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RESEARCH

Characterizing the neuroimmune 
environment of offspring in a novel model 
of maternal allergic asthma and particulate 
matter exposure
Juan M. Tamayo1, Hadley C. Osman1, Jared J. Schwartzer2, Kent E. Pinkerton3 and Paul Ashwood1* 

Abstract 

Inflammation during pregnancy is associated with an increased risk for neurodevelopmental disorders (NDD). 
Increased gestational inflammation can be a result of an immune condition/disease, exposure to infection, and/
or environmental factors. Epidemiology studies suggest that cases of NDD are on the rise. Similarly, rates of asthma 
are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later 
diagnosed with NDD such as autism spectrum disorders (ASD). Particulate matter (PM), via air pollution, is an environ-
mental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neu-
ropsychiatric disorders. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack 
of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. 
Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine 
iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were sensitized for allergic 
asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), 
dams were exposed to either aerosolized OVA to induce allergic asthma or phosphate buffered saline (PBS) for 1 h. 
Following the 1-h exposure, pregnant females were then exposed to UIS with a size distribution of 55 to 169 nm 
at an average concentration of 176 ± 45 μg/m3) (SD), or clean air for 4 h, over 8 exposure sessions. Offspring brains 
were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed 
for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many 
cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1β), and IL-17, 
which remained elevated from P15 to P35 in all treatment conditions compared to controls. There was a suppres-
sive effect of the combined MAA plus UIS on the anti-inflammatory cytokine IL-10. Potentially shifting the cytokine 
balance towards more neuroinflammation. In the hippocampus at P15, elevations in cytokines were also identified 
across the treatment groups, namely IL-7. The combination of MAA and UIS exposure (MAA–UIS) during pregnancy 
resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, 
these data indicate that exposure to MAA, UIS, and MAA–UIS result in changes in the neuroimmune environment 
of offspring that persist into adulthood.
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Background
Neurodevelopmental disorders (NDD) are a broad group 
of disorders where central nervous system (CNS) devel-
opment and function is altered [27]. NDD, including 
autism spectrum disorder (ASD) and attention deficit 
hyperactivity disorder (ADHD), are increasing in preva-
lence, with 1 in 6 children in the US experiencing a NDD 
in 2016 [125]. While there are some genetic origins of 
NDD, environmental factors such as exposure to pollu-
tion and maternal health are also recognized as risk fac-
tors [46, 100]. Mounting clinical and epidemiological data 
underscore the notion that environmental factors play a 
large role in both the underlying development of NDD 
and their impact on the severity of individual behavioral 
characteristics [52, 94, 99, 105, 114, 118, 120]. Pregnancy, 
in particular, marks a critical period when environmental 
insults have long-lasting effects on neurodevelopment.

The maternal immune system represents a key bio-
logical mechanism that links environmental factors to 
specific neurodevelopmental changes and later NDD 
diagnosis. For example, clinical studies have linked hospi-
talizations for bacterial and viral infections during preg-
nancy to an increased rate of birthing a child that will 
later be diagnosed with ASD [4, 14, 80, 116]. Moreover, 
laboratories have developed animal models that often 
use bacterial or viral mimics, such as lipopolysaccha-
ride (LPS) or polyinosinic:polycytidylic acid (Poly(I:C)), 
respectively, to induce maternal inflammation during 
pregnancy and demonstrate a causal change in offspring 
brain and behavioral health [46]. Despite the efficacy of 
these models in demonstrating a link between maternal 
immune signaling and offspring neurodevelopment, they 
are limited in representing many of the common envi-
ronmental sources of immune activation. With perhaps 
the exception of SARS-CoV-2, hospitalizations for viral 
infections are less frequent, and a recent meta-analysis 
of viral infections during pregnancy as a risk for children 
later being diagnosed with ASD was not supported [55]. 
Importantly, infections via bacterial and viral pathogens 
are only two of many ways in which the immune system 
can become activated, and researchers have begun to 
investigate other common environmental influences or 
immune conditions that can have a substantial impact on 
the maternal immune system and offspring brain devel-
opment, notably allergic asthma.

Rates of asthma, like NDD, are currently increas-
ing and represent a highly prevalent chronic disease 
that more commonly impacts ethnic/racial minority 

and socioeconomically disadvantaged groups in the 
US [23, 72]. Importantly, chances of asthma exacerba-
tions increase during pregnancy, and the presence of 
asthma increases likelihood of birthing a child that is 
later diagnosed with ASD [1, 3, 25, 26, 33, 42, 47, 87, 
88, 93]. Asthma is an inflammatory disease of the lungs 
characterized by bronchial hyperresponsiveness, per-
sistent inflammation, airflow obstruction, and reduc-
tion of airflow [39, 96]. The allergens associated with 
asthma can vary and include, but are not limited to 
rodent allergen, cockroach allergen, pollen, and house 
dust mite [53, 72]. Given the incidence of allergies 
and asthma in the United States [10, 34] and the high 
prevalence of allergic triggers in urban environments 
[22, 64, 72, 106], there is pressing need to better under-
stand the causal effects of asthma during pregnancy 
and the impact of specific allergic triggers on offspring 
neurodevelopment.

Using our mouse model of maternal allergic asthma 
(MAA) to initiate an immune response in pregnant 
mice, we have previously reported systemic elevations 
in interleukin-4 (IL-4) and IL-5 in dams [109, 115] 
that parallel clinical reports associating increased IL-4 
and IL-5 in mid-pregnancy maternal serum samples 
of mothers with children later diagnosed with ASD 
[40]. Not only do the dams in our MAA model pro-
duce a similar allergic asthma cytokine profile to that 
observed in humans, but the offspring display charac-
teristic ASD-like behaviors, such as decreased social 
interaction and increased repetitive-like behaviors [20, 
109, 110]. Moreover, MAA produces transcriptional 
differences in microglia gene expression and neuroin-
flammation in both prenatal offspring and brain regions 
of adult mice [20, 115, 117]. These findings highlight 
the lasting changes that allergic asthma during preg-
nancy can have on offspring neurodevelopment. How-
ever, environmental insults associated with ASD can 
vary, and exposure to these environmental factors does 
not necessarily occur in isolation for humans. In fact, 
individuals often simultaneously encounter multiple 
inflammatory-inducing environmental stimulants, and 
less is known about the potential synergistic effects 
of these exposures on maternal immune response and 
subsequent offspring development [22, 64, 106].

