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ABSTRACT OF THE THESIS

SparseGS: Real-Time 360° Sparse View Synthesis

using Gaussian Splatting
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Master of Science in Electrical and Computer Engineering
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The problem of novel view synthesis has grown significantly in popularity recently with

the introduction of Neural Radiance Fields (NeRFs) and other implicit scene representation

methods. A recent advance, 3D Gaussian Splatting (3DGS), leverages an explicit represen-

tation to achieve real-time rendering with high-quality results. However, 3DGS still requires

an abundance of training views to generate a coherent scene representation. In few shot set-

tings, similar to NeRF, 3DGS tends to overfit to training views, causing background collapse

and excessive floaters, especially as the number of training views are reduced. This work

proposes a method to enable training coherent 3DGS-based radiance fields of 360° scenes

from sparse training views. Depth priors are integrated with generative and explicit con-

straints to reduce background collapse, remove floaters, and enhance consistency from un-

seen viewpoints. Experiments show that this method outperforms base 3DGS by 6.4% in

LPIPS and by 12.2% in PSNR, and NeRF-based methods by at least 17.6% in LPIPS on the

MipNeRF-360 dataset with substantially less training and inference cost. Project website

at: https://tinyurl.com/sparsegs.
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CHAPTER 1

Introduction

The problem of learning 3D representations from 2D images has long been of interest, but it

remains difficult due to the inherent ambiguities in translating 2D data to 3D space. Neural

Radiance Fields (NeRFs) [20, 1, 2] tackle this problem by training a neural network using

2D posed images to predict the color and density of points in 3D space. The simplicity and

quality of NeRFs enabled significant advances in novel view synthesis, sparking a wave of

subsequent research. 3D Gaussian Splatting [11], a more recent technique, builds on the con-

cept of NeRF but use an explicit representation based on 3D Gaussians instead of an implicit

neural network. These Gaussians are rendered using point-based splatting, allowing for high

rendering speeds. Although NeRFs and 3D Gaussian Splatting perform well in novel view

synthesis, they typically require extensive sets of training views. This requirement can be

challenging due to variable lighting conditions, weather-dependent constraints, and logistical

complexities, leading to increased interest in few-shot novel view synthesis techniques.

The few-shot view synthesis problem is particularly challenging because the ambiguity in

learning 3D structures from 2D images is significantly heightened: with fewer views, many

regions of the scene receive little to no coverage. This leads to numerous potential incorrect

3D representations that might match the 2D training views but result in poor novel view

renderings, displaying artifacts like ”floaters” [2], which are floating regions of high density

irregularly positioned throughout the scene, ”background collapse,” where the background

is misrepresented by artifacts closer to the cameras, or holes in the representation. Previous

works have tackled this problem through the introduction of constraints that regularize the
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variation between views or the rendered depth maps. To our knowledge, most recent prior

works in this area are built on top of NeRF and as a result are limited by long training

times and the inherent black-box nature of neural networks. The lack of transparency poses

a notable constraint, preventing a direct approach to the problem at hand. Instead, these

challenges are approached indirectly through the use of meticulously designed loss functions

and constraints.

This work introduces an elegant framework for few-shot novel view synthesis built on

top of 3D Gaussian Splatting. The explicit nature of the underlying representations enables

the introduction of a key new operation: direct floater pruning. This operation identifies

the parts of a rendered image that suffer due to floaters or background collapse and allows

direct editing of the 3D representation to remove these artifacts. As a result, greater control

is afforded over when this operation is applied and how selective it is based on the scene

representation during training. It is shown that this operation provides significant benefits in

common view synthesis metrics and allows operation on full 360° unbounded scenes, a setting

which most current few-shot techniques do not handle. In addition to this new operator,

recent advances in image generation diffusion models are leveraged to provide supervision in

regions with little coverage from training views and apply depth constraints based on a novel

technique for rendering depth from 3D Gaussians, allowing for better depth optimization.

Together, these techniques enable high-quality novel-view synthesis from sparse views that

out-performs prior state of the art work.
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1.1 Thesis Contributions

In summary, the thesis contributions are as follows:

• A novel technique for training 3D radiance fields from few-views in unbounded 360° set-

tings. The technique provides improvements of up to 6.4% over Base 3DGS in and at

least 17.6% over NeRF-based methods in LPIPS.

• A technique to estimate depth from a 3D Gaussian representation that allows for better

depth optimization.

• A new explicit, adaptive operator on 3D representations to prune unwanted ”floater”

artifacts in point-based 3D representations.
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CHAPTER 2

Background and Related Work

2.1 Background

The process of volume rendering usually begins by defining a 3D field of optical properties,

namely density, σ(x) and color c(x) for x ∈ R3. To produce 2D maps of visual appearance,

these fields are integrated along rays of viewing direction r(t) = o+ td. For ease of notation,

the scalar color and density fields are reparameterized to be functions of t along a given ray.

