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- ASYMPTOTIC FLANARITY: -
*
AN S-MATRIX BASIS FOR THE OKUBO-ZWEIG-IIZUKA RULE
G. F. Chew and C. Rc>senzweig+

Department of Physics and Lawrence Berkeley Laboratory
University of California, Berkeley, Californie 911-720_ )

October 7, 1975
* ABSTRACT

A mechanism is exhibited that monotonically depresses the

cylinder component of the topological expansion with increasing t,

and it is conjectured that a_il.nonplamr S-matrix components diminish
a’.é t increé.ses, exchange degeneracy and the Okubo-Zweig-Iizuka rule
becoming more accurately satisfied.- ..Such asymptotic plamfity is
compered to 1';he field-thearetical concejrt of ésymptotic ffeedom.' The .
characteristic low-t cylinder "quenching interval' is found to be the
inverse of the mee.n value over:a two-reggeon loop, of

%ne(a')g(tl - t2)2/‘(-t),_ where t; end t, are the squared masses

- of the loop reggeons and a_' is the trajectory slope. For leading

trajectories the low-t cylinder quenchihg'interval is predic’ced by this
formula to» be .roughly 0.5 Ge\f?-fconsistent with the observed pomeron
intercept and slope, with the p~-w and. »f-Ae' mass differences and
with the (f,») deviation from ideal mixiﬁg. As t grows negatively
over & corresponding interval, it is predicted that the pomeron will
become nearly a pure SU5 singlet. If the piph mess helps tb set thg

scale for reggeon loops coupled to unmatural-parity trajectories, the

cylinder quenching interval will be larger--explainihg the large V(TI:TI')

Present address: Physics Department, University of Pittsburgh,

Pittsburgh, PA 15260.
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deviation from ideal mixing as well as the large n-n mass difference.

Even when the small-t cylinder quenching is rapid ("precocious

 planarity") the large-t approach to the planar 1imit turns out to be

gentle. A 'byfproduct of this study is an explanation of the approx-

imate reality and linearity of trajectories at large t.

I. INTRODUCTION

Two sets of striking experiﬁental facts, _tﬁ_e exchange degeﬁ-
éracy .of high-lying Regge trajectories and the validity of the Okubo-
Zweig-Tizuka (0ZI) ideal-mixing s.electiojn rules for perticles on fhesg
trajectories, can be combined into the statement that the hadron S
matrix in certain regions is _approximateiy plané.r. Thé adjective
"planar"” describes the leading component ofA Veneziaﬁo's topological
expansionl--a cqmponent. characterized by the combir.i%tion 6f exchange
degeneracy with ideal mixing. Substantial nonplanar (e.g., pomeron)
effects are experimentally observed mear t = O, but along leading
trajectories these have hrgely‘disap'pe_ared.alreaciy at the first
physical vector mesons (p, ®, $), vhich exhibit a high degree of
exchange degenéracy and ideal mixing. In the Y-particle region, the

tiny widths of the new particles suggest that nonplanar effects have

" become still smaller. Such a growing accuracy of the planar approx-

imation as mass increases has been called "asymptotic planarity'.
Because key properties of the pla.nar approximation are shgs.red

by simple quark ﬁzodels, the physical content of asymptotic p.'lﬁnari’éy

- --an S-matrix coricept--is related to that of asymptotic freedom--a

fiéld-theoretic concept--but the former has been studied far less than
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the latter. The objective of this paper is to extend understanding
of both the theoretical origin and the experimental meaning of
. asymptotic planarity.

Leading corrections to the planar S matrix correspond to
nonplenar diasgrams such as shown in Fig. l--corrections extensively
studied in Refs. (2 - 4). For t < 0,  Fig. la--called by
Veneziano & "cylinder” correction--has long been associated with
pomeron exchange. In Ref. (2) it was shown that, more genmerally,
this cylinder correction shifts all isosinglet planar trajectories
and alters their couplings away from ideal mixing. The f trajectory,
in particular, is shifted upward near ‘t = 0 and becomes closer to an
SUs singlet; the shifted f is the pomeron. Other isosinglet -

trajectories, such as f', o and f, are also shifted and the

corresponding coupling shifts of physical particles on these trajectories

correspond to violations of the 0ZI rule. Pomeron prominence and
0zZI-rule violations are tims, both; manifestations of the cylinder shift,
the difference being only in the value of t. This peper studies
-continuation of the cylinder shift from t < O to positive values of,
t where pérticle poles appear. _ | _

It was observed in Ref. ( 2) thét according to exﬁerimént, the
f 'trajectory possesses a prominent SUB—éinglet component at t = O
while at the same time behaving liké a nearly ideally-mixed system