Particulate matter (PM), via air pollution, is another 
environmental factor that is suspected to be associated 
with the risk of neuropsychiatric disorders/NDD such 
as schizophrenia, attention deficit hyperactive disorder 

Keywords Neurodevelopment, Cytokines, Autism spectrum disorder (ASD), Schizophrenia, Neuroinflammation, 
Asthma/allergy, Fetal brain, Maternal immune activation (MIA), Maternal asthma and allergy (MAA)
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(ADHD), and ASD [118–120]. Not only is PM linked to 
neurodevelopmental disruptions when exposures occur 
during pregnancy [21], but it has also been tied to exac-
erbated asthma responses and could potentially cause 
new onset cases of asthma [16, 17, 44, 108] although 
this remains controversial. PM is a complex mixture of 
constituents that contains organic compounds, soot, 
metals and metal-oxides, nitrates, and other elements 
in varying quantities depending on its source [113]. As 
such, it is necessary to characterize individual compo-
nents of PM in order to effectively regulate air quality 
for limiting environmental exposure to toxicants.

Diesel exhaust is one common source of PM that has 
been identified as a risk factor for ASD [57, 103, 118–
121]. Combustion-derived diesel exhaust includes soot 
particles containing elemental carbon and iron, which is 
the most common transition metal found in PM [127]. 
Iron in PM can occur from fuel additives and as a prod-
uct of normal engine wear [74, 113], and iron-soot (IS) 
exposure has previously been shown to cause oxidative 
lung injury, induce inflammation of the lungs, and can 
cross the blood–brain barrier through nasal inhalation 
[48, 126, 127]. The links between PM and worsening of 
asthma symptoms and increased risk of neuropsychiatric 
disorders in offspring make PM exposure during preg-
nancy an important area that merits investigation.

There are many human studies and animal models 
investigating the links between gestational exposure to 
PM and neurodevelopmental outcomes in offspring [1, 2, 
11, 118–120]. In addition, many studies have investigated 
the impacts of asthma as a risk factor for ASD, including 
our own [3, 20, 25, 26, 33, 42, 47, 68, 87, 88, 93, 109, 110, 
115, 117]. However, these investigations consider asthma 
or PM only as independent risk factors for developing 
neuropsychiatric disorders. Despite the links between 
allergic asthma with ASD and the link between PM and 
ASD, there are no studies investigating the neuroimmune 
outcome on offspring of these environmental factors in 
conjunction. This is an apparent oversight given that PM 
exposure can worsen symptoms of asthma [44], and the 
source of environmental factors contributing to ASD are 
likely multifaceted.

In this study, we hypothesized that when mice are 
exposed to MAA and ultrafine iron-soot (UIS) particles 
during pregnancy (MAA–UIS), the neuroimmune out-
comes will show heightened inflammation in offspring 
compared to that of MAA or UIS exposure alone. We 
also suspected that, because microglia can respond to 
changes in the neuroimmune environment through pro-
liferation and are suspected to be associated with ASD 
behaviors [28, 51], we would see signs of functional differ-
ences in the frontal cortex and hippocampus—two brain 
regions implicated as being impacted developmentally in 

neuropsychiatric disorders such as ASD [6, 31, 51, 102]. 
Using our established mouse paradigm of maternal aer-
osol exposure to study offspring outcomes, we demon-
strate that MAA and UIS alone, as well as MAA and UIS 
combined, alter the neuroimmune profile in the brains 
of offspring that is sustained from adolescence into early 
adulthood.

Methods
Animals
BALB/c male and female mice were obtained from breed-
ing pairs originally purchased from Envigo Laboratories 
(Livermore, CA, USA) and maintained at University of 
California, Davis at the Center for Health and Environ-
ment, Davis, CA. Mice were housed with same-sex litter-
mates and kept at ambient room temperature (23 °C) on 
a 12 h light/dark cycle (lights on at 0800 h) within venti-
lated cages with water and food provided ad libitum. All 
procedures were performed with approval by University 
of California Davis Institutional Animal Care and Use 
Committee and according to guidelines established by 
National Institute of Health Guide for the Care and Use 
of Laboratory Animals.

Maternal allergic asthma and ultrafine soot particle 
exposure
Female BALB/c (n = 8/group) mice were sensitized 
with 10  µg of ovalbumin (OVA, Sigma, St. Louis, MO, 
USA) and 1  mg Al OH3 dissolved in 200  µl of phos-
phate buffered saline (PBS) injected intraperitoneally at 
7 and 8  weeks of age, for a total of two injections pre-
pregnancy. Control dams were injected with PBS alone. 
Dams were then mated with age-matched males the 
week after final sensitization, and checked daily for the 
presence of a seminal plug, which was noted as gesta-
tional day (GD) 0.5. Beginning on gestational day 2 (G2), 
dams were exposed to either aerosolized OVA to induce 
allergic asthma or phosphate buffered saline (PBS) for 
1  h, depending on treatment group. Following the 1-h 
exposure, mice were placed in a 20  cm × 43  cm × 18  cm 
polycarbonate whole-body chamber for exposure to an 
aerosol of ultrafine iron-soot (target concentration of 
200  µg/m3), including 40  µg/m3 of iron oxide nanopar-
ticles, or sham control clean air (AIR). The total iron-
soot generated was cooled and diluted with filtered air 
to achieve the desired concentration prior to reaching 
the exposure chambers. Mice were exposed for 4  h/day 
on G2, G4, G6, G9, G11, G13, G16, and G18 to PBS or 
OVA [MAA condition] and AIR or ultrafine iron-soot 
[UIS condition], resulting in a total of four treatment 
groups: PBS/AIR (PBS-AIR), MAA/AIR (MAA), PBS/
UIS (UIS), MAA/UIS (MAA–UIS). The mass concen-
tration of the soot concentration was found by weighing 
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25-mm Teflon-coated filters (Teflo, Pall, East Hills, NY) 
on a microbalance before and after sample collection. 
The average soot concentration over the exposure period 
was 176 ± 45 μg/m3 (SD). Following the last day of aero-
sol exposure (G18) pregnant mice were left undisturbed 
through parturition. Offspring were either  sacrificed at 
postnatal day (P)15 or weaned at P21, housed with same-
sex littermates, and sacrificed at P35 for brain tissue 
analysis.

