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Optimal compression in human concept learning
Nathaniel Imel1,2 (nimel@uci.edu) Noga Zaslavsky1,2 (nogaz@uci.edu)

1Department of Language Science, University of California, Irvine
2Department of Psychology, New York University

Abstract

The computational principles that underlie human concept
learning have been debated in the literature for decades. Here,
we formalize and test a new perspective that is grounded in
rate-distortion theory (RDT), the mathematical theory of opti-
mal (lossy) data compression, which has recently been gaining
increasing popularity in cognitive science. More specifically,
we characterize optimal conceptual systems as solutions to a
special type of RDT problem, show how these optimal systems
can generalize to unseen examples, and test their predictions
for human behavior in three foundational concept-learning ex-
periments. We find converging evidence that optimal compres-
sion may underlie human concept learning. Our work also
lends new insight into the relation between learnability and
compressibility; integrates prototype, exemplar, and Bayesian
approaches to human concepts within the RDT framework;
and offers a potential theoretical link between concept learn-
ing and other cognitive functions that have been successfully
characterized by efficient compression.
Keywords: concept learning; categories; information theory;
lossy compression

Introduction
Concepts allow humans to understand, categorize, and nav-
igate a complex world. How people acquire concepts has
been a topic of intense study for psychology, leading to a
number of influential accounts of category learning emerg-
ing over the decades (e.g., Anderson, 1991; Goodman et al.,
2008; Kruschke, 1992; Love et al., 2004; Medin & Schaf-
fer, 1978; Rosch, 1973; Shepard et al., 1961; Smith &
Medin, 1981). Many of these models have been aimed at
explaining how people can learn and deploy concepts flex-
ibly, under finite time and memory. Most relevant to our
work is a class of models that formulates concept learning
in terms of probabilistic clustering (Anderson, 1991), map-
ping observations into a set of compressed mental representa-
tions which can later be used to predict unobserved features.
While Anderson (1991) derived this approach from a ratio-
nal Bayesian account of human cognition, the information-
theoretic optimality of human concepts—namely, the de-
gree to which they constitute optimally compressed repre-
sentations of the environment—has been far less explored
(though see Martı́nez, 2024). Meanwhile, rate-distortion the-
ory (RDT; Berger, 1971; Shannon, 1959), the mathematical
theory of optimal data compression, has recently been ap-
plied successfully to a wide range of cognitive phenomena,
including working memory (Jakob & Gershman, 2023), per-
ception (Bates & Jacobs, 2020; Sims, 2018), decision mak-

ing (Aridor et al., 2023; Lai & Gershman, 2021), music (Ja-
coby et al., 2015), and language (Zaslavsky et al., 2018,
2021), as well as to biological information processing more
generally (Tkačik & Bialek, 2016). Here, we hypothesize
that the same compression theory applies to concept learn-
ing. Specifically, we ask: is human concept learning guided
by optimal data compression?

Intuitively, our model predicts that concepts are formed by
optimizing a tradeoff between maximally compressing ob-
servations that an agent had experienced (i.e., training data)
and representing the environment as accurately as possible.
Here, we consider representation accuracy to consist of two
components: reconstructability of observed features, such as
the shape and color of objects in the environment, and pre-
dictability of a target feature that may not be observed in the
future, such as a category’s label.

Our general approach shares ideas with multiple exist-
ing accounts in the literature, but departs from them in im-
portant ways. For example, it is related to exemplar and
prototype-based theories in predicting that concepts are repre-
sented as centroids in a multidimensional psychological space
(e.g., Medin & Schaffer, 1978; Nosofsky, 1986; Reed, 1972;
Rosch, 1973). It is also related to rational analysis approaches
(e.g., Anderson, 1991; Goodman et al., 2008; Tenenbaum,
1998) in predicting Bayesian behavior under external envi-
ronmental constraints. Similar to Anderson’s model, our
model also unifies prototype, exemplar, and Bayesian infer-
ence. However, our approach departs from prior work in
three main aspects. First, rather than assuming a probabilis-
tic Bayesian model, which requires strong assumptions about
the characteristics of the prior and posterior distributions, we
derive the full probabilistic structure of a conceptual system
as an optimal solution to a RDT problem. The learning mech-
anism that emerges from this approach is an optimization al-
gorithm for RDT. Second, our approach commits to a specific
cost function—the mutual information between the concepts
and training examples—and directly minimizes it within the
overall objective function we propose. This informational
cost is inherent to RDT and has been derived from first princi-
ples (Shannon, 1959). It captures representational complexity
as the number of bits required for representing the observed
samples using the conceptual system. Third, we explain how
people may use different strategies to generalize from com-
pressed concepts. In parallel to our work, Martı́nez (2024)