The equation commonly used in modern volumetric rendering techniques, which assumes

volume with absorption and emission but no scattering is as follows [36]:

C =

∫ D

0

T (t) · σ(t) · c(t) dt + T (D) · cbg (2.1)

where cbg is the background color and T (D) is the residual transmittance. Transmittance,

T (t) is defined as the differential probability of a ray of light getting to a particle from 0 to

t without hitting any other particles. In this context, it is also expressed as:

T (0→ t) = exp

(
−
∫ t

0

σ(t) dt

)
(2.2)

This integral is often approximated with intervals δi of homogenous media (constant density)

along each ray:
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C =
N∑
i=1

Ti · (1− exp−σiδi) · ci, where Tk = exp
k−1∑
i=1

−σiδi (2.3)

2.2 Neural Radiance Fields

Radiance Fields, 3D representations of radiance in a scene, were first introduced by Neural

Radiance Fields [20] (NeRFs) which represent 3D scenes with a neural volumetric represen-

tation that learns a density and color for every point in R3. The final color of a ray can be

written using volumetric rendering principles as a combination of the density and color at

the sample points along the ray as follows:

C =
N∑
i=1

Tiαici, where Tk =
k−1∏
i=1

(1− αi), and αk = 1− exp(−δkσk) (2.4)

which is equation (2.3) rewritten with alpha-compositing weights. NeRFs are then trained

using gradient descent on an image reconstruction loss. NeRFs have encouraged a flurry of

follow-up work for extending NeRFs with new types of data [18, 12], improving speed [22]

or quality [1, 24], or applying them to novel tasks [47, 42]. A set of NeRF follow-ups

that are particularly relevant to this topic are Mip-NeRF [1] and Mip-NeRF 360 [2]. Mip-

NeRF [1] introduced the concept of anti-aliasing to NeRFs by rendering conical frustums

rather than just single rays. As a result, they are able to anti-alias their renders and render

at multiple resolutions at high quality. Mip-NeRF 360 was a follow-up work to Mip-NeRF

that specifically tackled the problem of representing 360° unbounded scenes. This work also

focuses on this setting as it is a challenging setting for sparse view techniques.
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2.3 3D Gaussian Splatting

While NeRFs rely on a neural network to represent the radiance field, 3D Gaussian Splat-

ting [11], is a recent technique for view synthesis that replaces the neural network with ex-

plicit 3D Gaussians. These gaussians are parameterized by their position, rotation, scaling,

opacity, and a set of spherical harmonics coefficients for view-dependent color. Specifically,

each gaussian is defined as:

G(x) = exp

(
1

2
xTΣ−1x

)
(2.5)

where x is defined in world space.

They are then rendered by projecting the gaussians down to the image plane by computing

screen space covariances and subsequently multiplying the Gaussian values by their α’s and

blending the resulting colors using the volume rendering equation. Given a view matrix W

and the jacobian of the affine approximation of the projection matrix J the screen space

covariance is computed as [51, 52]:

Σ′ = JWΣW TJT (2.6)

Models are trained using the same reconstruction loss as NeRFs:

L = (1− λ)LL1 + λLD-SSIM (2.7)

where LL1 is an L1 loss and LD-SSIM is an SSIM loss. Replacing ray-tracing and the neural
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network process of NeRF-based methods with splatting and direct representation process

offers significant run-time improvements and allows for real-time rendering during inference.

In addition, 3D Gaussian representations are explicit rather than the implicit representa-

tions of NeRFs, which allows for more direct editing and easier interpretability. This work

leverages this property for the technique which identifies and directly deletes floaters. Recent

works have built on top of 3D gaussian splatting to perform a variety of downstream tasks

including text-to-3d generation [38, 46], dynamic scene representation [16, 43], and animat-

ing humans [50]. At the present time, this work is one of the first to provide a technique for

few-shot novel view synthesis using 3D gaussians.

2.4 Few Shot Novel View Synthesis

The problem of novel view synthesis from few images has received significant interest as

many view synthesis techniques can require a prohibitively high number of views for real-

world usage. Many early techniques [39, 48, 33] leverage multi-plane images (MPIs), which

represent images by sub-images at different depths, to re-render depth and color from novel

view points using traditional transformations. More recent techniques are built on top of the

NeRF framework and tend to tackle the problem one of two ways: The first set of methods

introduce constraints on the variation between views. An early example of this type of

method was DietNeRF [9] which added constraints to ensure that high-level semantic features

remained the same from different views since they contained the same object. Another

example is RegNeRF [23] which applies both color and depth consistency losses to the outputs

at novel views. ViP-NeRF [32] modifies the traditional NeRF framework to additionally

compute the visibility of a point and then uses these outputs to regularize the visibility and

alpha-blended depth of different views. The second set of methods approach the problem

by adding depth priors to novel views to regularize outputs. SparseNeRF [40] falls into this

category and uses a pre-trained depth estimation model to get psuedo-ground truth depth
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maps which are then used for a local depth ranking loss. They additionally apply a depth

smoothness loss to encourage rendered depth maps to be piecewise-smooth. DSNeRF [3]

also uses additional depth supervision, but uses the outputs of the SfM pipeline (typically