Generation and characterization of particles
UIS particles were generated as previously described 
by Hopkins et  al. [48]. Briefly, particle generation was 
obtained using a laminar diffusion flame system by mix-
ing ethylene gas (the primary hydrocarbon fuel) and 
acetylene gas to compensate for the effect of iron oxide to 
suppress soot formation. By reaching the vapor phase of 
iron pentacarbonyl by warming to 20 °C with combusted 
argon carrier gas (all Sigma-Aldrich Chemical Co., St. 
Louis, MO) in the presence of an ethylene/acetylene 
vapor mix, the source of iron was generated. The result 
of these combusted reactants generated a hetero-disperse 
aerosol of ultrafine iron oxide particles  (Fe2O3) and asso-
ciated soot. Further details of the system and particle 
generation can be found in previously published studies 
[48, 54, 95]. In order to simulate unhealthy air quality 
conditions, an average particle concentration of 200 μg/
m3 was selected, as this reflects a concentration that is 
reminiscent of heavy pollution and poor air quality days 
in many parts of the world [48, 97].

Cardiac perfusion and brain tissue collections
At P15 and P35, one male and one female offspring from 
each litter were collected from their home cages, anes-
thetized using isoflurane (2–4% inhalation) and under-
went transcardiac perfusion. Briefly, a lateral incision 
was made in the abdominal wall below the rib cage. 
With curved scissors, an incision was made in the dia-
phragm and cuts were made along the ribs to the collar-
bone to allow the sternum to be lifted. Once exposed, a 
15-gauge perfusion needle was inserted into the ascend-
ing aorta of the heart for entry of perfusate, and an inci-
sion was made into the right atrium to create an outlet 
for drainage. Using a perfusion pump, 20 mL of PBS was 
slowly pumped through the circulatory system to reach 
adequate clearing. Whole brains were removed and dis-
sected into hemispheric halves. One half was further 
dissected into cortical and hippocampal regions, flash 
frozen with liquid nitrogen, and stored at − 80 °C for later 
use in cytokine analyses. The remaining half was placed 
in 4% PFA for fixation for 24  h. Following this, it was 
then placed in 30% sucrose for 24 h for cryoprotection. 

Cryoprotected tissues were then embedded in opti-
mal cutting temperature (O.C.T.) media and frozen at 
− 80 °C.

Tissue sectioning and staining
Frozen tissue embedded in O.C.T. was sectioned with a 
Leica Instruments cryostat at 20  µm. Free-floating tis-
sue sections were stored in PBS containing 0.01% sodium 
azide. Sections were incubated in 1:1000 rabbit-anti 
IBA-1 (Wako, Neuss, Germany) with 10% normal goat 
serum (NGS) and 0.2% triton X-100 at 4  °C for 24  h, 
followed by 1-h incubation with goat-anti rabbit bioti-
nylated secondary antibody (Vector Laboratories, Burl-
ingame, CA) in 5% NGS for 1  h at room temperature. 
Tissue sections were then incubated with avidin-bioti-
nylated HRP complex (Vectastain Elite ABC kit, Vector 
Laboratories, Burlingame, CA) at room temperature. Vis-
ualization of labeling was conducted using 3,3’-diamin-
obenzidine (DAB) solution in the presence of peroxidase 
(HRP) enzyme. All sections were thoroughly rinsed three 
times with 1X PBS between staining steps. Sections were 
mounted onto glass Superfrost Plus microscope slides 
and cover slipped with VectaMount Permanent Mount-
ing Medium.

Stereology
IBA-1-positive microglia were identified using stereolog-
ical methods. IBA-1 cell counts were made on a bright-
field microscope (Nikon Eclipse Ci, Nikon, Tokyo) at 
20X magnification, and images were taken using NIS Ele-
ments v.4.0 (Nikon Instruments Inc. 1300 Walt Whitman 
Road Melville, NY 11747-3064, U.S.A.). Image analysis 
was performed using a macros script in ImageJ version 
1.53 [98] to remove background noise and isolate IBA-
1-positive cells in order to quantify microglia. A total 
of six to nine sections per brain region per animal were 
collected. Counts of microglia cells were taken from a 
554.7 µm by 1232.1 µm box spanning the infralimbic and 
anterior cingulate cortical areas of the frontal cortex, as 
well as the dentate gyrus, CA1, CA2, and CA3 of the hip-
pocampus. Microglia were identified by IBA-1 positive 
cell body staining. Statistical significance was determined 
using one-way ANOVA with multiple comparisons 
on GraphPad Prism version 9.4.1 (GraphPad software, 
graphpad.com).

