L?p1 (8.14)

Example 8.2 (Heat Diffusion with Multiple Events). Assume that the system is initially at

rest (s(0) = 0) and p(t) =
∑K

k=1 pkδ(t− tk). Then for t ≥ maxk tk:

s(t) =
K∑
k=1

e−(t−tk)L?pk (8.15)

studied in [66].

We have access to the evolution of the graph signal beginning at some time t0 and subse-

quently at times ti = t0 + iT, i > 0, where i ∈ N denotes the i-th sample and T ∈ R>0

denotes the sampling period. We observe a recursive relationship between adjacent samples,

that is critical for this work, namely the fact that:

s(ti) = e−TL
?

s(ti−1) +

∫ ti

ti−T
e−(ti−u)L?p(u)du (8.16)

Note that the relationship between s(ti) and s(ti−1) only depends on L? and on the pertur-

bations p(t) between ti and ti−1. We move into the discrete domain by letting si , s(t0 + iT )

and pi ,
∫ ti
ti−T e

−(ti−u)L?p(u)du so that (8.16) becomes:

si = e−TL
?

si−1 + pi (8.17)

Since we are generally not provided with the perturbations that drive the system, we shall

219



model the driving term pi as a stochastic random variable, so that:

si = e−TL
?

si−1 +pi (8.18)

where we are using boldface notation to refer to random variables.

The objective of this work is to develop a solution that allows for the estimation of L?

from streaming realizations si. These types of algorithms generally operate by evaluating

the prediction error of the current estimate on the incoming observation and adjusting the

estimate based on this error. Under the non-linear model (8.18), every such iteration requires

the evaluation of a matrix exponential and is computationally expensive. This is particularly

critical in scenarios where the graph size is large.

8.2.3 An Equivalent Linear Model

On the face of it, it is straightforward to define

W ? , e−TL
?

(8.19)

so that the relation becomes

si = W ? si−1 +pi (8.20)

However, it is important to remember that L? is a Laplacian matrix and hence required

to satisfy properties (8.5)–(8.8). It turns out that an equivalent set of properties can be

imposed on W ? to ensure that L? = −1
T

ln (W ?) describes a valid Laplacian matrix and hence

a valid graph. To begin with, we introduce the eigendecomposition of the Laplacian matrix:

L? = V ΛLV
T (8.21)

220



Expanding the matrix exponential as an infinite sum and recalling that V V T = I, we obtain:

W ? = e−TL
?

=
∞∑
k=0

(−T )k

k!
(L?)k =

∞∑
k=0

(−T )k

k!

(
V L?ΛT

)k
= V

(
∞∑
k=0

(−T )k

k!
Λk

)
V T = V e−TΛV T (8.22)

where e−TΛ = diag
{
e−Tλk(L?)

}
since Λ is diagonal. This means that the matrix exponen-

tial preserves the set of eigenvectors of L? and there is a simple relationship between the

eigenvalues of W ? and L?. This relation also provides a method for calculating the ma-

trix logarithm. Given the eigendecomposition W ? = V ΛWV
T, the logarithm is given by

ln (W ?) = V ln (ΛW )V T, where ln (ΛW ) = diag {ln (λk (W ?))}. This allows us to establish

the following conditions on W ? to ensure that L? describes a valid graph.

Lemma 8.1 (Conditions on W ?). Let W ∈ RN×N and L = −1
T

ln (W ). Then, L is a valid

Graph Laplacian if, and only if, W satisfies the following properties:

Symmetry: W = WT (8.23)

Non-negative elements: wij ≥ 0, ∀ i, j (8.24)

Spectral bound: I � W � 0 (8.25)

Stochastic: W1 = 1 (8.26)

Proof. Appendix 8.A.

8.2.4 Graph Signal Evolution

Observe that since ρ(W ?) = 1, the recursion described by (8.20) is not mean-square stable.

This means that, while the recursion will converge in the mean as long as Epi = 0, the same

does not hold for covariance matrix of si. It turn out, however, that the centered signal

across the graph is mean-square stable as long as the graph is connected. We make this

statement precise in the following.

Assumption 8.1 (Connected graph). The graph described by A and L is connected. In

221



other words, there is a path of non-zero weights from any vertex to any other vertex in the

graph.

It then follows that the eigenvalue at zero has multiplicity one with unique (normalized)

eigenvector 1√
N
1 [168]. A direct consequence of this property is that the graph Laplacian

has a particular eigenstructure L? = V ΛLV
T where:

V =
[

1√
N
1 V

]
, ΛL =

 0 0

0 ΛL

 (8.27)

and critically ΛL is strictly positive definite:

ΛL � 0 (8.28)

The driving matrix W ? inherits a similar structure from L? via (8.22). In particular, we

have W ? = V ΛWV
T, where:

V =
[

1√
N
1 V

]
, ΛW =

 1 0

0 ΛW

 (8.29)

and ΛW = e−TΛL , which due to (8.28) implies that

0 ≺ ΛW ≺ I (8.30)

so that ρ
(
ΛW

)
< 1. The mean across the graph of the signal at time i is given by sc,i =

1
N
1T si. Subtracting this mean yields the centered graph signal si:

si , si− sc,i =

(
I − 1

N
11T

)
si (8.31)

It is important to recognize that the mean contains no information about the graph. This

222



is because for any doubly stochastic W :

W si = W (si + 1⊗ sc,i) = Wsi + 1⊗ sc,i (8.32)

In other words, the mean is passed through independently of W . For the evolution of the

centered signal, we can now write:

si = W
?
si−1 + pi (8.33)

where we defined:

W
?
, W ? − 1

N
11T, pi ,

(
I − 1

N
11T

)
pi (8.34)

The eigendecomposition of W
?

= V ΛWV
T is related to the decomposition of W ? via

V =
[

1√
N
1 V

]
, ΛW =

 0 0

0 ΛW

 (8.35)

so that the only change is the replacement of the eigenvalue at 1 by 0 and critically now

ρ
(
W

?
)
< 1. We can examine in detail the evolution of the first and second-order statistics

of si.

Assumption 8.2 (Statistics of the Perturbation Terms). The statistics of the centered per-

turbations pi =
(
I − 1

N
11T

)
pi satisfy the following two conditions for all i:

Epi = 0 (8.36)

Epip
T
i = Rp <∞ (8.37)

Furthermore, the perturbation pi at time i is independent of pi−k for k > 0.

Lemma 8.2 (Signal evolution). Suppose the network is initially at rest, i.e., s0 = 0 and

denote Epip
T
i = Rp. Then, the first and second-order statistics of the graph process described

223



by (8.18) evolve according to:

E si = 0 (8.38)

E sis
T
i , Rsi =

i−1∑
k=0

(
W

?
)i−k

Rp

(
W

?
)i−k

(8.39)

Furthermore, the second-order moment converges and we have:

lim
i→∞

Rsi , R∞ (8.40)

where R∞ is the solution to the discrete Lyapunov equation:

Rp = R∞ −W ?
R∞W

?
(8.41)

Proof. Appendix 8.B.

To strengthen our intuition of this result, let us briefly consider the simplified case where

Rp = σ2
pI. Then

R∞ = σ2
p

∞∑
k=0

(
W

?
)2k

= σ2
p

(
I −

(
W

?
)2
)−1

(8.42)

If we consider the trace of the covariance matrix as notion of variation, we have

Tr (R∞) =
N∑
k=1

λk (R∞) =
N∑
k=1

σ2
p

1− λ2
k

(
W

?
)

= σ2
p +

N∑
k=2

σ2
p

1− λ2
k

(
W

?
) = σ2

p +
N∑
k=2

σ2
p

1− λ2
k (W ?)

= σ2
p +

N∑
k=2

σ2
p

1− e−2Tλk(L?)
(8.43)

Recall that T is the sampling clock of the system and note that that Tr (R∞) decreases

to Nσ2
p = Tr (Rp) as Tλk (L?) → ∞ ∀ k. This means that the variation in the system in

224



steady-state is determined by the product of the sampling clock and the eigenvalues of the

Laplacian matrix. The non-zero eigenvalues of the Laplacian are a measure for how fast

the graph mixes. In other words, to preserve variation in steady-state, a quickly mixing

graph requires a small sampling period, while slowly mixing graphs allow for less frequent

sampling.

8.3 Graph Learning

We now formulate the following optimization problem for learning W
?
:

W
?

= arg min
W∈C

1

2
E ‖si −Wsi−1‖2

, arg min
W∈C

E Ji
(
W
)

(8.44)

where C is a constraint-set. The cost Ji(·) depends on i because the statistics of si−1 evolve

as described in the previous lemma. A natural construction is to choose C to be the set

of matrices that result in a valid Laplacian matrix. It turns out, however, that this is not

necessary since Ji(W ) is strongly-convex.