1395
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



has also proposed an application of RDT to concept learn-
ing, and showed how this perspective can integrate prototype
and exemplar theories. Our approach differs from Martı́nez
(2024) in three key aspects: (1) we derive a novel RDT opti-
mization problem that generalizes the Information Bottleneck
(IB) principle (Tishby et al., 1999), with an analytical char-
acterization of both the optimal prototype and predictive dis-
tribution that is associated with each concept; (2) we derive
formal connections not only to prototype and exemplar mod-
els but also to Bayesian categorization models; and (3) we
show how our RDT model can generalize to novel stimuli.

As a first step in testing our approach, we focus on the
batch-learning setting, in which a set of training examples is
first presented to the learner, and based on that our model
predicts a range of optimal conceptual systems with vary-
ing complexity-accuracy tradeoffs. This setting is particularly
important not only because it corresponds to a prominent ex-
perimental paradigm in the concept learning literature, but
also because it provides a theoretical bound on the efficiency
of conceptual systems that are learned incrementally. While
it is possible to extend our model to settings where concepts
are adapted incrementally, we leave this important extension
to future work. We test our model on human data from three
foundational experiments of concept learning with (1) bi-
nary features (Medin & Schaffer, 1978; Nosofsky, Palmeri,
& McKinley, 1994), (2) continuous features (Nosofsky &
Palmeri, 1998), and (3) and varying task difficulty (Nosof-
sky, Gluck, et al., 1994; Shepard et al., 1961). Our results
suggest that optimally compressed concepts may underlie hu-
man behavior and offer a path toward further testing our RDT
approach in more complex concept learning settings.

Concept learning via optimal lossy compression
We are interested in exploring whether human concepts may
be shaped by pressure to form maximally compressed repre-
sentations of the world that can still support behavioral goals,
such as prediction of a target feature. To this end, we turn to
the mathematical framework of rate-distortion theory (RDT;
Berger, 1971; Shannon, 1959) and derive an application of
this framework for concept learning.

Rate-distortion formulation. RDT characterizes the opti-
mal compression schemes that minimize the number of bits
that are required for representing a source variable X ∈ X ,
drawn from a source distribution p(x), while not exceeding
a permissible degree of reconstruction error, or more gener-
ally, distortion. A compression scheme is defined by an en-
coder q(c|x) that maps X to its compressed representation
C ∈ C. In terms of concept learning (Figure 1), we take X to
be an observed input stimulus represented in a feature vector
space X ⊆ Rn, and C to be a mentally compressed represen-
tation which we consider as a concept. We further assume that
each concept is associated with a reconstructed feature vector
x̂c = g(c), given by a decoder g : C → Rn. For simplicity, we
take X to be a finite set of observations and C = {1, . . . , |X |},

Figure 1: Illustration of our compression model for concept
learning (see main text for details).

such that x̂c could be a prototype or exemplar, depending on
the nature of the encoder and decoder.

Given a distortion measure d(x,c), RDT characterizes the
optimal compression scheme by a stochastic encoder q(c|x)
that attains the minimum of

I(X;C)+βE[d(X,C)]. (1)

The first term is the complexity of the conceptual system,
defined by the mutual information between the input stimu-
lus and its concept. This quantity is also called the informa-
tion rate, as it corresponds to the expected number of bits re-
quired to mentally represent a stimulus X as concept C. The
second term is the expected distortion, taken with respect to
p(x)q(c|x). β ≥ 0 is a Lagrange multiplier that specifies the
trade-off between minimizing complexity and distortion.

