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ARTICLE OPEN

Autonomous scanning probe microscopy investigations over
WS2 and Au{111}
John C. Thomas 1✉, Antonio Rossi1,2, Darian Smalley3, Luca Francaviglia 1, Zhuohang Yu4,5, Tianyi Zhang4,5, Shalini Kumari4,5,
Joshua A. Robinson4,5, Mauricio Terrones4,5,6, Masahiro Ishigami3, Eli Rotenberg2, Edward S. Barnard 1, Archana Raja1, Ed Wong1,
D. Frank Ogletree 1, Marcus M. Noack 7✉ and Alexander Weber-Bargioni1✉

Individual atomic defects in 2D materials impact their macroscopic functionality. Correlating the interplay is challenging, however,
intelligent hyperspectral scanning tunneling spectroscopy (STS) mapping provides a feasible solution to this technically difficult and
time consuming problem. Here, dense spectroscopic volume is collected autonomously via Gaussian process regression, where
convolutional neural networks are used in tandem for spectral identification. Acquired data enable defect segmentation, and a
workflow is provided for machine-driven decision making during experimentation with capability for user customization. We
provide a means towards autonomous experimentation for the benefit of both enhanced reproducibility and user-accessibility.
Hyperspectral investigations on WS2 sulfur vacancy sites are explored, which is combined with local density of states confirmation
on the Au{111} herringbone reconstruction. Chalcogen vacancies, pristine WS2, Au face-centered cubic, and Au hexagonal close-
packed regions are examined and detected by machine learning methods to demonstrate the potential of artificial intelligence for
hyperspectral STS mapping.

npj Computational Materials            (2022) 8:99 ; https://doi.org/10.1038/s41524-022-00777-9

INTRODUCTION
Two-dimensional (2D) material systems are one of the most
sought after solid-state and thin-film structures due to the
enormous phase space of functionality, which is driven by atomic-
and nano- scale defects that can be advantageously manipulated
for single-photon emission, strain engineering, Moiré physics,
stacking, and transport1–7. Defective perturbations can alter the
effective local landscape and immediately impact macroscopic
functionality. Scanning tunneling microscopy (STM), one branch of
scanning probe microscopy (SPM), remains fundamental for
characterizing and understanding material and surface properties
at distances within the atomic-to-nano range, providing informa-
tion at scale into, e.g., spin-orbit coupling effects within chalcogen
vacancies, electrically-driven photon emission of individual
defects, and substitutional fingerprinting by measuring the local
density of states (LDOS)8–11. Techniques that provide spectro-
scopic insight, such as STM, are extremely important in correlating
defective states with macroscopic phenomena; hyperspectral data
collection in, e.g., tip-enhanced Raman imaging and in optical
transmission electron microscopy have become standard and
enabled spectroscopic capability with enormous information
richness that is both spatially and spectrally resolved12–15.
However, while hyperspectral STS imaging would provide critical
insight into heterogenous electronic properties at the atomic
scale, it is not feasible due to the enormous time required. For
instance, a hyperspectral optical map collected at 10 minutes per
point in a 150 × 150 pixel grid would take well over one month.
Here, we present a means of performing spatially-dense, point
spectroscopic measurements with an STM in combination with

artificially intelligent and machine learning (AI/ML) approaches to
provide a faster and more reproducible approach to map and
identify spectroscopic signatures of heterogeneous surfaces.
Since the inception of scanning tunneling spectroscopy (STS),

which measures current-voltage (I/V) characteristics, the vast
majority of experiments are performed using single-pixel spectro-
scopy, where routes for data collection tend to be geometrically
positioned along a line or grid during point acquisition. The first
harmonic, within an atomically resolved area, can be measured over
a defined voltage range, with lock-in techniques, that corresponds
to a convolution of the tip and surface LDOS (dI/dV). Assuming the
tip remains constant then the data collected are from the sample
alone16, where inelastic contributions (d2I/dV2) can also be inferred
from the second harmonic17. This and other recent spectroscopic
capabilities within the STM/STS field have given insight into the
electronic structure at the atomic scale relevant for the entire field
of surface science, chemical processes, optoelectronic processes,
the identification of individual adatoms and molecules on surfaces,
local spin-orbit coupling, and electron-phonon coupling, all with
sufficient spectroscopic energy resolution to also resolve quantum
phase transitions, enable the exploration of next generation color
centers, the capability to resolve quantum emitters at scale, or map
quantum coherence transport3,4,18–20. En route towards making STS
more widely available, we collect point STS autonomously, via
Gaussian process regression, and benchmark our method on
tungsten disulfide (WS2) and a Au{111} surface. The methods shown
and autonomous experimentation techniques used can be
extended to a variety of available spectroscopic techniques within
the SPM field, such as force spectroscopy with non-contact atomic
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force microscopy, however, we first focus on using the LDOS as a
tool to identify surface and defective states.
Transition metal dichalcogenides (TMDs), such as WS2, have