Lemma 8.3 (Properties of the cost). The cost specified in (8.44) is Lipschitz continuous

and strongly-convex. Specifically, for all W ∈ RN×N , we have:

Ji(W ) ≥ νi
2
‖W ? −W‖2

+
1

2
Tr (Rp) (8.45)

Ji(W ) ≤ δi
2
‖W ? −W‖2

+
1

2
Tr (Rp) (8.46)

where

δi = λmax

(
Rsi−1

)
, νi = λmin

(
Rsi−1

)
(8.47)

Moreover, W
?

defined in (8.34) is the unique minimizer of Ji(W ) for all i.

Proof. Appendix 8.C.

It follows from this property that the enforcement of properties of W
?

is in fact not necessary

when designing algorithms for the solution of (8.44), since any algorithm that converges to

225



a minimizer of (8.44) will converge to its unique minimizer, W
?
, which by definition already

satisfies all properties that lead to a valid graph Laplacian. Of course, it is reasonable to

believe that the addition of constraints and regularization may lead to an increased rate of

convergence and/or improved performance in steady-state at the cost of increased computa-

tional cost per iteration.

To begin with, we shall pursue the minimizer of (8.44) in the absence of constraints by

means of a stochastic gradient descent algorithm.

Algorithm 8.1 Laplacian LMS Strategy

W i = W i−1 +µ
(
si −W i−1 si−1

)
sTi−1 (8.48)

It is essentially a matrix valued variation of the least-mean squares (LMS) algorithm. To

derive approximate expressions for its performance, we shall adopt an assumption on the

step-size µ, which is common in the literature [149].

Assumption 8.3 (Small step-size and independence). Assume the step-size µ is sufficiently

small, so that in the limit, ‖W ?−W i‖2 reaches a steady-state distribution and W
?−W i is

independent of si.

Theorem 8.1 (Performance for small step-sizes). Under Assumption 8.3, the mean-square

deviation of the estimate from the true minimizer W
?

is given by:

lim
i→∞

E

∥∥∥W ? −W i

∥∥∥2

≈ µ
NTr (Rp)

2
(8.49)

Proof. The proof is essentially the same as the one for the traditional LMS algorithm [149].

Performance of the algorithm can be improved by including projections in the update rela-

tion. Recall that W is obtained from W via W = W + 1
N
11T. This means that a necessary

226



condition for the properties from Lemma 8.1 to be satisfied is:

W i ∈ Cele ∪ Csym ∪ Cnull ∪ Cspec (8.50)

Cele ,

{
W
∣∣∣wij ≥ − 1

N

}
Csym ,

{
W
∣∣∣W = W

T
}

Cnull ,
{
W
∣∣∣W1 = 0

}
Cspec ,

{
W
∣∣∣0 � W � I

}
Projections onto each of these sets can be evaluated in closed form:

[
ProjCele

(
W
)]
ij

=


wij, if wij ≥ − 1

N

− 1
N
, otherwise

(8.51)

ProjCsym
(
W
)

=
1

2

(
W +W

T
)

(8.52)

ProjCnull
(
W
)

= W − 1

N
W11T (8.53)

ProjCspec
(
W
)

= V ΛtV
T (8.54)

where the last projection is given in terms of the eigendecomposition of the argument W =

V ΛV T by thresholding the eigenvalues:

[Λt]ii =


0, if [Λ]ii < 0

[Λ]ii, if 0 ≤ [Λ]ii ≤ 1

1, otherwise

(8.55)

We can now interlace these projections with the stochastic gradient update to obtain two

algorithms, which explicitly incorporate the structural constraints. Note that the first three

projections (8.51)–(8.53) are simple in the sense that they require O(N2) operations where

N is the size of the graph, whereas (8.54) requires a full eigenvalue decomposition. Hence,

we can formulate two projected variants of the algorithm. The Type I implementation only

enforces simple projections, while Type II enforces all properties.

227



Algorithm 8.2 Projected Laplacian LMS Strategy I and II

W
′
i = W i−1 +µ

(
si −W i−1 si−1

)
sTi−1 (8.56)

W
′′
i = ProjCsym

(
ProjCnull

(
ProjCele

(
W
′
i

)))
(8.57)

W i =

{
W
′′
i , for Type I

ProjCspec

(
W
′′
i

)
, for Type II.

(8.58)

Whenever an estimate of the graph Laplacian is required, it is obtained via:

L̂ =
−1

T
ln
(
W i

)
(8.59)

8.4 Simulation Results

We illustrate the performance of the algorithm in recoveringW
?

as well as the graph structure

on a network with N = 30 nodes. The perturbation terms are modeled as following a normal

distribution with pi ∼ N (0, I) and the sampling period is T = 1. The observations si are

generated according to (8.18) and processed according to the algorithms developed in this

work. The true graphs is generated using the Barabasi-Albert model [169], upon which

random weights between 0.1 and 1.0 are attached to each non-zero edge. After 500, 000

iterations, there is a sudden change in the network topology, to illustrate the ability of the

algorithm to adapt. The second graph and its adjacency matrix are depicted in Fig. 8.1–

8.2. In the graph representation, small weights are depicted as thin and light lines, while

strong weights are dark and thick. Bright colors in the adjacency matrix correspond to large

weights.

The recovered graph and adjacency matrix at the final iteration using Algorithm 2 Type

I are depicted in Fig. 8.3–8.4. Color and weight maps are the same as in the representation

of the true graph. Key connections along with their weights and the general structure of

the graph are accurately recovered. Note that no weights are truly set to zero, resulting

in a number of low-weight connections. This is due to the fact that no sparsity prior was

228



Figure 8.1: True graph.

imposed on the weight matrix. If desired, they can be removed during post-processing via

simple thresholding.

The mean-square deviation of W i from W
?

is depicted in Fig. 8.5. All methods con-

verge in the mean-square sense to a region around the true minimizer. The theoretical

expression (8.49) accurately predicts the performance of the projection-free algorithm, while

adding projections improves performance. Observe that notably, in this scenario, the addi-

tion of the spectral constraint to the simple constraints yields a negligible improvement, as

both learning curves overlap.

229



Figure 8.2: True adjacency matrix.

8.A Proof of Lemma 8.1

Equivalence between the symmetry relations (8.5) and (8.23) follows immediately from (8.22).

The same goes for the spectral bounds (8.7) and (8.25), after noting that

λk(L) ≥ 0⇐⇒ 1 ≥ e−Tλk(L) > 0, ∀ k (8.60)

Equivalence between the nullspace condition (8.8) and stochasticity (8.26) follows again

from (8.22). Specifically, we know from (8.22) that the matrix exponential preserves the

eigenvectors and maps the eigenvalues according to:

λk (W ) = e−Tλk(L) (8.61)

230



Figure 8.3: Graph recovered using the Projected Laplacian LMS Strategy I.

The nullspace condition (8.8) states that 1√
N
1 is an eigenvector for L with eigenvalue 0, which

is equivalent to the statement that 1√
N
1 is an eigenvector for W with eigenvalue e−T ·0 = 1.

To establish the equivalence between the non-positivity constraint (8.6) and the non-

negativity constraint (8.24), note that condition (8.6) ensures that L has non-positive off-

diagonal elements, which implies that −TL has non-negative off-diagonal elements. Such

matrices, known as “Metzler” matrices, and the corresponding matrix exponentials appear

frequently in the study of positive linear systems [170]. In particular, it has been shown that

eT (−L) has positive elements, if and only if (−L) is a Metzler matrix [171, Example 1.4.b],

which is our desired equivalence.

231



Figure 8.4: Adjacency matrix recovered using the Projected Laplacian LMS Strategy I.

8.B Proof of Lemma 8.2

Iterating (8.33), we have

si =
(
W

?
)i
s0 +

i∑
k=1

(
W

?
)i−k

pk (8.62)

232



0.0 0.2 0.4 0.6 0.8 1.0
Iteration ×106

−30

−25

−20

−15

−10

−5

0

5

10

M
SD

 in
 d
B

Laplacian LMS
Projected Laplacian LMS I
Projected Laplacian LMS II
MSD prediction (Theorem 1)

Figure 8.5: Mean-Square Deviation.

Taking expectation and noting that s0 = 0 and E pi = 0, we obtain the zero-mean relation.

The second-order relation follows from:

E sisi
T = E

(
i∑

k=1

(
W

?
)i−k

pk

)(
i∑

k=1

(
W

?
)i−k

pk

)T

= E

i∑
k=1

(
W

?
)i−k

pkpk
T
(
W

?
)i−k

=
i∑

k=1

(
W

?
)i−k

Rp

(
W

?
)i−k

=
i−1∑
k=0

(
W

?
)k
Rp

(
W

?
)k

(8.63)

233



This sum appears frequently in control theory. It converges if ρ
(
W

?
)
< 1, in which case [172]

lim
i→∞

E sisi
T =

∞∑
k=0

(
W

?
)k
Rp

(
W

?
)k

, R∞ (8.64)

where R∞ is the solution to the Lyapunov equation

W
?
R∞W

?
= R∞ −Rp (8.65)

8.C Proof of Lemma 8.3

We first establish that W
?

is in fact a minimizer of Ji
(
W
)
. Its gradient relative to W is

given by:

∇Ji(W ) = −E
(
si −Wsi−1

)
si−1

T (8.66)

Evaluated at W
?
, we have:

∇Ji(W ?
) = −E

(
si −W ?

si−1

)
si−1

T

= −E (si − si − pi) si−1
T

= 0 (8.67)

so that W
?

is indeed a minimizer of Ji(W ) for all i.