The distortion measure is not directly specified by RDT;
different measures will be more or less appropriate, depend-
ing on the structure of the domain. Specifying the distor-
tion in our context amounts, in Anderson (1991)’s terms, to
making assumptions about the “environment in which cog-
nitive processes evolve.” Here, we have assumed that inputs
can be represented in a feature vector space, which is a stan-
dard assumption in the concept learning literature. In this
case, it is natural to consider a quadratic loss between the
feature vectors of input stimuli and concepts: ∥x − x̂c∥2. At
the same time, achieving goals in the environment may re-
quire predicting additional target features that may not al-
ways be observed, such as a categorical label Y ∈ {0,1}.
We therefore assume that each input stimuli induces a dis-
tribution over target features, p(y|x), and each concept is
also associated with a predictive distribution q(y|c). For
any given encoder q(c|x), the ideal predictive distribution
is the one that minimizes the cross-entropy loss l(x,c) =
−

∑
x∈X

∑
y∈Y p(y|x) logq(y|c). Taking together these two

notions of concept fitness, we propose an overall distortion
function for concept learning tasks that is a weighted average
between the classification loss and the feature loss:

dα(x,c) = α · l(x,c)+(1−α) · ∥x− x̂c∥2, (2)
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where α ∈ [0,1] can be interpreted as an attention parameter
that specifies the trade-off between attending to the labels of
objects vs. attending to their features.

Optimal conceptual systems. Plugging our distortion
function into equation (1) yields a non-standard RDT prob-
lem, where q(y|c) and g(c) are being optimized together with
the encoder:

min
q,g

I(X;C)+βE[dα(X,C)]. (3)

When α = 1, i.e., when all the attention is shifted to predict-
ing the target feature, this optimization problem becomes the
well-known Information Bottleneck (IB) principle (Tishby et
al., 1999). In this case, the relevant structure in X is solely
determined by the information it maintains on the target fea-
ture, or label, without attending to the feature topology. In-
tuitively, this poses a challenge for generalizing to unseen in-
puts. When α = 0, i.e., when all the attention is shifted to
the feature space, this problem is reduced to a rate distortion
problem with squared error loss. In this case, however, it is
unclear how one may be able to learn task-specific categoriza-
tion systems for similar inputs, because no information about
the task-specific target labels is taken into account. We hy-
pothesize that in between these extremes — of paying atten-
tion only to features vs. only to labels — there exist trade-off
solutions that may well-describe aspects of human concept
learning.

Solving the RDT optimization problem in Eq. (3) gives the
following self-consistent equations as a necessary condition
for optimality (see Zaslavsky et al., 2021, for a closely related
derivation):

q(c|x) ∝ q(c)exp(−βdα(x,c)) (4)

q(c) =
∑
x∈X

p(x)q(c|x) (5)

q(y|c) =
∑
x∈X

p(y|x)q(x|c) (6)

x̂c =
∑

x

q(x|c)x. (7)

Eq. (4) characterizes the optimal encoder, which is exponen-
tial in the distortion, and Eq. (5) gives the relative weight
of each concept. The optimal predictive distribution for each
concept, given by Eq. (6), is precisely the Bayesian posterior
distribution of Y given C. Finally, Eq. (7) shows that the opti-
mal representative x̂c of each concept is given by the centroid
feature vector. When β = 0, the optimization in Eq. (3) only
minimizes complexity, which amounts to a trivial solution
where X and C are independent and x̂c = Ep(x)[X] for all
c, which is the maximally compressed prototypical represen-
tation of the input. As β increases there will be more pressure
on minimizing distortion and the representation of the inputs
will become more refined, including more unique prototypes.
As β → ∞, the encoder will become deterministic, mapping

each input x to its own concept. This extreme amounts to
an exemplar representation. Therefore, β allows concepts to
continuously evolve from prototypes to exemplars.

Generalization to new stimuli
So far we have showed how to derive optimal conceptual sys-
tems for a given sample X of input stimuli, namely, a train-
ing sample. These optimal systems are parameterized by two
parameters: the rate-distortion tradeoff β, and the attention
parameter α. However, we have not yet shown how these
systems can generalize to unseen inputs, as RDT does not
address this question. Below, we consider three possible gen-
eralization strategies that are based on the assumption that
the learned concepts and their associated representations, i.e.,
equations (5)-(7)), are accessible after learning, but the train-
ing encoder (4) may or may not be accessible.

