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Accelerated Image Reconstruction in Fluorescence Molecular
Tomography using a Non-Uniform Updating Scheme with
Momentum and Ordered Subsets Methods

Dianwen Zhua, Changqing Lia,*

aSchool of Engineering, University of California, Merced, 5200 N Lake Rd, Merced, CA, USA

Abstract. Fluorescence molecular tomography (FMT) is a significant preclinical imaging modality that has been
actively studied in the past two decades. It remains a challenging task to obtain fast and accurate reconstruction of
fluorescent probe distribution in small animals due to the large computational burden and the ill-posed nature of the
inverse problem. We have recently studied a non-uniform multiplicative updating algorithm that combines with the
ordered subsets (OS) method for fast convergence. However, increasing the number of OS leads to greater approxi-
mation errors and the speed gain from larger number of OS is limited. In this paper, we propose to further enhance the
convergence speed by incorporating a first order momentum method that uses previous iterations to achieve optimal
convergence rate. Using numerical simulations and a cubic phantom experiment, we have systematically compared
the effects of the momentum technique, the OS method, and the non-uniform updating scheme in accelerating the
FMT reconstruction. We found that the proposed combined method can produce a high quality image using an order
of magnitude less time.

Keywords: Fluorescence Molecular Tomography, Iterative Image Reconstruction, Ordered Subsets, Momentum, Non-
uniform update, MM algorithm..

*Corresponding Author, cli32@ucmerced.edu

1 Introduction

Fluorescence molecular tomography (FMT) has been an important tool for preclinical imaging in

the past two decades and has attracted a lot of research interests.1, 2 In FMT, fluorescent agents

(e.g. fluorophores) are injected into the object, such as small animals. Upon illumination by near-

infrared laser beams on the object surface, the fluorophores then become excited and start emitting

fluorescence photons, which propagate out of the object surface and are captured by detectors such

as charge-coupled device (CCD) cameras. Due to the high scattering effects of photons in tissues,

the FMT system matrix is usually ill-conditioned and the reconstruction problem ill-posed. Im-

mense efforts have been devoted to experimentally alleviating the ill-posedness, such as collecting

more measurement data by using dense noncontact CCD cameras, employing multi-spectral wave-

lengths for both excitation and emission,3–5 and using different illumination patterns etc.6–8 These
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indeed improved the image resolutions. However, they led to the processing of large amounts of

3D data, which requires tremendous computational time. From the theoretical aspect, a plethora of

nonlinear regularization methods have also been applied,9–17 which again have caused additional

complexity in computations. The non-negativity constraint in FMT reconstruction is another chal-

lenge. This constraint has been typically handled by a backtracking line search strategy,14 which

is time consuming for large-scale measurement data.

To reduce the computational burden, many ideas from other fields have been introduced to

FMT. Fourier transform,18 wavelet transform methods,19, 20 discrete cosine transform,21 and princi-

pal component analysis methods22 etc. have been adopted to compress the data and reduce its di-

mension. The ordered subsets (OS) method,23 originally introduced to speed up emission/transmission

tomography by breaking down large system matrix into smaller blocks, has recently been success-

fully adopted into FMT by employing the majorization-minimization (MM) framework.14, 17, 24 In

contrast with other methods that need a slow line search in handling the non-negativity constraint,

the MM framework has the advantage of reducing the optimization into separable one dimensional

problems and hence the non-negativity constraint can be enforced straightforwardly in a parallel

way.25 In particular, the non-uniform multiplicative MM algorithm with OS acceleration (NU-

MOS) that we proposed recently has been found to significantly improve the FMT image recon-

struction speed and quality.26 Nevertheless, the MM algorithm is a first-order method and typically

needs a lot of iterations to converge.