234



Now, we can write:

Ji(W ) =
1

2
E ‖ si−W si−1 ‖2

=
1

2
E ‖W ? si−1 +pi−W si−1 ‖2

=
1

2
E ‖ (W ? −W ) si−1 ‖2 +

1

2
E ‖pi ‖2

=
1

2
ETr

(
sTi−1 W̃

TW̃ si−1

)
+

1

2
Tr (Rp)

=
1

2
ETr

(
W̃TW̃ si−1 s

T
i−1

)
+

1

2
Tr (Rp)

=
1

2
Tr
(
W̃Rs,i−1W̃

T
)

+
1

2
Tr (Rp)

=
1

2
Tr
(
W̃VsΛsV

T
s W̃

T
)

+
1

2
Tr (Rp)

=
1

2
Tr
(
W

T
ΛsW

)
+

1

2
Tr (Rp)

≥ 1

2
λmin

(
Rsi−1

)
Tr
(
W

T
W
)

+
1

2
Tr (Rp)

=
1

2
λmin

(
Rsi−1

) ∥∥W∥∥2
+

1

2
Tr (Rp)

=
1

2
λmin

(
Rsi−1

) ∥∥∥W̃∥∥∥2

+
1

2
Tr (Rp)

(8.68)

The upper bound yielding the Lipschitz constant follows analogously.

235



CHAPTER 9

Interpretative Learning via the BRAIN strategy

The material in this chapter appeared in [73].

9.1 Introduction

Given feature vectors h ∈ RM and binary class labels γ ∈ {±1}, the broad objective of

learning solutions is to seek classifiers c(h) from the set C that solve [1, 86,173,174]:

c?(h) = arg min
c(·)∈C

P{c(h) 6= γ} (9.1)

The exact solution of (9.1) is generally intractable, mainly because it requires knowledge

of the joint probability distribution of the feature and class variables. It is customary to

replace the cost function by some regularized convex risk function and to seek instead the

classifier, co(h), that minimizes:

co(h) = arg min
c(·)∈C

EQ
(
c(·) ; h,γ

)
+R

(
c(·)
)

(9.2)

In this formulation, the term R(c) denotes a regularizer intended to endow co(h) with useful

properties (such as sparsity), and Q(·) is a loss function. Under the assumption that the

stochastic process generating realizations {hn, γ(n)}N−1
n=0 is ergodic, the mean in (9.2) can

be approximated by its sample average, resulting in an empirical risk minimization problem

directly in terms of the training data:

co(h) , arg min
c(·)∈C

1

N

N−1∑
n=0

Q
(
c(·);hn, γ(n)

)
+R

(
c(·)
)

(9.3)

236



Various machine learning algorithms are derived from this perspective. Examples include

logistic regression [86], support-vector machines [175, 176], as well as neural networks [177,

178] and deep neural networks [179,180]. When the number of available samples N is much

larger than the dimension of the feature space M and the VC dimension of the classifier set C,
it follows from the Vapnik-Chervonenkis theory [175] that the solution of (9.3) will result in a

classifier with good generalization ability. This property refers to the fact that, although the

classifier has been trained on a finite number of training data, it will still perform reasonably

well on unseen data.

On the other hand, it is well known that when the number of samples N available for

training is limited, appropriate prevention of overfitting becomes necessary. This scenario

is common in cases where data collection is expensive, for example in biomedical applica-

tions, or when there is lack of information about the nature of the features, resulting in the

collection of high dimensional feature data. Among the most commonly used remedies for

overfitting are dimensionality reduction, feature selection, and regularization, all of which

effectively reduce the complexity of the classifier set. However, several useful methods for

dimensionality reduction, such as principal component analysis [173,181] or Fisher discrim-

inant analysis [182,183], can still suffer from overfitting for small sample sizes.

In this work, we propose a framework for classification that involves an adaptive “soft”

feature selection mechanism involving a graph topology that is also learned and tuned online

during the same training process. The proposed framework is motivated by the observation

that many feature spaces in practice include an implicit structure that may be learned

and exploited for enhanced classification performance. The graph topology is used for this

purpose; its role is to learn and track correlations among feature subspaces over time, and this

information is fed into the learning algorithm in real-time. By doing so, the resulting learning

mechanism reduces the complexity of the classifier and combats overfitting. Once trained,

one prominent feature of the proposed solution is that it provides an “x-ray” view into the

correlation structure of the feature space, offering an opportunity for iterative refinement of

the features.

Figure 9.1 provides a high level overview of the proposed architecture; it includes elements

237



that are meant to mimic processing in the brain. The block with dictionary learning agents

plays the role of a local memory that learns and stores foundational atoms (or basis) for the

representation of feature subspaces. The block with the graph topology plays the role of

interconnections that are also learned from correlations among the feature subspaces. Thus,

while traditional learning algorithms focus on learning a mapping from the feature space to

the class label, the proposed learning strategy slices the feature space into subspaces and

incorporates learned memory and correlation graphs. We refer to the architecture in the

figure as the BRAIN strategy, where the acronym stands for Block-Reduced Adaptation

and Inference from Networked subspaces. Due to space limitations, in this article, however,

we do not study the BRAIN structure in its generality. As a proof of concept, we shall ignore

the dictionary blocks (i.e., we let the basis be the feature vectors themselves) and illustrate

the enhancement that already results from exploiting the graphical correlation information

alone.

Figure 9.1: (left) Traditional learning paradigm. (right) The BRAIN strategy with dictionary
and correlation networks.

238



9.1.1 Relation to other works

Graphs have been used before as a useful tool to encode dependency among random variables,

as happens, for example, in Bayesian and Markov networks [184, 185]. These structures are

appropriate when there is a fundamental understanding of how the variables relate to each

other. For the case when this information is not available, algorithms with latent variables,

such as expectation-maximization algorithms [173,186], restricted Boltzmann machines [187],

or deep belief networks [188] are generally employed. One drawback of such architectures is

that, while powerful when trained with sufficient amounts of training data, the populated

hidden layers are not always interpretable. In contrast, given only the structure of the

feature space and no information about correlation, our solution attaches a single correlation

layer to the shallow learner. Unlike deep strategies, this layer does not play a role in the

actual classification decision, but rather learns and tracks low-variability representations

of the feature space. Moreover, this layer does not operate directly on the feature data

but rather on scalar score variables defined in (9.7). These steps enable the algorithm to

more accurately learn the subset of informative features and after convergence provides an

insight into the correlation structure that resides in the feature space with respect to the

classification decision.

9.2 Algorithm Formulation

Consider a large feature vector h ∈ RM , which can be divided into a collection of sub-

vectors hk ∈ RMk , k = 1, . . . , K, so that h = col{h1,h2, . . . ,hK}. These collections are

application specific and can, for example, correspond to different bands in a densely sampled

spectrogram, different performance metrics for a sector of the economy, or different regions

of the human genome. In this work, we consider linear classifiers of the form:

c(h) , sign(wT h) (9.4)

239



which can be decomposed under the assumed structure for the feature space into

c(h) = sign

(
K∑
k=1

wT
k hk

)
(9.5)

where wk ∈ RMk is the sub-vector of the linear classifier associated with hk, i.e.,

w , col {w1, w2, . . . , wK} , h , col {h1,h2, . . . ,hK} (9.6)

Traditional methods for dimensionality reduction operate directly on h ∈ RM . They include

projections techniques, such as PCA [173, 181] or FDA [182, 183] and selection techniques

based on various measures of information — see for example [189,190]. These methods rely

on the computation of statistics of the feature vectors; accurate estimation of these statistics

is challenging in high-dimensional spaces. Furthermore, projection based transformations

are agnostic to the underlying structure of h = col{h1,h2, . . . ,hK}. The resulting classifier,

based on a scrambled feature vector, can become difficult to interpret. In contrast, we

propose to operate on the classifier soft sub-scores, defined as:

sw = col{wT
1 h1, w

T
2 h2, . . . , w

T
K hK} ∈ RK , (9.7)

This vector is of dimension K � M . Working with this reduced dimension has several

advantages. First, overfitting is less likely to occur, as the dimension under consideration

is significantly smaller than the underlying dimension of the feature space for appropriately

chosen sub-vectors hk. Second, the structure of the feature space is preserved, allowing for

more interpretable results. Third, we exploit the information gathered from statistics of sw

in real-time by feeding it back into the computation of w. This additional information results

in more accurate estimate of w, which in turn stabilizes the statistics of sw by reducing the

weight of noisy features. This closed loop results in more accurate identification of relevant

features.