gained substantial interest for point-defect control21,22, serving as
host substrates for quantum emitters23, spin-valley splitting
properties24–26, and tunable band gap engineering27–29. Sulfur
vacancies (VS) can be controllably created to serve as target sites
for photo- and spin- active functionalization30,31. SPM can measure
the electronic characteristics at the atomic level of induced
defects21,24,26, while also providing a path to excite optical
transitions32. 2D TMDs provide a wide phase space to non-
destructively modify the quantum environment through an
extensive variety of defects24, however a means to probe the
electronic environment to produce statistically significant and
reproducible spectra is required to expedite the understanding of
emerging phenomena within the field. Furthermore, coinage
metal surfaces, such as Au, have been widely explored for a variety
of applications in, e.g., molecular self-assembly33,34, tip-forming32,
and device applications35,36, to name a few, and provide a means
for tip state calibration with application towards high throughput
STS. Hence, WS2 and Au{111} are relevant and representative
substrates for both the STM/STS community to employ as model
systems and to demonstrate our AI/ML driven approach for
hyperspectral STS mapping.
One technical challenge of STM/STS is the difficulty of the

technique to acquire reproducible, artifact-free tunneling, espe-
cially in heterogeneous samples. Acquisition times are governed
by multiple hyperparameters, such as voltage range, step size, and
dwell time, where spectral collection that is both highly resolved
energetically and spatially is confounded by a variety of factors,
which can be very time intensive. In conventional STM/STS, point
LDOS exploits the full energetic range of interest with high
resolution, and a subsequent dI/dV map can then be collected at a
specified energy level for high spatial resolution at the cost of
greater experimental broadening. Current imaging tunneling
spectroscopy (CITS) consists of scanning the tip in x1- and x2-
directions within a predefined grid and collecting a high-
resolution spectrum at each pixel and can thus visualize spectro-
scopic nuances spatially, such as band-bending across defective
states, that may otherwise be missed37,38. CITS takes advantage of
both modalities to create a full spectral and spatial picture of a
region of interest, but this modality is complicated by any
accompanied thermal drift, piezo hysteresis, grid optimization,
and time constraints, which can either introduce artifacts in the
spectra or limit experimental acquisition. The need for technical
approaches that make hyperspectral STS mapping more acces-
sible and user-friendly can provide essential utility into materials
discovery and design.
We propose to make use of Gaussian process (GP) regression

for hyperspectral data collection39–43, which is a well-known
method for function approximation and uncertainty quantifica-
tion. This method refers to a set of function values, where any
finite subset of elements have a joint Gaussian distribution. Given
some initial input, a Gaussian prior probability density function is
learned and then conditioned on data, providing a posterior mean
and variance within the model domain, which can be used to
make autonomous decisions about optimal point measurements.
This and other learning approaches have shown to be useful for
hyperspectral image reconstruction41,44, autonomous synchrotron
experiments40, materials discovery43,45,46, feature extraction47, and
in piezoresponse force microscopy41,48, to name a few applica-
tions. The promise of autonomously driven experiments with STM
come at the benefit of the human operator and can provide
industrial application, where a qualified scientist or engineer can
initialize an experiment and allow an AI/ML algorithm to complete
the workflow49–55.
Here, we present one technical approach to address this

challenge to perform hyperspectral STS mapping at defect sites on

two different surfaces and demonstrate a) how to perform
measurements with reproducible spectra, and b) create statisti-
cally significant electronic characterization of the different intrinsic
defects that can be found on samples of interest. While this does
not enhance sample throughput directly, it allows for samples to
be spectroscopically and automatically interrogated in terms of
defect diversity and their electronic fingerprint, such that a non-
STM expert would have the ability to produce relevant spectro-
scopic insight after little training. This is carried out with the
combination of two machine learning techniques for autonomous
experimentation, where a one-dimensional convolutional neural
network (1D-CNN) is used to identify obtained spectra that are
collected autonomously by a GP to obtain an accurate CITS
representation at a rate that is superior to grid collection. Surface
maps are obtained for VS within WS2 and between known surface
reconstructions on a Au{111} surface. We further summarize our
method in a user-friendly and tailorable software package, gpSTS,
for public usage.