2
at t = mf'. The spacing between f(pomeron) and A

> near t ; o]

is correspondingly much wider than near t = mfz.‘ Analogous statements
may be made about the entire leading isosinglet family = (f, @, £', P).
In the present paper weé exhibit a theoretical mechanism to explain

the foregoing. Our mechanism stems from planar Regge bebavior and

-be

suppresses the cylinder as t grows in the positive direction. The
mechaniém works in the reverse gense for negative +t --enhancing the
cylinder;-and since no experimental indication exists for planarity
at large negative t we are led to propose a one-sided status for |
"plansr asympto;ﬁaf., It is in fact plausible that the cylinder may
become a dominant effect_ét negative t, the pomeron becoming more
and more nearly abﬁure‘.SU5 singlet. We shall show that our positive-t
Cyliﬁder-quenching mechanism is capeble of correlating the proﬁinent

nonplanar effects observed for t .S O with the smallness of such

effects for t 2 0.5 Gevz_ along the leading vector-temsor trajectories.

We find that, following a-sharp initial decrease of cylinder

strength (precocious planarity), the asymptotic approach to pure

planar couplings.is gentle--a circumstance reminiscent of that

encountered in asymftoﬁically free fleld thecries.? The rate of
initial decrease in our mechaniém is determined by ﬁhe masses of low-
lying physical mesons, such as the p. The cylinder “"quenching
interval” in -t va;ies'inversély with fpese masses, so when the x
mass 1s important,'as seems likely for unnatural parity trajggtories,
cyiinder suppression is initiaily less rapid. Our mechanism thus
préﬁises tO'expiain the relatively large degree of nonplanarity

experimentally exhibited in the (3, n') system.’

The mechanism leads to & monotonic decrease (without sign change)

in the real part of the cylindér correction to the leading natursl
parity trajectories. .When_combihed with the charge-conjugation

considerations developed in Ref. (2 ), such behavior correctly predicts

that m 2 <m

2 2
p while m <m

2
A2 o) w

cylinder rotations away from ideal mixing are in opposite (but

A corresponding statement is that

predictable) directions for tensor and vector mesons.
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We proceed now in the following three sections to derive the

foregoing results.

IT. A CYLINDER-QUENCHING MECBANISM FOR POSITIVE t

- In the analysis of Ref. (2 ) attention was directed to a
cylinder twist operator . C(t) whose matrix e;ements acting in the
space Sfbplanar Regge pqles could be depicted as in Fig. 2, the index
i labeling the'éequence'of planar poies. Cylinder corrections to the
Planar S matrix are aefermined by fh;s opergtor. The qpestibn at issue
is vhy C(t) should be'much;smaller for t ® 1 GeV than for t <o,

Let us suppose that the loop in Fig. 2 can be représented by .

K- helicity—polé expansion as in Fig. 3. The well-known two dimensional

and dt

1 5 will be treated below in

region of integration over dt

. detail. The_iptegrand contains two triple-Regge vertices togethef

The fact that each
tinc,
J, which would

with Regge "Dropegators" for the dashed links.
link is twistea means tﬁat5thé Reggé phase factor e
be carried by a cérresponding planar link, is to be replaced by 1.
For the loop as & whole the factor. cos_n(@dl(tl)_- Oﬁa(tQi> con- .
stitutes the only distinction between twisted and planar loops; our
task is to understand why, as t - grows in the poéitiv‘e‘ direction,
such a seemingly minor difference can make’twisted loops‘mucﬁ smaller
‘than the corresponding planar loops.

The mechanism is easy to exhibit for small positive t--below

» the first normal threshold associated with the loop in question. . In

this region the loop phase space may conveniently be expressed through

variables k and w such that’

rolw=

t =']]it;k2-w2i'w(-t)

1,2 (11.1)
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One finds

o _
/ dk aw , (11.2)
o] - Moo v
the 1imits of integration being independent of t . When t passes
the polnt t, = lw®, m being the mass of the first physical particle

on a loop trajectory, the integral over dw ' must be appropriately

'defonmed; but belov this threshold the integration variables k and

w are everywhere-real. In conseQuénce the difference tl'_ t2 is

pure imeginary for 0< t <.t0':

6 - %, = 21w_(1;)é S S | - (11.3)

1 2

If the ioop trajectories arefapproxihately linear‘functions of tl

3

and t, with the same slope, then

o () - aae(tzj ® @ (0) - (0) ¥alley - ) (L)

and the factor which for negative t was osclllatory develops

exponential behavior in (t)2 . _For_example, if Qﬁ and a, ~are
. C 1 -Y2
the same trajectory, Oﬁ ’.

