UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Exploring the Role of Context and Sparse Coding on the Formation of Internal
Representations

Permalink
bttgs:géescholarshiQ.orggucéitem47gk1922§
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 21(0)

Authors
Medler, David A.
McClelland, James L.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7pk192zs
https://escholarship.org
http://www.cdlib.org/

Exploring the Role of Context and Sparse Coding on the Formation of Internal
Representations

David A. Medler (medler@cnbc.cmu.edu)
James L. McClelland (j1m@cnbe . cmu . edu)
Center for the Neural Basis of Cognition; Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abstract

Recently, Bayesian principles have been successfully applied
to connectionist networks with an eye towards studying the for-
mation of internal representations. Our current work grows
out of an unsupervised, generative framework being applied
to understand the representations used in visual cortex (Ol-
shausen & Field, 1996) and to discover the underlying struc-
ture in hierarchical visual domains (Lewicki & Sejnowski,
1997). We modified Lewicki and Sejnowski's approach to
study how incorporating two specific constraints—context and
sparse coding—affect the development of internal representa-
tions in networks learning a feature based alphabet. Analyses
of the trained networks show that (1) the standard framework
works well for limited data sets, but tends to poorer perfor-
mance with larger data sets; (2) context alone improves perfor-
mance while developing minimalistic internal representations;
(3) sparse coding alone improves performance and actually de-
velops internal representations that are somewhat redundant;
(4) the combination of context and sparse coding constraints
increases network accuracy and forms more robust internal
representations, especially for larger data sets. Furthermore,
by manipulating the form of the sparse coding constraint, net-
works can be encouraged to adopt either distributed or local
encodings of surface features. Feedback connections in the
brain may provide context information to relatively low-level
visual areas, thereby informing their ability to discover struc-
ture in their inputs.

Introduction

Bayesian principles have been regaining popularity within
cognitive science, both in the more traditional approaches
to cognitive psychology (e.g., Anderson, 1990) and within
the connectionist approach to cognition (e.g., MacKay, 1995;
McClelland, 1998). Our current work is a preliminary in-
vestigation of incorporating two specific constraints, context
and sparse coding, into an existing Bayesian unsupervised
learning paradigm for multilayered architectures (Lewicki
& Sejnowski, 1997). The concept underlying the original
framework is that higher order internal representations can be
formed by exploiting the statistical structure of simple fea-
tures within an input stream. Indeed, Lewicki and Sejnowski
were able to show that their networks could extract hierarchi-
cal structure from simple visual domains.

In this paper, we modify and expand the original frame-
work to explore the internal representations of networks
trained on feature-based letters. We first modified the frame-
work to directly incorporate contextual information into the
deep structure of the network. In the current experiments,
“context” is defined as unique information that is presented
to the network concurrently with an input pattern. Therefore,

393

context can be used to uniquely identify input patterns and,
thus, provide hints about which collection of simple features
constitute higher-order representations.

The second—and more substantial—manipulation was to
place prior constraints on the base probabilities of unit acti-
vations within the networks. This “sparse coding™ constraint
encourages a network to use relatively few units to represent
any specific input pattern. That is, a sparsely coded network
uses only a relatively small proportion of units to encode the
internal representation for a given pattern. Sparse encoding
within neural networks has previously been shown to create
more biologically plausible receptive fields (e.g., Olshausen
& Field, 1996, 1997).

Three different experiments were carried out. The first two
experiments used a reduced stimulus set to study the base ef-
fects of independently manipulating the context and sparse
coding constraints; Experiment 1 manipulated context with
the simplest sparse coding constraint, while the second ex-
periment specifically focused on different forms of the sparse
coding constraint. In Experiment 3, the context and sparse
coding constraints were investigated using the full alphabet.
Networks were analyzed both in terms of their ability to re-
produce the training set and in terms of their internal structure
via weight analysis.

