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Cue-based learners in parametric language systems: application of general results to
a recently proposed learning algorithm based on unambiguous ‘superparsing’

Stefano Bertolo, Kevin Broihier, Edward Gibson and Kenneth Wexler
Department of Brain and Cognitive Sciences - MIT
Cambridge, MA 02139
{bertolo, kevin, gibson,wexler}@psyche.mit .edu

Abstract

Cue-based learners have often been proposed as models of
language acquisition by linguists working within the Principles
and Parameters framework. Drawing on a general theory of
cue-based learners described in detail elsewhere (Bertolo et
al,, 1997), we show here that a recently proposed learning
algorithm (Fodor's Structural Triggers Leamer (1997)) is an
instance of a cue-based learner and that it is therefore unable to
leam systems of linguistic parameters that have been proved to
be beyond the reach of any cue-based learner. We demonstrate
this analytically, by investigating the behavior of the STL on a
linguistically plausible space of syntactic parameters.

Parametric Linguistics and Cue-based
Learners

If, as has been proposed by Chomsky (1981), human lan-
guages all obey a common set of principles and differ from
one another only in finitely many respects (often referred to as
parameters) and in these respects only in finitely many ways
(the values of the parameters), then human language learning
can be seen as a search problem in a finite hypothesis space:
the child does not need to hypothesize grammars that fall
beyond those that are consistent with the common set of prin-
ciples (often referred to as Universal Grammar) and any of
the possible assignment of values to the linguistic parameters.
However, although finite, this space of hypotheses can still
be quite large (recent principled estimates place this number
around 2% different possible grammars') and it is therefore
imperative for any parametric model of language acquisition
to show how such a huge hypothesis space could be searched
effectively, that is, rapidly. Indeed, this process appears to be
so rapid in children that it is difficult to find evidence for the
incorrect setting of a parameter in any language. For a review
of these findings see Wexler (1996), who formulates the hy-
pothesis of Very Early Parameter-Setting, namely, that basic
clause structure parameters are set before the child begins to
produce multiple word utterances, i.e. approximately 1;6.

It has been observed (Dresher & Kaye, (1990), Brent
(1996), Fodor (1997)) that this huge hypothesis space could be
searched effectively if children were capable of establishing
conclusively the value of certain parameters by attending to
linguistic events of a particular nature in their environment. In

'This estimate can be obtained by restricting all parametric vari-
ation to the ability or inability of functional heads to attract other
heads or maximal projections and by estimating the number of func-
tional heads that are required for descriptive adequacy. On this see
Roberts (1996).
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Response if test positive
set py tovaluebU a
set py to value b*
set py to valued U ¢
set p, to value d*

Test input string
Ty two a’sinarow?
Ts: two b's ina row?
T3 two c’s ina row?
Ty: twod’s ina row?

Figure 1: A battery of tests for parametric language learning

fact, if all parameters are binary, conclusively establishing the
value of a parameter eliminates exactly half of the hypothe-
ses from the hypothesis space. Ideally, 40 such observations
could be sufficient to single out a grammar out of 2% possible
alternatives.

The following artificial example should help to give an idea
as to what these observations could amount to.

Example 1 Suppose you were trying to determine, from a
collection of positive examples, which one of the following
four regular expressions generates the sample:

a{ bUa }c{ dUc }Ef.'

b* d°

One way to solve this problem could be to set up a bartery of
tests (see figure 1) to be applied to each one of the positive
samples and to make choices about the value assignment that
is appropriate for each parameter depending on the outcome
of these tests. In this construction, the observable event of a
sample string having two a’s in a row is taken as a cue to the
b U a value assignment for the first parameter.

The goal of the cue-based learning enterprise is to show that
itis simultaneously possible to reconstruct linguistic variation
parametrically and to single out in each possible target lan-
guage a set of cues that would allow a learner to acquire
the correct setting for each parameter. Further motivation
for this enterprise comes from the study of language change.
Lightfoot (1997) has argued that cue-based learning could ex-
plainthe “catastrophic’ nature of historically attested language
changes.

A theory of cue-based learners

Although the central intuition about the design philosophy of
a cue-based learner emerges quite clearly from the example
above, a formal characterization of the class of these algo-
rithms turns out to be quite useful on at least two counts. First



of all, a formal definition will make it possible to capture some
essential design features in learning algorithms that appear to
be prima facie unrelated. Second, by establishing learnability
results about the class of cue-based algorithms at large one
would automatically have results that can be applied to each
individual algorithm. We will now introduce a formal theory
of cue-based learners based on material discussed at length in
Bertolo et al. (1997).