If people have access to the training encoder during eval-
uation on examples that contain training stimuli, they may
simply use it to obtain predictions by marginalizing over con-
cepts: q(y|xtrain) =

∑
c q(c|xtrain)q(y|c). If they don’t have

access to the encoder, or need to classify new stimuli that
were never seen during training, then one naive approach
would be to map x to the nearest concept

cx = argmin
c

∥x− x̂c∥ , (8)

and then predict the label based on q(y|cx). Another ap-
proach would be to generalize softly. This can be achieved
by defining an ad-hoc approximated encoder:

q̃(c|x) ∝ q(c)exp
(
−β∥x− x̂c∥2)

, (9)

which intuitively amounts to shifting all the attention to the
observed features by setting α = 0. It is important to note that
this encoder is not optimal, not even for α = 0, and it implic-
itly represents the previously learned relationship between
features and labels through x̂c and q(y|c). The Bayesian pre-
diction based on this encoder is

q̃(y|x) =
∑

c

q(y|c) · q̃(c|x) . (10)

These choice points lead us to formulate three hypotheses
for generalization strategies:

Strategy 1. Assuming the training encoder is accessible,
people can use it to classify previously seen examples. For
classifying unseen examples, they use the nearest concept:

q1(y|x) :=
{∑

c q(c|x)q(y|c) x ∈ X
q(y|cx) x /∈ X

(11)

Strategy 2. This strategy is the same as Strategy 1 in as-
suming that the training encoder is accessible, but for new
examples it predicts a softer generalization:

q2(y|x) :=
{∑

c q(c|x)q(y|c) x ∈ X
q̃(y|x) x /∈ X

(12)
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Figure 2: Model predictions vs. human mean responses from
NPM94’s replication of experiment 2 of MS78. Each point
represents a training (A or B) or transfer (T) stimulus. r is the
Pearson correlation coefficient.

Strategy 3. Finally, if people do not have access to the
training encoder and generalize softly, then their behavior
should be captured by.

q3(y|x) := q̃(y|x) (13)

Next, we test the predictions of these strategies on human
data from three foundational concept learning experiments.

Evaluation on human concept-learning data
To explore the preliminary fit of our model to human data,
we consider three classic studies from the concept-learning
literature that are often used as initial tests for categorization
models. In the experiments we considered, participants were
asked to distinguish between two mutually exclusive cate-
gories, e.g. A and B. In the first two experiments, there was a
distinction between training and transfer stages: during train-
ing blocks, participants were presented with each training ex-
ample once per block and given feedback on their responses,
until the dataset could be correctly classified above a thresh-
old. Participants were then asked some time later to classify
examples from a larger ‘transfer’ set, which contained both
the original, labeled training examples and new, unlabeled ex-
amples that were not seen before.

In the first two experiments we consider, there are per-
stimulus, mean human responses available which we use to
directly evaluate our model. Recall that the model has only
two free parameters, the feature/label attention α and com-
pression tradeoff β. We fit these parameters to the data
by maximum likelihood estimation (MLE) for each of the
three strategies described above. More specifically, we grid-
search 100 values of α ∈ [0,1] and roughly 1100 values of
β ∈ [0,110], selecting for each strategy the pair α,β that max-
imizes the likelihood of the mean human response. In the last
experiment we consider, we do not have access to the per-
stimulus human responses. Instead, we rely on a qualitative
comparison of our model to the ordinal difficulty of each of
the six tasks as reflected in human learning curves.