To motivate the mechanism proposed in the sequel, recall that the general objective of

feature selection in the context of classification is the identification of subsets of the feature

240



vector h, that are highly correlated with the class label γ. Here we propose to obtain a

measure of this correlation by analyzing the statistics of {wT
k hk} directly. To this end, we

recall the definition of the Pearson correlation coefficient of two scalar random variables x,y

with means µx, µy and standard deviations σx, σy:

ρx,y =
E [(x−µx)(y−µy)]

σxσy
(9.8)

We collect the absolute values of the pairwise correlation coefficients for the individual pre-

dictions, ρwT
k hk,w

T
` h`

, into a symmetric matrix A ∈ [0, 1]K×K , so that the element in the `-th

row and k-th column is defined as:

A(`k) , a`k , |ρwT
` h`,w

T
khk
| (9.9)

This matrix is a measure of the linear correlations among predictions based on subsets of

feature vector h. A value a`k close to zero indicates that it is difficult to linearly predict the

classification score based on the k-th sub-vector from the `-th sub-vector and vice-versa. This

implies that at least one of the sub-vectors contributes little information to the classification

decision. Motivated by this observation, we proceed to interpret the Amatrix as an adjacency

matrix to a K-node graph, where each node k represents a sub-vector hk of the feature

vector h. This is illustrated in Fig. 9.2, which corresponds to one particular realization of

the BRAIN structure; in future works we will examine more elaborate structures, involving,

in addition, local memory and dictionaries evolving over time.

The strength of the link between nodes k and ` is given by the absolute value of the

Pearson correlation coefficient ρwT
k hk,w

T
` h`

. Nodes with strong connections have a tendency

to agree in their predictions of the class variable. These predictions are in turn based on the

vectors hk and h`, respectively. In the sequel, we will show how to incorporate the learned

correlation information into the online update of the learning algorithm. The objective is to

devise an algorithm, where opinions of nodes in a strongly connected cluster are reinforced.

This behavior mimics the fact that specific neural connections in the brain are reinforced as

a result of learning [191].

241



Figure 9.2: Illustration of a correlation layer placed on top of an online learning algorithm.

9.3 Correlation-Aware Online Update

We associate with each node k a scalar weight αk, which is obtained from the adjacency

matrix A of the graph according to

αk =
K∑
`=1

a`k =
K∑
`=1

ak` (9.10)

These weights can be interpreted as a measure of trust placed in node k by its neighbors.

This trust, loosely speaking, is the result of agreeing on classification decisions during past

realizations of the feature vectors. We use this measure to scale incoming sub-vectors of

the feature vector. The full algorithm, applied to a dataset of observations, {hn, γ(n)}N−1
n=0 ,

generated form random variables {h,γ}, is summarized below where the notation ∂Q(·)

242



refers to the gradient vector of Q(·) when it is differentiable or to a sub-gradient vector when

it is non-differentiable. Likewise, for ∂R(·).

Algorithm 9.1 Online BRAIN strategy
Parameters: ν,N
Initialize: w0,m0,Σ0

Run:
for i < N do
Statistics:
si−1 =

(
wT

1,i−1h1,i, w
T
2,i−1h2,i, . . . , w

T
K,i−1hK,i

)T
mi = (1− ν)mi−1 + νsi−1

Σi = (1− ν)Σi−1 + ν (si−1 −mi) (si−1 −mi)
T

Weights:

a`k(i) =
Σ

(`k)
i√

Σ
(``)
i Σ

(kk)
i

, ∀ `, k

αk(i) =
∑K

`=1 a`k(i), ∀ k
Learning:
hi = col{α1(i)h1,i, α2(i)h2,i, . . . , αK(i)hK,i}
wi = wi−1 − µ · ∂Q(wi−1;hi, γ(i))− µ · ∂R(wi−1)

end for
Return: wN ,ΣN , AN

Observe that the above algorithm is fully online, which is particularly useful when the feature

vector is high-dimensional. The statistics information of wT
k,ihk,i is estimated adaptively,

where the parameter ν controls the trade-off between accuracy of estimation and speed of

convergence. The update of the weight vector wi for classification is performed through a

stochastic gradient step. For example, for online logistic regression, where

Q(w) = ln
(

1 + e−γ h
T w
)
, R(w) = δ‖w‖2, (9.11)

the algorithm would take the form

wi = (1− µδ)wi−1 − µγ(i)hi

(
1 + e−γ(i)hi

)−1

. (9.12)

For support vector machines with `2 regularization, where

Q(w) = max
(
1− γ hTw, 0

)
, R(w) = δ‖w‖2, (9.13)

243



the algorithm becomes

wi = (1− µδ)wi−1 − µγ(i)hi · I[ γ(i)h
T

i wi−1 < 1 ] (9.14)

where µ is the step size. The notation I[·] represents the 0-1 indicator function, which is

equal to 1 when the statement is true and 0 when it is false.

9.4 Simulation Results

9.4.1 Artificial Data

We begin by illustrating performance on synthetic data. The dataset is generated using the

make classification function1 from the sklearn.datasets Python module [192], which

is adapted from one of the datasets in the 2003 NIPS feature selection challenge [193].

The method allows for the specification of the number of informative and non-informative

features. We generate N = 3000 feature vectors of dimension M = 400, where only the first

40 indices contain class information. The remaining 360 indices contain noise.

To begin with, we confirm that the statistics of classifier scores indeed allow the classifier

to learn the subset of informative features. In Fig. 9.3 we show the evolution of the correlation

network, which controls the weighting of the incoming feature blocks. We represent the

weight αk of node k through the size of its dot, and the correlation between a pair of

sub-vectors of h through the thickness of the connecting link. The correlation matrix Σ is

initialized as the identity matrix, resulting in a set of K unconnected nodes and αk = 1
K

,

depicted in the leftmost plot. The second plot depicts the state of the correlation network

after convergence, resulting in a fully connected network, albeit with two dominant nodes,

namely nodes 1 and 2, which correspond to the first 40 elements of the feature vector, which

is the informative subset. This dominance becomes more clear in the rightmost plot, where

weak links were removed by simple thresholding. It is evident that there is a strong link

1http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

244

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html


between nodes 1 and 2. This means that decisions formed from the first 20 elements and

those formed from the second set of 20 features have a strong tendency to agree. These

are in fact the informative subset, as constructed. In contrast, none of the decisions formed

based on the remaining 18 subsets show any meaningful correlation.

Figure 9.3: Evolution of correlation network of classifier sub-scores.

Figure 9.4 shows the evolution of the classification accuracy for ordinary online logistic

regression compared to BRAIN online logistic regression. For this particular example, we

observe fastest convergence and highest performance for a damping factor ν = 0.01 and

K = 20 equally spaced divisions of the feature vector. We show two additional accuracy

evolutions to assess the sensitivity of the algorithm performance for varying design choices.

9.4.2 p53 Mutants Dataset

Here, we test the performance of the algorithm on real data, compiled in the University

of California, Irvine (UCI) Machine Learning Repository2, discussed in [194]. The dataset

contains biophysical features pertaining to the p53 protein, which is also known as a tumor

suppressor protein. When active, p53 guards the genome against cancer. The objective is to

predict the state of p53 (active or inactive) from M = 5408 features. One challenge in this

dataset is that the classes are highly unbalanced, with a majority of p53 realizations being

active (healthy). Of the 16772 available instances, only 286 are inactive. To remedy this

2http://archive.ics.uci.edu/ml/datasets/p53+Mutants

245

http://archive.ics.uci.edu/ml/datasets/p53+Mutants


Figure 9.4: Learning curves for logistic regression with and without the correlation layer on
synthetic data.

imbalance, we randomly select 286 active instances. After leaving 72 samples for testing, we

are left with a training set of size N = 500.

Here we endow a support vector machine with the correlation layer and compare perfor-

mance against ordinary SVM in Fig. 9.5. Since we have no prior information on the structure

of the feature space, we divide the feature vector into K = 50 divisions of equal size. To

allow the algorithms to converge, we run multiple passes over the small training set.

We show the learned correlation network in Fig. 9.6. We observe that the nodes in the

bottom left form a cluster (nodes 25–43) and contribute most strongly to the classification

decision.

246



Figure 9.5: Learning curves for Support-Vector-Machine with and without correlation layer
on gene data, µ = 0.01, ν = 0.01, and ρ = 0.01.

Figure 9.6: Correlation network evolution on p53 mutants.

247



CHAPTER 10

Conclusions and Future Issues

In this dissertation, we developed distributed strategies for continuous adaptation and learn-

ing in the presence of non-smooth regularizers. For the case when regularizers are chosen

small, we studied the performance of the proximal diffusion recursion and showed that de-

spite the lack of smoothness and persistent gradient noise, the algorithm is able to converge

to the minimizer of the aggregate cost within O(µ) in the mean-square sense, assuming that

the step-size and regularization parameter are appropriately coupled (Theorem 2.1). We

proceeded to extend the strategy to allow for arbitrary convex regularizers by construct-

ing a smooth approximation based on conjugate smoothing. We examined the relationship

between the step-size, smoothing-parameter and stability-conditions and determined an ex-

pression for the coupling between step-size and smoothing parameter, which ensures that the

limiting point of the algorithm converges to the minimizer of the original problem as µ→ 0

(Theorem 3.3). We illustrated the algorithms through applications in machine learning and

image reconstruction. Avenues for future research are the examination of the effect of the

proximity function in the construction of the smooth approximation on the algorithm as well

as perturbations caused by persistent errors in the evaluation of the proximal operators.