Multiplex bead‑based cytokine analysis
Frozen tissues were lysed using cell lysis buffer and 
total protein from the lysates were quantified via Brad-
ford assay. Analysis of serum cytokines was performed 
using a multiplex mouse 25-plex bead immunoas-
say (Milliplex Mouse Cytokine/Chemokine Magnetic 
Bead Panel #MCYTMAG70PMX25BK). The following 
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cytokines were quantified: granulocyte colony stimulat-
ing factor (G-CSF), granulocyte colony stimulating fac-
tor (GM-CSF), IFN-γ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, 
IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, 
IL-17, interferon gamma-induced protein 10 (IP-10), 
keratinocyte chemoattractant (KC), monocyte chemoat-
tractant protein-1 (MCP-1), macrophage inflammatory 
protein-1 alpha (MIP-1α), MIP-1β, MIP-2, chemokine 
ligand 5 (CCL5/RANTES), and tumor necrosis factor 
alpha (TNF-α). Standards and reagents were all prepared 
according to the manufacturers’ recommendations. Each 
lysate was diluted to a standardized concentration of 
50  µg and run in duplicate. Twenty-five microliters of 
sample, standards, or blanks were loaded into a 96-well 
plate with appropriate amounts of assay buffer and matrix 
solution. The plate was then incubated overnight with 
antibody-coupled magnetic beads. The following day, the 
plate underwent a series of washes. Washes were per-
formed using a Bio-Plex handheld magnet (Bio-Rad Lab-
oratories, Hercules, CA, USA). After the final wash, the 
plate was incubated with biotinylated detection antibody 
on a shaker for 30  min, and analyzed using a Bio-Rad 
Bio-Plex 200 plate reader (Bio-Rad Laboratories, Hercu-
les, CA, USA). The following were the minimal amounts 
of detectable cytokine concentration: G-CSF: 1.7 pg/mL; 
GM-CSF: 10.9 pg/mL; IFNγ: 1.1 pg/mL; IL-1α: 10.3 pg/
mL; IL-1β: 5.4 pg/mL; IL-2: 1.0 pg/mL; IL-4: 0.4 pg/mL; 
IL-5: 1.0 pg/mL; IL-6: 1.1 pg/mL; IL-7: 1.4 pg/mL; IL-9: 
17.3  pg/mL; IL-10: 2.0  pg/mL; IL-12 (p40): 3.9  pg/mL; 
IL-12 (p70): 4.8 pg/mL; IL-13: 7.8 pg/mL; IL-15: 7.4 pg/
mL; IL-17: 0.5 pg/mL; IP-10: 0.8 pg/mL; KC: 2.3 pg/mL; 
MCP-1: 6.7 pg/mL; MIP-1α: 7.7 pg/mL; MIP-1β: 11.9 pg/
mL; MIP-2: 30.6  pg/mL; RANTES: 2.7  pg/mL; TNF-α: 
2.3  pg/mL. Sample concentrations that fell below the 
minimal detection value were given a proxy value of half 
the limit of detection for statistical comparisons.

Statistical analysis
Brain cytokine data were analyzed using linear-mixed 
effects modeling to control for the unexplained residual 
variance that could be originating from litter-to-litter 
variations due to the hierarchical data structure in which 
statistical independence of observation is violated [12, 
61, 62, 107, 122]. Models were built with the lme pack-
age of R version 4.2.2 using a forward-stepwise regres-
sion approach. First, a random-effects only model was 
constructed with litter set as the random effect. Then, 
two fixed effects variables were added for the exposure 
types: MAA (OVA) and UIS (Soot). A third model was 
constructed that included both the main effects and the 
interaction of MAA and UIS followed by a final model 
containing both treatments, sex, and their interactions. 
Model fit was assessed using the likelihood ratios test 

and the best model was selected based on the Akaike 
Information Criterion (AIC). For models with significant 
interactions effects, groups were further analyzed using 
pairwise comparisons of estimated marginal means. Lit-
ter size and ratio of male offspring were assessed by two-
way analysis of variance (ANOVA).

Results
Litter size and sex ratio
Litter sizes averaged 5–6 offspring per litter (see 
Table  1), with no differences in the number of pups 
for MAA (p = 0.757), UIS (p = 0.925), or their interac-
tion (p = 0.683). Similarly, no differences were observed 
between the male-to-female ratio across treatment 
groups (p > 0.05 for all comparisons).

P15 offspring cortex cytokines
Offspring brains were collected and micro-dissected 
into cortical and hippocampal sections at P15. Homoge-
nates of each section were then analyzed for cytokine 
concentration. Multilevel mixed-effects modeling was 
used to control for within-litter variability and inclu-
sions of fixed effects were determined using forward 
stepwise regression. For all cytokines measured, the 
inclusion of sex-difference did not significantly improve 
model fit (Additional file 1: Table S1). In the cortex, sev-
eral cytokines were elevated in both male and female 
offspring of MAA, UIS, and MAA–UIS dams, many 
of which are generally considered inflammatory and 
potentially neurotoxic with prolonged exposure (Fig. 1). 
Among these, three cytokines (IL-1β, IL-2, IL-17) were 
found to be significantly elevated in all treatment groups. 
For example, a main effect of exposure for both MAA 
(p = 0.016), and UIS (p < 0.001), and MAA–UIS (p < 0.001) 
resulted in an average of a 2- to threefold increase of 
IL-1β in the cortex, compared to age-matched PBS-AIR 
controls (Fig.  1). No additional additive effects were 
observed with the combination of MAA and UIS. Simi-
larly, it was found that there were significant increases 
in IL-2 for both MAA (p = 0.002) and UIS (p = 0.001) 
exposures. For IL-2, the MAA–UIS interaction model 
identified a significant elevation of IL-2 in the MAA–UIS 

Table 1 Litter size and sex ratio

Ratio of male-to-female offspring was calculated as the number of male mice in 
a litter divided by the total number of pups in the litter. Litter size and sex ratio 
data are shown as mean ± SD

Treatment Litter size Ratio of males

PBS/air 5.83 ± 1.83 0.49 ± 0.15

MAA 5.40 ± 1.14 0.34 ± 0.20

UIS 5.50 ± 1.29 0.33 ± 0.13

MAA–UIS 5.60 ± 1.14 0.49 ± 0.23
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Fig. 1 Cortical cytokine concentrations in P15 offspring brains exposed to PBS-AIR, MAA, UIS, or MAAUIS. Cytokines were assessed using multiplex 
bead-based immunoassays. A IL-1β, B IL-2, C IL-17, D IL-13, E MIP-1α, F IP-10, G IL-7 are represented as pg/mL after being normalized to total 
protein content. Statistical significance was determined by multilevel mixed-effects modeling. Main effects are represented as *p < 0.05, **p < 0.01, 
***p < 0.001 compared to PBS-Air; pairwise comparisons are represented as # p < 0.05, ## p < 0.01
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group compared to the PBS-Air group (p = 0.045). How-
ever, post hoc analysis did not identify any interaction 
effects between MAA–UIS and the other treatment 
conditions. Similarly, a model containing the MAA–UIS 
interaction for IL-17 confirmed main effects for both 
MAA (p = 0.001) and UIS (p < 0.001) exposures, as well 
as a significant MAA–UIS interaction (p = 0.017), but the 
differences between these treatment conditions were not 
statistically significant.

