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ASYMPI'OTIC PLANARITY; 

* AN S-MATRIX BASIS FOR THE OKUBO•ZWEIG-IIZUKA RULE 

G. F. Chew and C. Rosenzweig+ 

Department of Physics and Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

October 7, 1975 

ABSTRACT 

A mechanism is exhibited that monotonically depresses the 

cylinder component of the topological expansion with increasing t, 

and it is conjectured that all. nonplana.r S-matrix components diminish 

as t increases, exchange degeneracy and t~ Okubo~Zweig-Iizuka rule 

becoming more accurately satisfied. · Such asymptotic planarity is 

comJ;Bred to the field-theoretical concept of asymptotic freedom. The 

characteristic low-t cylinder "quenching interval" is found to be the 

inverse of the mean value over_ a two-reggeon loop, of 

1 2( ')2( 2; 2 1f a t 1 - t 2 ) ( -t), where t 1 and t 2 are the squared masses 

of the loop reggeons and a' is the trajectory slope. For leading 

trajectories the low-t cylinder quenching interval is predicted by this 

formula to be.roughly 0.5 GevF--consistent with the observed pomeron 

intercept and slope, with the p-ro and f-A
2 

mass differences arid 

with the (¢,w) deviation from ideal mixing. As t grows negatively 

over a corresponding interval, it is predicted that the pomeron will 

become nearly a pure su
3 

singlet. If the pion mass helps to set the 

scale for reggeon loops coupled to unnatural-parity trajectories, the 

cylinder quenching interval will be larger--explaining the large (~,~·) 

+ Present address: Physics Department, University ·or Pittsburgh, 

Pittsburgh, PA 15260. 
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deviation from ideal mixing as well as the large 1f-~ mass difference. 

Even when the small-t cylinder quenching is rapid ("precocious 

planarity") the large-t approach to the planar limit turns out to be 

gentle. A by-product of this study is an explanation of the approx­

imate reality and linearity of trajectories at large t. 

I. INTRODUCTION 

Two sets of striking experimental facts, the exchange degen­

eracy of high-lying Regge trajectories and the validity of the Okubo­

Zweig-Iizuka (OZI) ideal-miXing selection rules for particles on these 

trajectories, can be combined into the statement that the hadron S 

matrix in certain regions is approximately planar. The adjective 

"planar" describes the leading component of Veneziano's topological 

1 
expansion --a component characterized by the combi~tion of exchange 

degeneracy with ideal mixing. Substantial nonplana~ (e.g., pomeron) 

effects are experimentally observed near t = o, but. along leading 

trajectories these have largely disappeared already at the first 

physical vector mesons (p, w, ¢), which exhibit a high degree of 

exchange degeneracy and ideal mixing. In the 1Jr--:particle region, the 

tiny widths of the new particles suggest that nonplanar effects have 

become still smaller. Such a growing accuracy of the planar approx­

imation as mass increases has been called "asymptotic planarity". 
2 

Because key properties of the planar approximation are shared 

by simple quark models, the physical content of asymptotic planarity 

--an S-matrix concept--is related to that of asymptotic freedom--a 

field-theoretic concept--but the former has been studied far less than 
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the latter. The objective of this ];:a per is to extend understanding 

of both the theoretical origin and the experimental meaning of 

asymptotic planarity. 

Leading corrections to the planar S matrix correspond to 

nonplanar diagrams such as shown in Fig. 1--corrections extensively 

studied in Refs. ( 2 - 4). For t ~ : 0, . Fig. la--called by 

Veneziano a "cylinder" correction--has long been associated with 

pomeron exchange. In Ref. ( 2 ) it was shown that, more generally, 

this cylinder correction shifts all isosinglet planar trajectories 

and alters their couplings away fran ideal mixing. The f trajectory, 

in ];:articular, is shifted upward near t = 0 and becomes closer to an 

su
3 

singlet; the shifted f is the pomeron. Other isosinglet 

trajectories, such as f ', w and ¢, are also shifted and the 

corresponding coupling shifts of physical ]E.rticles on these trajectories 

correspond to violations of the OZI rule. Pomeron pra:ninence and 

OZI-rule violations are thus, both; manifestations of the cylinder shift, 

the difference being only in the value of t. This ]E. per studies 

continuation of the cylinder shift from t < 0 to positive values of 

t where particle po~es appear. 