COLMAP [31, 30]) used to get camera poses instead of a pre-trained model. Beyond these

two techniques, some prior works approach the problem through recent machine learning

techniques. Specifically, Neo 360 [7] uses a tri-plane feature representation to enable their

model to reason about 3D features more robustly. Concurrent techniques, such as FSGS [49]

and DNGaussian [13], also utilize 3D Gaussians for sparse-view synthesis. FSGS introduces

an unpooling operation to densify Gaussians in a controlled manner and incorporates depth

priors for enhanced performance. However, FSGS experiences significant performance drops

in extremely sparse-view scenarios (fewer than 24 views), while DNGaussian is limited to

forward-facing scenes. Currently, Neo360 and FSGS are the only other techniques that

explicitly address the challenge of 360° few-shot novel view synthesis.
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CHAPTER 3

Method

The proposed method is comprised of four key components: a depth correlation loss, a

diffusion loss, an image re-projection loss, and a floater pruning operation.

3.1 Rendering Depth from 3D Gaussians

Many of the components introduced rely on depth maps rendered from the 3D Gaussian

representation. In order to compute these, three different techniques are utilized, each with

different properties: alpha-blending, mode-selection, and softmax scaling.

3.1.1 Alpha-blending

Alpha-blending renders depth maps by following the same procedure used for rendering color

images. Let dalphax,y denote the alpha-blended depth at a pixel x, y, one can calculate it as:

dalphax,y =
N∑
i=1

Tiαidi (3.1)

where Ti is the accumulated transmittance for the ith gaussian, αi is the alpha-compositing

weight, and di is the depth of the gaussian. (In this model, the sum
∑N

i=1 Tiαi is almost

always 1.)
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Training Data

3D Gaussian Representation

Splaing Based Renderer

Rendered View

Floater Pruning

Depth Correlation Loss Score Distillation Sampling Loss Image Reconstruction Loss

Diffusion Model

Loss

Forward Pass
Backward Pass

Depth Warp

Figure 3.1: The proposed pipeline incorporates depth priors, diffusion constraints,
and a floater pruning technique to improve few-shot novel view synthesis per-
formance. During training, the softmax depth is rendered and Pearson correlation is used
to encourage it to align with dpt as described in section 3.2. Novel views are also generated
using the procedure described in section 3.3 and a score distillation sampling loss is incorpo-
rated. At pre-set intervals, floaters are pruned as described in section 3.5. New components
proposed are colored while the base 3DGS pipeline is in grey.

3.1.2 Mode-selection

In mode-selection, the depth of the gaussian with the largest contributing wi = Tiαi repre-

sents the depth of that pixel. The mode-selected depth of a pixel can be written as:

dmode
x,y = dargmaxi(wi) (3.2)

Intuitively, the mode-selected depth can be thought of as choosing the first high opacity

gaussian while the alpha blended depth considers almost all gaussians along an imaginary

ray from the camera. A key insight that is relied on later to build the pruning operator is

that dmode and dalpha are not always the same even though they should be in the ideal case.

Consider the toy setting on the left of fig. 3.2. dmode is the depth of the second gaussian

from the left since that is the one with the highest wi, but dalpha appears slightly behind

this gaussian due to low weight gaussians with higher depths. This difference can lead to
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Iteration 7000 Iteration 30000

Figure 3.2: A toy example that demonstrates the different kinds of depth: mode,
alpha-blended, and softmax used in our technique and how depth correlation
loss affects gaussian weights wi. wi are shown on top and the weights after applying
softmax are below. Left: Gaussian and weight distribution after 7000 iterations of training.
Although there is a single gaussian with the highest weight, there are other low-weight
gaussians nearby that affect both the rendering quality and the calculated depths. Shown
in red, the loss encourages these smaller peaks to come closer to the tallest peak while also
encouraging empty regions to go close to 0. Right: After training is complete, the depth
correlation loss has consolidated low-weight gaussians into a single gaussian at the correct
depth. All of the depth variations now agree.

ambiguity about what the true depth is. This ambiguity is interpreted as a measure of the

uncertainty of 3DGS at a point and is used to inform the pruning operator introduced later.

3.1.3 Softmax-scaling

Although the mode depth works quite well for this purpose of identifying ambiguity in depth,

the presence of the argmax operator in its equation means that any backward gradients only

flow to one gaussian, the one with the highest wi. This is not ideal, as it is optimal to influence

all gaussians along this imaginary ray to converge on the correct depth. In order to overcome
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this limitation of the mode depth, a new method is introduced to render depth that is a mix

of the both alpha-blending and mode-selection, called the softmax depth:

dsoftmax
x,y = log

(∑N
i=1 wie

βwidi∑N
i=1wieβwi

)
(3.3)

where the β parameter allows modulation of the softmax temperature, thereby choosing a

desired amplification of highly weighted gaussians. Note that:

lim
β→0

dsoftmax
x,y = log(dalphax,y ) (3.4)

lim
β→∞

dsoftmax
x,y = log(dmode

x,y ) (3.5)

Compared to mode depth, with the softmax approach, the mode depth can be approximated

while still propagating gradients to gaussians surrounding the mode. Additionally, a psuedo-

ground truth depth map is computed using a pre-trained depth estimation model on top of

the training views. Monodepth [17, 34] is used in this work, but any pre-trained depth

estimation model [28, 27] can work. The depth from this pre-trained model is referred to as

dpt.