Since, as we saw, the salient feature of a cue-based learner
is to restrict the hypothesis space of a parametric learning
problem, we first need to introduce a definition of parameter

spaces.’

Definition 1 A parameter space P is a triple < par, L, L >,
where L is a finite alphabet of symbols and par is a finite
set of sets {p1,...,pn}. Given a pi in par, its members

are enumerated as v}, . . ., v!p‘l. Given the cartesian product
P = pi X p2 X ... X pn, @ parameter vector P is a member of
P. The function L : P.— 2% assigns a possibly empry subset
of Z* 1o each vector P € P . The expression L(P) denotes

the set {L(Py),..., L(Pp)}.

Inexample 1, the space has two parameters, p; = {bUa, b"}
and p» = {dU c,d"}. The alphabet Z is {a,b,c,d, e, f} and
the function L takes as input couples of regular expressions r
and y and outputs the set of all strings generated by the regular
expression azcye f*. Notice that there is nothing specifically
‘linguistic’ about this definition of a parameter space. The
results that we report can therefore be applied to any search
problem where the search space falls under definition 1 and
the search algorithm under definitions 4 and 5.3

Given a parameter space, it turns out to be useful to be able
to refer to an assignment of values to some, but not all of the
parameters.

Definition 2 Let P be a parameter space. A partial assign-
ment in P is any subset B of |, ¢,a.({Pi} X pi) such that
for every p; in par there is at most one < p;,v* > in B.
Given rwo partial assignments A and B in P, B is said to be
A-consistent iff AU B is also a partial assignment in P,

Example2 If P is a parameter space with parameters
P1,P2,-.-, P37 then the set A = {< p1,0 >, < pi7,1 >
, < p31,0 >} is a partial assignment in P, because it spec-
ifies a consistent value assignment for some, but not all, of
the parameters of P. The set B = {< p3,0 >,< p;7,0 >
, < p28,0 >} is also a partial assignment in P. However, B
is not A-consistent since AU B is not a partial assignment
in P, because it includes two conflicting value assignments to
parameter py7.

Such partial assignments can in turn be used to isolate only
those parts of a parameter space that agree on the values
assigned to the parameters in a partial assignment. Crucially,
such a portion of a parameter space is, by definition 1, itself a
parameter space.

Definition 3 Let P be a parameter space < par,L,Z >.
Then P(0]=< par®, L, X >=< par,L,X >=P. IfP[A] is

?An alternative, equivalent, definition can be found in Frank &
Kapur (1996).

3For example, an appropriately empoverished version of Version
Spaces (Mitchell 1978).
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a parameter space < par*, L. X > and B is an A-consistent
partial assignment in P, then the subspace P[A U B] is the
parameter space < parAYB L,Z > such that, given H =
U:es mi(z), (where m\(z) denotes the first element of the

ordered pair ) if pj ¢ H then p}“"s — p;f‘ and ifp; € H
then pAVE = {1} where v is the only v € p; such that
< pj,v]* >€ B. Finally, P[AUB) is the parameter space <

AuB

parAVB L 3 > where, foreveryp; in H, pAYB = pf —p{

and, for every p; notin H, pg‘”ﬁ =gt

Example 3 If A is the set of assignments {< p;,0 >
< p, 1 >,< p3,0 >}, P[A] denotes the portion of
the parameter space P in which all languages agree on the
values 0, 1 and 0 for parameters pi, p and pj respectively.

We are now ready to formalize the notion of some parameter
values being established as a result of observing certain events
in the linguistic environment.

Definition 4 Let P be a parameter space, B a subset of the
set B* of all partial assignments in P and C a non-empty
subset of | p¢p L(P), a cue function of window size n for
P is a function ¢ : |J!_, C* x B — B* where C' is the
cartesian product of C with itself i times.