RESULTS
Hyperspectral STS mapping via Gaussian process regression
An autonomous hyperspectral STM/STS experiment can be
initialized over any substrate that is either conducting or semi-
conducting. Spatial parameters and tip offsets in both the x1- and
x2- direction are defined by an input image (as defined by point
locations x1 and x2 with y signal) that is further used in cross-
correlation feature tracking (see Supplementary Notes 1–4). At
each point defined by the GP, the bias is ramped over a certain
voltage range while the tip is held at constant height. Each spectra
can then be identified by a 1D-CNN, where class probabilities are
computed, and the sum of dI/dV signal intensity is input into the
GP for mean and objective function calculation. As the experiment
progresses, a proposed measurement is given to the instrument to
collect a point at the uncertainty maximum. A workflow summary
of an autonomous experiment is presented in Fig. 1, where an
atomically sharp tip is directed to the next point for STS point
acquisition by exploration that ultimately provides a 3D volume of
data defined by both I(x1, x2, V) and dI(x1, x2, dV), where I is the
current and V is the voltage. The true power of this methodology
is evident when sufficient orbital information (specific for the VS
deep in-gap state within WS2) and surface structure details (over
Aufcc and Auhcp) can be obtained in well under 100 collected data
points (close to 1% of the data compared to a CITS grid
measurement) that is verified against ground truth data (see
Supplementary Figs. 1–6) to remove any conceivable bias across
experiments, where signal intensity over a given voltage range is
monitored11,26.
A GP model can be defined for a given dataset, D ¼ xi ; yif g,

where the regression model assumes y(x)= f(x)+ ϵ(x), where x are
the positions in some input or parameter space, y is the associated
noisy function evaluation, and ϵ(x) represents the noise term. The
variance-covariance matrix Σ of the prior Gaussian probability
distribution is defined via kernel functions k(xi, xj; ϕ), where ϕ is a
set of hyperparameters that are found by maximizing the
marginal log-likelihood of the data (earlier referred to as learning).
The Matérn kernel is commonly used to match physical processes
and is combined with an anisotropic kernel definition to control
the level of differentiability in each direction of the input space42.
A predictive mean and variance can then be defined given a
Gaussian probability distribution with a set of optimized
hyperparameters, which can be further used to find the next
optimal point measurements in the GP-driven data acquisition
loop (see Supplementary Note 1). GP-driven autonomous
experimentation (within the context of Bayesian optimization),
where a statistical model of the system is generated based on
prior data, uses an acquisition function to suggest the next point
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of input, which is non-trivial in its design. There are a number of
acquisition functions available with different balances of explora-
tion, with the goal to improve the statistical model, and
exploitation, with the goal of utilizing the improved statistical
model to find the global optimum.
Here experimental data is collected by exploration, where

points are suggested to improve the Gaussian process via point
selection at uncertainty maxima. The full energy range, which is
defined by the accessible voltage range over a given sample that
can represent a measurable band gap at both the valence band
maximum and conduction band minimum or the range where
representative surface states lie (as is the case for WS2 and Au,
respectively), can be measured at each point, and indeed we can
zoom into any voltage range to visualize orbital information and
are able to obtain an optimized hyperspectral map with high
resolution both spatially and energetically. In order to evaluate the
performance with different user-defined acquisition functions,
which either combine posterior mean and variance functions or
make use of enabled information-theoretical entities, we perform
hyperspectral oversampling on WS2. After an extended and
feasibly-obtainable experiment over ~ 30 hours, sufficient data
points are collected and we can interpolate over 128 × 128 pixel
grid from acquired data, which is autonomously driven with n =
866 collected data points and shown in Supplementary Fig. 1, and
compare different acquisition functions using variance, Gaussian
process upper confidence bound (GP-UCB), and Shannon’s
information gain (SIG) (Supplementary Figs. 2–6). Here we use a
side-by-side comparison of a GP-driven experiment compared to
standard grid methodologies, where the GP point acquisition
determined by either variance, GP-UCB, or SIG all out perform
comparable grid collections. We additionally show the perfor-
mance of purely random collected data points (Supplementary
Fig. 3), where an experiment steered in this fashion shows
performance degradation, and consistently and significantly
requires more iterations versus a GP-driven CITS measurement