’

cos nf () - ay(t)) < commzmwe)® (Ls)

so the untwisted loop becomes larger than the twisted loop, the effect

growing with t . Although the magnitude of the difference between

"twisted’and untwisted loops depends on other factors in the loop

1ntegral that determine the relative contrlbutions from dlfferent
1ntervals in w, one may characterlze the factor suppressing the

twisted loop (enhancing the untwisted loop) as the mean value



. L
( cosh 2x a' w ()2 ) . (11.6)

Consiétency with the planar bootstrap'requirementé’7 means that

the vertex factors in the planar loop must compensate this strong

increase from the Regge phase factor, giving the planar loop an

essentially constant strengﬁh for all valués of t . (See Kq. (III.l)

.below.) 1In the fwisted loop it 1s these same vertex factors--
“unbalanced by (II.6)--that pToduée a strong decre?se in.the cylinder
operator  C(t). We do not, hOwever; réquire a detéiled undgrsﬁanding
of the ve;tex faqtors to estimaﬁe thé ratio between twisted and
untwisted loops. A v
Near t = O we may expand (II.6) to:define a characteristic
"cylinder.quencﬁing" interval. ' That is, since -
cosh 2n a' w (t)% X1 +"2n2 a? Pt (I'II..'?)_ '

the cylinder is'éubstantially extinguished within the interwval

-1

c 2 2 4,2
' ax” a® Wy,

In the following section we estimate (wz) in a simple example.

t=0

III. AN ESTIMATE OF. THE SMALL-t CYLINDER-QUENCHING INTERVAL

Let us consider a diagomal element of C(t) with respect to

a leading planar Regge pole (f,‘u» 0, Aé), with this same trajéctory
appearing in both links of the loop. Figure 2 then simplifiés1n Pig. L.
The corresponding untwisted loop has been studied by Veneziano and

collaborators " in conmection with & planar bootstrap model, and ve

shall borrow from their. observations about triplé—Regge vertices and

b o= —— . ' (11.8)_'

-8

reggeon propagators.

A typical bootstrap equation for the planar loop is 2
1= Talt) ab,, 67 (t,15,4,)0(1 - a(t) )@ - alt,))
X cos n(a(tl) - a(tg)) ; (I11.1)

where we shall refer to the I' functlons inside the integrand as

" "propagators”. . The vertex factor G(t,tl,tz) .is expected to produce .

- a strong cutoff at large values of the quantity af(t) - Qé(tl’tz)’

where
ac(tl,tz)-' = a(_tl)+ a(ta) -1. -(11_1.2)

Since

'a-ac -~ 15a(0).+ea'(%.t +k2'+w2)‘, ' (I1I.3)

such a cutoff not only ensures convergence of the loop integral but

" guarantees that <k2 +v0) S. 1/a'.. Obviously <w2> < 1/a', but

~

we would like a sharper estimate.

Using simple-multiperipherai and dual-resomance models as a

. . ' P
guide, following Ref.(6,7), it appears that for k, w? and t all

small the variation of the loop integrand will be dominated by the
Pirst physical-particle poles in the loop propagators TI'(1L - dl 2)
. . : 4

together with the "threshold" bebavior of the vertices. Since the

squared magnitude of the loop momentum is

1

. 2
T A, ty t2)

= X, ‘ (T11.%)

while the "orbital” angular momentum of the loop is & - a, - 1, one
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expects a "centrifugal barrier" suppression factor proportional to

2 (a-o:c ) o 5 .
k , effective for k £ m", where m is the smallest relevant

particle mass--controlling the "range of the force”. In owr example,

this is the p mass. At the same time the p poles in the propegetor

product I'(1 - di)P(l - Oé) give a dependence

(t -m'E)(“t _m2) - (k2 +w2 +m2)2 ’ . ‘(III.5)
* P e P "t=0 - fa

so the scale on both counts is set by m e L-=8 fact whose 1mportanceb_
we shéll see later. Because the combination k? +.w? appears in

(1III.5), it is convenient to change variables from (k, w). to (u, 8),

where
u = k? + w2
_ (111.6)
8 = tant k/w ,
- with
| o A
d¢12 N . du / ie (111.7)
o
and ask for the average value
W) = c_os2 9) (111.8)
) 2 2 . ,
x (u){cos™ 8) . (111.9)

From the s-channel viewpoint, such a factor represents the

kinematical lower limit constrairt on t The mass m is then

1,2°
the minimum mess .of an important cluster in the multiperipheral

chain.

«~10~

What is & reasonsble estimate for {cosc 8) ? If the chief

dependence on © arises from the threshold factor

2oz—'ozc a-a, o O 7
(™) = u (sin” 8) , (111.10)
we easily calculate
2 .\ . 1 S
(COS 9> ~ m, (III.ll)
or, in view of (I1I.3) rewritten as
a-a = a'fm " +2uf , (111.12)
¢ g0 L P
we have
. \
cos® e) = - 1 5 — . (111.13)
2 [l +o:'(mp +2<uﬂ
Our result, fhen, is
/
W) R {u) 5 - (III.14)
2 [1 + a'(mp + 2(u>)}
so with
2 . .
{w) ~ m° x 1/ea, (111.15)

[

an estimate that we have verified by a more careful numerical

calculation, we find

; 2> 1 2

W X Zm - . (111.16)

corresponding to
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5

C 2
2n Ci' m

The cylinder is thus substantially quenched by the tiﬁe one reaches .. |
the lowest-lying physical vector mesons.