3.2 Patch-based Depth Correlation Loss

Since the monocular estimation model predicts relative depth while the alpha-blended and

mode-based depths are COLMAP-anchored depth, directly applying a loss such as mean

squared error (MSE) would not work well. One option is to attempt to estimate scale and

shift parameters and use those to align the two depth maps in metric space. However,

the transformation between the depth maps is not guaranteed to be constant at all points,

meaning a naive alignment could introduce additional unwanted distortion. Instead, Pearson

correlation across image-patches is proposed to compute a similar metric between depth
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maps. This is similar to the depth ranking losses proposed by prior work [40], but instead

of comparing two selected points per iteration, entire patches can be compared, meaning

larger portions can be affected of the image at once and can learn more local structure. The

Pearson correlation coefficient is closely related to normalized cross-correlation; therefore,

employing this loss encourages patches at the same location in both depth maps to have

high cross-correlation, irrespective of the variations in depth value ranges.

At each iteration, N non-overlapping patches are randomly sampled to compute the depth

correlation loss as:

Ldepth =
1

N

N∑
i

1− PCC(psoftmax
i , ppti ) (3.6)

PCC(X, Y ) =
E[XY ]− E[X]E[Y ]√

E[Y 2]− E[Y ]2
√
E[X2]− E[X]2

(3.7)

where psoftmax
i ∈ RS2

denotes the ith patch of dsoftmaxand ppti ∈ RS2
denotes the ith patch of

dpt, with the patch size S being a hyper-parameters. Intuitively, this loss works to align the

softmax depth maps of the gaussian representation with the depth map of monodepth while

avoiding the problem of inconsistent scale and shift.

3.3 Score Distillation Sampling Loss

In the few-shot setting, the sparsity of the input training data likely results in incomplete

coverage of the scene. Therefore, inspired by recent advancements in image generative mod-

els [38, 29, 5, 25, 8, 45], the utilization of a pre-trained generative diffusion model is proposed

to refine the 3D Gaussian representation via Score Distillation Sampling (SDS) as introduced

in previous work [26].This allows refinement of plausible details for regions lacking perfect

coverage in the training views and facilitates the generation of more complete 3D representa-

tions [15, 6, 14, 35]. The implementation begins by generating novel camera poses within the

camera-to-world coordinate system. Random views are sampled, targeting the scene center
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from an elliptic cylinder that best fits the training view positions. The SDS loss can then

be formulated as:

Î = N (
√
α̂I ′, (1− α̂)I) (3.8)

LSDS = ∇GE[(ϵϕ(Îp; Ĩp)− ϵ)
∂Îp
∂G

] (3.9)

where G represents the parameters of our gaussian representation, â represents the cumula-

tive product of one minus the variance schedule and ϵ is the noise introduced by the SDS,

ϵϕ(·) is the predicted noise by Stable Diffusion, Îp is the rendered image at camera pose p

with added noise, and Ĩp is the image denoised by Stable Diffusion. Intuitively, the SDS loss

first finds the error between the true noise added to an image and the error the diffusion

model estimates and then takes the gradient of this error with respect to the parameters

of the gaussian model, i.e. the means, scalings, rotations, and opacities of the gaussians.

Note that the usage of this SDS loss differs greatly from most prior uses of diffusion models

for sparse view synthesis. While most prior techniques leverage diffusion models to fill in

large blank regions or hallucinate new views that are not present in the original images (e.g.,

if only a front view is available and diffusion is used to hallucinate a back view), diffusion

models and the SDS loss are used solely as a refinement step to enhance renders, which are

anticipated to already encompass most of the correct structure of the 3D scene.

3.4 Image Re-projection Loss

Most 3D reconstruction models operate by fitting to the training views in the hope that

the model can learn the underlying geometry of the scene. However, this approach becomes

problematic in settings with extremely sparse input, as the model tends to overfit exces-

sively [9, 23]. This overfitting leads to background collapse even with minimal changes in

the viewing angle, undermining the model’s ability to generalize and accurately reconstruct
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the scene from new perspectives. In this study, image re-projection is employed, utilizing

established depth warping techniques [21, 44, 3] to augment the available training data by

re-projecting images to novel viewpoints. It is impractical to perform depth warping directly

using outputs from the Monodepth model because they are in a relative scale. However, a

solution to this limitation has been discovered by scaling the range to match the minimum

and maximum values of rendered alpha-blended depth maps. As a result, the quality of

the warping is highly dependent on the estimation of mini d
alpha
i and maxi d

alpha
i ; however,

in practical applications, it has been observed that the warping results are quite stable,

provided that the depth Pearson loss has converged to a reasonable level. Mathematically,

image re-projection can be defined as follows: For pixel pi(xi, yi) in training image Isrc, the

warping to the corresponding pixel pj(xj, yj) at an unseen viewpoint Itrg can be formulated

as:

pj = KtrgT (K
−1
srcZipi) (3.10)

where Zi is the monodepth outputs scaled to the range of mini d
alpha
i and maxi d

alpha
i , Ktrg

and Ksrc are the intrinsic matrices of the source and the target camera, and T refers to the

transformation between camera poses from viewpoint Isrc to Itrg. A warp mask M , which

marks which pixels were validly warped, is generated along with the process. The image

re-projection loss LProj is formulated as:

LProj = M ∗ L1(Î , Itrg) (3.11)

3.5 Floater Removal

Although the model is trained with the depth correlation loss, optimizing the softmax depth

alone does not solve the problem of ”floaters”. An example image with floaters is shown
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Before Pruning

Aer Pruning

(a) (b) (c) (d)
=

Figure 3.3: The proposed floater pruning technique removes gaussians at inaccu-
rate depths. A toy example (a) demonstrates the pruning technique: before pruning, there
are floaters (blue) in front of the gaussians at the object surface (red) and therefore, dmode

x,y

dalphax,y are not aligned. The pruning technique removes all gaussians on that pixel before the
mode and as a result, dmode

x,y = dalphax,y . Applied to the garden scene (b), the pruning technique
removes large floaters in the center and left of the scene. There exists a link between the
bimodality of the histogram of relative differences before and after the pruning operator in
(c), with the appropriate pruning cutoff points indicated by the red vertical line. (d) top:
The floater mask Fi is obtained from thresholding the relative differencing of the mode depth
dmode (bottom) at the cutoff points.

in fig. 3.3. To remove floaters, a novel operator is proposed, leveraging the explicit repre-

sentation of 3D gaussians to eliminate floaters and encourage the model to re-learn those

regions of the training views correctly. In our model, ”floaters” often manifest themselves

as relatively low-opacity Gaussians positioned close to the camera plane. Although they do

not appear prominently when rendering the softmax depth of a scene due to being ”averaged

out,” they are prominent in the mode-selected depth. This difference is leveraged to gener-

ate a floater mask F for each training view. Having identified this mask in image space, all

Gaussians up to and including the mode Gaussian are selected and pruned. Specifically, F

for a single training view i is computed as follows: first, ∆i, the relative difference between

the mode-selected depth and alpha-blended depth, is computed. When visualizing the dis-

tributions of ∆i, it was observed that images with many floaters had bi-modal histograms,

as floaters tend to be far from the true depth, while images without floaters tended to be
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ALGORITHM 1: Algorithm to prune floaters

Function prune floaters(G,P, a, b)
Input : Gaussian Representation G
Input : Camera Poses P
Input : Curve Parameters a, b

D̄ ← 0.0
foreach p ∈ P do

dalpha ← alpha blend depth(G, p)

dmode ← mode select(G, p)

∆p ← dmode−dalpha

dalpha

D̄ ← D̄+ dip test(∆p)

end
D̄ ← D̄/|P |
foreach p ∈ P do

τp ← percentile(∆p, ae
bD̄)

Fp ← 1[∆p > τ ]
g0, g1, ..., gn ← mask to gaussian(Fp)
remove gaussians(g0, g1, ..., gn)

end

end

more uni-modal. This phenomenon is visualized in fig. 3.3. Leveraging this, the dip test

[4], a measure of uni-modality, is performed on the distribution. The uni-modality score is

then averaged across all training views for a scene, since the number of floaters is generally

a scene-wide metric, and used to select a cutoff threshold for the relative differences. The

dip statistic to threshold conversion process is performed using an exponential curve with

parameters a and b. These parameters are estimated by manually examining ∆i and Fi for

various scenes from different datasets and real-world captures. This process was carefully

designed to allow floater pruning to be adaptive: in some cases, 3D scenes are already of

quite high quality and, as a result, do not have many floaters. In that situation, setting

a predefined threshold for the percent of pixels to prune would force detail deletion from

the scene. Similarly, some scenes are especially difficult to learn (due to the 3D structure

or distribution of training images), and in those cases, pruning should remove more floaters

than normal. The average dip score D̄ provides a proxy measure of how many floaters a
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scene contains and allows adjustment of techniques in response. The full pruning process is

visualized in fig. 3.3 and shown in algorithm 1.

3.6 Full Loss

Combined, the full loss is:

L = Lrgb(Î , I) + λdepthLdepth(d
softmax, dpt) + λSDSLSDS(Î

′) + λProjLProj(Îtrg, Itrg) (3.12)

where Î is the rendered image, I is the ground truth image, and Î ′ is a rendered image from

a random novel viewpoint (not a training view). Lrgb is the same loss as is used to train

base 3D Gaussian Splatting.
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CHAPTER 4

Results

4.1 Mip-NeRF 360 Dataset

Since this technique is focused on unbounded, 360° scenes, evaluation is conducted on the

Mip-NeRF 360 dataset designed specifically for this use case. The full dataset contains