Networks and Bayesian Theory

It is assumed that the internal representations used by a sys-
tem must come to represent the external world in some man-
ner. In other words, internal representations could be thought
of as hypotheses about the external world. Thus, the problem
of defining these internal representations can be reformulated
as computing the probability of a given hypothesis (internal
representation) given the observed data (external world)—a
potentially difficult task.

Fortunately, a relatively simple theoretical framework ex-
ists for computing this probability. In its simplest form,
Bayes’ theorem (see Equation 1) states that for a given hy-
pothesis, H, and observed data, D, the posterior probability
of H given D is computed as

P(D|H) x P(H)

P(H|D) = PO}

(D

where P(?H) is regarded as the prior probability of H before
observing the data D, P(D) is the probability of the data, and
P(D|H) is the probability of the data given the hypothesis.
Thus, by specifying P(D|H) and P(D), the mechanisms of

S (D) see () o2 O

Figure 1: The basic network configuration for a three-layer
network. Sj are surface units; S; are mediating layer units;
S; are deep layer units; S, are context units.

Bayesian theory provide a solution to the problem of learning
from data (Bernardo & Smith, 1994; MacKay, 1995; McClel-
land, 1998).

We can also rearrange the model to predict the data given
the hypothesis; in other words, this framework can be used to
construct a generative model, such that the higher-order in-
ternal representations predict the lower-level simple features.

Network Architecture

To help explain the network dynamics, we will consider the
simple case of a three-layer network (see Figure 1) consist-
ing of an surface layer, Si, a single mediating layer, S; (in
practice, there could be any number of mediating layers), and
a deep layer, S;. It is assumed that connections exist only
between adjacent layers; that is, there are no direct connec-
tions between the surface and deep structure layers. Further-
more, the generative nature of the model means that connec-
tions are uni-directional and flow from the deep to the sur-
face layer as indicated by the directed connections within
Figurel. Thus, we can define three different relationships
for a given unit; the parents (pa[S;]; units contributing acti-
vation), children(ch[S;]; units receiving activation), and sib-
lings (stb[S;]; units within the same layer).

Units are assumed to be stochastic and are probabilisti-
cally active or inactive as determined by the summed acti-
vations being sent by their parents via weighted connections.
Consequently, the network weight vector, W, can be inter-
preted as encoding the underlying probabilities of the gener-
ative model. This means that weights are constrained to be
Zero or positive.

In the present studies, this basic network architecture has
been expanded to include a context-layer, (S,), as illustrated
by the hexagonal units in Figure 1. This context layer is con-
nected directly to the deep layer and thus provides contextual
information to the deep layer only.

Learning Objective

Within this framework, the learning objective is to find the
most probable explanation, #, for the input patterns, D, pre-
sented to the network. In other words, we wish to develop
a generative model that encodes the probabilities of the in-
put data within the network’s weight structure. Therefore, the
learning objective reduces to adapting the weight vector, W,

394

to find the most probable explanation for the input patterns.
If we knew the weight vector, we could calculate the prob-
ability of the input data as

P(Dy.n|W) = [P(Dn|W))

where

P(Dn|W) =3 P(Dn|Sm, W)P(Sm|W)

is the marginalization of all possible unit states, S, of the
network.

It should be noted that the number of all possible network
states, S,,, increases exponentially with the number of units
in the network. Therefore, computing the exact sum becomes
intractable as the networks become larger. One desirable
property of generative models, however, is for most patterns
to have one—or just a few—possible explanations; therefore,
only a few terms, P(D,|S,,, W), will be non-zero and it be-
comes tractable to sample S, according to P(S,,|D,,, W).

Of course, we do not know the weight vector but must
adapt it instead. One way of adapting the weight vector is
to use a variation of the expectation maximization (EM) al-
gorithm. EM is typically used to find parameter estimates
in models where some variables are unknown or unobserved.
The algorithm is composed of two steps: (1) an estimation (E)
step that samples network states , and (ii) a maximization (M)
step that adjusts weights. For our purposes, the E step can be
accomplished by Gibbs sampling whereas the M step can use
maximume-likelihood (ML) estimation.