The elevation in IL-1β, IL-2, and IL-17 occurred with 
concomitant increases in the canonical anti-inflamma-
tory marker IL-10. A model containing treatment con-
ditions and their interaction identified effects of both 
MAA (p = 0.001), and UIS (p = 0.005) on IL-10 elevations 
compared to PBS-Air controls. Interestingly, a significant 
MAA–UIS interaction (p = 0.002) identified suppressive 
effects of the combined MAA–UIS exposure on IL-10 
levels. Post hoc analysis confirmed that while the MAA 
(p = 0.007) and UIS (p = 0.024) alone both increased the 
IL-10 concentration compared to PBS-Air, this increase 
was absent in the MAA–UIS group (p = 0.387) and no 
differences were observed between MAA and UIS condi-
tions (p = 0.967).

For several inflammatory markers, only the main effect 
of UIS significantly altered cytokine concentrations in 
the cortex. Specifically, the exposure to UIS resulted in 
an approximately 54  pg/mL (p =  < 0.001), and 49  pg/
mL (p = 0.003) increase in IL-13 and MIP-1α, respec-
tively, compared to the PBS-Air group, and no effect of 
MAA were observed for either of these two cytokines. 
Conversely, a main effect of MAA was observed for IL-7 
(p = 0.050) without an effect of UIS (p = 0.167). For both 
IL-13, MIP-1α, and IL-7, models containing a MAA–UIS 
interaction were not significant and no sex-by-treatment 
interactions were identified in any of the P15 cortex 
cytokine measures.

P35 offspring cortex cytokines
Littermates from the P15 cytokine investigation were left 
undisturbed until P35, at which time brains were col-
lected and micro-dissected into cortical and hippocam-
pal sections. Mixed-effects models that included sex were 
not significantly improved over treatment-alone models 
for all cytokines measured (Additional file  2: Table  S2). 
However, models that included treatment main effect 
and interaction revealed changes in several cytokines in 
the cortices of both sexes of MAA, UIS, and MAA–UIS 
offspring at P35 in a similar manner to what was iden-
tified in P15 offspring (Fig.  2). Many of the cytokine 
changes observed at P15 remained altered in the P35 
offspring cortex. For instance, it was revealed that there 
were effects of MAA and UIS in IL-1β, IL-13 and IL-17 
cortex of P35 offspring compared to PBS-AIR control 

mice (IL-1β: MAA p = 0.046, UIS p = 0.008; IL-13: MAA 
p = 0.002, UIS p = 0.005; IL-17: MAA p < 0.001, UIS 
p = 0.001) (see Additional file 2: Table S2). While mixed-
effects models were selected that included an MAA–UIS 
interaction for these cytokines, post hoc analysis revealed 
no additive or suppressive effects of the combined expo-
sure of MAA and UIS. Elevations in IL-1β, IL-13, and 
IL-17 were similar between both MAA- and UIS-alone 
groups (p > 0.05 for all comparison). Similarly, main 
effects for both MAA and UIS exposure were observed 
in the P35 cortex for KC, IL- α, and MIP-1α (KC: MAA 
p = 0.002, UIS p = 0.050; IL-1α: MAA p = 0.050, UIS 
p = 0.013; MIP-1α: MAA p = 0.002, UIS p = 0.021). No 
differences were observed in any of these cytokine con-
centrations between in the three exposure groups and no 
interactions for MAA–UIS were observed in the mixed 
effects models.

For several cytokines the individual contribution of 
MAA, but not UIS, impacted specific inflammatory pro-
files. Specifically, MAA treatment resulted in an increase 
in IL-9 (p = 0.012), IL-4 (p = 0.037), and IL-2 (p = 0.005) 
compared to offspring born from PBS-Air exposed dams. 
Of all the cytokines investigated, IP-10 concentration 
was the only identified cytokine where a combination of 
MAA and UIS resulted in suppressive effects. Specifically, 
the mixed-effects model revealed that MAA exposure 
alone significantly increased the level of IP-10 in the P35 
cortex compared to PBS-Air offspring, with an additional 
interaction identified in the combination of MAA and 
UIS for IP-10 (p = 0.008) suggesting a suppressive effect 
by UIS. Post hoc analysis confirmed that MAA-only off-
spring had significantly higher levels of IP-10 compared 
to MAA–UIS mice (p = 0.026), and no differences were 
observed between the MAA–UIS condition and PBS-Air 
control mice (p = 0.977).