9 scenes, but 6 of them are selected for having true 360° coverage. Comparison is made

against Mip-NeRF 360 [2], DSNeRF [3], SparseNeRF [40], RegNeRF [23], and base 3D

Gaussian Splatting [11]. DSNeRF, RegNeRF, and SparseNeRF are specifically designed for

the few-shot setting, but are focused on frontal scenes. Mip-NeRF 360 and 3D Gaussian

Splatting are designed for the general view synthesis case, but are also designed to handle

360° scenes. Thus, they are used as comparison benchmarks in the evaluation. For this

setting, 12 training views are used. Results on PSNR, SSIM, and LPIPS are shown in

table 4.1. Additionally, the runtimes of all methods are compared. The evaluation is split

into two tables due to limitations in memory: running DSNeRF at higher resolutions was not

possible within these constraints. On the higher resolution comparison (against Mip-NeRF

360, SparseNeRF, etc.), all baselines are outperformed on SSIM, LPIPS, and PSNR. Notably,

Base 3DGS is outperformed by 12.2% in PSNR and 14.8% in SSIM. For LPIPS specifically,

it is 17.6% lower than the next best performing technique, Mip NeRF 360. A similar pattern

is observed for the comparison against DSNeRF, where DSNeRF is outperformed by 29.7%

in LPIPS. Additionally, the technique trains in less than an hour and can run inference in

real-time (100+ FPS). However, it is slightly outperformed by DSNeRF on PSNR. This is

believed to be a result of the specific failure modes of the technique: NeRF based methods
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Model PSNR ↑ SSIM ↑ LPIPS ↓ Train Time (h) Render FPS

SparseNeRF 11.5638 0.3206 0.6984 4 1/120
RegNeRF 11.7379 0.2266 0.6892 4 1/120
ViP-NeRF 11.1622 0.2291 0.7132 4 1/120
Mip-NeRF 360 17.1044 0.4660 0.5750 3 1/120
Base 3DGS 15.3840 0.4415 0.5061 0.5 120+
Ours 17.2558 0.5067 0.4738 0.75 120+

(a)

Model PSNR ↑ SSIM ↑ LPIPS ↓ Train Time (h) Render FPS

DSNeRF 17.4934 0.3620 0.6242 4 1/120
Base 3DGS 15.2437 0.3914 0.4824 0.5 120+
Ours 16.7740 0.4341 0.4390 0.75 120+

(b)

Table 4.1: This model out-performs previous SOTA on SSIM and LPIPS for
few-shot novel view synthesis on the Mip-NeRF 360 dataset. Results in (a) were
rendered at 1/2x while Results in (b) were at 1/4x resolution due to memory constraints
with DSNeRF. All models in the same table were run at the same resolution for fairness.
Training times were recorded on 1 RTX3090

tend to face the problem of having outputs that are too smooth, which was what originally

prompted the introduction of the positional encoding [20, 37]. As a result, in these few-shot

settings, the renders from NeRF exhibit an overly smooth appearance. Conversely, the 3D

gaussian representation gravitates towards positioning isolated gaussians in regions of empty

space. As a result, when the model does not have a good representation of a scene region,

high-frequency artifacts arise. PSNR tends to tolerate overly smooth outputs while heavily

penalizing high-frequency artifacts [41], leading to the poor performance of the model when

compared to NeRF baselines. On a perceptual metric such as LPIPS, the model significantly

outperforms the next closest baseline.
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Ground Truth SparseNeRF Mip-NeRF 360 3DGS Ours

Figure 4.1: Qualitative results from the Mip-NeRF 360 dataset show the model
produces images that are sharper and perceptually similar to ground truth. Red
boxes show specific regions of interest.
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Figure 4.2: Depth renders from Base 3DGS (top) and our model (bottom) for 5
scenes from the MipNeRF-360 dataset: Stump, Kitchen, Bonsai, Garden, and Bicycle.
Base 3DGS depths are generally incorrectly concentrated close to the camera view while our
model learns more varied and detailed depths.
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Setting Model LLFF DTU
PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑

Trained on DTU
PixelNeRF 7.93 0.682 0.272 16.82 0.270 0.695
MVSNeRF 17.25 0.356 0.557 18.63 0.197 0.769

Trained on DTU Fine-tuned per Scene
SRF ft 17.07 0.529 0.436 15.68 0.281 0.698
MVSNeRF ft 17.88 0.327 0.584 18.54 0.197 0.769

Optimized per Scene

RegNeRF 19.08 0.336 0.587 18.89 0.190 0.745
SparseNeRF 19.86 0.328 0.769 19.55 0.201 0.102
3DGS 15.52 0.405 0.408 10.99 0.313 0.585
DNGaussian 19.12 0.294 0.591 18.91 0.176 0.790
SparseGS (Ours) 18.64 0.293 0.613 18.89 0.178 0.834

Table 4.2: Quantitative Comparison on LLFF and DTU for 3 input views. The
best, second-best, and third-best entries are marked in red, orange, and yellow, respectively.
Notably, the Gaussian-based methods directly show the background color on the meaningless
invisible places, which would cause lower metrics, especially in PSNR.