(shown over n = 20 experiments). Across acquisition functions, the
variance determined from the variance-covariance matrix shows a
low of 30 and high of 79 iterations to reach 95% correlation, the
UCB method shows a low of 27 and high of 74 iterations to reach
this benchmark, and SIG shows a low of 25 and high of 74
iterations required (Varianceiterations = 54.2 ± 14.7, UCBiterations =
53.1 ± 12.4, SIGiterations = 50.0 ± 13.2). Performing a one-way
ANOVA analysis, we fail to reject the null hypothesis that the
means are equal across acquisition functions, however, we do
indeed reject the null hypothesis that means among a random
experiment, variance, UCB, and Shannon’s information gain are
equal (pvalue << 0.05), which is driven by the elevation and
subsequent mismatch of randomly-driven point acquisition.

Convolutional neural networks for spectral identification
When the sufficient data is collected, we can further successfully
identify VS compared to pristine WS2 and distinguish Aufcc versus
Auhcp with a trained 1D-CNN using an 80/20 train/test split ratio on
1482 individually and separately acquired scanning tunneling
spectra, consisting of 424 Aufcc, 709 Auhcp, 158 VS, and 191 WS2
spectra (Fig. 2). Test data is further split (60/40 ratio) into a
validation set used during training to give an estimate of the
model’s skill and a test set used on unbiased data after training.
CNN architectures have shown application towards identifying tip
state on H:Si(100)56, with automated hydrogen lithography57,58, in
identifying adatom arrays on a Co3Sn2S2 cleaved surface59, and to
aid in automating carbon monoxide functionalization with use in
noncontact atomic force microscopy55. The CNN architecture
chosen uses shared weights to reduce the number of trainable
parameters and extract spectral features on the pixel level, which
is based on hyperspectral image classification methods used on
AVIRIS sensor datasets60,61.
The 1D-CNN contains two convolution layers, one dropout layer

to help overcome overfitting, and one fully connected linear layer,
where the softmax can then be used after training to obtain point

GPTELL([x12,x22] = VS)

GPASK ([x13,x23])
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Fig. 1 Overview of machine-driven hyperspectral STS mapping. The general workflow of the autonomous experiment performed with a
scanning tunneling microscope. The data presented focuses on directing an ultra-sharp metal probe across a given area for point STS
acquisition, where both filled and empty states of the sample are examined. After a completed experiment, hyperspectral volume is output
from the software and a myriad of substrate and defect classes can be identified, with a trained model, and provided without cognitive bias.
The method enables an optimized CITS measurement with predictive capability that was previously inaccessible due to time and tool
constraints.
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STS class probabilities. Each convolutional layer makes use of a
1 × 3 kernel to compute the sliding dot product and produce
spectral feature maps at each layer (stride 1, padding 1), which is
followed by batch normalization, a rectified linear unit (ReLU)
activation, and maxpooling layer. The pooling layer down-samples
each map while retaining the most important information. ReLU is
a nonlinear operation that retains neuron values if it is positive or
returns a zero if the input is negative, and is used on both 64 and
128 node layers. During training, the Adam algorithm62 with a
learning rate of 10−4 and computed cross-entropy loss for
optimization are used to automatically identify spectral features,
where the Adam optimizer minimizes loss. Input and output are
shown in Fig. 2, where spectra for Aufcc, Auhcp, WS2, and VS that is
unseen by the trained model is input and passed through the
defined network to produce class identification. Accuracy and loss
are further shown through 20 epochs for both training and test
data (Supplementary Fig. 7), with class accuracy scores presented
in Table 1 for the first six epochs.
Pristine WS2, VS, Auhcp, and Aufcc training spectra are all

optimized within the first 6 epochs, where the model reaches >
95% accuracy on Aufcc validation data after 5 epochs and 100%
accuracy for remaining classes. Overall test performance reaches
100% accuracy after 6 epochs, which is the model chosen for
classification (see Supplementary Figs. 8–10 for test performance
metrics). This paves the way for enabling reproducible STS over
surface variations that are distinguishable via bias spectroscopy by
providing class probabilities for operators to benchmark against,
which can be further expanded to any relevant material.
Subsequent identification over herringbone reconstruction is
performed (Fig. 3), where an impurity is used to track drift during
a given cycle, dense hyperspectral data is classified with the 1D-
CNN, and image segmentation can be performed with individually
classed STS point overlays or pixel-by-pixel using an interpolated
form. The peak in dI/dV at −0.48 V shows the tendency for low
energy surface-state electrons to localize in Auhcp regions11. A
completed experiment over a VS within WS2 is also presented
showing defect segmentation using the trained 1D-CNN. As most
STM/STS data require high-quality tips and surfaces, the data
acquired can be used to verify tip quality on both Au{111} and

WS2, however this is not explicitly explored within the methods
presented.