A second contribution of this dissertation is the establishment of second-order guarantees

for the diffusion strategy in smooth, but non-convex environments. In particular, we estab-

lished a descent relation for the network centroid around strict saddle-points under the condi-

tion that a noise component is present in at least one descent direction (Theorem 6.1). This

relation, along with the more commonly established descent in the large-gradient regime, al-

lowed us to provide a second-order stationarity guarantee in polynomial time (Theorem 6.2).

Open questions for future consideration include the examination of second-order guarantees

248



in the presence of non-smooth terms and an analysis of the various randomization schemes

employed in practice, such as for example dropout [195], under the gradient noise framework.

In the second part of the dissertation, focusing on learning from data exhibiting an in-

ternal network structure, we proposed the Laplacian LMS Strategy and variants involving

projections for learning the graph characterizing a heat diffusion model. The resulting al-

gorithm takes the form of an adaptive filter, and is able to learn the true, underlying graph

with arbitrarily high accuracy for sufficiently small step-sizes (Theorem 8.1). Detailed explo-

ration of the tracking performance of the adaptive algorithm as a function of the observed

graph and its evolution is left for future research.

We also proposed a BRAIN strategy to enhance the performance of online classifiers for

high-dimensional feature spaces. We illustrated results and performance on both artificially

generated and real data examples and observed experimentally that (a) the correlation layer

is able to identify the subset of informative features; (b) this information seeps into the final

weight vector, and (c) this results in improved performance when compared to regular ver-

sions of the respective online learners. This work opens avenues for further research. Recall

that one of the key features of the correlation layer is that it weights features based on classi-

fier sub-scores. These can be interpreted as single-dimensional projections of the sub-feature

vectors with reduced variance. More elaborate and possibly higher-dimensional, albeit still

variance-reduced, representations can be considered by means of dictionaries, which are up-

dated in an online manner, similar to [196]. A second opportunity for improvement is the

automatic and iterative refinement of feature vector divisions in the absence of exact prior

knowledge. In this work, we were able to show performance improvement with evenly spaced

divisions, but do not make a claim of optimality. On the other hand, correlation networks

after convergence contain information on the amount of information contained in a given

feature subset. This information can be used to inform a restructuring of the feature vector

subsets, before running the algorithm again with the previous weight vector as a starting

point. In this manner, the information provided by the correlation graph can be more fully

exploited. Finally, distributed implementations can be pursued, along the lines of [1, 22].

249



REFERENCES

[1] A. H. Sayed, “Adaptation, learning, and optimization over networks,” Foundations
and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–801, July 2014.

[2] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on
Neural Networks, vol. 10, no. 5, pp. 988–999, Sep. 1999.

[3] V. Vapnik and A. Chervonenkis, “On the uniform convergence of relative frequencies
of events to their probabilities,” Theory of Probability & Its Applications, vol. 16, no.
2, pp. 264–280, 1971.

[4] M. J. Kearns and U. V. Vazirani, An Introduction to Computational Learning Theory,
MIT Press, Cambridge, MA, USA, 1994.

[5] B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press,
1996.

[6] A. Blum, On-Line Algorithms in Machine Learning, pp. 306–325, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998.

[7] O. Bousquet, S. Boucheron, and G. Lugosi, Introduction to Statistical Learning Theory,
pp. 169–207, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[8] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist.,
vol. 22, no. 3, pp. 400–407, 09 1951.

[9] K. Yuan, B. Ying, S. Vlaski, and A. H. Sayed, “Stochastic gradient descent with finite
samples sizes,” in Proc. of IEEE MLSP, Vietri sul Mare, Italy, Sep. 2016, pp. 1–6.

[10] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predic-
tive variance reduction,” in Proc. of NIPS, C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, Eds., pp. 315–323. Curran Associates, Inc.,
2013.

[11] E. Otte and R. Rousseau, “Social network analysis: a powerful strategy, also for the
information sciences,” Journal of Information Science, vol. 28, no. 6, pp. 441–453,
2002.

[12] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian learning in social
networks,” The Review of Economic Studies, vol. 78, no. 4, pp. 1201–1236, 2011.

[13] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-bayesian social
learning,” Games and Economic Behavior, vol. 76, no. 1, pp. 210 – 225, 2012.

[14] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid — the new and improved power
grid: A survey,” IEEE Communications Surveys Tutorials, vol. 14, no. 4, pp. 944–980,
Fourth 2012.

250



[15] P. McDaniel and S. McLaughlin, “Security and privacy challenges in the smart grid,”
IEEE Security Privacy, vol. 7, no. 3, pp. 75–77, May 2009.

[16] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation in
wireless sensor networks,” in Proceedings 22nd International Conference on Distributed
Computing Systems Workshops, July 2002, pp. 575–578.

[17] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location:
challenges faced in developing techniques for accurate wireless location information,”
IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 24–40, July 2005.

[18] R. V. Kulkarni, A. Forster, and G. K. Venayagamoorthy, “Computational intelligence
in wireless sensor networks: A survey,” IEEE Communications Surveys Tutorials, vol.
13, no. 1, pp. 68–96, First 2011.

[19] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil,
“Vehicular networking: A survey and tutorial on requirements, architectures, chal-
lenges, standards and solutions,” IEEE Communications Surveys Tutorials, vol. 13,
no. 4, pp. 584–616, Fourth 2011.

[20] E. Ahmed and H. Gharavi, “Cooperative vehicular networking: A survey,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 996–1014, March
2018.

[21] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” in NIPS
Workshop on Private Multi-Party Machine Learning, 2016.

[22] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102, no. 4, pp.
460–497, April 2014.

[23] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2003.

[24] S. U. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius theorem: Some of its appli-
cations,” IEEE Signal Processing Magazine, vol. 22, no. 2, pp. 62–75, March 2005.

[25] J. Chen and A. H. Sayed, “Distributed Pareto optimization via diffusion strategies,”
IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 2, pp. 205–220, April
2013.

[26] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent opti-
mization,” IEEE Trans. Automatic Control, vol. 54, no. 1, pp. 48–61, Jan 2009.

[27] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks - Part I:
Transient analysis,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp.
3487–3517, June 2015.

[28] R. Xin, A. K. Sahu, U. A. Khan, and S. Kar, “Distributed stochastic optimization with
gradient tracking over strongly-connected networks,” available as arXiv:1903.07266,
March 2019.

251



[29] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient descent,”
SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[30] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for
decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2,
pp. 944–966, 2015.

[31] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distributed opti-
mization and learning – Part II: Convergence analysis,” IEEE Transactions on Signal
Processing, vol. 67, no. 3, pp. 724–739, Feb 2019.

[32] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over networks –
Part II: Performance analysis,” IEEE Transactions on Signal Processing, vol. 63, no.
4, pp. 827–842, Feb 2015.

[33] Z. J. Towfic and A. H. Sayed, “Adaptive penalty-based distributed stochastic convex
optimization,” IEEE Trans. on Signal Process., vol. 62, no. 15, pp. 3924–3938, Aug.
2014.

[34] B. Ying and A. H. Sayed, “Performance limits of stochastic sub-gradient learning,
Part II: Multi-agent case,” Signal Processing, vol. 144, pp. 253 – 264, 2018.

[35] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Proximal multitask learning over
networks with sparsity-inducing coregularization,” Trans. Sig. Proc., vol. 64, no. 23,
pp. 6329–6344, Dec. 2016.

[36] R. Nassif, S. Vlaski, and A. H. Sayed, “Learning over multitask graphs - Part I:
Stability analysis,” available as arXiv:1805.08535, May 2018.

[37] R. Nassif, S. Vlaski, and A. H. Sayed, “Learning over multitask graphs - Part II:
Performance analysis,” available as arXiv:1805.08547, May 2018.

[38] R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “A regularization framework for
learning over multitask graphs,” IEEE Signal Processing Letters, vol. 26, no. 2, pp.
297–301, Feb 2019.

[39] R. Nassif, S. Vlaski, and A. H. Sayed, “Adaptation and learning over networks under
subspace constraints – Part I: Stability analysis,” available as arXiv:1905.08750, June
2019.

[40] R. Nassif, S. Vlaski, and A. H. Sayed, “Adaptation and learning over networks under
subspace constraints – Part II: Performance analysis,” available as arXiv:1906.12250,
June 2019.

[41] P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Sparse diffusion LMS for distributed
adaptive estimation,” in Proc. IEEE ICASSP, Kyoto, Japan, March 2012, pp. 3281–
3284.

[42] P. Di Lorenzo and A. H. Sayed, “Sparse distributed learning based on diffusion adap-
tation,” IEEE Trans. Signal Process., vol. 61, no. 6, pp. 1419–1433, March 2013.

252



[43] S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis, “A sparsity promoting
adaptive algorithm for distributed learning,” IEEE Trans. Signal Process., vol. 60, no.
10, pp. 5412–5425, Oct. 2012.