P15 offspring hippocampus cytokines
Along with cortical sections, hippocampal homogen-
ates from the same offspring brains were analyzed at P15 
for cytokine concentrations. For all cytokines measured, 
the inclusion of sex in multi-level models did not sig-
nificantly improve model fit (Additional file 3: Table S3). 
Similar to what was uncovered in the respective cortical 
sections, several inflammatory cytokines were elevated 
in male and female offspring of MAA, UIS, and MAA–
UIS dams (Fig.  3). Interestingly, main effects for both 
MAA (p = 0.002) and UIS (P = 0.005) were only observed 
for IL-7 in the P15 hippocampus. None of the other 
cytokines investigated reached statistical significance in 
all three treatment groups compared to controls. How-
ever, IFNγ concentrations showed a main effect for UIS 
(p = 0.007) but not MAA (p = 0.111), and similar eleva-
tions were observed in IL-12(p40) and IL-17 for UIS 
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Fig. 2 Cortical cytokine concentrations in P35 offspring brains exposed to PBS-AIR, MAA, UIS, or MAAUIS. Cytokines were assessed using multiplex 
bead-based immunoassays. A IL-1β, B IL-13, C IL-17, D KC, E IL-1α, F MIP-1α, G IL-9, H IL-4, I IL-2, and J IP-10 are represented as pg/mL after being 
normalized to total protein content. Statistical significance was determined by multilevel mixed-effects modeling. Main effects are represented 
as *p < 0.05, **p < 0.01, ***p < 0.001 compared to PBS-Air
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Fig. 3 Hippocampal cytokine concentrations in P15 offspring brains exposed to PBS-AIR, MAA, UIS, or MAAUIS. Cytokines were assessed using 
multiplex bead-based immunoassays. A IL-7, B IFNγ, C IL-12(p40), D IL-17, E IL-13, F IL-1β, G IL-2, H RANTES, and I IL-15 are represented as pg/mL 
after being normalized to total protein content. Statistical significance was determined by multilevel mixed-effects modeling. Main effects are 
represented as *p < 0.05, **p < 0.01, compared to PBS-Air; pairwise comparisons are represented as #p < 0.05, ##p < 0.01
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alone or with MAA–UIS (IL-12(p40): p < 0.007; IL-17: 
p < 0.002). These increases were not present in the hip-
pocampus of offspring born from the MAA treatment-
alone group. Interestingly, many cytokines measured 
in the P15 hippocampus showed suppressive effects of 
the combined treatment of MAA and UIS. For example, 
a mixed-effects model for IL-13 containing a treatment 
interaction revealed a significant effect of MAA-alone 
(p = 0.034) and UIS-alone (p = 0.011) as well as a negative 
effect of the MAA–UIS interaction (p = 0.014). Post hoc 
comparisons confirmed that the IL-13 concentrations in 
the MAA–UIS offspring hippocampus were no differ-
ent from PBS-Air mice (p = 0.272). However, differences 
between MAA-alone or UIS-alone groups were also 
not statistically different from the MAA–UIS condition 
(p > 0.05 for all comparisons. Similarly, these intermedi-
ate effects were also observed for IL-1β (MAA p = 0.047, 
UIS p = 0.038), IL-2 (MAA p = 0.026, UIS p = 0.002), and 
RANTES (MAA p = 0.041, UIS p =  0.034). Finally, one 
additional cytokines was found to be impacted by MAA 
alone compared to the control, and not the UIS or MAA–
UIS treatment groups. Specifically, IL-15 was found to be 
elevated by MAA (p = 0.009), but not UIS or MAA–UIS.

P35 offspring hippocampus cytokines
Hippocampal homogenates from P35 offspring were also 
assessed for cytokine differences; however, multi-level 
mixed-effects modeling did not reveal any significant 
effects of treatment or sex in on the concentration of all 
cytokines measured (p > 0.05; see Additional files 1, 2, 3, 
4).

P15 Microglia density
Microglia within a 554.7  µm by 1232.1  µm box span-
ning the anterior cingulate cortex, prelimbic area, and 
infralimbic area were counted using ImageJ by an investi-
gator blinded to treatment condition. Analysis of micro-
glia density in the dentate gyrus, CA1, CA2, and CA3 
regions of the hippocampus in P15 mice showed sig-
nificant differences between the PBS-air group and the 
MAA–UIS group (p = 0.0166; Fig. 4). There were no sig-
nificant changes in the microglia density between treat-
ment groups in the frontal cortex of P15 mice (Fig.  4). 
Additionally, in both the hippocampus and cortex, no 
differences in microglia density were seen in the single 
treatment groups (MAA or UIS) when compared to the 
PBS-air group.

Discussion
Among the many well established environmental factors 
that can impact fetal neurodevelopment, asthma and air 
pollution represent two major sources of immune stim-
ulation that are on the rise, making them a significant 

concern for pregnant individuals. Based on previous 
studies of maternal immune activation with asthma, 
and PM exposure during pregnancy, we hypothesized 
that the combination of these two environmental stimuli 
would result in an exacerbated neuroimmune response 
in offspring. Although the appearance of an additive or 
synergistic effect of MAA and UIS exposure combined 
was limited, we did identify increases in cytokine con-
centrations across all treatment groups in the cortex and 
hippocampus that may suggest converging pathways for 
each insult/exposure. However, we also observed poten-
tially suppressive activities that may suggest activation of 
competing or diverging pathways. Importantly, some of 
changes appear to be sustained across treatment groups 
from adolescence into early adulthood in the cortex, 
demonstrating lasting impacts of these gestational expo-
sures on the neuroimmune environment later in life. 
Although we identified increases in cytokines in the hip-
pocampus within all treatment groups at P15, these did 
not remain elevated into early adulthood. Overall, these 
data show that MAA and UIS environmental stimuli can 
result in an altered neuroimmune environment that per-
sists from juvenile to adult timepoints.

The allergic response in the lungs of individuals with 
asthma is characterized by an influx of immune cells, 
such as neutrophils, mast cells, macrophages, and 
T-helper  (TH)2 cells. Our mouse model of MAA previ-
ously showed elevated IL-4, IL-5, IL-17, and IFNγ in the 
lung and peripheral blood of mice exposed to aerosolized 
OVA during pregnancy [20, 110, 115]. These increases in 
maternal serum cytokines result in neuro-immune sign-
aling changes in the fetal brain during in utero develop-
ment [115]. Our present data extend these findings by 
revealing evidence of increases in cortical and hippocam-
pal cytokines in juvenile mice of MAA dams. In the 
cortex, for example, MAA increased IL-1β, IL-2, IL-17, 
IL-10, and IL-7. In the hippocampus, we identified IL-1β, 
IL-2, IL-7, IL-13, IL-15, and RANTES as being elevated 
in P15 offspring of MAA-exposed dams. These observed 
increases in MAA compared to PBS-AIR controls dem-
onstrate the independent neurodevelopmental impact 
of allergic inflammation during pregnancy on offspring 
neuroinflammation. In addition to these findings in the 
MAA-only treatment group, we also identified suppres-
sive effects of combining MAA with UIS in the cortex 
in juvenile offspring, notably, IL-10 an anti-inflamma-
tory cytokine, whose suppression may suggest a lack of 
immune regulation and shift towards more neuroinflam-
mation. Moreover, increases in cytokines as a result of 
UIS exposure alone were also identified in the hippocam-
pus of juvenile offspring, with elevated IFNγ, IL-1β, IL-7, 
and IL-12(p40). To the authors’ knowledge, investigations 
into these neurobiological outcomes in offspring under 
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UIS exposure during gestation have not been previously 
reported, highlighting the novelty of our model and 
findings.