The function @¢¢ can be seen as a formal representation of
the battery of tests discussed in example 1. There, C is the set
of all strings that have two a’s, b's, c’s or d’s in a row, the size
of the window is just one and ¢ returns value assignments
to parameter independently of whatever assignments have
already being established. So, for example,

¢c(< aace,® >) =< p;,bUa > butalso

dc(< aace, {< p2,dUc >} >) =< p,bUa >

It is important to notice that definition 4 generalizes our origi-
nal intuition in two important respects. First of all, it captures
the possibility that the learner, upon observation of a linguistic
event, could reach different conclusions depending on what
its current state of belief (assignment of value to certain pa-
rameters) is. Secondly, it allows for the existence of linguistic
events that can only be observed comparing n distinct data
points (in the case of syntax learning, typically sentences).
Finally, a cue-based learner is a learning algorithm that
does all its learning via a cue function. The crucial feature of
such learners is the absence of any form of backtracking: as
definition 5 shows, if the cue function returns any parameter
assignment that is not in agreement with the current assign-
ment, the inconsistent portion of the output of the cue function
is simply discarded.*
Definition 5 Let P be a parameter space, B*, B and C as in
definition 4 and ¢ a cue function of window size n for P. A
cue-based learner for P is a function

Ac : {P[A]|A € B} x U C'— {P[A]|A € B*}

=]

*For this reason, in its present formulation, this theory of cue-
based leamners cannot represent the notion of a ‘default’ value for a
parameter which is so crucial for Dresher and Kaye's algorithm. A
suitable extension that captures this notion and preserves the result
reported here is discussed in Bertolo et al. (1997).



such that
P[A]

P(AU By s

ifec(s, A) is not
A-consistent
P[AU¢c(5, A)] otherwise

where B 4 is the largest A-consistent subset of (5, A) .

Ac(P[A],3) =

As is standard in formal models of language acquisition®,
we characterize cue-based learners as successful if and only
if, for every possible target in a parameter space they eventu-
ally output a parameter space that contains only one language
and that language is at least weakly equivalent to the actual
target (that is, it generates exactly the same set of strings, al-
though possibly with a different structural description). Given
this characterization, we were able to prove a general result
showing the existence of a property (the Global Natural Sub-
space Property — GNSP) that is necessary and sufficient for a
parameter space to be learned by a cue-based learner.

Definition 6 Ler P be a parameter space and A a partial as-
signment. P[A] is said to have the Natural Subspace Property
(NSP) iff either |P*| = 1 (i.e., the subspace contains asingle
language) or, for every P € P4, there isan's € L(P)* and
an A-consistent partial assignment B such that P € PAYB
and, for every < p;,v" >€ B — A,

¢ U

Freprvi<ram>]

P has the Global NSP (GNSP) iff, for every partial assignment
A, P[A] has the NSP.

To exemplify, the parameter space of example 1 has the
GNSP because, in every subspace P[A], every language L( P)
contains at least a string s for which a relevant parameter p;
can be found, in the sense that s does not belong to any
language of P[A] in which py is set differently than in L(P).

As a special case of that result we proved that if in a param-
eter space there are two or more weakly equivalent languages,
then the GNSP does not hold and, as a consequence, no cue-
based learner can successfully learn the space.®

In the next section we will apply this result by proving
that Fodor's Structural Triggers Learner (STL) cannot learn
a plausible space of syntactic parameters that is an extension
of the space of parameters (discussed in Gibson & Wexler,
1994) that the STL was designed to learn. This proof will
be obtained in two steps: we will first show that the STL is
indeed a cue based learner, as characterized in definition 5’

L(P),

3For a general discussion of learnability criteria in systems with
weak equivalences see Wexler & Culicover (1980). For leamability
in parameter spaces, see Dresher and Kaye (1990), Clark (1992), Gib-
son & Wexler (1994), Frank and Kapur (1996), Niyogi & Berwick
(1996)

®More precisely, we proved that the space can be learned only
if the cue function on which the leamer is based is arbitrary, in
the sense that it returns different parameter values upon exposure
to linguistic events that cannot be discriminated by any battery of
tests, in the sense of the example discussed above. We take the
restriction to non-arbitrary cue functions to be justified on grounds
of psychological plausibility.

"It is impossible to prove anything of the kind without a rigorous
definition of the class of cue-based learners. Hence the need for the
somewhat lengthy definitions.

Comp-Head Spec-Head Verb-Second
VP — Verb Obj | IP — Subj I-bar | C — @
VP — Obj Verb | IP — I-bar Subj | C — Verb

Figure 2: Rules associated with the Comp-Head, Spec-Head
and Verb-Second parameters

and then we will show an extension of Gibson and Wexler’s
original space of syntactic parameters that contains clusters
of weakly equivalent languages.