It was observed in Ref. ( 2 ) that according to experiment, the 

f trajectory possesses a prominent su3-singlet component at t = 0 

while at the same time behaving like a nearly ideally-mixed system 
? 

at t = mf-. The spacing between f(pomeron) and A
2 

near t = 0 

is correspondingly much wider than near t = mf2 Analogous statements 

may be made about the entire leading isosinglet family (f, w, f', ¢). 
In the present paper we exhibit a theoretical mechanism to explain 

the foregoing. Our mechanism stems from planar Regge behavior and 

suppresses the cylinder as t grows in the positive direction. The 

mechanism works in the reverse sense for negative t --enhancing the 

cylinder--and since no experimental indication exists for planarity 

at large negative t we are led to propose a one-sided status for 

"planar asymptopia.".. It. is in fact plausible that the cylinder may 

become a dominant effect at negative t, the pomeron becoming more 

and more nearly a pure su
3 

singlet. We shall show that our positive-t 

cylinder-quenching meclBnism is capible of correlating the prominent 

nonplanar effects observed for t -~ 0 with the smallness of such 

effects for t;(: 0.5 Gel along the leading vector-tensor trajectories. 

We .find that, following a sharp initial decrease of cylinder 

strength (precocious planarity), the asymptotic approach to pure 

planar couplings is gentle-'-a circumstance reminiscent of that 

encountered in asymptotically free field theories. \The rate of 

initial decrease in our mechanism is determined by the masses of low-

lying ph;;-sical mesons, such as the p. The cylinder "quenching 

interval" in t varies ·inversely with these masses, so when the :n: 

mass is important, as seems likely for unnatural ]E.rity trajectories, 

cylinder suppression is initially less rapid. Our mechanism thus 

pr6mises to explain the relatively large degree of nonplanarity 

experimentally exhibited in the (Tj, '!) ') system. 

The mechanism leads to a monotonic decrease (without sign change) 

in the real put of the cylinder cbrrection to the leading natural 

parity trajectories. When combined with the charge-conjugation 

considerations developed in Ref. ( 2 ), such behavior correctly predicts 

2 2 while m < m A corresponding statement is that 
p (l) 

that 

cylinder rotations away from ideal mixing are in opposite (but 

predictable) directions for tensor and vector mesons. 

• 

.: 



.--7)-

-5-

We proceed now in the following three sections to derive the 

foregoing results. 

II. A CYLINDER-QUENCHING MECHANISM FOR POSITIVE t 

In the analysis of Ref. ( 2 ·) attention was directed to a 

cylinder twist operator C ( t) whose matrix elements acting in the 

space of planar Regge poles could be depicted as in Fig. 2, the indez 

i labeling the sequence· of planar poles. Cylinder corrections to the 

planar S matrix are determined by this operator. The question at issue 

is why C(t) should be much smaller for t;;:: 1 Ge,f than for t ~ 0. 

Let us suppose that the loop in Fig. 2 can be represented by 

a helicity-pole expansion as .in Fig. 3. The well-known two dimensional. 

region of integration over dt1 and dt
2 

will be treated bel.ow in 

detail.. The integrand contains two triple-Regge vertices together 

with Regge "propagators" for tlie dashed links. The fact that each 
±i1ra. · 

link is twisted means that the Regge phase factor e J, which would 

be carried by a corresponding planar link, is to be replaced by l. 

For the loop as a whole the factor. cos :rc(aj (t1 ).- aj (t2 )) con-
1 2 

stitutes the onl.y distinction between. twisted and planar loops; our 

task is to understand why, as t · grows in the positiVe direction, 

such a seemingly minor difference can make twisted loops much smaller 

than the corresponding planar loops. 

The mechanism is easy to exhibit for small positive t--below 

the first normal threshold associated with the loop in question. In 

this region the loop phase s:r;ace may conveniently be expressed through 

variables k and w such that5 

1 2 2 ~ ~ 4 t - k - w .:. w( -t) (II.l) 
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One finds 

Jd~12 roo 
dk L' dw, (II .2) 

)0 -oo . 

the limits 

the point 

of integration being independent of t • When t passes 

2 t
0 

= ~ , m being the mass of the first physical particle 

on a loop trajectory, the integral oVer d.w must be approprf.a.tely 

defonned, but below this threshold the integration variables k and 

w are everywhere real. In consequence the difference t 1 - t 2 is 

pure imaginary for o < t < t 0 

21w(t)j- • (II.3) 