Autonomous experimentation
Experiments are performed at liquid helium temperatures and in
ultrahigh vacuum to minimize any drift during an experimental
run. A number of drift correction techniques have been explored,
which take advantage of machine vision techniques, feature
tracking, atom-tracking, image pairs, or thermal drift correction
methodologies, to list some of the approaches within the
literature63–67. To correct for any residual drift, driven by either
thermal fluctuations during piezo motion, sample-to-sample
variability, or any tool-to-tool difference, we acquire interval
images at a predefined offset window and then compute feature
correlation (between spectral acquisition and after n = 10 points)

Fig. 2 1D-Convolutional neural network. a Schematic depicting the 1D-CNN model used for training where each layer makes use of a
rectified linear unit activation function and max pooling. The first convolutional layer consists of 64 nodes and the second layer makes use of
128 nodes, which is then passed through a dropout layer, flattened, and fed into a fully connected layer. b Individual spectra can be
subsequently passed through a softmax layer using the trained model to yield class probabilities, where example spectra are shown for Aufcc,
Auhcp, WS2, and VS. Each spectra depicted exhibits the greatest predictive probability of belonging to the expected class and near zero
probabilities for the remaining 3 classes (depicted in gray scale) with the trained model after 6 epochs.

Table 1. Model class performance.

Aufcc Auhcp VS WS2
Training

63.2 49.5 43.6 64.5

98.1 98.8 93.3 97.6

98.8 99.6 99.4 100.0

95.9 98.5 97.8 98.2

100.0 99.8 100.0 99.5

100.0 100.0 100.0 100.0

Validation

100.0 24.1 0.0 100.0

95.6 98.9 95.7 100.0

100.0 96.6 100.0 100.0

88.9 100.0 100.0 100.0

95.6 100.0 100.0 100.0

95.6 100.0 100.0 100.0

Accuracy scores of the first 6 epochs during training.
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using sliding image patches (Supplementary Fig. 11). This block-
matching approach is a common technique for image recognition
and operates by taking the maximum correlation within a given
pixel range68–70. Any computed offset is registered to the tool by
updating the scan window location during the autonomous
hyperspectral experiment. Collected images are plane corrected
with a line-by-line linear fit to adjust for tilt, since SPM tips are not
always perfectly normal to a given sample. Each high resolution
spectra is swept from +1.4 V to −1.8 V on WS2 (or +1 to −1 V on
Au) and takes 2 min for the complete sweep. After two completed
autonomous experiments, drift was measured to be on the order
of 0.5 ± 0.2 Å on WS2 and 1.1 ± 0.8 Å over Au{111} that is shown in
Supplementary Fig. 12. Hyperparameters can be fine-tuned to best
accommodate for any of the defined drift modes during an
experiment and for subsequent reproducibility.
Hyperparameters for both prior-mean model and covariance

functions can be optimized after each point acquired during an
autonomous experiment. We further show a summary example in
Fig. 4, depicting the progression of such an experiment in the case
of a VS within WS2, where the user defines the measurement space
by providing a topographic image to the software and uncertainty
is extracted after every point acquired to determine the next point
of acquisition (further detailed in Supplementary Fig. 13). The
means to direct measurements, optimize a grid, and decrease
the time required for sample scrutiny is of key importance within
the materials discovery and scanning probe fields, where high-
resolution point spectroscopy is on the order of minutes and
capturing a dense 128 × 128 grid with zero drift isn’t feasible with
available systems (0.14 days with GP compared to 22.76 days for a
dense CITS measurement). Enhanced experimental throughput
with such a method provides an additional tool for users to collect
and identify defects without human bias and/or intervention.