The limits of learning via unambiguous
‘superparsing’

In her analysis of Gibson and Wexler’s space of syntactic
parameters Fodor (1997) discusses the advantages of a para-
metric learner that does not set the value of any parameter until
the correct value has been conclusively established and does
not abandon any value assignment that has been conclusively
established. Fodor’s insightful idea consists of showing that it
should be possible to establish conclusively the value of syn-
tactic parameters by means of a mechanism that a language
learner must possess anyway, that is a parser.

Fodor speculates that, if it is possible to reconstruct the val-
ues of each parameter as alternative sets of grammatical rules
whose application could be detected by a ‘superparser’ using
their union set as its grammar, then the task of parametric lan-
guage learning could be reduced to the task of unambiguously
detecting the application of a given rulein all the *superparses’
of an input sentence. For concreteness, if the rules in figure 2
are associated to alternative values of the Comp-Head, Spec-
Head and Verb-Second parameters.s then a sentence such as

(1) Max sah Ute
Max saw Ute

‘Max saw Ute’

is parametrically ambiguous with respect to the Verb-Second
parameter. In fact, the following are among the parses it
generates with respect to a supergrammar that contains all of
the rules in figure 2:

(2) [cplspecc Max][z[c sah](sp... [vp Utet]]]]
(3) [cprlspeccOllz{cPllrp [specr Max] [v p sah Ute]]]]

As is apparent, while parse 2 uses the rule associated with
the positive value of the Verb-Second parameter (C — Verb),
parse 3 uses the rule associated with the negative value (C
— 0). As a consequence, the superparser cannot rely on
sentence 1 to establish conclusively the value of the Verb-
Second parameter. It can, however, rely on the following
sentence

(4) Plotzlich sah Max Ute
Suddenly saw Max Ute

¥These parameters determine respectively whether complements
follow or precede their heads, whether specifiers follow or precede
their heads and whether or not the verb of root clauses moves to the
C position, causing Spec-C to be filled with some other material,
typically a maximal projection.



1. Initialize the grammar G to be the union set of UG and all
the values of all parameters;

. Initialize the set A of parameter assignments to the empty
set and the set P to include all parameters in the parameter
space;

. If, for every parameter p; there is an assignment < p;, v[" >
in A, return A. Otherwise go to 4.

. Receive a sentence s from the linguistic environment

(a) initialize to the empty set the set N of parameter assign-
ments revealed by s;
(b) list all parses of s;
(c) list the set R of all the rules that have been employed in
every parse of s;
(d) for every parameter p; in P and every value v]" of p;
compute the intersection v;" N R;
(e) foreveryv™,if ovNR # 0set N = NU{< p;, " >}
5.SetA=AUN
6. Goto3;

Figure 3: Structural Triggers Learner Algorithm

‘Suddenly, Max saw Ute’

which, although ambiguous with respect to the Comp-Head
parameter, cannot be parsed unless the rule associated with
the positive value of the Verb-Second parameter is used:

(5) [cp Plotalich [zl sah][rplspecr Max] [vp Ute t]]]]
(6) [cp Plotzlich [z[c sahl(rp[specr Max] [vp t Utelll]

The STL algorithm is a cue-based learner

If, as we have assumed in the exposition of Fodor's idea of
parameter learning via ‘superparsing’, UG can be regarded as
a set of rules and each value of each parameter is also a set
of rules, then a formalization of the ‘superparsing’ algorithm
(figure 3) will reveal straightforwardly that it is an instance of
a cue-based learner. We will start by observing that step 4 of
the STL algorithm could be seen as the function

éc(s, A) = {< pi,v]* > | every parse of s requires v }

Since, by construction of step 2 of the STL, both the set A
and the set {< p;, v™ > | every parse of s requires v } are
partial assignments in the sense of definition 2, by definition 4

step 4 of the STL is a cue function. Three comments are in
order here:

1. In this particular case the set C in the subscript of the cue
function is simply the union set of all the languages in the
parameter space. In other words, every string of every
language is in a sense a cue. All the sentences that are
parametrically ambiguous with respect to every parameter,
however, can only cue the STL for the empty parameter
assignment.

. The cue function on which the STL relies is insensitive to
the current assignment of values to the parameters. In other
words, although we represented ¢ as a function of both s
and A, the output of ¢ only depends on s.
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3. Althoughdefinition4 is general enough to include cue func-
tions that take as input linguistic events consisting of se-
quences of n strings, for any number n, the cue function on
which the STL relies takes as input only individual strings.
Such restriction could be recommended on grounds of psy-
chological plausibility. More generally, the smaller the
window on which the cue function operates, the smaller the
memory requirement of a cue-based learner.