If the loop trajectories are 'approximately linear functions of t 1 
\ 

and t 2 with the same slope, then 

(II.4) 

and the factor which for negative . t was oscilia.tory develops 

are exponential behavior in For example, if aj and a. 
1 J2 

the same trajectory, aj , 

(II.5) 

so the untwisted loop becomes larger than the twisted loop, the effect 

growing with t • Although the magnitude of the difference between 

twisted and untwisted loops depends on other factors in the loop 

integral that determine the relative contributions from different 

intervals in w, one may characterize the factor suppressing the 

twisted loop (enhancing the untwisted loop) as the mean value 
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1 

( cosh 2n a' w (t)2 ) (II.6) 

Consistency with t~e planar bootstrap requirement6' 7 means that 

the vertex factors in the planar loop must compensate this strong. 

increase from the Regge phase factor~ giving the planar loop an 

essentially constant strength for all values of t • (See Eq. (III.l) 

.below.) In the twisted loop it is these same vertex factors-­

unbalanced by (II.6)--that produce a strong decrease in the cylinder 

operator C(t). We do not, hOwever, require a detailed understanding 

of the vertex factors to estimate the ratio between twisted and 

untwisted loops. 

Near t = 0 we may exp:md (II. 6) to define a characteristic 

"cylinder quencfuns" interval. .That is, since· 

1 

cosh 2n a' w (t)2 ~ 

the cylinder is substantially extinguished within the interval 

t c 
1 

2 2 ,2 ( 2) 
.n a w t=O. 

(II. 7) 

(II.8) 

In the following section we estimate 
2 

(w )t=O in a simple example. 

III. AN ESTIMATE OF. THE SMALL-t CYLINDER-QUENCHING INTERVAL 

Let us consider a diagonal element of C(t) with respect to 

a leading planar Regge pole (f, w, p, A2 ), with this same trajectory 

appearing in both links of the loop. Figure 2 then simplifies to Flg.4. 

The corresponding untwisted loop has been studied by Veneziano and 
6-8 

collaborators in connection with a planar bootstrap model, and we 

shall borrow from .their-observations about triple-Regge vertices and 

-8-

reggeon propagators. 

1 

. 6,7 
A typical bootstrap equation for the planar loop ~s 

(III.l) 

where we shall refer to the r functions inside the integrand as 

"propagators" •. The vertex factor G(t, t
1

, t
2

) is expected to produce 

a strong cutoff at large values of the quantity a(t) - ac(t1,t2 ), 

where 

Since 

a- a c 

· (III.2) 

. 1 2 2 
:::: 1 - a(o) + 2a' ( 4 t + k + w ) (III.3) 

such a cutoff not only ensures convergence of the loop integral but 

·.guarantees that (k2 + w2 ) ~ 1/a' .. Obviously (w2 ) :5 1/a', but 

we would like a sharper estimate. 

Using simple multiperipheral and dual-resonance mcidels as a 

guide, followilig Ref. (6, 7), it appears that for k
2

, w2 and t all 

small the variation of the loop integrand will be dominated by the 

first physical-particle poles in the loop propagators r(l- al,2) 

together with the "threshold" behavior of the vertices. Since the 

squared magnitude.of the loop momentum is 

(III. 4) 

while the "orbital" angular momentum of the loop is a - ac 1, one 
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* expects a 

2(0:-CX ) 

"centrifugal barrier" suppression factor proportional to 

k c 
' 

2 2 
effective for k :S m , vlhere m is the smallest relevant 

p3.rticle mass--controlling the "range of the force". In our example, 

this is the p mass. At the same time the p poles in the prop:~gabr 

product r(l - ~)r(l - ~) give a dependence 

1 1 (III.5) 
2 2 2 2 ' (k + w + m ) p 

2 
(t - m ) (t 1 p 2 

2 
so the scale on both counts is set by m .--a fact whose importance 

p 
. . 2 2 

we shall see later. Because the combination k +.w appears in 

(III.5), it is convenient to change variables from (k, w) to (u, e), 

where 

u k
2 2 

+W 

(III.6) 

e -1 I tan k w , 

with 

f<¢]2 [ 
0 

de (III. 7) du 

and ask for the· average value 

( 2 ) \u cos e (III.8) 

~ ( u) (cos 2 a) . (III.9) 

* From the s-channel viewpoint, such a factor represents the 

kinematical lower limit constrairt on t 1, 2 The mass m is then 

the minimum mass of an important cluster in the multiperipheral 

chain. 
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What is a reasonable estimate for (cos2 e) ~ 

dependence on e arises from the threshold-factor 

a:-a: 2 a:-a: 
= u c (sin e) c , 

we easily calculate 

1 
2 (1 + ex - a ) ' c 

or, in view of (III.3) rewritten as 

a: - a: ~ a:' ( m 
2 

+ 2u] , 
c t=O P 

we have 

2 (cos e) ~ 

Our result, then, is 

(u) 