Another direction in reducing the computational cost is to improve the convergence rate of

the FMT reconstruction algorithms. Compared with first-order methods, second-order methods

such as Newton-type algorithms have faster convergence, however, their computation of Hessian

is very demanding. Recently a class of momentum acceleration techniques from Nesterov have
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been found to achieve optimal convergence rate for a class of gradient descent based methods

whose computational complexities are at linear level.27, 28 In FMT, Han et al. applied recently11

the fast iterative shrinkage thresholding algorithm (FISTA),29 which is based on the 1983 version

of the Nesterov’s technique.27 Momentum methods have been combined with the OS techniques

for an even faster convergence in computed tomography (CT) very recently.30

In this paper, we propose to include the 2005 version of Nesterov’s momentum method28 into

our NUMOS algorithm for a faster and stable convergence since the 1983 version was not as sta-

ble.30 The concept and some preliminary results of this paper have appeared earlier in a conference

paper.31 Note that our work is different from the aforementioned work in CT in two ways: First, the

regularization they used is an edge-preserving Huber type of function that promotes local smooth-

ness whereas our model for FMT uses L1 to promote sparsity; second, their surrogate functions are

either a spatially uniform type or a non-uniform type that depends on a good estimate of the true

solution, which is readily available in CT through the filtered back-projection reconstruction,30 but

not in FMT.

The rest of the paper is organized as follows. In Section 2, we first introduce the background

of FMT forward modeling, regularized reconstruction, the MM framework, the ordered subsets

technique, and the Nesterov’s momentum method.Then we propose our fast NUMOS (fNUMOS)

algorithm. In Section 3, we present both numerical simulation and phantom experiment results

and comparison with other methods. In Section 4, we conclude the paper with summary and some

discussions.
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2 Methods

2.1 Forward Modeling and Regularized FMT Reconstruction

For FMT in the continuous wave domain, photon transfer is modeled by the following coupled

diffusion equations, along with Robin type (mixed) boundary conditions:



−∇ · (Dex(r)∇Φex(r)) + µa,ex(r)Φex(r) = ∆s(r),

n · (Dex(r)∇Φex(r)) + αexΦex(r) = 0,

−∇ · (Dem(r)∇Φem(r)) + µa,em(r)Φem(r) = Φex(r)∆d(r),

n · (Dem(r)∇Φem(r)) + αemΦem(r) = 0,

(1)

where∇ denotes the gradient operator,Dex(r) = [3(µ′s,ex(r)+µa,ex(r))]
−1 andDem(r) = [3(µ′s,em(r)+

µa,em(r))]−1, with µa,ex(r), µa,em(r) being the absorption coefficients and µ′s,ex(r), µ
′
s,em(r) being

the reduced scattering coefficients at excitation and emission wavelengths, Φex(r), Φem(r) the

photon densities, r the location vector, ∆s determined by the sth illumination pattern (for example,

point sources δs(r − rs)), ∆d determined by the fluorophore yield at the dth detector nodes, n the

outward unit normal vector of the boundary, and αex, αem the Robin boundary coefficients.

The above equations can be discretized by the finite element method (FEM), leading to lin-

earized equations:4, 32

[Kex]{Φex} = {δs(r− rs)}

[Kem]{Φem} = {Φex}{x}.
(2)

where Kex and Kem are the stiffness matrices. Then we obtain

[Φem] = [K−1em]⊗ [K−1ex ][x], (3)
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which, upon the removal of equations, corresponds to the unmeasurable nodes gives us

Ax = b, (4)

whereA = (aij) ∈ RNm×Nn , aij > 0 is the system matrix, obtained by taking the tensor product⊗

of the sensitivity matrix [K−1em] and the excitation matrix [K−1ex ], x = (xj) ∈ RNn×1 the fluorophore

distribution to be reconstructed, b = (bi) ∈ RNm×1 the measurements, and Nm, Nn the total

number of measurements and FEM mesh nodes, respectively.

A typical solution of (4) is obtained by minimizing the following regularized squared data-

measurement misfit under the non-negativity constraint:

x̂ = arg min
x,x≥0

Ψ(x) :=
1

2
‖Ax− b‖22 + λ‖x‖1, (5)

where λ is the L1 regularization parameter and ‖x‖1 =
∑Nn

j=1 xj represents the L1 regularization

when x ≥ 0. Notice that there are other popular choices of the regularization function R(x),

including the Lp (semi-) norm: R(x) = ‖x‖pp, p ≥ 0 .