Computing Network Probabilities

Being a generative model, the probability of any unit’s state
is directly computable from the states of its parents:

P(S; = 1|pa[Si], W) = h(}_ Sjwi;) (©)
k}

where S; are the parents of S; and w;; is the weight from unit
S; to S; The function h in Equation 3 specifies how these un-
derlying causes are to be combined to produce the probability
of §; = 1. One function that can be used for this is the “noisy
OR” function:
h(u)=1-—¢* (4)

where u = 3. S;w;; is the causal input to S;. Note that be-
cause weights are constrained to be positive, u is never nega-
tive, and therefore 0 < h(u) < 1.

Thus, the joint probability density of a such a network can
be computed as the product of the conditional probabilities

P(S:1...5:W) =[] P(SilpalSi], W). ()

Sampling Network States

In Lewicki and Sejnowski's (1997) original formulation of
the problem, each state of the network, S,,, is updated itera-
tively according to the probability of each unit state, 5;, given
the states of the remaining units in the network. This condi-
tional probability is computed as

P(8:]8; i, W)

P(SilpalSi, W) T P(S;lpalS;], i, W) (6)
j€ch[Si]

Thus, the Gibbs equations as used in this framework can
be interpreted in terms of a stochastic recurrent neural net-
work, where the feedback from the higher (or deeper) layers
influences the states at the lower (or surface) layers. Whercas
Lewicki and Sejnowski (1997) computed the probability of a
unit changing its state, the problem can be reformulated as
one where the probability of a unit being active given the re-
maining states of the network is calculated.

Consequently, one can compute the probability of a unit
being active, S; = 1, given the remaining states of the net-
work as

1

P(Si = 1Sij0: W) = T—&z;

)
This function will produce a P(S; = 1) = 0 for negative
evidence, a P(S; = 1) = 0.5 for inconclusive evidence, and
P(S; = 1) = 1 for positive evidence.

The variable Az; in Equation 7 indicates how much chang-
ing the unit state, S;, to being active changes the overall prob-
ability of the network state. In multilayered networks (where
the number of layers is greater than 2), this term will have
both a feedback component from the parents in the deeper
layers, and a feedforward component from the children in the
more surface layers:

Az; = fb(pa[S;]) + f (ch[Si])

In networks with only two layers, or in the deepest layer of
a multilayer network, this feedback term will drop out. Typ-
ically, the feedforward component of Equation 8 will domi-
nate the term, but if the feedforward input is ambiguous, then
the feedback component becomes important as it allows the
more surface level units to use information computable only
at the deeper layers.

The feedback term in Equation 8 is simply computed as the
log probability of the unit being on minus the log probability
of the unit being off. This is calculated as:

h(u)

jb(si) - log 1 - h(u)
where the function h(u) i1s computed as described earlier.

Feedforward is computed as the probability of the unit be-
ing on given the activity of its children. Therefore, for a given
unit, we want to sum the evidence of the unit being on minus
the evidence of the unit being off. We also want to weight the
evidence according to the number of other units contributing
to the child’s activity (the more units contributing, the less
effect any one unit will have).

FS)= > Shogh(

k€ch[S;]

(8)

9)

u — Sjwik + wix)
h(u — S;w;i)

1 - h(u — Siwix + wix)
1 — h(u — Siwir)

Thus, if S; = 0, then the weight from S; is added to the
top portions of Equations 10, whereas if S; = 1 then the
weight from S; is removed from the bottom portion of the
above equation. Furthermore, if Sy = 0 (indicating that the
parent node should be off), then the first term of Equation 10
drops out, whereas if Sp = 1 (indicating that the parent node
should be on), then the second term of Equation 10 drops out.

+ (1 — Si) log

(10)

395

Adding Contextual Information

As defined earlier, context is the added information that can
provide hints about which collection of simple features con-
stitute higher-order representations, and thus helps constrain
the internal representations developed at the deep-layer. Con-
text can be added to the network dynamics simply by directly
connecting a set of context units (denoted S, in Figure 1) to
the deep-layer units, S, via weighted connections w;.