2 [ 1 + a:'(mp2 
+ 2(u))] 

so with 

(u) - l/2cx' , 

If the chief 

(III.lO) 

(III.ll) 

(III.l2) 

(III.l3) 

(III.l4) 

(III.l5) 

an estimate that we have verified by a more careful numerical 

calculation, we find 

(III.l6) 

corresponding tu 
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(III.l7) 

The cylinder is thus substantially quenched by the time one reaches 

the lowest-lying physical vector mesons. 

Assuming all leading trajectories to have similar slopes, we 

have found that the small-t cylinder quenching interval depends 

inversely on the mass of the lowest-lying physical particle occur-

ring in the reggeon loop or within the chain of .singularities that 

build the pole under study. 

the reciprocal of 

Formula (II.8) eXpresses t through c 

arid this mean value, quite naturally, 

reflects the lowest relevant particle masses. 

2 
A consequence of the foregoing is that if mp were smaller 

than l/2a', the leading vector mesons would be less planar. Why is 

the rr mass not important for the vector-tensor trajectories when 

one considers loops such as shown in Fig. 5? This is an old question, 

and the answer here is the same as in countless models that have 

attempted to represent p and f as rrrr composites. The loop 

orbital angular momentum, even near t = o, is sufficiently high that 

the threshold (centrifugal repulsion) factor suppresses the pion poles 

in the reggeon propagators. The contribution of the pion loop, 

relative to the vector-tensor loop of.Fig. 4, is thereby reduced, as 

is the importance of the physical pion pble in determining (w
2

). 

It is the P mass--controlling the "range of the force" between two 

pions-~that tends to set the s~ale of the pion loop so, even .if the 

pion loop is significant, the rate of cylinder damping remains as 

estimated above. 
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On the other hand, what about a loop such as in Fig. 6, which 

we would expect to be important for the properties of unnatural-parity 

Regge poles. Here the orbital angular momentum is similar to that of 

Fig. 4 (lower than in Fig. 5) so the pion propagator pole will be more 

prominent. Furthermor~ the "ran€;e of the force" between rr and f 

will reflect the rr mass. A careful calculation is needed to 

establish the scale of cylinder damping in this case, but experience 

with the somewhat analogous pion-nucleon loop suggests that when the 

two lowest loop masses_ are different the scale is set by their 

geometric mean. We might then guess the scale t c 
of cylinder 

suppression for an unsymmetrical loop like that of Fig. 6 to be a 

factor m /m ~ 5 ionger than that for the symmetrical loop considered p 1( 

in Sec. III. The cylinder would consequently not be quenched until 

t :<: 2 Ge,f. 

Note that there are two reasons for low-mass mesons of. 

unnatural parity to exhibit less exchange degeneracy and a higher 

degree of OZI-rule violation than natural-parity mesons. Even if the 

cylinder-quenching interval were the same as for natural parity, the 

lower mass of (rr, TJ) in comparison to (p, w) would make the former 

particles less planar. The larger quenching interval further enhances 

the difference. 

Masses larger than m may be expected to control the cylinder 
p 

quenching interval for trajectories associated with higher-threshold 

conserved quantum numbers. If charm exists, for example, the scale of 

cylinder quenching for a charmonium trajectory would be set (inversely) 

by the mass of the lowest-lying c~rmed meson: This mass is expected 

to be substantially greater than m , so asymptopia should be even 
0 

more precocious than along the leading trajectories. 

• 
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IV. CONTINUATION BEYOND THE FIRST THRESHOLD IN t 

If we wish to calculate the mean value (II.6) at values of t 

near or above the first threshold, a complication arises from the 

leading IE.rticle poles in the reggeon proiE.gators. For a fixed real 

value of k, the poles at occur at 

~ (k2 2 i 
+ ~ t•] (IV.l) w i +~) 

and 

1 [: -~ t~] 1 

w (k2 + ~2)2 (IV.2) 

For small t these poles reside on the imaginary w axis, away from 

the contour of integration, but one of each ];Bir heads towards the 

real axis as t increases, crossing the axis at 2 2 
t = 4(k + ~,2). 

The w contour may be deformed to allow a continuation in t but 

there will ultimately be a contour-pinching collision between the 

_ upward-moving ~-associated pole, that starts below the real axis, and 

the downward-moving ID;:i-associated pole, that starts above the real 

axis. This collision occurs at 

the point where energy is conserved for physical particles of masses 

~ and ~· To continue past this point we must exercise care. 