DISCUSSION
A method for autonomous experimentation is presented that makes
use of both GPs and a 1D-CNN for spectral identification, which
enables point defect fingerprinting across a wide variety of materials
and surfaces. Image segmentation can be subsequently executed
after spectral classification. As experiments can be performed
without time-intensive input from the operator and at a lower

spatial density, high resolution STM/STS can be performed in an
autonomous fashion allowing for less redundant information over a
given area of interest. Additionally, as neural network algorithms
tend to require a large amount of data, the GP can be operated in
exploration mode for an increased number of observations to
contribute towards statistically significant measurements and ML
training on, e.g., an uninvestigated system of interest with spectro-
scopic signatures not readily available in the literature. The methods

a b c d

g he f

Fig. 3 Defect identification. a Au{111} herringbone reconstruction that is identifiable via point bias spectroscopy followed by classification
using a trained 1D-CNN, where image tracking can be performed on a larger surface region compared to the autonomous STS experiment
region. b Data is further interpolated over a dense grid, classified, and depicted as an image overlay on acquired topography (Itunnel = 30 pA,
Vsample = 1 V). Scale bar, 2.5 nm. Accumulated spectra over both c Aufcc and d Auhcp are shown with the mean spectrum that is colored by
classification. e VS located within in-situ annealed WS2, where the defect itself is used for drift tracking, with overlaid acquired STS (Itunnel = 30
pA, Vsample = 1.2 V) and f the corresponding linear interpolated form highlighting measured in-gap states. Scale bar, 0.5 nm. Spectra used for
training, validation, and test are shown for both gWS2 and h VS, where a total of >1400 spectra were acquired over multiple experimental runs
for both Au and WS2.
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Fig. 4 Gaussian-process-driven experiment. a Autonomous scan-
ning tunneling spectroscopy experiment, where an input image
(Itunnel = 30 pA, Vsample = 1.6 V), showing a VS within WS2, is used for
feature tracking and input into a Gaussian process to determine a
corresponding objective and error function to suggest the next point
of measurement. Scale bar, 1 nm. b Evolution of an autonomous
experiment showing mean and variance functions at a given interval
is depicted, where orbital reconstruction is sufficiently reached with
only ~1% of points required compared a 128 × 128 pixel grid
experiment. c Point defect identification is accomplished at each
acquired pixel and the signal summation (0.0V < Vsample < 0.7V) is
used for input. d Mean model output after N = 160 points, depicting
a defect map of measured in-gap W d states.
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presented make use of spectroscopically variant features within a
material, where a user can collect data directed by uncertainty
quantification or any preferred acquisition function, and use
classification to determine tip quality or train on a defined number
of classes. We expect that the open source software package can find
application across the scanning probe field and greatly increase
experimental efficiency, where the library can be easily extended to
any system accessible with STM/STS.
Where previous reports have used either spatial features,

decreased pixel density in spectral space, or some combination
for segmentation and CITS measurements with an STM, we
unambiguously identify defects and surface-state based on high
resolution spectral features that leverage the power of Gaussian
processes combined with a CNN architecture for prediction. This
hyperspectral STS mapping measurement technique that com-
bines CITS with AI/ML enables full characterization of hetero-
geneous sample surfaces, ensuring that no local spectral features
are missed, even by a non-experienced user.

METHODS
Scanning probe microscopy (SPM) measurements
All measurements were performed with a Createc GmbH scanning probe
microscope operating under ultrahigh vacuum (pressure < 2 × 10−10 mbar)
at liquid helium temperatures (T < 6 K). Either etched tungsten or platinum
iridium tips were used during acquisition. Tip apexes were further shaped
by indentations onto a gold substrate. STM images are taken in constant-
current mode with a bias applied to the sample. STS measurements were
recorded using a lock-in amplifier with a resonance frequency of 683 Hz
and a modulation amplitude of 5 mV.

Sample preparation
Monolayer islands of WS2 were grown on graphene/SiC substrates with an
ambient pressure CVD approach. A graphene/SiC substrate with 10 mg of
WO3 powder on top was placed at the center of a quartz tube, and 400 mg
of sulfur powder was placed upstream. The furnace was heated to 900 °C
and the sulfur powder was heated to 250 °C using a heating belt during
synthesis. A carrier gas for process throughput was used (Ar gas at
100 sccm) and the growth time was 60 min. The CVD grown WS2/MLG/SiC
was annealed in vacuo at 600 °C for 30min to induce sulfur vacancies.

Neural network and Gaussian process implementation
The acquisition software provided leverages the integration of Python and
LabVIEW, and makes use of the Nanonis programming interface. The GP
was implemented using gpCAM, which is a library for autonomous
experimentation by M. M. Noack71. The CNN was constructed with Pytorch,
which is a deep-learning library available in Python. An Intel Xeon E5-2623
v3 CPU with 8 cores and 64 GB of memory combined with a Tesla K80 with
4992 CUDA cores was used for training.

DATA AVAILABILITY
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