2.2 MM Algorithm

The majorization-minimization algorithm, also known as optimization transfer algorithm, is a gen-

eral framework for solving minimization problems where an approximation of the objective func-

tion, often referred to as the majorization or surrogate function, is minimized at every step. The

approximated solution using MM algorithm will converge to the true solution of (5) as the problem

is convex.33 MM algorithm has known advantages in optimization problems including avoiding

matrix inversions, linearizing an optimization problem, dealing gracefully with inequalities, etc.33
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Many powerful algorithms can be understood from the MM point of view, especially the gradient

based methods such as iterative shrinkage thresholding algorithm (ISTA),34 iteratively reweighted

L1 algorithm (IRL1),35 and iteratively reweighted least squares (IRLS).36

The definition of a surrogate function Ψsur(x) in the minimization problem includes the fol-

lowing three requirements:


Ψsur(x) ≥ Ψ(x), for allx;

Ψsur(xn) = Ψ(xn), at some pointxn;

∇Ψsur(xn) = ∇Ψ(xn), at pointxn.

(6)

It is generally believed that in MM framework there is no optimal way of choosing the surrogate

functions.25 In the popular separable quadratic surrogates (SQS) algorithm,37, 38 the surrogate func-

tion Ψk(x;xk) was chosen based on a Jensen inequality for least squares, which was first proposed

by de Pierro.39 Adding in the L1 regularization, we have:

Ψ(x) =
1

2
‖b−Ax‖22 + λ‖x‖1

≤Ψk(x;xk) :=
1

2

Nm∑
i=1

Nn∑
j=1

βij{bi − (Axk)i −
aij
βij

(xj − xkj )}2 + λ
Nn∑
j=1

xj

=Ψ(xk)−
Nn∑
j=1

(
Nm∑
i=1

(bi − (Axk)i) ∗ aij − λ) ∗ (xj − xkj ) +
1

2

Nn∑
j=1

(
Nm∑
i=1

a2ij
βij

)(xj − xkj )2

=Ψ(xk) +∇Ψ(xk) · (x− xk) +
1

2
‖x− xk‖2

D
k .

(7)

where βij > 0 with
∑Nn

j=1 βij = 1, Dk = diag(dkj ) with dkj =
∑Nm

i=1

a2ij
βij
. The above surrogate

6



function can be minimized by choosing

xk+1
j =

(
xkj − (∇Ψ(xk))j/d

k
j

)
+

(8)

for each component xj , where (·)+ = max(0, ·), representing the positive part of any function.17

This is a gradient descent type algorithm with different step size dj for each component xj .

2.3 Non-uniform Weighting Parameter βij

The choice of the weighting parameter βij for the Jensen inequality is crucial in determining how

well the surrogate approximates the original objective function and also how fast the corresponding

iterative algorithm (8) converges. Traditionally, the SQS was chosen in a uniform additive way,

which can be precomputed and needs no iterative updates:14, 17, 37, 38

βAij =
aij∑Nn

l=1 ail
. (9)

The correspondingly updating step size is

dj = (AtA1Nn)j, (10)

where 1Nn is the Nn-dimensional vector with all entries equal 1, and the update formula (8) be-

comes:

xA,k+1
j,L1 =

(
xkj +

(Atb)j − (AtAxk)j − λ1
(AtA1Nn)j

)
+

. (11)
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Note the uniform additive type of βij has a more general form as follows:25

βgAij =
aqij∑Nn

k=1 a
q
ik

, q > 0. (12)

Uniform weighting however, ignores the different updating needs at different positions, which

could hinder the convergence of iterations to the true solution.40 Non-uniform weighting strategy

has been reported recently to improve image qualities in CT.40, 41 In our previous work, we pro-

posed to solve the L1 regularized least squares optimization problem (5) by using the following

non-uniform multiplicative type βij:26, 38, 42

βMij =
aijx

k
j

(Axk)i
, where (Axk)i =

Nn∑
l=1

ailx
k
l . (13)

In comparison with the uniform additive βAij that only needs to be calculated once, this non-uniform

βij needs to be updated at each iteration. However, we noticed that with the non-uniform type of

βMij , we have26

dkj =
(AtAxk)j

xkj
. (14)

and the associated iterative update formula (8) becomes:

xk+1
j,L1 = xkj

((Atb)j − λ1)+
(AtAxk)j

(15)

which is much simpler and requires less calculations when compared with the additive form (9).