After both poles have crossed the real axis, the original w 

contour will have been deformed as shown in Fig. 7a, which is 

equivalent 

words, for 

to the sum of the three 
1 

.( 2 2 ~ 
t > (k + m1 ) + 

contours in Fig. 7b. In other 

(k2 + m_ 2 )t ~ c ) we must supplement 

the integral along the real w axis by the sum of two residues. As 

-14-

t increases further more poles will cross the real axis and more 

residue terms correspondingly will augment the real-axis integral. We 

do not propose here to calculate the added terms but direct attention 

-to an important qualitative feature thereof': Each pole residue is 

evaluated at an integer value of 0} with a2 a real function of k 

and t, or vice-versa (w is pure imagiDa.ry). The factor 

cos :n:(O]_ a2 ) is thus an oscillating function and does not grow in 

magnitude. Growth occurs only in the integral along the real axis. 

Since imaginary parts of loop_integrals arise entirely from 

pole residues, the effect to which we are here drawing attention tends 

to make Regge trajectories predominantly real (and therefore linear). 

A related remark ·is that resonance partial widths get comparable 

contributions from twisted and untwisted loops. It is only in its 

real part that the positive-t untwisted loop is larger than the twiste:L. 

The pole-residue contributions to the w integral have both 

real and imagiDa.ry parts and one expects the former to be of the same 

order of magnitude as the latter, especially for twisted loops where 

the oscillating factor cos :n:(O]_ - ~) is missing. In what follows 

we concentrate attention on the contribution to Re C(t) from the 

integral along the real w axis, ignoring the pole contributions to 

Re C(t) on the grounds that they are of the same order as Im C(t). 

To the extent that the leading trajectories tend to be linear--with 

small imaginary parts--such an approach is justified. 

How large a ratio of untwisted to twisted real parts do we 

expect for large t ? Let us return to our simple example in order 

to achieve an estimate. 
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V. LARGE-t CYLINDER QUhT~-CHING 

The present state of ignorance about the large-t behavior of 

triple-Regge vertex. functions rules out confident estimates of cylinder 

- 2 
quenching for t >> m • We nevertheless here draw attention to a 

p 

mechanism that tends to smooth out_ the _initially exponential form of 

cylinder damping. This mechanism stems from the reggeon propagators 

which, as we shall show; favor mean values of ( w2 ) that diminish with 

increasing t. 

A plausible form for the propagator product in Fig. _4 is 

f(l - ~ )f(l - a2 ), and for the integral along the real axis, away 

from the poles on the imaginary axis, it should be legitimate to use 

the Stirling formula 

r_(z) ex: ~ ) 
e 

Since 

using units where a' 

1 
Z-2 

1, we have 

(V.l) 

(V.2) 

C(l - al )C(l - a2) re (~2 :/t j-i =v ~2w( t )~ tan -1 w(~ )t] ' 
(V.3) 

where 

2 2 2 I 6 = k + w + m - t 4 . - - p (V.4) 

The branch of the arctangent in the exponent of (V.3) is such that 

1 
(V.5) 

w(t)2
--+ 0 

l'. > 0 

-16-

while 

-1 1 

tan (w(t)2/6) :t 1( (V.6) 
' -- .l 

w(t) 2 :t 0 

6 < 0 

Because the exponent 

negative, the propagator factor (V.3) tends to favor small values of 
1 

w(t)2 . In particular, for t >> 4(k
2 - 2 2) + w + m. , where 6 is large 

p1 

and negative, this exponent approaches -2rcw( t )2 , exactly the same 

argument appearing in the cylinder-suppression factor, cosh 2rcw(t)i~ 
This is no accident since, for ~ and ~ 

original factor cos rc (~ - ~) is- equal to 

equal to integers the 

(-1 )~ -a2 , gi viilg the 

-sign alternation precisely required to compensate the alternating sign 

of the pole residues in the r functions--so that the net sign of 

every planar pole residue is positive. Now, even though the Stirling 

formula contains no poles, it must reflect the alternating sign of the 

poles in f(l - ~)f(l - a2 ) so one should not be surprised to find 

Formula (V .3) tending to compensate the analytic continuation of 

cos rc(~ - a2 ). In any event, the reggeon propagators favor _w values 
- l 

of the order l/(t)2 in the integral along the real w axis. 