Binary features. The classical experiments of Medin and
Schaffer (1978) (henceforth MS78) are often used as a first

Figure 3: A. Compression bounds for the MS78 training
stimuli. Colors correspond to the value of α, and for each α,
varying β spans a rate-distortion curve. B. A heatmap visu-
alizing the complexity of the optimal conceptual systems as
a function of α and β. White circles correspond to the best-
fitting models for each strategy. Interestingly, the best-fitting
models lie on the border of minimal complexity.

test of a classification model’s ability to correctly predict pro-
totype enhancement and typicality effects (Posner & Keele,
1968; Reed, 1972). Following Goodman et al. (2008),
we consider their second experiment, and human data from
the feature-balanced replication by Nosofsky, Palmeri, and
McKinley (1994) (henceforth NPM94). The stimuli were
drawings of rocket ships varying in four binary-valued dimen-
sions: shape of tail, wings, nose and porthole. The category
structure was such that the modal prototype of Category A,
encoded as (0,0,0,0), was in the transfer set, labeled T3. The
modal prototype of Category B, encoded as (1,1,1,1) was in
the training set, labeled B4.

Figure 2 depicts our results. Under Strategy 3, the best-
fitting model achieves very strong positive correlation with
the observed human responses (Figure 2C, Pearson’s r2 =
0.97), and explains 93% of the variance in human data. Under
Strategy 2, the best-fitting model does not perform as well,
although it still captures much of the structure in the data as
seen by the high correlation in Figure 2B. Strategy 1, on the
other hand, performs rather poorly. Inspection of Figure 2 re-
veals that Strategy 1 does not predict prototype enhancement:
it is not ‘certain enough’ about stimuli B4 (the B prototype)
and B3, or about T3 (the A prototype) and other A stimuli.
However, Strategies 2 and 3 correctly predict these effects.
This suggests that people employ a soft, rather than hard, gen-
eralization strategy within this framework of concept learning
via optimal compression. While our model achieves compa-
rable performance to prior models (e.g., Medin & Schaffer,
1978; Nosofsky, Palmeri, & McKinley, 1994), with slightly
lower explained variance, it achieves so with less inductive
bias and fewer free parameters. Furthermore, our optimal
compression approach provides a theoretical bound that can
be used to study the information-theoretic efficiency of any
conceptual system.

To see this, Figure 3A shows the theoretical bounds derived
from our compression model by computing the optimal solu-
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Figure 4: Model predictions and quantitative fits for human predictions in the final experiment block of NP98 (see Movie 1
for an illustration of the evolution of concepts as a function of β, and Movie 2 as a function of α). A-C. The 16 stimuli in their
2D feature space (brightness vs. width ratio of ellipses), colored by mean human probability of classifying as Category A, with
shape corresponding to their label (A, B, or T for unlabeled/transfer). Background color: the probability of classifying an input
as Category A as predicted by each strategy. Model centroids (concepts) are shown as pink Xs, with size corresponding to their
weight q(c). D-F. Model predictions vs human mean responses as in Figure 2. r is the Pearson correlation coefficient.

tion for densely sampled values of α and β, together with the
location of the best-fitting models along these bounds. Here,
every colored line is a theoretical bound on efficient compres-
sion, where the trade-off between complexity and distortion
is specified by β. The color of each line depicts α, which
specifies the trade-off between attending to features vs. la-
bels. Importantly, Figure 3A shows that for all three strate-
gies, the best-fitting models are obtained at values of α and
β that are far from their extremes, suggesting that attention
to both features and labels, as well as active constraints on
both compressibility and predictability, may be crucial factors
that shape human concept learning. The best model overall
(Strategy 1) corresponds to β = 4.85 and α = 0.12, suggest-
ing that more attention may be allocated to the feature space
than to the target label. Finally, to get deeper insight into the
landscape of optimal solutions, Figure 3B shows how com-
plexity changes as a function of α and β, together with the
three strategies in this space. Interestingly, while every sin-
gle point in this region achieves optimal trade-offs, the best-
fitting models lie on the border region between minimal and

moderate-to-high complexity.