F(S;))= Y, Sclog B

c€cen|S;]

U — Sjwe; + We;)

h(u - Sjwq-)

1 — h(u — Sjwe; + wej)

1- h(u — Sjwcj)
where cn[S;] are the context units directly connected to the
deep-layer units. Thus, context information is directly added

to the activation probabilities of the deep-layer units by sum-
ming the contributions of Equations 10 and 11.

+(1-5;)log

(11)

Adding Sparse Coding Constraints

A further modification to the original framework is to add a
sparse coding constraint on the unit activation probabilities.
That is, all things being equal, sparse coding encourages a
network to use relatively few units to represent any specific
input pattern. In the standard framework, in the absence of
any guiding information, a unit will be active with baseline
probability P = 0.5. Sparse coding can be encouraged within
the network by modifying Equation 8 to include a sparcity
constraint:

Aa:,-

fo(pa[Si]) + ff (ch[S:]) + A - sp(Si) (12)
where X is equivalent to a gain function which modulates how
much effect sp[S;] exerts on the rest of the equation.

Four sparse coding functions are defined. The first and sim-
plest function is an implicit, independent prior constraint that
reduces the baseline probability of a unit being active by a
constant amount;

Constant : sp,[Si] = Iogl—f—a , 0€6<1 (13)

The three other functions defined encourage sparse coding
in an explicit, dependent manner; that is, sparse coding is
dependent on the number of sibling units co-active (excluding
the current unit):

i=) Sn, wheren#i

n€sib[S;]

(14)

The first dependent sparse coding function (Legistic), uses
amodified logistic function to probabilistically limit the num-
ber of units active from 0 to ¢n units.

Logistic: sp,(S;) = iogi?fl’%&)ﬂ (15)
where) 1
by un(i) =1- TTENED) (16)
1+e &

The second dependent sparse coding function places a
prior activation constraint on the units such that probabilis-
tically ¢n units will be active at any given time. This is ac-
complished by sampling the unit activation states from the
binomial distribution:

Binomial : sp4(S;) = fog%"j&%# 17)

where

n! - .
b)) = 77— - ¢ - (1 — @)™ (18)
i'(n -) (
Finally, the last dependent sparse coding function is a mix-

ture of poisson and binomial distributions.

mpy (F+1)+(1—m)by . (F+1)
oy (5)+H(1—m)be n(J)

Pois + Bin : sp,(S;) = log

(19)
where by n(7) is defined in Equation 18 and
]
py(g)=e7- -}, (20)

This mixture of distributions has the effect of probabilistically
having 0 units active as determined by Equation 20 with prob-
ability 7, and having ¢n units active with probability 1 — =
as determined by Equation 18.

Weight Estimation

Once we have sampled the activation space, we are in the
position to estimate the weights. To control the complexity
of the model, a prior is placed on the weights. In using the
“noisy OR" function where all weights are constrained to be
positive, it is assumed that the weight prior is a product of
independent gamma distributions parameterized by a and 8.
Hence, the objective function we wish the maximize becomes

L = P(Dy.n|W)P(W|a,p)

Using the maximization step from the EM algorithm, we
want to set L/w;; = 0 and solve for w;;. Lewicki and
Sejnowski (1997) show this can be accomplished by using
the transformations f;; =1 —e™“% and g; = 1 — ™ and
solving for

PR b, R 587" fiil ;" 1)
N a+B+3, 5™

It should be noted that in the equation, S; is the cause of S;.
Furthermore, S(™ is the unit’s state obtained via Gibbs sam-
pling for the n*® input pattern. The sum in the above equation
is simply the weighted average of the number of times unit S;
was active when unit S; was active. The ratio f;;/g; weights
cach term in the sum inversely to the number of causes for
S;:if S; is the sole cause of S; (meaning that f;; = g;), then
the term has full weight.