To proceed further we assume that the-vertex functions give 

2 
separate (multiplicative) cutoffs in k 

of t such that 

1 t 
4 >> l max 

2 
+ w 

max 
2 

+ m p 

and 
2 

w and consider values 

The last factor in (V.3) then leads to the estimate 

~ --

-~ 
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1 

(cosh 2~ w(t)2 } ~ 
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dw exp ( -2~(t )i J 

1 -w 
2 max 

w 
max 

(v.8) 

(V.9) 

The rate of cyl1IIder quenching bas been slowed to an inverse square 

root. 

To contrast the low-t and high-t estimates of cylinder 

quenching let us set w ~ m. max p 
The results of this section and 

that of Sec. III are then combined in .Fig. 8. We do not take too 

seriously our high-t estimate but believe the qualitative feature that 

cylinder damping slows from the precipitous initial rate. 

VI. APPLICATIONS TO EXPERIMENT 

A. Pomeron Properties for t ~ 0 

One manifestation of the cylinder quenching interval tc is 

the difference between the slopes of pomeron and rho trajectories near 

t = 0. According to Ref. (2) the displacement of the pomeron (f) 

above the p arises from twisted loops of the form.of Fig. 4. That is, 

if 

a (t) + oo(t), 
p 

(VI .1) 

the shift Lla(t) is approximately given by a superposition of such 

loops. We have defined the p~.rameter tc so that the logarithmic 

derivative of a twisted loop differs at t 0 from that of the 

corresponding untwisted loop by -1/t . 
c 

The corresponding statement 

for the difference between pomeron and rho trajectories is 

or 

r(ro) 'l !00 
L =o 

t 
C. 

~ ~(o) - aP(o) 

a~(o) - a~(o) 

· (VI.2) 

(VI.3) 

Such a formula corresponds to the statement that at t = tc, where 

the cylinder correction has become nearly quenched, the displacement 

between pomeron and rho will have become much smaller than_at t = o. 

This requirement, as seen in Fig. 9, immediately implies a pomeron 

slope less than the rho slope. The lowering of the pomeron slope 

through action of the factor cos rr(a1 - a2 ) was discovered by Chan, 

Baton and Tsou. 9 

The observed t = 0 intercept difference between pomeron and 

rho is about 0,4, while the slope difference appears to be in the 

neighborhood of 0.6 GeV-2
. The estimate made above in Sec. III, 

t ;, 0.5 Ge-..l, is thus in satisfactory accord with (VI.3). It is 
c 

noteworthy that according to (VI.3), if the pomeron slope at t = 0 

· is not to become n~gative, the cylinder quenching interval may not be 

smaller than _ (ap(ci) - ap(o)]/a~(o) . 
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Because the cylinder operator C (t) is analytic near t = 0 

it is to be expected that the cylinder is much.larger for t $ -t 
c 

than for t = 0, making the pomeron more nearly an su3 singlet. 

Higher terms in the topological expansion, corresponding to pomeron-

pomeron cuts, will probably then also be important, but one may look 

qualitatively for high-energy diffraction to be closer to su3 singlet 

in character for t $ -t c than for t = 0. A comparison of exper-

imental differential elastic np with Kp and of pp with ¢P cross 

sections should show a trend toward equality as t becomes more 

negative. 

An associated qualitative expectation is that for t. < -tc the 

pomeron.trajectory will be pushed as far above the rho trajectory as 

allowed by general principles; i.e., one looks for the pomeron at large 

negative t to be relatively flat, the slope becoming even smaller 

than at t = 0. 

B. Violation of Exchange Degeneracy and OZI-Rule. for Vector and 

Tensor Mesons 

In Ref. (2) a model was formUlated for the cylinder shift of 

the six leading trajectories carrying zero quantUm numbers:. 

f, 
0 0 

p , A
2 

, w, 
I 

f ' ¢. The assumption of su3 symmetry allowed 

the model to be characterized by a single function k(t), measuring 

the cylinder coupling between planar trajectories; the mechanism of 

the present paper may correspondingly be condensed into the rough 

statement 

Re k(t) -- k(O) 
l 

cosh 2n w(t)2 

As .discussed above in Sec. IV the imaginary part of 

(VI. 4) 

k(t) arises from 
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poles at imaginary values of · w and cannot be estimated by such a 

formUla.. Additionally, because the imaginary part is closely 

associated with physical thresholds, the assumption of su
3 

symmetry 

is unreasonable. (For t < 1 Gel-, for example, the imaginary );arts 

of f and p trajectories arise almost entirely from the nn 

channel, with no contribution from KK.) Our comparison with exper-

iment will therefore be limited to the real part of the cylinder 

coupling, assuming this to arise in an approximately su
3

-symmetrical 

fashion primarily from the integral along the real w axis. 