(15) also naturally promotes non-negativity and sparsity, since once xkj = 0, xj remains 0.
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2.4 Ordered Subsets Acceleration Technique

Due to the large scale of 3D data, tomographic imaging requires a lot of computational time.

The ordered subsets technique was proposed in 1994 for emission/transmission tomography to

evenly break down large matrices into smaller blocks so that a speedup of the convergence by a

factor proportional to nOS, the number of subsets, is possible.23, 38 In FMT, the OS technique

has been successfully applied recently, where the sensitivity matrix has been divided into ordered

subsets.14, 26 In particular, combining the non-uniform update with this OS technique, we have

proposed NUMOS (See Algorithm 1) for FMT, which has provided significant speed enhancement

over the uniform methods,14, 17 while maintaining high quality reconstruction results.26

Algorithm 1 NUMOS
Initialization:
x0 = x0 ∗ 1n, B = (Atb− λ/nOS ∗ 1Nn)+
for k = 1 to Nmax/nOS do

Divide A and B into nOS sub-matrices, {Ai}nOSi=1 , {Bi}nOSi=1 , based on a random partition of
the Nd detectors
for i = 1 to nOS do
l = (k − 1) ∗ nOS + i
xk+1 = Bi . ∗ xk./(AtiAixk)

end for
end for
where 0 < x0 < 1 is randomly picked, Nmax is the number of iterations, nOS number of
subsets, .∗ and ./ entry-wise multiplication and division respectively.

However, there are a few known issues with the OS technique. One is that the selection of

ordered subsets can be complicated when the geometry is complicated. In the study of mouse

shaped numerical phantom, we balanced our selection of subsets by randomly generating them

at each iteration, which slowed down the acceleration from the OS technique.26 Another issue

with this OS technique is that, like other block-iterative methods, increasing the number of OS

leads to larger approximation errors, causing the convergence of iterative updates to stop at a limit-
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cycle before approaching the minimum.43 Different approaches have been proposed to address this

limit-cycle issue, but again at the expense of slowing down the overall convergence.44–46

2.5 Nesterov’s Momentum Acceleration Techniques

Another approach to reduce the computation burden is to design improved algorithms with faster

convergence rates. Recently, a series of momentum techniques of Nesterov27, 28 have emerged,

using previous iterations to obtain optimal convergence rates for first order optimization methods.

In particular, based on the 1983 version of the Nesterov’s technique, the algorithm FISTA29 was

developed, the application of which in FMT will be analyzed in the Discussion section. We chose

to focus on the 2005 version of the Nesterov’s technique28 (See Algorithm 2) in this paper, since it

provides more stability without requiring much extra calculations than the 1983 version.27, 30 This

2005 Nesterov’s technique has attracted quite some attention recently.30, 47 In particular, Kim et al.

has considered the combination of this technique with the OS method in CT26 for their separable

quadratic surrogate function.30

Algorithm 2 Nesterov’s algorithm (2005)
Initialization: x0 = v0 = z0, t0 = 1
for m = 1 to Nmax do
tm = (m+ 1)/2
xm = (zm−1 − 1

L
∇Ψ(zm−1))+

vm = (z0 − 1
L

∑m
l=1 t

l−1 ∗ ∇Ψ(zl−1))+
zm = (1− tm∑m

l=0 t
l ) ∗ xm + tm∑m

l=0 t
l ∗ vm

end for
where L is the Lipschitz constant for the surrogate function of Ψ(z) at zm−1.
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2.6 Proposed Non-Uniform Multiplicative Updating Scheme Accelerated by Ordered Subsets and

Momentum Method

The Nesterov’s techniques are based on the gradient method, which from the MM algorithm point

of view, is equivalent to using the following surrogate function for Ψ(x):29

Ψk(x;xk) = Ψ(xk) +∇Ψ(xk) · (x− xk) +
L

2
‖x− xk‖2, (16)

where L is the Lipschitz constant and is typically chosen to be the largest eigenvalue of the system

matrix A, the computation of which is very challenging for large-scale problems.