Method

The Alphabet We adopted Rumelhart and Siple’s (1974)
featured based alphabet; Each letter was composed of simple
visual features such as horizontal, vertical, and oblique lines.
We modified the original alphabet by breaking both the top
and bottom horizontal line segments into two segments each
in order to equalize all line segment lengths.

Figure 2 shows each of the 26 letters overlayed on the 16
base line segments; a “Space” character (no features active)
was also presented to the network. A subset of these letters
(‘SPC’H, I, N, O, §, X, Z) was used in the first two studies
and the full alphabet was used for the third study.

396

i
= LJE T U .
IR MNPER

CZT1 nz1 INZ\/"7
—J 1 LJV W/ | <£_

Figure 2: The full alphabet superimposed on the 16 features.

Each line segment was represented by a unary code; there-
fore, each letter was represented by turning on the appropri-
ate bits in a 16 bit code. Context was also represented using
a simple unary scheme; there was one unique unit active for
each of the letters within the training set. Thus, there were 8
context representations for the reduced alphabet and 27 con-
text representations for the full alphabet.

Network Architecture and Training The network archi-
tecture consisted of 16 surface units, no mediating units, and
either 10 or 30 deep units for the reduced and full alphabet
training sets respectively. If context was being tested, then
the architectures included 8 or 27 context units in accordance
with the training set.

For all networks, the weight prior was specified with a =
1.0 and 8 = 1.25; weights were initialized between 0.05 and
0.15. Internal units were initialized with P(S; = 1) = 0.5.
Gibbs sampling was performed 15 times for each input pat-
tern, or until the maximum state change probability was less
than 0.05. For the sparse coding experiments, the parameters
were setto A = 1.0, p = 1.0, 7 = 0.5, and v = 0.1; ¢ was
set to 0.1 for the first two experiments and 0.05 for the third
experiment. It should be noted that the parameters were cho-
sen to maximize network performance (with all things being
equal) and a more thorough exploration of parameter space
will be required in the future. For each condition, 25 net-
works were trained with different randomized initial weights.

Results and Discussion

Network performance was analyzed via two methods. First,
the generative nature of the models was tested in terms of
their ability to reproduce the surface pattern presented. Each
pattern was presented to the network and Gibbs sampling was
performed to produce an internal pattern of activity at the
deep layer. This internal activity was then propagated back
to the surface layer units and the number of bits in error—
either “Addition”™ (i.e., 1 instead of 0) or “Omission” (i.e., 0
instead of 1) errors—was calculated. This was performed 100
times for each pattern.

Second, the underlying weight structure of each network
was analyzed both qualitatively and quantitatively. The first
qualitative measure is based on the visual inspection of the
weight matrix as in Lewicki and Sejnowski (1997). The
weight for each input feature is passed through Equation 4
to produce a color code fading from “black™ to “white” (rep-
resenting 1 — 0) and then plotted as the appropriate line seg-
ment. This type of analysis is shown in Figure 4; unfortu-
nately, it is restricted to single networks. The second is a
quantitative measure that can be averaged over runs and is
based on the number of weight vectors (i.e., the weights leav-

Mean Bits in Error out of 16
s & . B R B

o
-

=
n

=]

Sparse Con+Spa

Figure 3: Mean number of errors for the 7 letters across the
4 conditions in Experiment 1. Bottom portion of the bars are
‘Addition’ errors and upper portions are ‘Omission’ errors.

o TR, FNE D,

Usit] Unit? Unitd Unitd Unic§ Unit] Usit2 Untd Unstd Unit §

Uni o Unik7 Unit® Unit® Unat 10 Unith Unit? Unitk Unit® Unit 10
Control Context

- Il

_HLl X X5/

Ualkl Unit2 Uaind Unird Unin § Unit] UnitZ Uit} Unitd Unit§

Uniés %j Unut B Usity Uain 10 Units Unit7 Unith Unit9 m
Sparse Context + Sparse

Figure 4: Typical network weights for the context and sparse
coding manipulations.

ing a parent node) that have at least one non-zero element;
this measure gives a rough estimation of how many units are
being used to represent the data set and therefore local (one
unit per pattern) versus distributed encoding.

