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New Tools for Cognitive Science*

Leonard Friedman
Jet Propulsion Laboratory,
California Institute of Technology
Pasadena, CA 91109

Both AI and Cognitive Science must deal
with uncertainty much of the time. To cope with
this problem, new systems are being developed in Al
for representing and propagating subjective belief
using semantic nets. In these systems, propagation
of uncertainty goes on while logical inferences are
drawn. Cognitive scientists may find these methods
useful for applications in  learning and
problem-solving, so this paper will describe the
nature of the tools and mention some examples of
applications.

There is a long history of attempts by
logicians and mathematicians to represent human
reasoning more or less realistically. Two basic
methods have been employed. One approach is the
path of inference, the drawing of conclusions from
"givens". The other is the path of likelihood, the
estimation of certainty on the basis of experience
of some kind. The first theories to be solidly
founded have been formal mathematical logic and the
theory of probability. Unfortunately, formal logic
applies only to a narrow class of situations, and
most human reasoning is outside its scope.
Similarly, to be applied, probability often demands
knowledge not possessed by people. What would be
most desirable would be a wedding of inference and
likelihood, so that degrees of ignorance could be
associated with assertions without requiring
unavailable knowledge.

In order to make the contributions of the
new methods clearer, we shall describe the nature
of the modelling limitations in the older
formalisms. Logics such as propositional calculus
and first-order predicate calculus demand certainty
of belief in the truth or falsity of assertions.
In addition, they are monotonic; i.e., they are
unable to alter beliefs once established, and also
possess no representation of passage of time. One
by one these modelling limitatations are being
overcome. A variety of non-monotonic logics have
been developed which permit the altering of
established beliefs. They do this by representing
the passage of time in successive "context" layers,
each of which is a snapshot of the state of belief
in the facts of the universe of discourse. As new
evidence 1is introduced, concomitant shifts of
belief are permitted and propagated.

Psychologists long ago proved that ordinary
human reasoning is often in disagreement with the
dictates of strict probability theory. That theory
demands knowledge of probability distributions,
gathered in a usually laborious fashion.
Situations in which the probability of an event
depends conditionally on many other events are
computed by using Bayes formula. Bayesian
statistics requires a knowledge of a large number
of probabilities, not often known to the
investigator. On the other hand, humans may reason
successfully in situations where they are uncertain
and possess no statistical or probabilistic
knowledge.

The new methods offer the possibility of
modelling some aspects of this type of reasoning.
The techniques assume a general knowledge of facts
and interrelationships while not requiring detailed
statistics. They have been developed by modifying
logic on the one hand and introducing parameters
that replace probability on the other. We shall
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not mention the numerous logicians who  have
contributed to what is called confirmation theory.
Zadeh, as early as 1965, began the development of
"Fuzzy Logic" (Zadeh “65). Some years later,
Shortliffe and Buchanan developed a method of
representing degrees of subjective belief or
disbelief numerically (Shortliffe and Buchanan “75,
Shortliffe “76).

Drawing on the work of the confirmation
theorists in logic, Shortliffe and Buchanan found a
formulation by which they could fulfill certain
criteria established by these workers and at the
same time draw 'reasonable" inferences with which
they associated numerical degrees of certainty.
Their work was limited to a narrow class of
expressions in the propositional calculus. The
implementation was monotonic; 1i.e., belief in a
fact could only grow as new supporting evidence was
adduced. Contrary evidence also permitted
disbelief to grow when that was appropriate.
Evidence for and against a hypothesis was weighed
by taking the difference between belief and
disbelief. In the MYCIN system, they applied a
single mode of inference, confirmation, to medical
diagnosis, and called it inexact reasoning. Their
significant contribution was to provide a means for
making logical inferences based on  subjective
certainties. Exact formulas were given for the
propagation of subjective belief. The formulas
depended on an initial assignment of
belief-transfer coefficients by a human "expert”.

My own work has been concerned with
generalizing the methods and refining the formulas
to apply to arbitrary expressions of the
propositional calculus, employing four rules of
inference (ponens, tollens, confirmation, and
denial) rather than the single confirmation rule.
Also, the implementation is a non-monotonic logic,
thus permitting both belief and disbelief to
fluctuate according to the evidence. The set of
logical rules is called plausible inference and the
implementation is named the PI system (Friedman
“80a, “8l). It is a general logical system,
reasoning in either direction, unlike MYCIN which
was limited to backward chaining of expressions in
a simple form. It also has the ability, on the
basis of new evidence, to make its own dynamic
assignments of belief-transfer coefficients in
certain situations. This ability is essential for
learning, as the coefficients are a measure of the
relevance of one fact to another. The PI system
has been applied to fault diagnosis of a spacecraft
(Friedman “80b).

While this line of development was taking
place, two mathematicians, Dempster and his pupil
Shafer, wvere independently developing a
mathematical theory of evidence (Shafer “76). This
theory tackled the problem of representing the
degree of ignorance and calculating the likelihood
of evidence whether based on objective or
subjective considerations. By objective we mean
based on formal probability. They showed that
measures could be devised in a very general way to
* This paper incorporates the results of research
carried out at the Jet Prcpulsion Laboratory,
California Institute of Technology, under contract
NAS-700, sponsored by the National Aeronautics and
Space Administration.




calculate subjective 1likelihoods. Their formulas
had as limiting cases the results of probability
theory. Barnett has shown that for certain
conditions that apply to our representation,
Dempster s general combining formula for the
calculation of likelihood or certainty reduces to
that employed by Shortliffe and Buchanan, and by
myself in plausible inference (Barnett “81).
However, Shortliffe and Buchanan’s basic
formulation was an ad hoc attempt to fit certain
logical criteria, so both their rules and those of
plausible inference lack a solid mathematical
foundation in the computation of belief. Shafer”s
work shows that the present rules of plausible
inference are applicable only for a restricted set
of cases, but also provides the information that
makes it possible to augment the rules so that it
is applicable to most cases of interest, and
solidly founded.

For his thesis, a doctoral candidate in AI,
John Lowrance, 1is applying Dempster and Shafer”s
work to a problem 1in vision. Recently he and
several co-workers have drafted a paper that
applies the Dempster and Shafer rules to a
different problem (Garvey, Lowrance and Fischler
“81). They are estimating the source of a given
set of noisy measurements when the origin of those
measurements comes from one of a known set of
emitters. The measurements are combined to give
the degree of support and the uncertainty
associated with the evidence for each emitter
before that belief is propagated to other
assertions via inference.

Such quantities are exactly what is needed.
in completely automated diagnostic or
decision-making inference systems that must deal
with uncertainty. The measuring devices would feed
degree of belief into assertions linked into a
knowledge base, and by plausible inference the
knowledge base could draw conclusions about what to
do or what went wrong. Garvey, Lowrance and
Fischler also point out the possibility of
constructing an evidential propositional calculus
similar to plausible inference, and suggest
coupling the measured estimates based on Dempster’s
rule with such an inference system.

Summing up, extensions to both formal logic
and likelihood theory are converging. The
representation and  propagation  of subjective
uncertainty in a knowledge base have been reduced
to a set of logical and computational procedures
which have propositional calculus as a limiting
case. Earlier attempts in cognitive science to
model such phenomena include Colby”s model of
paranoia implemented in PARRY (Colby “73), and
Rieger”s use of inference to model language
understanding (Rieger “76). The new methods have
already been applied to a variety of problems in
diagnosis, vision analysis, and noisy measurement.
Their application to learning as a problem solving
activity appears attractive. Further developments
in the theory may be possible such as a
modification of first order predicate calculus that
represents uncertainty.
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