4.2 Forward-facing Datasets

In addition to Mip-NeRF 360, comparisons are provided on forward-facing scenes includ-

ing DTU [10] and LLFF [19]d atasets. Although the technique is designed for unbounded

360° scenes, these comparisons are provided because a large set of prior work on the task of

few-shot novel view synthesis has been focused on the forward-facing setting. Results can

be seen in table 4.2. The model consistently out-performs Base 3DGS and is competitive

with RegNeRF and SparseNeRF despite the fact that the method is designed for a different

problem setting.

4.3 Ablation Studies

4.3.1 Overall Ablation

Ablation studies are conducted to examine the effects of each of the individual components

introduced. Specifically, the depth correlation loss, the score distillation sampling loss, the

image re-projection loss, and floater pruning are ablated. Results are shown in table 4.3 and

in fig. 4.3. Different depth rendering techniques were tested across all six scenes. Due to

the random nature of SDS and the heavy reliance of reprojection quality on early training

stages, these two techniques were evaluated with one scene, and the average metrics were
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Ground Truth w/o Floater
Pruning

w/o Diffusion Loss w/o Correlation
Loss

Full Model (Ours)

Figure 4.3: The full model performs best in terms of image renders and depth
maps. The full model combines the best of different subcomponents to generate high-
quality depth maps (e.g. it retains the smoothness of the depth correlation loss while learning
background details from floater pruning and diffusion). For depth maps, the ground truth
is the output of the Monodepth model.

computed across multiple trials. As shown in table 4.3, the full model performs best on all

three metrics, and the depth correlation loss, based on the novel depth formulation, provides

the most benefit among the three components of the technique (drop of approx. 1.5 PSNR

when removing it). fig. 4.3 highlights the benefits of the depth correlation loss, particularly

for the depth maps. Without the depth correlation loss, there are many discontinuities and

sharp features in the depth map, likely because the model is excessively overfitting to the

limited training views.

Model Experiment PSNR ↑ SSIM ↑ LPIPS ↓

3DGS

Average of 6 Scenes

15.38 0.44 0.506
+ Softmax Depth 16.51 0.497 0.474
+ Alpha Depth 15.57 0.456 0.500
+ Mode Depth 14.62 0.456 0.610

3DGS

Multiple Runs of Single Scene

16.31 0.579 0.518
+ Softmax Depth 17.51 0.615 0.505
+ Softmax + SDS 17.74 0.621 0.484
+ Softmax + Reprojection 17.78 0.628 0.498
+ Softmax + Reprojection + SDS 18.10 0.639 0.477

Table 4.3: Comparison of different model configurations on MipNeRF360 recon-
struction. Results show that optimizing the Softmax Depth produces the best results. The
second half of the table demonstrates that SDS and Reprojection loss improve metrics by
similar values. When combined, the model achieves the best overall results.
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4.3.2 Training View Ablation

fig. 4.4 provides a study of how the model performs relative to base 3DGS as the number of

training views is changed. We test 8, 10, 12, 14, 16, and 18 views. Across all three metrics,

PSNR, SSIM, and LPIPS, the model consistently outperforms Base 3DGS in all settings.

The model also performs well in the challenging 8-view setting, achieving results that are

comparable to base 3DGS and better than most NeRF based methods at 12-view.

4.3.3 SDS Loss Ablation

fig. 4.5 provides qualitative examples of the model trained with and without our SDS loss.

While the models trained without the SDS loss generate reasonable images, they exhibit

many high-frequency artifacts, likely the result of many small highly anisotropic gaussians.

Models trained with the SDS loss are able to largely avoid this issue. This highlights the

design of the SDS loss: the diffusion model is not used to generate new details or unseen

views, and instead refines regions of the scene representation and alleviates some of the

limitations of the 3D Gaussian representation.

Figure 4.4: Ablation study on the number of views used to train models. The
model consistently outperforms Base 3DGS on PSNR, SSIM, and LPIPS when as few as 8
or as many as 18 images are used for training.
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Figure 4.5: Qualitative ablation study on the benefits of the SDS loss. Images
from models without the SDS loss (top) exhibit high-frequency artifacts and dis-coloration.
Images from models with the SDS loss (bottom) smooth these artifacts out and have higher
quality reconstructions.
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4.4 Implementation Details

The training procedure is built on top of the procedure introduced in 3D Gaussian Splat-

ting [11]. The model is trained for 30k iterations with learning rates for the gaussian repre-

sentation components taken from [11]. The depth correlation loss is applied every iteration

with a patch size of 128 pixels and select 50% of all patches per iteration. The diffusion

loss is applied randomly for 20% of iterations during the last 10k steps. Additionally, the

floater pruning technique is applied at 20k iteration with a = 97 and b = −8.λdepth = 0.1

and λSDS = 5×10−4. At 5k iteration, the point where the depth correlation loss has reason-

ably converged, alpha-blending depth maps are rendered for image re-projection. For each

training camera, 4 extra warping viewpoints are generated by rotating it around the scene’s

center. The projection weight λProj is set to 0.3.
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CHAPTER 5

Discussion and Conclusion

5.1 Conclusion

One key limitation of the method is that because it is built on top of 3D Gaussian Splatting,

it is heavily reliant on the initial point cloud provided by COLMAP. If this point cloud

is inaccurate or lacks detail, the model may struggle to compensate adequately, leading to

under-reconstructions, especially in areas distant from the scene center. This limitation is

especially prominent in the sparse view setting, as our initial training views lack substantial

coverage. As a result, the input point clouds are relatively small, with many tested scenes

being initialized with fewer than 20 points in total. To address this challenge, future efforts

could involve investigating point cloud densification techniques as data augmentations.