Experiment 1: Figure 3 shows the mean number of bits in
error for the reduced alphabet over the four conditions (only
sp; with A = 1.0, ¢ = 0.1 was tested in Experiment 1).
The mean number of bits in error collapsed over all the let-
ters (excluding ‘SPC’) for the Control, Context, Sparse, and
Context+Sparse conditions are 0.96 (5D = 0.36), 0.56 (SD =
0.16),0.62 (5D = 0.18), and 0.30 (SD = 0.09) respectively.

As can be seen, the standard network performs fairly well
on the reduced input set; it averages only 1 bit in error. The
addition of the constraints, however, improves the perfor-
mance of the networks, especially when applied in conjunc-
tion. Furthermore, it should be noted that variability in net-
work performance (as indicated by standard deviations) is de-
creased when constraints are added.

The typical weight structures for the four conditions are
shown in Figure 4. As can be seen, the Control, Context,
and Sparse conditions tended to extract groups of individual
features (indicating a distributed representation) whereas the
other condition tends to pick out complete letters (a more lo-

397

=

Mean Bils in Error out of 1€
(] (-]
al o -

=]
5

o
o)

Binomial Pais+Bin

Canstant Logshe

Figure 5: Mean number of errors for the 7 letters across the
4 conditions in Experiment 2. Graphical interpretation is the
same as in Figure 3.

IT5X_ N

Unit? Unitd Unind Unit$ Ukl Usi? Upird Unikd Unit$
Usith Unit7 Usi® Usitd Uni 10 Unith Unit7 UsitR Uit Unit 10
Constant Logistic
N__| |
1
Usit] Unit? Unitd Usitd Units Unitl Unid2 Unitd Usid Units
Unith Unit 7 Undt & Uit Unit 10 Uit & Unit 7 Unit & Unit9 Uit 10
Binomial Pois+Bin

Figure 6: Typical network weights for the sparse coding ma-
nipulation,

calist representation). It should be noted, however, that the
Sparse condition appears to redundantly encode information
in terms of replicating line segments. Quantitative analyses
show that on average, the number of non-zero weight vec-
tors for each of the four conditions are 4.7 (SD = 0.8), 5.4
(SD=0.9), 8.4 (SD = 1.0), and 7.32 (SD = 0.8) respectively.
This analysis confirms that a combination of the context and
sparse coding constraints encourages local representations of
complete letters to develop.

Experiment 2: Figure 5 shows the mean number of error
bits for the four different sparse coding functions (Constant
[sp,], Logistic [sp,], Binomial [sp;], and Pois+Bin [sp4)).

The mean error for each of the four conditions are 0.64 (SD

=0.21), 1.23 (SD = 0.37), 0.96 (SD = 0.31), and 0.34 (SD
= 0.09) respectively. The first thing to note 1s that two of the
sparse coding functions (sp, and spj) are worse than or equal
to the control condition in Experiment 1. The fourth function
(sp4), however, actually improves performance over the sim-
ple, independent sparse coding constraint.

Figure 6 show the typical weight structures for the four
sparse coding conditions. It is interesting to note that sp, and
sp5 have similar structure (i.e., weaker weights pulling out in-

dividual lines) to the control condition in Experiment 1. The

25

5t

Mean Bits in Error out of 16

05

Control Contaxt

sp1

Sp4 Cte+Sp1 Ctx+Spd

Figure 7: Mean number of bits in error collapsed across let-
ters for the full alphabet plotted for the six conditions.

TG LUEH LR
=X

Uit 1] U 17 P) U b Ul 19 Usi b6 Und 17 Uskis Uss ¥ Usi 30

HHILND WK

Uma 3l Usal Uei2) Ueb24 LeeRS Umide Dne T Unedl Daa 30 Uit 30

Context + sp,

L | Uns 3
SN
Ui 1] Una 12
e

Ul UsaTl Uns1) Una M Uns) Usi M

Context + sp,

[T At

Figure 8: Weights for the fully constrained networks.

other two functions, sp; and spg4, have again pulled out some-
what redundant codings of line segments. This distinction is
supported by the quantitative analysis of the weight structure:
the mean number of non-zero weight vectors for the four con-
ditions are 8.7 (§D = 0.8),4.3 (SD =0.7),4.9 (SD =0.9), and
8.0(SD=0.9).