Aséuming all leading trajectories to have similar élopes, Qe
have found that the small-t cylindér quenching interval depends
inversely on the mass of the lowest-lying physical-;article occur-
ring in the reggeon lbop or within the chain éf,sinéularitieg-that
build the pole under study. Formula (1178) eXﬁresses t, through
the fecigrocal of <ﬁ2>t=0’ and this mean value, quite naturﬁlly,
reflécts thg lowest relevant article masses..

| A consequence of the foregqing is.thgi if ﬁpe were smaller
‘than l/Ed', the leading vector mesons would be}less pPlanar. Why is_
the = mass not. important for the vector-tensor trajectbrieé when
one considers loops éuch as shown in Pig. 5?‘ This is an-old éuestion,
and the answer here ié.the same és in couﬁtless ﬁodels that have
'attempte& to represent p and f as =nxn coﬁposites. . The léop
orbital angular momentum, even near t = 0, is sufficiently high that
the threshold (centrifugalbrepulsion) factor suppresseé the pion poles
in the reggeon propagators. The coﬁtribution of the pidn looﬁ,
relative to the vector-tensor loop of.Fig. 4, is thereby reduced, as
is the importance of the_physical pion pole in determiniﬂg (w2>.
It is thé p mass--controlling thé ”range'of.the force" between two
pions--that tends to §eﬁ the scale of the pion loop so,” even if the
plon loop is significaht, the rate of cylinder damping remains as l

estimated above.

b, X —y—es— ¥ 0.5 GeV . (111.17)
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On the other hand, what sbout a loop such as in Fig. 6, which(
we_would expect to be important for the properties of unnatural-parity
Regge poles. Here the orbital engular momentum is similar to that of
Fig. b (lower than in Pig. 5) 50 the pion propagator pole will be more
prominent. Furthermore the ”ranée of the force" betwéen n and f
will reflect the = mass. A cafeful calculation is needed to
‘establish thé scale of cylindef-dampiﬁg in tﬂis caée, but experience
w;fh thg somewhat‘analogous plon-nucleon loop sﬁggests that when the‘
two lowest loop m&séesvare different the scale is setvby their
geometrie mean. We might then guess the scale tc of cylinder
suppression for an unsymmetrical loop like that of Fig. 6 to be a
féctér. mp/ﬁzJT &5 1oﬁgef than that for the symmetrical loop consldered
ip Sec. 1II. - The gylinder wopld_consequently not be quenched_until
t 2 2ceV. | |

Note that there are two reasons for low-mass mesons of .

‘unnatural parity to exhibit‘léss exchange degeneracy and a. higher

degree of 0zI-rule violation thén natural-parity mesons. -Even if.the
cylinder-quenching inéerval were the same as for‘néﬁural parity, the
lower mass of: (n, 1) iﬁ.coﬁiarison to (p, w) would make the former
perticles leés planaf. The larger quenching interval further enhances
the difference,

Masses larger than mp may be expected to control the cylinder

quenching interval for trajectories associated with higher—threshold

. conserved quantum numbers. If charm exists, for example, the scale of

cylinder quenching for a charmqnium tra jectory would be set (inversely)
by the mass of the lowest-lying charmed meson. This mass is expected

to be substantially greater then m, SO asymptopia should be even

more precocious than along the leading trajectories.



real axis as t increases, crossing the axis at t = h(k2 + m1
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Iv. CONTINUATION BEYOND THE FIRST THRESHOLD IN %
If we wish to calculate the mean value (II.6) at values of ¢t
near or above the first threshold, a complication arises from the
S . .
leading particle poles in the reggeon propagators. For a fixed real
. _ 5 )
value of k, the poles at tl,z = ml’2 occur at

i
2

Nt +m12)» +%t (1v.1)

<
I
.
[

and . '
) 2 Y
o+ m22) . %‘-'tz . (1v.2)

%
]
P
+

For small t these poles reside on the imaginary w axis, away from

 the contour of integration, but one of each pair heads towards the

,2)7

The w contour may be deformed to allow a continuation in t but

there will ultimately be a contbur-pinching collision between the

_upward-moving m -associated pole, that starts below the realbaxis, and
! !