and for 

It was shown in Ref. (2) that 

k(O) 

... 
t > t we expect 

- c 

(VI.5) 

k(t) to have. become so small that first-

order perturbation theory is ample. The first-order tra:jectory shifts, 

according to Formulas (VIL3') and (VII.4) of Ref. (2), are given by 

Since 

we may 

Re(af(t) - aA
2 

(t)) ~ Re(ap(t) - n;)t)) ~ 2 Re k(t). 

(VI.6) 

- a' Re(mA 
2 2) 

Re0f - aA) - - mf 
2 2 ' 2 · t=m 

A2 

Re(a - a0 · - 2 m 2) - a' Re(m -
p w 2 CD p 

· t=m p 

employ (VI . 6) to obtain values for k( t) at t 2 
m 

p 

(VI. 7) 

(VI. 7 I ) 

and 

t = m 2 insofar as the real parts of the (A2, f, p, r1:) masses 
A2 

(pole pOsitions) are known. The signs of these real part differences, 
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as given by experimental Breit-Wigner parameters~ are as predicted from 

(VI.4)~ but non-negligible imaginary parts prevent determination of 

more than the order of magnitude of k(t). (Experience with the 6 

resonance shows that when a resonance width is ;;: 100 MeV the real 

part of the mass may be shifted by as much as 20 MeV from the Breit­

Wigner value.) One can infer only that 

2 
Re k(t = m ) ~ 0.03, p Re k(t = ~ 2 ) ~ 0.04 

2 
(VI.8) 

Such numbers are in comfortable accord with k(O) 0.15 + 0.05 

together with our estimate tc - 0.5 Ge-l-. 

A.more prec.ise determiriation of k(t) in the intermediate-t 
. / 

region emerges from the observed OZI-rule violation of vector mesons--

their deviation from ideal mixing. A standB.rd measure of this 

violation is the mixing angle between ~ and ~ (J = l, negative 

charge conjugation), a variety of measurements, expressed through the 

angle 9- defined in Ref. (2), having given 

1) (VI. 9) 

In Ref. (2) this mixing angle at fixed t rather than at fixed J is 

related to k(t) by 

so, 

--{2 Re k(t) 

a(l)(t) - a¢(t) 

if we interpret (VI.9) as referring to t at the mean of 

we have 

. Re k(t = 0.8 Ge-l-) ~ 0.02 . 

(VI.lO) 

2 
m (l) and 

(VI.ll) 
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This value accords with (VI. 0), confirming a marked drop from the value 

of k at t = 0 although we have no evidence for a continued fall as 

t increases beyond tc. Both the sign and order of magnitude of k(t) 

are as expected from our mechanism. 

The major source of uncertainty in comparing with experiment 

arises from the non-negligible imaginary parts of the trajectories-­

as evidenced by the resonance widths. Within the moderate-t interval 

in question these imaginary parts are of the same order of magnitude 

as the real parts of the cylinder shift. Only if resonance· widths 

decrease with increasing resonance mass can we look forward to a 

quantitatively clean comparison between theory and experiment. 

C. Pseudoscalar Mesons 

Any mechanism for the OZI rule and its breaking must account 

for the failure of pseudoscalar mesons to exhibit ideal nonet structure 

to the degree manifested by vector and tensor mesons. The 1f-T] mass 

difference is much larger than that between p and ill and the 11-11' 

mixing angle is displaced at least 4o o from the ideal, in contrast to 

the 4° ill-¢ displacement. The mechanism studied in this paper 

predicts cylinder quenching for unnatural-parity mesons but with a 

larger characteristic quenching interval than for natural parity-­

perhaps by as much as a factor 5.--because of the small pion mass. We 

coruEquently expect, if k (t) 
u 

is defined to be the cylinder coupling 

between unnatural-parity planar poles, that throughout the mass range 

of the pseudoscalar nonet where t < 1 Geif; we shall have k (t) 
u 

diminished little from k (0). The n-11 mass difference and the . u 

TJ-TJ' . mixing angle correspond to ku ~ 0.3, a number which is large 

compared to (VI.ll) but of the same order as (VI.5). The anomalously-
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large non-planarity of the pseudoscalar nonet we thus attribute to 

the anomalously-small pseudoscalar mass. Barticles of higher mass 

along unnatural-parity trajectories we expect to exhibit a degree of 

planarity higher than that shown by the leading pseudoscalars. 