The above choice of surrogate function (16) is essentially assigning every component xj the

same iterative step size, which does not take into account the different updating needs between

target and background locations.40 In this paper, we propose to employ the non-uniform update

to satisfy the different updating needs and combine with OS method and the 2005 version of the

Nesterov’s momentum technique for much faster convergence. We refer to it as fast NUMOS

(fNUMOS). (See Algorithm 3) Note that for fNUMOS, xmPM is new term we have to introduce

so that the nonuniform technique can be combined with the Nesterov’s momentum technique. In

addition, we followed the method of Tseng48 to choose the weighting parameters tm, which leads

to a faster convergence than the original tm as used by Nesterov in Algorithm 2.
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Algorithm 3 fNUMOS

Initialization: x0 = x0 ∗ 1n, z0 = x0, t0 = 1, B = Atb− λ/nOS ∗ 1Nn

for k = 1 to Nmax/nOS do
Divide A and B into nOS sub-matrices, {Ai}nOSi=1 , {Bi}nOSi=1 , based on a random partition of
the Nd detectors
for i = 1 to nOS do
m = (k − 1) ∗ nOS + i
tm = (1 +

√
1 + 4(tm−1)2)/2

xmPM = Bi. ∗ zm−1./(AtiAizm−1)
xm = (xPM)+
vm = (z0 −

∑m
l=1 t

l−1 ∗ (xlPM − zl−1))+
zm = (1− tm∑m

l=0 t
l ) ∗ xm + tm∑m

l=0 t
l ∗ vm

end for
where 0 < x0 < 1 is randomly picked, Nmax is the number of iterations, nOS number of
subsets, .∗ and ./ entry-wise multiplication and division respectively.

end for

2.7 Selection of Regularization Parameters and Image Quality Metrics

For each type of regularization, we identify the best image that can be reconstructed by searching

through a range of values for the regularization parameter within (0,max(Atb)). Eleven different

criteria in optical tomography have been compared in Correia et al.49 and the L-curve method

was found to be optimal for finding the best Tikhonov regularization parameter in image deblur-

ring problems. In our study, we employ two criteria: the volume ratio (VR),50 which is defined

as the ratio of reconstructed target volume to true target volume and is related to the sparsity of

the reconstructed targets, and the Dice similarity coefficient (Dice),51 which measures the location

accuracy of the reconstructed objects. These criteria are sufficient to evaluate the sizes and po-

sitions of the targets. We also calculate the mean squared error (MSE) for the simulation study

when ground truth is available, which measures the difference between reconstructed and true flu-

orophore concentrations. To access image qualities, we also computed the contrast-to-noise ratio

(CNR),52 which measures how well the reconstructed target can be distinguished from the back-
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ground. Their definitions are as follows:

V R =
|rROI|
|ROI|

, (17)

Dice =
2 ∗ |rROI ∩ROI|
|rROI|+ |ROI|

, (18)

MSE =
1

N

N∑
j=1

(xj − x0j)2, (19)

CNR =
Mean(x

ROI
)−Mean(x

ROB
)√

ωROIV ar(xROI
) + (1− ωROI)V ar(xROB

)
(20)

where x and x0 are the reconstructed and true fluorophore concentrations respectively, rROI the

reconstructed region of interest that is defined to be the voxels whose concentrations are higher

than 50% of the maximum of reconstructed concentrations, ROI the true region of interest or the

true target locations, ROB the true background region, ωROI = |ROI|/(|ROI|+ |ROB|), and | · |

number of elements. Generally the closer VR and Dice are to 1, the smaller MSE is the larger the

CNR, the better. In this paper, we especially focus on the VR and Dice values since they measure

sparsity and accuracy of target positions.

3 Results

3.1 Numerical Simulation

To validate our algorithm for FMT in small animals, we simulated a mouse by first obtaining the

surface mesh of the Digimouse,53 then using Tetgen (http://tetgen.org) to regenerate a uniform

internal mesh with a total of 32,332 nodes and 161,439 tetrahedral elements. We then simulated

two capillary tubes at the center of the mouse trunk, each having a diameter of 2 mm and length

20 mm. For simplicity, we assigned the fluorophore concentration to be 1 for all the nodes inside
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the two tubes and 0 outside. We selected 60 internal nodes as laser source points, uniformly

distributed on five rings around the trunk and we set all the 4020 surface nodes that cover the trunk

to be detectors. The simulated tissue optical properties are µa = 0.007 mm−1, µ′s = 0.72 mm−1 at

both the excitation wavelength (650 nm) and the emission wavelength (700 nm). White Gaussian

noise was added to the simulated measurement data so that the signal to noise ratio (SNR) of the

measurement data was 1.