the downward-moving mé-associated pole, that starts above the real

axis. This collision occufs at

.t% = (k2+m12)—2--+> (k2-+ m22)§>). - (1v.3)

the point where energy is conservéd for physical ;articles of masses

and . To continue past this point we must exercise care.
o o ! _ _

After both poles have crossed the real axis, the ofiginal w
contour will have beén deformea as shown in Fig. Ta, which is
equivalent to the sum of thelthreé contours in Fig. 7Tb. In other
words, for t > .((k? . mi2)?

the integral aldng the real w axis by the sum of two residues. . As

+ (k2 + ng)% :f we must supplement

<1l
t 1increases further more poles will cross the real axis and more

residue terms correspondingly will augment the real-axis integral. We

do not propose here to calculate the added terms but direct attention

“to an important qualitative feature thereof: FEach pole residue is

evaluated at an integer value of & with «, & real function of k

2
and t, or vice-versa (w is pure imaginary). The factor

cos n(oi - Qb) is thus an oscillating function and does not grov in
magnitude, Growth occurs only in the integral along the real axis.

‘ Since imaglnary parts of loop integrals arise entirely from
pole residues, the effect to which we are here drawing atfention tends
to make Regge'ﬁrajectories rredominantly real (and therefore linear).
A reiated remark'ié that resonance partial widths getvcomparable
contributions from‘twistea and untwisted loops. It is only in its
real part that the positive-t untwisted looﬁ is larger than the twistel

The pole-neéﬂhe contributions to the w integral have both
real and lmaginary parts and one expects the former to be of the same
order of magnitude as the iatter, especially for twisted loops where
the oscillating factor cos n(oi - Qé) is missing. In what follows
we concentrate attention on the contributipn to Re C(t) from the
integral aléng the real w agis; ignoring the pole contributions to
Re C(t) on thé_grounds that théy are of the same order as _Iﬁ c(t).
To the exteﬁt that the leading trajectories tend to be linear--with
small imaginary perts--such an approach is justified.

How large a ratio of untwisted to twisﬁed real parts do we

expect for large t ? Let us‘return to our simple example in order

‘to achieve an estimate.
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V. LARGE-t CYLINDER QUENCHING
. The present state'of ignoranée_ébout ﬁhe'large;t behavior of
triple-Regge vertex.functions rules out confident estimates of ¢ylinder
quenching fo? £t >> mbe' We nevertheless'heré draW'attentioﬁ to ér
mechanism that tends to smooth outvthe_initially'exponential form of
cylinder dampigg. This mechanism stems from the reggeon propagators ;b
:which, as we shall show; favor mean values of (w?) ;that diminish with
increasing t. - o ‘
_ A.ﬁlausible form for the propagator product in Fig.:k is

F(l - ai)F(l - oé),vahd'fdr the integrél along the real axis, avay
from the poles on the imaginary axis, it should be legitiméte ﬁo use

the Stirling formula

-

Te) « () . . L (v.1)

Nl

Since

(v.2)

using units where «' =1, we have

- . A-3 - . ) .
. 2 2 1 X *
r - - _ N AN i z - <1 w(t
(1 al)l‘(l. ae)‘a: <———-—62 > exp--2.w(t) tan x s
‘ : ' S (v.3)
} where.
o = L mp2 - t/h . ‘ . S (v
The branch of the arctangent in the exponent of (v.3) is such that
' el vk L
tan (w(t)Z/A) L w(t)éﬁﬁ (v.5)
w(t)i -0
N>0

-16-
while -
1, A
tan {%(t)zﬁq) - (v.6)
w(t)® - ¢
A< O

: Y . 1
Because the exponent -2w(t)? tan l(w(t)zﬂﬁ) is always

negative, the propagatbr factor (V.3) tends to favor«small values of
2

. ’ .
w{t)2. In particular, for .t >> h(k2 W+ mpe), vhere A 1is large

. : 1 »
and negative, this exponent approaches -2nw(t)z, exactly the same
argument appearing in the cylindér-suppressiqh factor, cosh 2nw(t)%;
This is no éééident since, for & and a, equal to Integers the

&%

original factor cos n(a1 -’aé) _is-equal to (-1) , giving the

-sign alternation preciéely réquifed to compensaté the alternating sign

of the pole residues in the I functions--so that the net sign of
every planar pole residue is positive. Now, e?en though the Stirling
formula contains no poles, it must reflect the alternating sign of the

poles in TI'(1 - al)T(l "Qé) so one should not be surprised to find

 Formula (V.3) tending to compensate the analytic continuation of

coé.n(ai-- 9@). ,Ip any event, the rgggeon pfopagatofs favor':w values
of the order bl/(t)% in thé intégral along the real w axis.