[44] Y. Liu, C. Li, and Z. Zhang, “Diffusion sparse least-mean squares over networks,”
IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4480–4485, Aug 2012.

[45] M. Schmidt, N. L. Roux, and F. R. Bach, “Convergence rates of inexact proximal-
gradient methods for convex optimization,” in Proc. Advances in Neural Information
Processing Systems 24, Granada, Spain, 2011, pp. 1458–1466.

[46] A. I. Chen and A. Ozdaglar, “A fast distributed proximal-gradient method,” in Proc.
Annual Allerton Conference on Communication, Control, and Computing, Allerton,
USA, Oct. 2012, pp. 601–608.

[47] W. M. Wee and I. Yamada, “A proximal splitting approach to regularized dis-
tributed adaptive estimation in diffusion networks,” in Proc. IEEE ICASSP, Van-
couver, Canada, May 2013, pp. 5420–5424.

[48] P. Di Lorenzo, “Diffusion adaptation strategies for distributed estimation over Gaus-
sian Markov random fields,” IEEE Transactions on Signal Process., vol. 62, no. 21,
pp. 5748–5760, Nov. 2014.

[49] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in Optimiza-
tion, vol. 1, no. 3, pp. 127–239, 2013.

[50] S. Vlaski and A. H. Sayed, “Proximal diffusion for stochastic costs with non-
differentiable regularizers,” in Proc. IEEE ICASSP, Brisbane, Australia, April 2015,
pp. 3352–3356.

[51] S. Vlaski, L. Vandenberghe, and A. H. Sayed, “Diffusion stochastic optimization with
non-smooth regularizers,” in Proc. of IEEE ICASSP, Shanghai, China, March 2016,
pp. 4149–4153.

[52] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected stochastic
gradient algorithm for non-convex optimization,” IEEE Transactions on Automatic
Control, vol. 58, no. 2, pp. 391–405, Feb 2013.

[53] P. Di Lorenzo and G. Scutari, “NEXT: in-network nonconvex optimization,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 2, no. 2, pp.
120–136, June 2016.

[54] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent,” in Advances in Neural Information Processing Systems
30, pp. 5330–5340. Curran Associates, Inc., 2017.

[55] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE Transac-
tions on Signal Processing, vol. 66, no. 11, pp. 2834–2848, June 2018.

253



[56] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “d2: Decentralized training over
decentralized data,” in Proceedings of the 35th International Conference on Machine
Learning, 10–15 Jul 2018, vol. 80, pp. 4848–4856.

[57] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in nonconvex nons-
mooth optimization,” Journal of Scientific Computing, vol. 78, no. 1, pp. 29–63, Jan.
2019.

[58] T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE Transac-
tions on Automatic Control, vol. 62, no. 8, pp. 3744–3757, Aug. 2017.

[59] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points—online stochastic
gradient for tensor decomposition,” in Proc. of Conference on Learning Theory, Paris,
France, 2015, pp. 797–842.

[60] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to escape saddle
points efficiently,” in Proc. of ICML, Sydney, Australia, Aug. 2017, pp. 1724–1732.

[61] A. Daneshmand, G. Scutari and V. Kungurtsev, “Second-order guarantees of dis-
tributed gradient algorithms,” available as arXiv:1809.08694, Sep. 2018.

[62] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun, “The Loss
Surfaces of Multilayer Networks,” in Proceedings of the Eighteenth International Con-
ference on Artificial Intelligence and Statistics, San Diego, May 2015, pp. 192–204.

[63] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data analy-
sis to networks and other irregular domains,” IEEE Signal Processing Magazine, vol.
30, no. 3, pp. 83–98, May 2013.

[64] F. Chung, “The heat kernel as the pagerank of a graph,” Proceedings of the National
Academy of Sciences, vol. 104, no. 50, pp. 19735–19740, 2007.

[65] H. Ma, H. Yang, M. R. Lyu, and I. King, “Mining social networks using heat diffu-
sion processes for marketing candidates selection,” in Proceedings of the 17th ACM
Conference on Information and Knowledge Management, New York, NY, 2008, pp.
233–242.

[66] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat diffusion graphs,”
IEEE Transactions on Signal and Information Processing over Networks, vol. 3, no. 3,
pp. 484–499, Sep. 2017.

[67] S. Vlaski, H. P. Maretić, R. Nassif, P. Frossard, and A. H. Sayed, “Online graph
learning from sequential data,” in Proc. of IEEE Data Science Workshop (DSW),
Lausanne, Switzerland, June 2018, pp. 190–194.

[68] S. Vlaski, L. Vandenberghe, and A. H. Sayed, “Regularized Diffusion Adaptation via
Conjugate Smoothing,” in preparation, September 2019.

254



[69] S. Vlaski and A. H. Sayed, “Diffusion learning in non-convex environments,” in Proc.
of IEEE ICASSP, Brighton, UK, May 2019, pp. 5262–5266.

[70] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments – Part I:
Agreement at a Linear rate,” submitted for publication, available as arXiv:1907.01848,
July 2019.

[71] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments – Part
II: Polynomial escape from saddle-points,” submitted for publication, available as
arXiv:1907.01849, July 2019.

[72] S. Vlaski and A. H. Sayed, “Second-order guarantees of stochastic gradient descent in
non-convex optimization,” submitted for publication, available as arXiv:1908.07023,
August 2019.

[73] S. Vlaski, B. Ying, and A. H. Sayed, “The brain strategy for online learning,” in Proc.
IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washing-
ton, DC, USA, Dec 2016, pp. 1285–1289.

[74] J. N. Tsitsiklis and M. Athans, “Convergence and asymptotic agreement in distributed
decision problems,” IEEE Trans. Automatic Control, vol. 29, no. 1, pp. 42–50, Jan
1984.

[75] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in net-
worked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233,
Jan 2007.

[76] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip
algorithms for distributed signal processing,” Proceedings of the IEEE, vol. 98, no. 11,
pp. 1847–1864, Nov. 2010.

[77] J. Duchi and Y. Singer, “Efficient online and batch learning using forward backward
splitting,” Journal of Machine Learning Research, vol. 10, pp. 2899–2934, 2009.

[78] Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A sparse adaptive filter-
ing using time-varying soft-thresholding techniques,” in Proc. IEEE ICASSP, Dallas,
USA, March 2010, pp. 3734–3737.

[79] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,”
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer
Optimization and Its Applications, pp. 185–221, Springer, NY, 2011.

[80] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202,
2009.

[81] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning over distributed models,”
IEEE Trans. Signal Process., vol. 63, no. 4, pp. 1001–1016, February 2015.

255



[82] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons,
1989.

[83] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Athena Scientific, 1997.

[84] B. T. Polyak, Introduction to Optimization, Optimization Software, 1997.

[85] L. Vandenberghe, “Optimization Methods for Large-Scale Systems,” UCLA EE236C
Lecture Notes, 2014.

[86] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning,
Springer, 2009.

[87] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete
representations in the presence of noise,” IEEE Trans. on Inf. Theory, vol. 52, no. 1,
pp. 6–18, Jan. 2006.

[88] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society, Series B, vol. 58, pp. 267–288, 1994.

[89] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical Pro-
gramming, vol. 103, no. 1, pp. 127–152, 2005.

[90] D. P. Bertsekas, “A new class of incremental gradient methods for least squares prob-
lems,” SIAM J. Optim., vol. 7, no. 4, pp. 913–926, April 1997.

[91] S. Sundhar Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” Journal of Optimization Theory and
Applications, vol. 147, no. 3, pp. 516–545, Dec 2010.

[92] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in
multi-agent networks,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp.
922–938, April 2010.

[93] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks:
Formulation and performance analysis,” Trans. Sig. Proc., vol. 56, no. 7, pp. 3122–
3136, July 2008.

[94] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm for
decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2,
pp. 944–966, 2015.

[95] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 2, no. 2, pp.
120–136, June 2016.

[96] Y. Sun, G. Scutari, and D. Palomar, “Distributed nonconvex multiagent optimization
over time-varying networks,” in 2016 50th Asilomar Conference on Signals, Systems
and Computers, Nov 2016, pp. 788–794.

256



[97] A. Mokhtari and A. Ribeiro, “Dsa: Decentralized double stochastic averaging gradient
algorithm,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 2165–2199, Jan. 2016.

[98] Y. Sun and G. Scutari, “Distributed nonconvex optimization for sparse representa-
tion,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), March 2017, pp. 4044–4048.

[99] A. Nedich, A. Olshevsky, and W. Shi, “Achieving geometric convergence for dis-
tributed optimization over time-varying graphs,” SIAM Journal on Optimization, vol.
27, no. 4, pp. 2597–2633, 1 2017.

[100] R. Xin and U. A. Khan, “A linear algorithm for optimization over directed graphs
with geometric convergence,” IEEE Control Systems Letters, vol. 2, no. 3, pp. 315–320,
July 2018.

[101] S. Pu and A. Nedić, “A distributed stochastic gradient tracking method,” available
as arXiv:1803.07741, March 2018.