Continuous features. In contrast to many experiments
which modeled category learning in terms of bundles of
binary features, Nosofsky and Palmeri (1998) (henceforth
NP98) studied how people learn categories with continuous-
valued features. In their experiments, participants were pre-
sented with ellipses varying in width ratio and brightness. We
follow Goodman et al. (2008) in averaging the results of the
two experiments to counterbalance the data.1 The category
structure for this task is shown in Figure 4, where examples
are colored by the mean human probability of classifying the
object as A. Our fit to these data is also encouraging. In this
domain, the best strategy appears to be Strategy 2, which
achieves strong positive correlation with human responses
(Figure 4E, Pearson’s r2 = .82) and can explain 82% of the
variance in the data. While it may seem at first as if this model

1Furthermore, for numerical stability, we renormalize the each
of the feature values to lie within [0,1], though our model is theoret-
ically well-defined for arbitrary real-valued features.
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Figure 5: Same as Figure 3 but for the NP98 dataset. As in
Figure 3B, human data best corresponds to solutions that lie
on the border of minimal complexity.

falls short compared to previous influential models that were
able to account for these data almost perfectly, when taking
into account the number of free parameters in our model, our
results reflect substantial improvement. For example, both
the RULEX (NP98) and GCM (Nosofsky, 1986) models both
can explain > 99% of variance in human data, but their AIC
values are 86.6 and 109.28, respectively. By comparison, the
AIC of Strategies 2 and 3 is 18.58 and 21.17, respectively.

Of equal interest are the qualitative predictions of the
model across strategies and across trade-off parameters. Fig-
ure 5 shows the theoretical bounds for this domain, similar to
Figure 3. As before, we find that the best model is attained at
intermediate values of α and β (Figure 5A, Strategy 2), and
that all strategies tend to lie near the boundary of minimal
complexity (Figure 5B). To get a better sense of how the op-
timal conceptual systems evolve as a function of β and α, see
Movie 1 and Movie 2 respectively. For example, when β is
low, the model predicts two distinct values of x̂c to bifurcate
the data. As β increases, so does the number of concepts,
which yields lower classification error but also greater com-
plexity. As β → ∞, the model predicts centroids that coincide
perfectly with training examples.

Predicting task difficulty. Finally, another set of influen-
tial results from the literature come from the experiments
of Shepard et al. (1961), who studied the relative difficulty
of learning for six different categories, constructed from the
same basic stimuli. Nosofsky, Gluck, et al. (1994) replicated
these experiments and plotted human learning curves. Al-
though our model is not explicitly adaptive, we can simulate
learning curves by annealing the trade-off parameter β (i.e.,
from low values to high) for each task, and inspecting whether
the curves qualitatively match the human curves. For space,
we show results for α = 0.25 and Strategy 3, but our qualita-
tive findings were the same across all other configurations.

Figure 6 shows that ths approach largely recapitulates the
ordinal trends of human performance over blocks in Shepard
et al. (1961) and Nosofsky, Gluck, et al. (1994), though like
many prior models in the literature, Task 2 fails to be pre-

Figure 6: Simulated learning curves for six concept learn-
ing tasks from Shepard et al. (1961) of increasing difficulty.
Curves show the mean probability of error on the dataset (y-
axis) for each value of β (x-axis). These curves show the in-
compressibility of each of the six tasks’ respective concepts.

dicted to be easier than Tasks 3,4, and 5. This preliminary
exploration is interesting, however, as it provides a princi-
pled way of analyzing category learning difficulty in terms
of lossy incompressibility. That is, for a given probability of
error, we can give a lower bound on representational com-
plexity. Complexity increases as learning progress or task
difficulty increase. We leave a full analysis (engaging with,
e.g., Shepard et al. (1961), p. 42), for future work.

Conclusion
In this work, we have provided a novel approach to human
concept learning which is derived from rate distortion the-
ory (RDT), the mathematical theory of lossy data compres-
sion. We showed that with minimal assumptions about the
representation of different domains, and only two intuitively
interpretable free parameters — a feature vs. label attention
parameter α, and a complexity-predictability tradeoff param-
eter β — the model can account for human behavior across
three highly influential concept learning experiments. In ad-
dition, our theoretical approach provides a new set of tools
for characterizing and studying the efficiency of conceptual
systems, as well as their evolutionary trajectories as the at-
tention α and tradeoff β vary over time. An important di-
rection that we intend to explore in future work is extending
our models to adaptive settings, where concepts are formed as
new examples are observed sequentially, as well as applying
it to larger-scale domains with more naturalistic inputs. Fi-
nally, our work suggests a new theoretical link between mod-
els of concept learning and other cognitive functions, such
as perception, decision making, and language, to which rate-
distortion theory has been successfully applied.
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