To proceed further we assume that the vertex functions give
separé.te (multiplicative) cutoffs in k2 and w and consider velues

of t such that

% t >> 2 + w2 + 2 .
max max o]

)

The last factor in (V.3) then leads to the estimate

S
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W
wmax

'dy césh[Qﬂw(t)%]exp('-Enw(ty%]

0 .
. wx -
;[y dw exp [-Qﬂw(t)%]

&

{cosh 2x w(t)%)

max

- (v.8)
1
. . E wmx
. 4 _"———_—l'
B : @n(ﬂ%)
= n(t)% W ; - - . ) _ (v.9)

-
The rate of cyliﬁder.quénching hﬁs been slowed to an inverse square
root; -
| To contrast the low-t and high-t estimates of cylinder
quénchi?g let us set LA x m . The rgsults of this section and
that of Sec. III are then combined in Fig. 8. We do not take oo _
seriously ouf high-t estimate but believe the qﬁalitafive feature that

cylinder damping slows from the precipitoué'initial rate.

. VI. APPLICATIONS TO EXPERIMENT

" A. Pomeron Properties for t fo

One manifestation of the cylinder quenching interval . tc is
the difference between the slopes of pomerOn and rho trajectories near

t = 0. According to Ref. (2) the displacement of the pomeron (f)

above the o arises from twisted loops of the form,of;Fig. ke, That is,

if
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aplt) = a(t) + colt), , ‘ (VI.1)

the shift 2a(t). is approximately given by & superposition of such
loops. We ﬁave'defined the pafameter tc so that the logarithmic
derivative of a twisted loop differs at t = O from that -of the
corresponding untwisted loop by -l/tc. The corresponding'statement

for the difference beétween pomeron and rho trajectories is

),
1 Lo

b v 2050 | (v1.3)
ap(O) - aP(O) :

&

1 : o
R . i ‘(VI-Q)
¢

or .

Such a formula corresponds'to the statement that at t = tc, where
the cylinder correction has_becqme nearly quenched, the displacement
between pomeron and rho will have become much smaller than st -t = 0.

This reéuirement, as seen in Fig. 9, immediately implies a pomeron

slope less than the rho slope. The lowering of the pomeron slope

through action of the factor cos n(al - 02) was discovered by Chan,
9 )

Patoﬁ and Tsou.
The.ofserved t = 0 intercept difference between pomeron and

rho is about O;h; while the slope difference appears to be in the

neighborﬁood of 0.6 GeV'Q. The estimate made above in Sec. III,

t,® 0.5 GeV, 1s thus in satisfactory accord with (VI.3). Tt is

‘noteworthy that according to (VI.3), if the pomeron slope at t = O

"is not to bécome negativeé, the cylinder guenching interval may not be

smaller than _ {aP(O) - ap(o)]/a;(o) X
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Because the cylinder operatdr c(t) 1s analytié‘near t =0

it 1s to be expected that the cylinder is-much larger for t S -tc

3

than for t = 0, making the pomeron more nearly an SU singlet.‘
Higher terms in the topological expansion, corrésponding to pomeron-

pomeron cuts, will probably then also be important, but oné‘may,look

qualitativély for high-energy diffraction to be closer to SU, singlet

3
in character for t $ -tc thean for t = O.. A comparison of ékper-

imental differential elastic =p with Kp and of pp with Pp cross

sections should show a trend toward equality as t beéomes more
negative.
An associated qualitative expectation is that fbr t < -tc the

pomeron. trajectory will be pushed as far above the rhd trajectory as

allowed by general principles; i.e., one looks for the pomeron at large

negatlve t to be relatively flét, the slope becoming even smaller

than at t = 0.

B. Violation of Exchange Degeneracy and OZI-Rule for Vector and

Tensor Mesons ‘
In Ref. (2) a model was formilated for the cylinder shift of
“the six leading trﬁjectorieé carrying zero quantum numbers: .
f, po, Aéo aa. f', B. - The assumption of SU3 symmetry éllowed
the model to be charactérized by a singie funétidn k(t), measuring
the cylindef coupling between plahar trajectories; the ﬁechanism of

the present paper may correspondingly be condensed into the rough

statement

k(0)

Re k(t) = (vi.h)

[N

( cosh 2r w(t)® )

As discussed above in Sec. IV the imaginary part of k(t) arises from

-20-

poles at imaginary values of *w and cannot be estimated by such a
formula. Additionally, because thé imaginary part is closely
associated with.physical thresholds, the,assumption of SU3 symmetry
is unreasonable.. (For t < l‘GeVE, for example, the imaginary parts
of f and p. trajectories arise almost entirely from the nx
channel, with no.éontribution from KK.) Our comparison with exper-
iment will therefore be ;imited t6 the real part of the cylinder

coupling, assuming this to arise in an approximately SU,-symmetrical

3

fashion primarily from the integral along the real w axis.