[102] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distributed opti-
mization and learning—part i: Algorithm development,” IEEE Transactions on Signal
Processing, vol. 67, no. 3, pp. 708–723, Feb 2019.

[103] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Cooperative convex optimization in
networked systems: Augmented lagrangian algorithms with directed gossip communi-
cation,” IEEE Transactions on Signal Processing, vol. 59, no. 8, pp. 3889–3902, Aug
2011.

[104] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed
optimization: Convergence analysis and network scaling,” IEEE Transactions on Au-
tomatic Control, vol. 57, no. 3, pp. 592–606, March 2012.

[105] K. I. Tsianos and M. G. Rabbat, “Distributed dual averaging for convex optimiza-
tion under communication delays,” in Proc. American Control Conference (ACC),
Montreal, Canada, June 2012, pp. 1067–1072.

[106] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the admm
in decentralized consensus optimization,” IEEE Transactions on Signal Processing,
vol. 62, no. 7, pp. 1750–1761, April 2014.

[107] M. Jaggi, V. Smith, M. Takáč, J. Terhorst, S. Krishnan, T. Hofmann, and M. I. Jordan,
“Communication-efficient distributed dual coordinate ascent,” in Proc. International
Conference on Neural Information Processing Systems, Montreal, Canada, 2014, pp.
3068–3076.

[108] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “Dlm: Decentralized linearized alternating
direction method of multipliers,” IEEE Transactions on Signal Processing, vol. 63, no.
15, pp. 4051–4064, Aug 2015.

257



[109] D. Jakovetić, J. M. F. Moura, and J. Xavier, “Linear convergence rate of a class
of distributed augmented lagrangian algorithms,” IEEE Transactions on Automatic
Control, vol. 60, no. 4, pp. 922–936, April 2015.

[110] K. Seaman, F. Bach, S. Bubeck, Yin T. Lee, and L. Massoulié, “Optimal algorithms
for smooth and strongly convex distributed optimization in networks,” in Proc. Inter-
national Conference on Machine Learning, Sydney, Australia, 2017, pp. 3027–3036.

[111] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for decentralized
and stochastic optimization,” Mathematical Programming, Dec 2018.

[112] D. Jakovetić, “A unification and generalization of exact distributed first-order meth-
ods,” IEEE Transactions on Signal and Information Processing over Networks, vol. 5,
no. 1, pp. 31–46, March 2019.

[113] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-
computation tradeoffs in decentralized optimization,” Proceedings of the IEEE, vol.
106, no. 5, pp. 953–976, May 2018.

[114] A. Nedić and A. Olshevsky, “Stochastic gradient-push for strongly convex functions
on time-varying directed graphs,” IEEE Transactions on Automatic Control, vol. 61,
no. 12, pp. 3936–3947, Dec 2016.

[115] S. Pu, W. Shi, J. Xu and A. Nedić, “A push-pull gradient method for distributed
optimization in networks,” available as arXiv:1803.07588, March 2018.

[116] A. Beck and M. Teboulle, “Smoothing and first order methods: A unified framework,”
SIAM Journal on Optimization, vol. 22, no. 2, pp. 557–580, 2012.

[117] Y.-L. Yu, “Better approximation and faster algorithm using the proximal average,”
in Advances in Neural Information Processing Systems 26, pp. 458–466. 2013.

[118] J. Duchi, P. Bartlett, and M. Wainwright, “Randomized smoothing for stochastic
optimization,” SIAM Journal on Optimization, vol. 22, no. 2, pp. 674–701, 2012.

[119] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal algorithms for
non-smooth distributed optimization in networks,” in Proc. International Conference
on Neural Information Processing Systems, Montreal, Canada, 2018, pp. 2745–2754.

[120] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press,
2004.

[121] C. Planiden and X. Wang, “Strongly convex functions, moreau envelopes, and the
generic nature of convex functions with strong minimizers,” SIAM Journal on Opti-
mization, vol. 26, no. 2, pp. 1341–1364, 2016.

[122] H. Bauschke, R. Goebel, Y. Lucet, and X. Wang, “The proximal average: Basic
theory,” SIAM Journal on Optimization, vol. 19, no. 2, pp. 766–785, 2008.

258



[123] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Athena Scientific, 1997.

[124] Y. Kim, J. Kim, and Y. Kim, “Blockwise sparse regression,” Statistica Sinica, vol. 16,
no. 2, pp. 375–390, 2006.

[125] L. Meier, S. van de Geer, and P. Buhlmann, “The group lasso for logistic regression,”
Journal of the Royal Statistical Society Series B, vol. 70, pp. 53–71, 02 2008.

[126] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the IEEE,
vol. 98, no. 6, pp. 925–936, June 2010.

[127] J. Cai, E. Candes, and Z. Shen, “A singular value thresholding algorithm for matrix
completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[128] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Proximal multitask learning
over networks with sparsity-inducing coregularization,” IEEE Transactions on Signal
Processing, vol. 64, no. 23, pp. 6329–6344, Dec 2016.

[129] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector
machines,” IEEE Intelligent Systems and their Applications, vol. 13, no. 4, pp. 18–28,
July 1998.

[130] A. M. Zoubir, V. Koivunen, E. Ollila, and M. Muma, Robust Statistics for Signal
Processing, Cambridge University Press, 2018.

[131] I. Tosic and P. Frossard, “Dictionary learning,” IEEE Signal Processing Magazine,
vol. 28, no. 2, pp. 27–38, March 2011.

[132] S. Gelfand and S. Mitter, “Recursive stochastic algorithms for global optimization in
Rd,” SIAM Journal on Control and Optimization, vol. 29, no. 5, pp. 999–1018, 1991.

[133] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient descent only con-
verges to minimizers,” in 29th Annual Conference on Learning Theory, New York,
2016, pp. 1246–1257.

[134] H. Daneshmand, J. Kohler, A. Lucchi and T. Hofmann, “Escaping saddles with
stochastic gradients,” available as arXiv:1803.05999, March 2018.

[135] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “SPIDER: Near-optimal non-convex opti-
mization via stochastic path-integrated differential estimator,” in Proc. of NIPS, pp.
689–699. Montreal, Canada, 2018.

[136] Z. Allen-Zhu, “Natasha 2: Faster non-convex optimization than SGD,” in Proc. of
NIPS, pp. 2675–2686. Montreal, Canada, Dec. 2018.

[137] Z. Allen-Zhu and Y. Li, “NEON2: Finding local minima via first-order oracles,” in
Proc. of NIPS, pp. 3716–3726. Montreal, Canada, Dec. 2018.

259



[138] C. Fang, Z. Lin and T. Zhang, “Sharp analysis for nonconvex sgd escaping from saddle
points,” available as arXiv:1902.00247, Feb. 2019.

[139] C. Jin, P. Netrapalli, R. Ge, S. M. Kakade and M. I. Jordan, “Stochastic gradient
descent escapes saddle points efficiently,” available as arXiv:1902.04811, Feb. 2019.

[140] B. Swenson, S. Kar, H. V. Poor and J. M. F. Moura, “Annealing for distributed global
optimization,” available as arXiv:1903.07258, March 2019.

[141] P. Jain and P. Kar, “Non-convex optimization for machine learning,” Foundations
and Trends in Machine Learning, vol. 10, no. 3-4, pp. 142–336, 2017.

[142] S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. Smola, “Stochastic variance reduction
for nonconvex optimization,” in Proc. of ICML, New York, NY, USA, 2016, pp. 314–
323.

[143] R. Ge, Z. Li, W. Wang and X. Wang, “Stabilized SVRG: Simple variance reduction
for nonconvex optimization,” available as arXiv:1905.00529, May 2019.

[144] Y. Nesterov and B.T. Polyak, “Cubic regularization of newton method and its global
performance,” Mathematical Programming, vol. 108, no. 1, pp. 177–205, Aug 2006.

[145] A. Klenke, Probability Theory: A Comprehensive Course, Springer, 2013.

[146] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks – Part II:
Performance analysis,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp.
3518–3548, June 2015.

[147] S.-Y. Tu and A. H. Sayed, “Diffusion strategies outperform consensus strategies for
distributed estimation over adaptive networks,” Trans. Sig. Proc., vol. 60, no. 12, pp.
6217–6234, Dec. 2012.

[148] S. S. Du, C. Jin, J. D. Lee, M. I. Jordan, B. Poczos and A. Singh, “Gradient descent
can take exponential time to escape saddle points,” available as arXiv:1705.10412,
May 2017.

[149] A. H. Sayed, Adaptive Filters, John Wiley & Sons, Inc., 2008.

[150] Y. Nesterov, Introductory Lectures on Convex Programming Volume I: Basic Course,
Springer, 1998.

[151] D. Bertsekas and J. Tsitsiklis, “Gradient convergence in gradient methods with errors,”
SIAM Journal on Optimization, vol. 10, no. 3, pp. 627–642, 2000.

[152] F. Facchinei, V. Kungurtsev, L. Lampariello, G. Scutari, “Ghost Penalties in Non-
convex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity,”
available as arXiv:1709.03384, Sep. 2017.