In addition to independent effects of MAA or UIS 
treatment on cytokine concentrations in the cortex and 
hippocampus of juvenile offspring, several cytokines did 
not respond further to the combined effects of MAA and 
UIS. Most notably, we observed similar elevations in the 

cortex of IL-1ɑ, IL-1β, IL-2, and IL-17 in dual-exposed 
MAA–UIS offspring suggesting a potential ceiling effect 
produced by either environmental insult alone, or a max-
imal response through converging signaling pathways. 
IL-1β, IL-13, and IL-17 were also trending or increased in 
the MAA and UIS single treatment groups as well as the 
MAA–UIS treatment group at P15, and they remained 
elevated into the P35 timepoint in the cortex. Our data 

Fig. 4 Microglia density in the hippocampus and frontal cortex of MAA, UIS, and MAA-UIS of P15 offspring. a and c Staining for IBA-1 
with diaminobenzidine (DAB) was used to label microglia in coronal sections of p15 mice in the (a) frontal cortex and (c) hippocampus. b and d 
Quantification of microglial density in the (b) frontal cortex and (d) hippocampus. Statistical significance determined via one-way ANOVA. In 
the frontal cortex, n = 6 (PBS-AIR), n = 4 (MAA), n = 5 (UIS), n = 3 (MAA-UIS). In the hippocampus, n = 9 (PBS-AIR), n = 7 (MAA), n = 6 (UIS), n = 6 
(MAA-UIS)
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suggest a sustained elevation in these cytokines from P15 
to P35 as a result of both MAA and UIS that have the 
potential for long-lasting impacts on neurodevelopment 
in the cortex of these offspring.

Consistent with the pleiotropic nature of cytokines in 
the central nervous system (CNS), IL-1β, IL-2, and IL-17 
have all been identified as having neurotrophic proper-
ties [5, 13, 29, 58, 66, 69, 78, 92] (Rochman et al. 2013). 
Indeed, high concentrations (500  ng/mL) of IL-1β can 
have neurotoxic effects on neurons when exposed for 
3–5  days [92], and IL-17 is detected at high levels in 
the CNS in multiple sclerosis and associated with the 
neuroinflammatory pathology of the disease [58, 66]. 
Compared to these neurotoxic concentrations, our data 
represent moderate increases in cytokines with less than 
2.5-fold increases in treatment groups compared to PBS-
AIR controls, and may not represent overt inflammation 
per se. However, these smaller changes in brain cytokine 
levels during the juvenile period may be biologically sig-
nificant given their alternative functions in promoting 
neuronal survival and neurodevelopment. For example, 
IL-1β acts as a chemokine that guides neurite outgrowth 
in cortical neurons [69], and IL-17 acts in initiating the 
release of brain-derived neurotrophic factor (BDNF), 
glia-derived neurotrophic factor (GDNF), and nerve 
growth factors (NGF) that are associated with neuronal 
cell survival and repair [78]. Taken from this view, these 
cytokines, which are generally considered overtly inflam-
matory, may be having a more subtle impact on the neu-
roarchitecture of offspring brains than models finding 
dramatic increases in concentration of IL-1β and IL-17.

Further demonstrating the neuropoietic nature of these 
cytokines within the CNS and adding to the idea that the 
moderate increases observed in this model may be alter-
ing the neuropatterning of the offspring brains, IL-2 has 
been found to have neurotrophic properties and is nec-
essary for proper cytoarchitecture in development [8, 8, 
9, 9]. Both IL-2 and IL-13 are among several cytokines 
that are known to decrease in concentration at P14 under 
homeostatic conditions, and this developmental time-
point in mice is characterized by a high degree of synap-
togenesis and pruning [37, 81]. In contrast, our model, 
which investigated cytokine concentrations at P15, still 
within this window of high synaptogenesis, showed 
increased IL-2, representing a shift in homeostatic load. 
Taken together, it may be that these sustained moderate 
increases in cytokines of the cortex are changing the tra-
jectory of cortical development and promoting altered 
connectivity in the cortex linked to behavioral changes 
such as decreased social interaction and repetitive 
behaviors previously identified in our model [19, 109]. 
This phenomenon of altered connectivity has also been 
implicated in the core behaviors associated with ASD, 

specifically the social deficits and restrictive and repeti-
tive behaviors [24, 73, 77].