D. The New Barticles 

We come finally ~o the ~ particles, for which the OZI-rule 

has been widely invoked to explain the narrow widths, assuming the 

existence of a quantum number such as charm in addition to electric 

charge and strangeness. What does our mechanism have to say here? 

If the perturbative rules of Ref. (2) are extended straight-

forwardly to the new quantum number, the coupling of a 1jr trajectory 

to a trajectory of type n is (Eq. IV.5 of Ref. 2) 

1jr 
g (.t) 

n 

(n ic(t) I t) 

o:1jr( t) - an ( t) 
(VI.l2) 

a mixing prescription identical to that proposed by other authors 

without invoking the topological expansion. The smallness of 1jr_ 

mixing relative to that of ¢ is usually attributed to the large 

spacing between o:1jr and an' i.e.. to a large denominator in (VI .12). 

The topological mec~nism of the present paper, however, has been seen 

in Sees. III and V to yield two additional sources of relative 

smallness for 1jr mixing: Because C(t) falls with increasing t, 

the mixing matrix element itself decreases with increasing particle 

mass, and, if the lowest-lying mesons carrying the new quantum number 

are more massive than the p, the rate of cylinder suppression with 

increasing t will be greater along 'V trajectories than along w 

and ¢ trajectories. 
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In principle any cylinder matrix element may be calculated 

from a knowledge of the planar G matrix, but we shall not here attempt 

a quantitative estimate of 1jr-particle widths. A host of detailed 

questions, such as the sequence of w and ¢ daughters, must be 

faced in order to achieve meaningful numbers. 

VII. CONCLUSION 

Veneziano motivated his topological expansion entirely by the 

smallness of 1/~ ( N characterizing the number of effective 

hadronic internal degrees of freedomf Without regard for the values of 

invariants such as t • This p3.per has identified a mechanism that 

tends to suppress cylinder components of the expansion in the physical­

particle (positive-t) region, and since all higher components in the 

. topological eXp:l.nsion involve "handles" closely related to cylinders, 

our mechanism may be presumed to affect the general convergence 

properties of the expansion. Asymptotic planarity becomes plausib1e. 

at least along leading trajectories-~not only the cylinder but all 

corrections to the planar S matrix becoming progressively smaller as 

t grows in a positive sense. The converse statement is also rea-

sonable, merging with the familiar idea that, as t becomes negative, 

multi-pomeron cuts (multi-handles) grow in importance. A less familiar 

'idea to which we have drawn attention is that the pomeron should 

become a purer singlet as t increases negatively. 

A by-product of any mechanism for asymptotic planarity is an 

explanation of why leading trajectories are almost real (linear) at 

large positive t. Because imaginary parts of planar and twisted loops 

are equal, up to a sign, a mechanism that makes the planar loop larger 
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than the twisted, loop must make the combined real p3.rt large c6mp3.red 

to the combined imaginary p3.rt. 

Asymptotically-free gauge theories, in contrast to the 

topological expl.nsion, associate violation of the OZI rule (deviation 

from ideal mixing) with virtual gluon intermediate states. Gluon 

couplings are supposed to become progressively weaker with increasing 
10 

t, giving the same qualitative physical effect as our quenching of the 

cylinder. For large t· both standpoints predict a gentle approach to 

the ideal mixing limit, but the observed rapid small-t development of 

, ideal mixing along vector-tensor trajectories has been mysterious from 

the field-theoretical point of view. From·our S-matrix standpoint, 

"precocious planarity" occurs whenever the lowest physical-PJ.rticle 

masses important for the reggeon loop integrals are not much smaller 

N than 1 GeV; the factor 21t2 in Formula (rr.8) is an important 

* ingredient. 

Should the pion mass be important in a reggeon loop integr~l, 

the development of planarity along coupled trajectories would be. 

~~· relatively slow. We conjecture that the large deviation from ideal 

Q mixing of the pseudoscalar mesons is due to their being coupled to 

loops where pions play a llia.jor role. 

Finally, it may be observed that a monotonic variation of. 

cylinder strength with t , whatever the underlying mechanism, leads 

to a clear operational meaning for the identity of pomeron and f: 

The leading Hegge trajectory exhibits ideal mixing at large positive t 

and gradually shifts to a pure singlet character at large negative t• 

* One may hope that an analogous factor will explain precocious scaling 

in the deep inelastic regime for lepton-hadron collisions. 
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