260



[153] K. Kawaguchi, “Deep learning without poor local minima,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, Eds., pp. 586–594. Curran Associates, Inc., 2016.

[154] R. Ge, J. D. Lee, and T. Ma, “Matrix completion has no spurious local minimum,”
in Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds., pp. 2973–2981. Curran Associates,
Inc., 2016.

[155] S. Bhojanapalli, B. Neyshabur, and N. Srebro, “Global optimality of local search for
low rank matrix recovery,” in Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds., pp.
3873–3881. Curran Associates, Inc., 2016.

[156] F. E. Curtis, D. P. Robinson, and M. Samadi, “A trust region algorithm with a
worst-case iteration complexity of o(ε−3/2) for nonconvex optimization,” Mathematical
Programming, vol. 162, pp. 1–32, 2017.

[157] C. Jin, P. Netrapalli, and M. I. Jordan, “Accelerated gradient descent escapes saddle
points faster than gradient descent,” in Proceedings of the 31st Conference On Learning
Theory, Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, Eds. 06–09 Jul
2018, vol. 75 of Proceedings of Machine Learning Research, pp. 1042–1085, PMLR.

[158] A. P. Dempster, “Covariance selection,” Biometrics, vol. 28, no. 1, pp. 157–175, 1972.

[159] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with
the graphical Lasso,” vol. 9, pp. 432–41, Aug. 2008.

[160] B. Lake and J. Tenenbaum, “Discovering structure by learning sparse graphs,” in
Proceedings of the 32nd Annual Meeting of the Cognitive Science Society, Jan. 2010,
pp. 778–783.

[161] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix
in smooth graph signal representations,” IEEE Transactions on Signal Processing, vol.
64, no. 23, pp. 6160–6173, 2016.

[162] V. Kalofolias, “How to learn a graph from smooth signals,” in Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, Cadiz, Spain, May
2016, vol. 51, pp. 920–929.

[163] E. Pavez and A. Ortega, “Generalized laplacian precision matrix estimation for graph
signal processing,” in Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Shanghai, China, Mar. 2016, pp. 6350–6354.

[164] J. Mei and J. M. F. Moura, “Signal processing on graphs: Causal modeling of un-
structured data,” IEEE Transactions on Signal Processing, vol. 65, no. 8, pp. 2077 –
2092, Apr. 2017.

261



[165] D. Durante and D. B. Dunson, “Locally adaptive dynamic networks,” Ann. Appl.
Stat., vol. 10, no. 4, pp. 2203–2232, 12 2016.

[166] K. S. Xu and A. O. Hero, “Dynamic stochastic blockmodels for time-evolving social
networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 4, pp.
552–562, Aug 2014.

[167] B. Zaman, L. M. Lopez-Ramos, D. Romero, and B. Beferull-Lozano, “Online topology
estimation for vector autoregressive processes in data networks,” in IEEE 7th Inter-
national Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), Dec 2017, pp. 1–5.

[168] F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997.

[169] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews
of Modern Physics, vol. 74, pp. 47–97, Jan. 2002.

[170] L. Farina and S. Rinaldi, Positive linear systems. Theory and applications, John Wiley
& Sons, Inc., 06 2000.

[171] W. Arendt, Characterization of positive semigroups on Co(X), pp. 122–162, Springer
Berlin Heidelberg, 1986.

[172] C.-T. Chen, Linear System Theory and Design, Oxford University Press, Inc., New
York, NY, USA, 3rd edition, 1998.

[173] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[174] S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective, Aca-
demic Press, 2015.

[175] V. Vapnik, Statistical Learning Theory, Wiley NY, 1998.

[176] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no.
3, pp. 273–297, 1995.

[177] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
1995.

[178] S. Haykin, Neural Networks and Learning Machines (3rd Edition), Prentice Hall,
2009.

[179] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[180] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Proc. Advances in Neural Information Processing Systems
(NIPS), pp. 1097–1105. Lake Tahoe, USA, 2012.

[181] I. Jolliffe, Principal Component Analysis, Wiley NY, 2002.

262



[182] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, 2013.

[183] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Mullers, “Fisher discrimi-
nant analysis with kernels,” in Neural Networks for Signal Processing IX, pp. 41–48.
Madison, USA, Aug 1999.

[184] C. M. Bishop, “Model-based machine learning,” Phil. Trans. Royal Society of London
A, vol. 371, no. 1984, pp. 1–17, 2012.

[185] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques,
MIT Press, 2009.

[186] M. J. Beal, Variational Algorithms for Approximate Bayesian Inference, Ph.D. thesis,
University College London, London, United Kingdom, May 2003.

[187] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in
Neural Networks: Tricks of the Trade: Second Edition, pp. 599–619. Springer, 2012.

[188] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, July 2006.

[189] M. A. Hall, Correlation-based Feature Selection for Machine Learning, Ph.D. thesis,
University of Waikato, Hamilton, New Zealand, April 1999.

[190] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood maximi-
sation: A unifying framework for information theoretic feature selection,” J. Mach.
Learn. Res., vol. 13, pp. 27–66, Jan. 2012.

[191] Y. Zhang, R. H. Cudmore, D.-T. Lin, D. J. Linden, and R. L. Huganir, “Visualiza-
tion of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo,” Nat
Neurosci, vol. 18, no. 3, pp. 402–407, 03 2015.

[192] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[193] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result Analysis of the NIPS 2003
Feature Selection Challenge,” in Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 545–552. Montreal, Canada, 2005.

[194] S. A. Danziger, S. J. Swamidass, Jue Zeng, L. R. Dearth, Qiang Lu, J. H. Chen,
J. Cheng, V. P. Hoang, H. Saigo, R. Luo, P. Baldi, R. K. Brachmann, and R. H. Lath-
rop, “Functional census of mutation sequence spaces: the example of p53 cancer rescue
mutants,” IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 3, no. 2, pp. 114–125, April 2006.

[195] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

263



[196] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning over distributed models,”
IEEE Transactions on Signal Processing, vol. 63, no. 4, pp. 1001–1016, Feb 2015.

264


	Introduction
	Single-Agent Learning
	Empirical Risk Minimization
	Online Learning
	Stochastic Gradient Algorithms for Empirical Risk Minimization

	Multi-Agent Learning
	Regularized Learning
	Non-Convex Learning

	Learning for Networked Feature Spaces
	Online Graph Learning
	The BRAIN Strategy for Online Learning

	Organization

	Small Regularizers
	Motivation
	Related Works
	Differentiable Cost Functions
	Non-Differentiable Cost Functions

	Proximal Diffusion Strategy
	Operator Representation of Proximal Diffusion
	Main Results
	Fixed-Point of Deterministic Recursion
	Bias Analysis
	Evolution of Stochastic Recursion

	Numerical Results
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3

	General Regularizers
	Introduction
	Problem Formulation
	Related Works in the Literature
	Contributions

	Algorithm Formulation
	Construction of Smooth Approximation
	Accuracy of the Smooth Approximation
	Regularized Diffusion Strategy

	Convergence Analysis
	Centralized Recursion
	Network Basis Transformation
	Mean-Square-Error Bounds

	Application: Division of Labor in Machine Learning
	Group Lasso
	Network Structure
	Numerical Results

	Proof of Lemma 3.1
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.5

	Extension to Matrix Variables
	Problem and Algorithm Formulation
	Analogy to Vector Optimization
	Distributed Image Reconstruction
	Numerical Results


	Decentralized Non-Convex Learning — Short-Term Model
	Introduction
	Related Works
	Preview of Results

	Evolution Analysis
	Network basis transformation
	Network disagreement
	Evolution of the network centroid
	Behavior around stationary points

	Application: Robust Regression
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Lemma 5.3
	Proof of Theorem 5.2
	Proof of Lemma 5.4

	Decentralized Non-Convex Learning — Escape from Saddle-Points
	Introduction
	Related Works

	Review of Chapter 5
	Modeling Conditions
	Review of Results

	Escape from Saddle-Points
	Main Result
	Simulation Results
	Proof of Lemma 6.1
	Proof of Theorem 6.1
	Proof of Theorem 6.2

	Centralized Non-Convex Optimization
	Related Works
	Modeling Conditions
	Smoothness Conditions
	Gradient Noise Conditions

	Performance Analysis
	Preliminary Lemmas
	Large-Gradient Regime
	Escape from Saddle-Points

	Simulation Results
	Proof of Lemma 7.2
	Proof of Lemma 7.1
	Proof of Lemma 7.3
	Proof of Lemma 7.1
	Proof of Theorem 7.2
	Proof of Theorem 7.3

	Graph Learning from Streaming Data
	Related Works
	Framework
	Graph Model
	Signal Model
	An Equivalent Linear Model
	Graph Signal Evolution

	Graph Learning
	Simulation Results
	Proof of Lemma 8.1
	Proof of Lemma 8.2
	Proof of Lemma 8.3

	Interpretative Learning via the BRAIN strategy
	Introduction
	Relation to other works

	Algorithm Formulation
	Correlation-Aware Online Update
	Simulation Results
	Artificial Data
	p53 Mutants Dataset


	Conclusions and Future Issues
	References