For the reconstruction, we employed the L1 regularization since the targets are sparse. We

started iterations from the same randomly picked uniform initial point x0 and reconstructed the

fluorophore distribution using five different algorithms: (a) the uniform update, (b) non-uniform

update, (c) NUMOS with nOS = 24, (d) fNUMOS with nOS = 1 and (e) fNUMOS with nOS =

24, so that we can see how each part of the proposed algorithm is making a difference toward a

faster convergence, while maintaining a high quality result. For the uniform update, we chose the

regularization parameter λ1 = 6.5E-4, and for the non-uniform update, we set the regularization

parameter to be λ1 = 1E-3 as before.17, 26 The maximum number of iterations is set to be 2000.

Fig 1 (Selected) Coronal slices of the reconstructed simulated mouse from bottom to top, using (a) Uniform method,
Uniform1, at 2000 iterations, (b) NUMOS, nOS = 1, at 1310 iterations, (c) NUMOS with nOS = 24, at 53 iterations,
(d) fNUMOS with nOS = 1, at 121 iterations, and (e) fNUMOS with nOS = 24 at 5 iterations. The truth image is
shown in (f).

In Figure 1(a) and Table 1, we can see that even with 2000 iterations, the Uniform method is still
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Table 1 Comparison of VR, Dice, CNR, MSE, Time (seconds) and number of Iterations for the FMT reconstruction
of the simulated mouse using different algorithms.

Method VR Dice CNR MSE Time (sec) Iterations
Uniform 6.84 0.20 4.83 2.94E-3 563.46 2000

NUMOS1 1.01 0.58 9.94 1.74E-3 491.28 1310
NUMOS24 1.01 0.58 9.81 1.80E-3 106.97 53
fNUMOS1 1.02 0.59 9.54 1.69E-3 35.13 121

fNUMOS24 1.01 0.59 10.27 1.70E-3 10.02 5

far away from obtaining a close-to-truth result, the reconstructed targets are very large (V R = 6.84

and Dice = 0.20), with very low image intensities, relatively low CNR, and large MSE. We see a

clear boost of image qualities from Figure 1(b) when we use the non-uniform update, i.e. NUMOS

with nOS = 1. From Table 1, we see that NUMOS1 used only 1310 iterations to produce a much

better result with VR about 7x smaller, Dice about 3x higher, CNR 2x higher, and MSE about

2x smaller. When non-uniform update is combined with nOS = 24 or the Nesterov’s technique,

we see that less computation time is needed to obtain a similar quality image. In adddition, we

see that fNUMOS1 is around 3x faster than NUMOS24, using approximately 35 seconds and 107

seconds, respectively. This implies that the Nesterov’s momentum acceleration technique is more

effective than the OS technique. Finally, when we combine both OS and Nesterov techniques with

the non-uniform update, we needed only 5 iterations and 10 seconds to reach an image with high

quality as shown in Figure 1(e), which implies a speed up of about 10x than the NUMOS algorithm

we previously studied.26

3.2 Phantom Experiment

Next we used a set of data from cubic phantom experiments to validate the acceleration effects

of our proposed fNUMOS method for FMT. The cubic phantom was of dimension 32 mm by

32 mm by 29 mm and was composed of 1% intralipid, 2% agar, and water in the background.
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We inserted two capillary tubes with length 12 mm and diameter 1 mm as targets, in which both

6.5 µm DiD fluorescence dye solution and uniformly distributed 18[F]-fluoro-2-deoxy-D-gluocose

(FDG) at activity level of 100 µCi were injected. The cubic surface was extracted first and then the

FEM mesh was generated, consisting of 8690 nodes and 47,581 tetrahedral elements.5, 54 For the

optical imaging, laser at a wavelength of 650 nm scanned the front surface of the phantom at 20

illumination nodes. Measurements were collected at 1057 detector nodes by using a conical mirror

system and a CCD camera4, 17 The filtered excitation wavelength was at 700nm. The tissue optical

properties were µa = 0.0022 mm−1, µ′s = 1.10 mm−1 at both 650 nm and 700 nm wavelengths.