Similar to our findings in the cortex, we also identi-
fied elevations in several cytokines, most notably IFNγ 
and IL-7, at P15 in the hippocampus of MAA and/or 
UIS groups compared to control offspring. IFNγ recep-
tors are present on both neurons and glia [90]. In the 
hippocampus, IFNγ appears to play a role in synaptogen-
esis [65]. Some investigators have found that overexpres-
sion resulted in increased neurogenesis in the dentate 
gyrus, and because of its neuromodulatory effects, it 
has been suggested that this may impact cognition and 
social behavior as a result [7, 35, 36]. Additionally, IL-7 
promotes survival and neurite outgrowth in hippocam-
pal neurons [70, 76]. Considering the effects of IL-7 and 
IFNγ, and that the hippocampus is a major neurogenic 
niche in the developing brain, future studies may benefit 
from investigating the potential for hippocampal over-
growth in offspring brains in response to UIS or allergic 
asthma inflammation during pregnancy. Indeed, this phe-
nomenon of hippocampal overgrowth has been identified 
in cases of ASD [43, 86, 104] and has been implicated in 
the deficits associated with emotion perception and sen-
sory processing in ASD individuals [6, 43]. Curiously, the 
observed increases in hippocampal cytokine concentra-
tions at P15 were not observed in any treatment group of 
P35 offspring compared to PBS-AIR controls. Although 
we can only speculate about these findings, it may be that 
these changes resolve during adolescence when addi-
tional brain maturation may be present to compensate 
for developmental overgrowth much in the same way that 
volumetric increases in the hippocampus of ASD indi-
viduals do not persist into adulthood [43, 104]. Although 
IL-7 and IFNγ are only two examples of cytokines that 
were elevated across the treatment groups, they illustrate 
the broader findings that treatment with MAA, UIS, or 
MAA–UIS can alter the hippocampal neuroimmune 
environment.

Prenatal insults have been shown to have lifelong 
impacts on microglia function and are suspected to play 
a prominent role in NDD [32, 38, 50, 59, 112, 117]. In 
ASD, some postmortem studies have identified differ-
ences in microglia density and morphology in brains of 
individuals [60, 82, 83]. In our previous study of MAA, 
we found DNA methylation differences in adult micro-
glia, and several of these changes occurred in regula-
tory genes that are shared among some ASD individuals 
[117]. Given these findings, we sought to examine the 
density of microglia in the P15 brains of our MAA and 
UIS exposure model. We observed a significant increase 
in microglia density within the hippocampus of offspring 
exposed to MAA–UIS, but these increases were not pre-
sent in the frontal cortex. One plausible explanation for 
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why these increases were only observed in the hippocam-
pus may be due to the higher density of microglia known 
to be present in the hippocampus. This higher density of 
microglia is thought to make the hippocampus more vul-
nerable to inflammation [18, 101], and disruptions in the 
dentate gyrus have been linked to NDD [15, 124]. Our 
findings of increased microglia density in the hippocam-
pus of MAA–UIS offspring mirror data from another 
maternal immune activation model that utilizes the viral 
mimic poly(I:C). Specifically, Juckel et  al. [56] reported 
an increase in microglia density in the hippocampus but 
not the cortex of offspring born from immune-activated 
dams. Similarly, another study of maternal immune 
activation using LPS stimulation showed an increase in 
microglia density in the hippocampus [30]. While it is 
difficult to make conclusions about microglial function 
based on density data alone, our observed difference in 
the hippocampus in combination with similar reports 
from other maternal immune activation models [30, 56], 
suggest that asthma allergy and PM mediated immune 
activation during pregnancy can result in a deviation 
from homeostatic activity in the offspring hippocampus. 
Of interest, IFNγ and IL-12 were increased in MIA-UIS 
in the hippocampus, cytokines that are often associated 
with a  TH1 response and M1 macrophage/microglia 
skewing. These cytokines were not elevated in the cortex. 
Moreover, in the cortex and hippocampus UIS is associ-
ated with increased IL-13 that may balance the signals 
from IL-12 and IFNγ as seen in peripheral responses. 
IL-13 is often considered anti-inflammatory in the CNS, 
with some studies pointing to a neuroprotective impact 
in CNS diseases and injuries [45, 63, 75, 91]. Although 
speculative, the results may suggest combined inflamma-
tory M1/TH1 associated cytokines IFNγ and IL-12, could 
influence the MAA–UIS microglia density results while 
these are protected in the cortex or under UIS conditions 
through IL-13 production. More investigation is needed 
on the combination of cytokines released and action on 
microglia cells in the context of environmental exposures.

Although we did not collect maternal data in this pre-
liminary study, data from previous MAA studies demon-
strate increased systemic inflammation characteristic of 
an allergic asthma response, specifically with increased 
IL-4, IL-5, and IL-13 [19, 110, 115], suggesting the poten-
tial for a similar response in dams of MAA in the current 
model. Speculation about the systemic impacts of UIS on 
the maternal immune system, however, is difficult. Many 
studies of PM exposure suggest IL-6, IL-8, and TNFα 
as the main cytokines upregulated in response to PM 
exposure [41, 67, 79, 89, 111]. This difference in cytokine 
response highlights the potential reason we see differ-
ences in the impact between MAA and UIS in our model. 
However, models of PM can vary widely in the size of 

PM and composition [79], making speculation about the 
maternal response in the UIS groups, and the potential 
role this plays in offspring neurodevelopment, difficult. 
This variation in PM studies underscores the need for 
future investigations to identify the maternal cytokine 
milieu in this model.

While our findings do not necessarily demonstrate 
an additive effect of MAA and UIS with regard to the 
cytokines we investigated, we did see a synergistic impact 
of MAA–UIS on microglia density in the hippocam-
pus. These findings demonstrate the potential for addi-
tive effects of maternal asthma exposure when coupled 
with PM exposure. Independently, studies have shown in 
both humans and animal models that PM exposure dur-
ing pregnancy can increase the susceptibility of offspring 
developing asthma [49, 84, 123]. This increased suscep-
tibility of asthma in offspring is also seen in children of 
asthmatic mothers [71, 85] (Mattes et al. 2013), suggest-
ing the potential for systemic immune dysfunction when 
these two stimuli are combined during pregnancy. The 
findings in this unique model of MAA and UIS exposure 
highlight the importance of investigating the impact of 
these closely linked and prevalent environmental factors.

Conclusions
Our data add to our previous studies on the impact of 
MAA on fetal brain development, showing here that this 
model impacts region-specific cytokine concentrations in 
both the juvenile and adolescent periods. To the investi-
gators’ knowledge, this was the first study to assess the 
impact of ultrafine iron-soot exposure during gestation 
on offspring neurobiology. Taken together, these data 
highlight the importance of understanding the impact 
that common environmental stimuli can have on fetal 
development, and the potential for these stimuli to have 
long-lasting changes in offspring.
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