It was shown in Ref. (2) that

k(0) = 0.15 % 0.65 | (v1.5) -

& )

and for t 2 t, we expect k(t) to have become so small that first-

order perturbation theory is ample. The first-order trajectory shifts,

according to Formulas (VII.3') and (VII.4) of Ref.(2), are given by

Re(qf'(t) ;aA (t)) Re(ap(t) -a(8) ® 2 Re‘lf(t-).

e

2
' (v1.6)
Since : o
Rela, - o SRR a' Re(m -m 2) (VI.7)
£ A A, g
e 2 : 2
- t=mA
2
Re<% - a;> A Re(m_2 -m 2) (Vvi.7")
P w : w e}
, 2
t=m
. v 0

we may employ (VI.6) to obtain values for k(t) at t =m" and

t-m 2 _insofar as the real parts of the (A

£, p w) masses
A . 2 2 s pl N
2

"(pole positions) are known. The signs of these real part differences,

Lt
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as given by experimental Breit-Wigner parameters, are as predicted from
(vi.u), buf non-negligible imaginary parts prevent determination of
more than the order of magnitude of k(t). (Experience with the A
resonance shows that when a resonance width is 2> 100 MeV the feal
part of the mass may be shifted by as much as 20 MeV from the Breit-
Wigner value.) One can infer only .that' ' '

' 2) S o.oh . (VI.B)

. 2
Re X(t=m ") £ 0.03, m
p A2

Re k(t =

Such numbers are in comfortable accord with k(0) = 0.15 * 0.05
together with our estimate tc ~ 0.5 GeVe.

A more precise determination/gf k(f) in the intermediate-t

. reglon emerges from the observed 0ZI-rule violation of vector mesons--

their deviation from ideal mixing. A standard measure of this

violation is the mixing angle between $ and o (J =1, negative

‘charge conjugation), a variety of measurements, expressed through the

angle ©  defined in Ref. (2), having given

‘e'(J'=1) = -4 +2 ., : (ﬁ.9)

In Ref. (2) this mixing angle at fixed t rather than at fixed J .is

related to k(t) by

Ve Ré k(t)

ozw(t) - a¢(t)

8 (t) =

(VI.10)
so, if we interpret (VI.9) as referring to t at the mean of ma? and

m¢2 , We have

‘Re k(t = 0.8 GeV?) x 0.02 . (VI.11)

2.

This velue accords with (VI.8), confirming a marked drop from the value

"of k at t = 0 although we have no evidence for a continued fall as _

t increasses beyond tc. Both the sign and order of magnitude of k(t)
are as expected from our mechanism.

The major source of uncertainty in compering with experimenf'

'arises from the non-negligible imeginary parts of the trajectories--

as evidenced by the resonance widths. Within the moderate-t interval
in question these imaginary parts are of the same order of magnitude
as the real parts of the éylinder'shift; Only 1if resonance’widths»
decrease with increasing reéonance mass cﬁn‘we‘ldok forward to a
quantitatively clean comparison between theory and éxperiment.

C. Pseudoscalar Mesons

Any mechenism for the 0ZI rule and its breaking must account
for the failure of pseudoscalar mesons to exhibit ideal nonet structure
to the degree manifested by vector and tensor mesons. The n-1] mMass
difference is ﬁuch larger than that between o ahd w and the n-q'

mixing angle is displaced at least 4o from the ideal, in contrast to

- the I w-¢ displacement. The mechanism studied in this peper

predicts cylinder quenching fof unnatuial-parity mesons but with a
larger characterisﬁic quénching interval than for natural parity--
perhaps by as much as a factor. 5--because of the small pion mass. We
consequently expect, if ku(t) is defined to be the cylinder coupling
between unnatural-parity planar poles, that throughout the mass range
of the pseudbécalar-nonet where t < l.GeVE; we shall have kﬁ(t)
dimini;he@ little from ku(O). The n-n mass difference and the

t

1-1' mixing angle correspond to k = 0.3, a number which is large .

u

compared to (VI.11) but of the same order as (VI.5). The anomalously-
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large non-planarity of the pseudoscalar nonet we thus attribute to
the anomalously-small pseudoscalar mass. Particles of higher mass
“along unnatural-parity trajectories we expect to exhibit a degree of

planarity higher than that shown by the leading_pseudoscalars. 

D. The New Particles

We come finally tb the V particles, for which the 0ZI-rule
has been widely invoked to explain the mnarrow widthﬁ; assuming the>
existénée'of a quahtum number sﬁch as.charm in addition to electric
charge and strangeness. What does our mechanism have to say here? .