Experiment 3: In this final experiment, we tested the con-
text and sparse coding constraints on the full alphabet. Only
the sp, and sp, sparse coding constraints were tested. Fur-
thermore, to improve performance, 3 was reduced to 1.05 and
each pattern was only sampled five times per epoch.

Figure 7 shows the average number of bits in error col-
lapsed across all 26 letters for the six conditions (Control,
Context, sp,, sp4, Context + sp,, Context + sp,). Standard
deviations for these six conditions were 0.58, 0.62, 0.42, 0.36,
0.34, and 0.27. Moving to the full data set was detrimental to
Control, Context, and sp; networks; each network tended to
have at least one ‘Additive’ error bit and one ‘Omission’ error
bit for each letter. This was not the case for the three other
conditions, with the best performance being produced by the
combination of the Context and the sp, constraints.

The average number of non-zero weight vectors for each of
the six conditions were 25.5 (SD =3.7), 13.8 (SD = 6.4), 30.0
(8§D = 0.0), 18.5 (§D = 1.6), 25.0 (SD = 1.5), and 19.5 (5D

398

= 1.4). The network weight structures for the two fully con-
strained networks (i.e., Context + Sparse Coding) are shown
in Figure 4 (the four other conditions were not graphed as
they tended to have smaller weights). As can be seen, com-
bining the context and sparse coding constraints produced
networks with distinct weight structures. Once again, it ap-
pears that the Context + sp, function encourages local en-
coding. Interestingly, however, the Context + sp, function
developed a more distributed, redundant encoding.

General Conclusions

The results from these three experiments suggest that a com-
bination of context and sparse coding constraints are required
for the formation of adequate internal representations, espe-
cially when the data set is large. Moreover, analysis of the
weight structure suggests that more accurate performance is
due to the development of internal representations that are
both distributed and redundant, as opposed to purely local.
Although these results are preliminary, they suggest future
studies within this generative framework. Specifically, future
research will consider networks with mediating layers, and
networks trained on words using the feature based letters.

In terms of visual cognition, these results suggest that feed-
back connections in the brain may provide context informa-
tion to relatively low-level visual areas, thereby aiding their
ability to discover structure in their inputs. Furthermore,
sparse coding may be required to create redundant represen-
tations that actually increase performance.

References

Anderson, J. R. (1990). The adaptive character of thought.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Bernardo, J. M., & Smith, A. E M. (1994). Bayesian theory.
New York: John Wiley & Sons.

Lewicki, M. S., & Sejnowski, T. J. (1997). Bayesian unsuper-
vised learning of higher order structure. In M. C. Mozer,
M. 1. Jordan, & T. Petsche (Eds.), Advances in Neural In-
formation Processing Systems (Vol. 9, pp. 529-535). Cam-
bridge, MA: MIT Press.

MacKay, D. J. C. (1995). Bayesian methods for supervised
neural networks. In M. A. Arbib (Ed.), The handbook of
brain theory and neural networks (pp. 144-149). Cam-
bridge, MA: MIT Press.

McClelland, J. L. (1998). Connectionist models and Bayesian
inference. In M. Oaksford & N. Chater (Eds.), Rational
models of cognition. Oxford: Oxford University Press.

Olshausen, B. A., & Field, D. J. (1996). Emergence of
simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381, 607-609.

Olshausen, B. A., & Field, D. J. (1997). Sparse coding with
an overcomplete basis set: A strategy employed by V1?
Vision Research, 37,3311-3325,

Rumelhart, D. E., & Siple, P. (1974). Process of recognizing
tachistoscopically presented words. Psychological Review,
81,99-118.

	cogsci_1999_393-398