Details of the simultaneous PET imaging can be found in Li et al.4, 5, 54 We thresholded the PET

images at 20% of the maximum FDG concentrations to identify positions of the capillary tubes.

For the regularized reconstruction, we also compared the results from the five different algo-

rithms (as illustrated in Figure 2) and we empirically chose the L1 regularization parameter λ1 to

be 9E+3 for the uniform methods and 5E+3 for the non-uniform algorithms. We set the maximum

number of iterations to beNmax = 768 for non-uniform algorithms; whereas for the uniform cases,

we allowed up to 5000 iterations for better results. We computed the VR, Dice and CNR for the re-

constructed images. True locations of targets were obtained from the PET image that was acquired

simultaneously. Note the associated intensity information of the true image was not available so

we could not compute the MSE here.

From Table 2, we see that when we chose nOS = 24, fNUMOS reached a result with VR of

1.02, Dice of 0.42, and CNR of 8.64 after 4 iterations, taking only 0.63 seconds. To obtain an image

of similar quality with the Nesterov’s momentum technique only, fNUMOS for nOS = 1 took 84

iterations and 1.34 seconds; with the ordered subsets acceleration alone, NUMOS for nOS = 24

took 32 iterations and 4.85 seconds; without any of those two acceleration techniques, NUMOS
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Fig 2 Each slice corresponds to a coronary section of the reconstructed cubic phantom from bottom to top, using
(a) Uniform method, Uniform1, at 5000 iterations, (b) NUMOS, nOS = 1, at 640 iterations, (c) NUMOS with
nOS = 24, at 32 iterations, (d) fNUMOS with nOS = 1, at 84 iterations and (e) fNUMOS with nOS = 24 at 4
iterations. The truth image is shown in (f).

Table 2 Comparison of VR, Dice, CNR, Time (seconds) and number of Iterations for the FMT reconstruction of cubic
phantom using different algorithms.

Method VR Dice CNR Time (sec) Iterations
Uniform 2.50 0.33 6.62 78.25 5000

NUMOS1 1.13 0.41 7.93 10.42 640
NUMOS24 1.02 0.39 8.20 4.85 32
fNUMOS1 1.06 0.41 8.08 1.34 84
fNUMOS24 1.02 0.42 8.64 0.63 4

for nOS = 1 took 640 iterations and 10.42 seconds. So for the phantom experiment, fNUMOS

can be about 8x faster than the NUMOS we proposed before.26

4 Discussion & Conclusion

In this paper, we proposed fNUMOS, aiming to solve FMT with L1 regularization at a very fast

speed while maintaining the reconstruction accuracy by combining Nesterov’s momentum tech-

nique into a non-uniform updating scheme with acceleration from the ordered subsets method
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(with a relatively small number of OS). Using both numerical simulation and phantom data, we

compared fNUMOS with other algorithms. We found that fNUMOS performed best in the sense

that reconstructed targets were more localized (smaller VR, higher Dice, and smaller MSE (only

for simulation case) than those from other methods. fNUMOS was found to be robust for high

noise levels (i.e. SNR=1) and have a significantly faster speed of convergence. In our numerical

simulation study, we found a significant speed gain from the momentum technique at about 10

times in comparison with the NUMOS algorithm we studied before.26 For data of the cubic phan-

tom experiment from a smaller system matrix, the speed gain was about 8 times. This implies that

fNUMOS has great potential in obtaining higher spatial resolution when a finer mesh is used.