In this paper, a novel 3D gaussian splatting based technique for few-shot novel view

synthesis is introduced. The explicit nature of the 3D gaussian representation is leveraged

to introduce a novel pruning operator designed to reduce and remove ”floater” artifacts.

Applied to the Mip-NeRF 360 dataset, it is shown that the technique can achieve state-of-

the-art performance on few shot novel view synthesis for 360° unbounded scenes.
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CHAPTER 6

Appendix

6.1 Appendix Contents

This supplementary is organized as follows:

• section 6.2 shows the gradient derivation for the softmax depth formulation.

• section 6.3 provides additional qualitative comparisons on the Mip-NeRF 360 dataset.

6.2 Derivation of the Softmax Depth Gradient

In this section, we derive the gradients used for the softmax depth implemented in the raster-

izer. We assume we are rendering a single pixel and that the gaussians Gi along the camera

ray are ordered from closest to the camera plane to the farthest. (i.e. α1 corresponds to the

gaussian closest to the camera, while αN corresponds to the farthest)

If we let wk = Tkαk and Tk =
∏k−1

i=1 (1− αi)

dsoftmax
x,y = log

(∑N
i=1 wie

βwidi∑N
i=1 wieβwi

)
(6.1)

The derivative w.r.t the gaussian’s camera z value is given below:
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∂dsoftmax
x,y

∂dk
=

wke
βwk∑N

i=1 wieβwidi
(6.2)

The derivative w.r.t the gaussian’s alpha value is given below:

∂dsoftmax
x,y

∂αk

=

(1 + βwk)Tke
βwkdk − 1

1−αk

∑N
j=k+1(1 + βwj)wje

βwjdj∑N
i=1 wieβwidi

(3)

−
(1 + βwk)Tke

βwk − 1
1−αk

∑N
j=k+1(1 + βwj)wje

βwj∑N
i=1 wieβwi

(4)

The sums in the denominators are retained during the forward pass and subsequently

transferred to the backward pass. To avoid an O(n2) blowup, an accumulator strategy is

used as in [11].

Let Al
k,Ar

k be the accumulators pertaining to
∂dsoftmax

x,y

∂αk
for expressions (3) and (4) respec-

tively.

Al
0 = Ar

0 = α0 = 0

Al
k = αk−1(1 + βwk−1)e

βwk−1dk−1 + (1− αk−1)Al
k−1

Ar
k = αk−1(1 + βwk−1)e

βwk−1 + (1− αk−1)Ar
k−1

It can be shown that

∂dsoftmax
x,y

∂αk

= Tk

(
(1 + βwk)e

βwkdk −Al
k∑N

i=1wieβwidi
− (1 + βwk)e

βwk −Ar
k∑N

i=1wieβwi

)
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6.3 Additional Comparisons on Mip-NeRF 360 Dataset

In this section, we provide more extensive qualitative comparisons on the Mip-NeRF 360

dataset. The images in fig. 6.1 show that our models render images that are more consistent

(fewer floaters and color artifacts) while also including high-frequency details.
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Ground Truth Base 3DGS MipNeRF-360 Ours

Figure 6.1: Qualitative Results on the MipNeRF-360 dataset. Scenes are ’Stump’,
’Kitchen’, ’Bonsai’, ’Garden’, and ’Bicycle’.
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tus Thies, and Javier Romero. Drivable 3d gaussian avatars. arXiv preprint
arXiv:2311.08581, 2023.

[51] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa volume splatting. In Proceedings
Visualization, 2001. VIS ’01., pages 29–538, 2001.

[52] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Surface
splatting. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, pages 371–378, 2001.

36


	Introduction
	Thesis Contributions

	Background and Related Work
	Background
	Neural Radiance Fields
	3D Gaussian Splatting
	Few Shot Novel View Synthesis

	Method
	Rendering Depth from 3D Gaussians
	Alpha-blending
	Mode-selection
	Softmax-scaling

	Patch-based Depth Correlation Loss
	Score Distillation Sampling Loss
	Image Re-projection Loss
	Floater Removal
	Full Loss

	Results
	Mip-NeRF 360 Dataset
	Forward-facing Datasets
	Ablation Studies
	Overall Ablation
	Training View Ablation
	SDS Loss Ablation

	Implementation Details

	Discussion and Conclusion
	Conclusion

	Appendix
	Appendix Contents
	Derivation of the Softmax Depth Gradient
	Additional Comparisons on Mip-NeRF 360 Dataset

	References