'If the perturbativé rules of‘Ref..(Ej are extended stra;ght-

- forwardly to the new quantum number, the coupling of a V¥ trajectory

to a trajectory of type n 'is (Eq. IV.5 of Ref. 2)

(n le(x)| ¥
) = ——————— . (vi.12)
aw(t) - an(t) o
a mixing prescription identical to that proposed by other authors
without invoking the topological expansioﬁ; The smallness‘Of L3
mixing relative to‘that of B is usuélly attributed to the large
spacing between a, and‘”an{ i.e. to a large denominator in (vi.12).
‘The tqﬁologiqal mechanism éf the presenﬁ baper, however, has been seen
in Secs. IIIvand V to yield two.additionai'sources of relaﬁive
smallness for V¥ mixing: Because c(t) falls with increasing t,
the mixing matrix elemént itself decreases with increasing particle
mass, ggg) 1f the lowest-lying mesons carrying the new quantum-numbef
are more massive thén the p, the rate of cyliﬁder suppression with
increasing .t will be gfeater.along ¥ trajectories thén along -

and é trajectories.

-2l
In principle any cylinder matrix element may belcalcu;ated
from a knowledge of the planar U matrix, but we shall not here atteﬁpt
a quantitative estimate of Y-particle widtHs. A host of deﬁailed‘
questions, such as the sequence of w and b déughtgrs, must be

faced in order to achieve meaningful numbers.

VII. CONCLUSION

Veneziano.motivated his topolegical expansion entirély by the

smallness of"l/N2 (N characterizing the number of effective

hadronic Internal degrees of‘freedomf'without regéfd for the values of
invariants_Sﬁch as t . This paper has identified a mechanism that
tends to suppress cylinder components of the expansion in the physical-

particle (positive-t) region, and since all higher components in the

.topological'expansion involve "handles" closely related to cylinders,

our mechanism may be presumed to affect the general convergence

properties of the expansion. Asymptotic planarity becomes plausible,

"at least along leading trajectories--not only the cylinder but all

corrections to the planar S matrix becoming progressively smaller as
t grows in a positive sense. The converse statement is also rea-
sonable, merging with the familiar idea that, as t becomes negative,

multi-pomefon cuts (multi-hendles) grow in importance. A less familiar

‘idea to which we have drawn attention is thatbthe pomeron should

become a purer singlet as t increases negatively.

A By-product of any mechanism for asymptotic planarity is an
explanation Aéf vhy leading trajectories are almost real (linesr) at
large positive t.

Because imaginary parts of planar and twisted loops

are equal, up to a sign, a mechanism that makes the planar loop larger

i J
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than +the twisted loop must make the combined real part large compared

to the combined imaginary part.

Asymptotically-free gaufgertheories', in contrast to the

" topological expansiom, ‘associate violation of the 0ZI rule (deviation

from ideal mixing) with virtual gluon intermediate states. Gluon

couplings are -supposed to become progressively weaker with increasing
10 o : ) :

t, giving the same qualitative physical effect as our quenching of the

cylinder. For large +t both standpoints predict a gentle_ approach to

the ideal mixing limit, but the observed rapid small-t development of.

ideal mixing along vector-temsor traj‘ectorié_s has been mysterious from

the fileld-theoretical point of view. From-our S-mafrix standpoint,

v"preéocious planarity" occurs whenever the lowest physical-particle

ma.sseé .’uﬁportant for the reggeon loop integrals are nof much smaller
than 1 GeV; the factor 2:_:2 in Formula (II.8) is an mpérﬁant
ingredient.* -

o Should the pion mass be important in a reggeon loop integral,
the deveiopment of plan'arity.along coupled trajegtories would be
relatively slow. We conjecture that the large deviation from ideal
mixing of the pseudoscalar mésons isvc.lue to their being coupled to
ioops where pions pla.y ai major rolé.- » '

 Finally, it mé.y be observed that a monotonic variation of.
cylinder strength wi_th t , whatever the underlying mechanism, leads
to a cléar operaf.ional meaning for the identitb; of pomeron é.nd f:

The leading Regge trajectory exhibits ideal wixing at large positivé t

and gradually shifts to a pure singlet character at large negative’ t.

* One may hope that an analogous factor will explain precocious scaling

in the deep inelastic regime for lepton-hadron collisions.
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FIGURE CAPTIONS

A nonplanar duality diagram symbolizing the cylinder,
The cylinder in its role as pomeron.

The cylinder in its 0ZI-rule-violating role.

Diagrammatic'representation of a cylinder-operator matrix

element (1IC(t)|i'> connecting planar Regge poles.

“Helicity-pole expansion of Fig. 2, the cross indicating

twisted links..

Twisted loop with the same (vector-tensor) trajectory in

both internal and external links.

"~ Two-pion loop coupled to a leading trajectory of the vector-

‘tensor family

Loop with & pion link, coupled to a pseudoscalar trajectory.
Contour in w after first threshold in t has been passed.

Low-t and high-t estimates of cjlinder quenching along

leading ve-_ctcir-tensof trajectories.

The pattern of leading vector-tensor trajectories according

to Ref. (2).
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