For a thorough comparison on how the image quality metrics, VR and Dice, change accord-

ing to the iteration time for uniform and non-uniform algorithm with or without the acceleration

techniques of momentum or order subsets, we evaluated all eight scenarios in two groups: (1)

Uniform1, f+Uniform1, NUMOS1, fNUMOS1, and (2) Uniform24, f+Uniform24, NUMOS24,

fNUMOS24. Results for the simulated mouse data were shown in Figure 3 and 4 for nOS = 1

and nOS = 24, respectively. In both figures, we clearly see that non-uniform update, NUMOS1,

performs much better than the uniform method, Uniform1, (blue/• vs. magenta/◦ curves), and

it is even better than Uniform accelerated by the momentum technique, f+Uniform1, (blue/• vs.

green/� curves). Across Figures 3 and 4, we can reaffirm that the momentum technique is faster

than the ordered subsets technique in accelerating the convergence (red/+ curve in Figure 3 vs.

blue/• curve in Figure 4). Lastly when both acceleration techniques are combined together with

non-uniform update, the proposed fNUMOS24 can achieve a high quality reconstruction using

the shortest amount of time. For the phantom experimental data, the results from comparison are

plotted in Figure 5 and 6. We see similar trends as in the simulated case and fNUMOS24 again
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performs the best, producing a high quality image within a second.

Fig 3 Comparison of Uniform and Non-uniform updates with or without the acceleration of Nesterov’s momentum
(abbreviated as ‘f’), when the number of ordered subsets is fixed to be 1 for the simulated mouse.

Fig 4 Comparison of Uniform and Non-uniform updates with or without the acceleration of Nesterov’s momentum,
when the number of ordered subsets is fixed to be 24 for the simulated mouse.

For the popular FISTA algorithm that was adopted in FMT,11 we already compared it with

the NUMOS1 algorithm that we proposed in our previous work using data from phantom exper-

iments.26 We found that excluding the computation time for the largest eigenvalue of the system

matrix for the L needed in (16), FISTA was still slower than NUMOS and the final reconstruction

results were not as good either.26 For the numerically simulated mouse with a large system matrix,

we were able to compute the largest eigenvalue with our dual CPU Intel Xeon E5-2680 v2 work-
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Fig 5 Comparison of Uniform and Non-uniform updates with or without the acceleration of Nesterov’s momentum
when the number of ordered subsets is fixed to be 1 for the cubic phantom experiment.

Fig 6 Comparison of Uniform and Non-uniform updates with or without the acceleration of Nesterov’s momentum,
when the number of ordered subsets is fixed to be 24 for the cubic phantom experiment.

station with 20 cores and 128GB memory, but this alone cost about 30 minutes. We also explored

the backtracking version FISTA29 to estimate the L and we found that it tended to reach a large L

value that slows down the convergence. As we pointed out in Section 2.6, the slower convergence

and poorer image quality are due to the fact that choosing of L is essentially assigning a uniform

updating step size for each location, thus it’s not surprising that FISTA was not as efficient as our

non-uniform methods, including the earlier NUMOS and the newly proposed fNUMOS.

We noticed that the OS method (nOS=24) had limited capability increasing the speed of non-
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uniform type algorithms by around 4 times for the numerically simulated mouse and around 2

times for the cubic phantom. That limit in speed increase is mainly due to the choice of OS

being random at every iteration, which greatly increased the total cost. And we also see that for

experimental data of smaller size, the overhead cost from randomization will take a larger portion

of the total computation time so that the speed up is not as significant as for the larger simulated

data. It would be of great interest to identify an optimal deterministic way of selecting the OS so

that we may potentially obtain a speed increase closer to the ideal nOS times.

On the choice of the best L1 regularization parameter, we swept through a range of values

within (0,max(Atb)). We realized that the L1 regularization parameter can actually have a range

where images of similar qualities (in terms of VR, Dice and CNR) can be reconstructed, although

the corresponding numbers of iterations needed will vary accordingly. Due to the significant reduc-

tion of computation time, we may further investigate the optimal way to determine an appropriate

regularization parameter.

For the stopping criteria for our iterative algorithms, we found that since the convergence speed

of different algorithms vary, the stopping criteria need to be selected differently. In addition, our

ordered subsets are chosen in a randomized fashion, the errors in between consecutive iterations

also possess randomness, so no simple stopping criteria exists. We plan to further investigate the

appropriate stopping criterion for each algorithm in the future, especially when we can identify a

deterministic selection of ordered subsets.

In summary, we have investigated in this paper the accelerating effects of a Nesterov type

momentum technique on the non-uniform updating scheme with or without the OS method. We

have obtained high quality images using around 10x less time with the proposed new method

than some of the existing cutting-edge methods. Our next step will be applying the proposed new
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method to in vivo experiments.
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