Having shown that step 4 of the STL is a cue function ¢¢,
all we have to show is that the whole STL algorithm can be
seen as a function A¢ that falls under definition 5. But this
is certainly true, since, by construction, the STL extracts all
the parameter assignments from the cue function based on the
‘superparser’.’?

A space of syntactic parameters

Having shown that the STL is indeed an instance of a cue-
based learner we will now turn to a brief description of a
space of syntactic parameters that is an extension of the space
the STL was originally designed to learn. The space we
present here has been implemented in order to investigate
the interactions of seven distinct parameters that have been
proposed by linguists on grounds of descriptive adequacy.'?

In addition to the Complement-Head, Specifier-Head and
Verb-Second parameters that have been briefly introduced
above and discussed at length in Gibson and Wexler (1994),
we have analyzed the effects of alternative settings for the
four parameters that are here briefly described.

The Complementizer-Direction Parameter In languages
such as Japanese

(7) John-wa Mari-ga
John-top Mary-nom pretty-is
‘John thinks that Mary is pretty’

the position of the complementizer ‘to” with respect to the
embedded clause can indeed be derived as a special case of
the setting of the Complement-Head parameter. In particular,
just as the direct object precedes its head, the verb, in Japanese
embedded clauses precede their head, the complementizer.

There are other languages, however, in which this corre-
spondence is not observed. In particular, in German, which is
also analyzed as a head-final language, embedded clauses do
not precede but follow the complementizer:

(8) Johann glaubt dass Marie hiibsch ist
John thinks that Mary pretty is
‘John thinks that Mary is pretty’
In order to cover this case we have introduced a Dir-Comp

parameter that determines the relative order of complemen-
tizers and the highest inflectional projection, independently of

kawaii-da to  omotteiru
that think

°In fact, we should also prove that step § of the STL is guaranteed
never to output an inconsistent parameter assignment, as is required
by definition 5. For this to happen, there must be a target language L
whose p;-th parameter is set to value v]™ which has two sentences s,
and s; suchthat s; only belongsto languages that have p; setto value
v;" and s; only belongs to languages that have p; set to a different
value vf. However, this is impossible, since, by hypothesis, s; is a
member of L and so it belongs to at least a language that has p; set
to value v]".

1A LISP implementation can be obtained from the first author.



the value of the Complement-Head parameter. In this respect
a language like Japanese would be a complementizer-final
language while German would be a complementizer-initial
language.

The Verb-to-Agr Parameter Pollock (1989) has observed
that French and English differ from one another, among other
things, in the possibility of lexical material intervening be-
tween the verb and its direct object in French but not in En-
glish:

(9) Jean embrasse souvent Marie
John Kkisses often  Mary

‘John often kisses Mary’
(10) *John kisses often Mary

In fact, in French VP adverbs like ‘souvent’ are actually
required to appear between the verb and its object as the
ungrammaticality of the following example shows:

(11) *Jean souvent embrasse Marie

Pollock has explained such variation assuming that in
French, but not in English, verb movement to Infl is obliga-
tory. Since in our system of parameters we adopt a version
of Pollock’s split-Infl hypothesis, splitting Infl into Tense and
Agr (with Tense dominating Agr), this parametric variation is
reconstructed by leaving the verb in situ for one value of the
parameter and moving it obligatorily to Agr for the alternative
value.

The Verb-to-T Parameter No possible value assignment
to the Comp-Head, Spec-Head, Dir-Comp, Verb-Second and
V-to-Agr parameters could capture the VSO word order that
is typical of Celtic languages such as Irish or Breton, if we
assume, as we do in our system, that subjects are generated
in Spec-Agr. In order to capture the VSO word order, we
have therefore followed Carnie’s (1995) analysis of Irish and
introduced a second verb movement parameter that moves the
verb to Tense. The V-to-Agr and the V-to-T movements are
analyzed in our parameter space as sequential movements.
Depending on the value of V-to-Agr, the verb does or does
not move to Agr. After this, if the V-to-T parameter is set to
the value that requires the movement to take place, the verb
is moved from wherever is was (either V or Agr)to T.

The Embedded-Verb-Second Parameter This parameter
determines whether verb-second movements take place in
embedded clauses. Among those languages that exhibit verb-
second effects in root clauses it is possible to draw adistinction
between those that have obligatory verb-second movements
in embedded clauses and those that make such movements
possible (and in that case also optional) only when the em-
bedded clause is being introduced by verbs of a special kind.
For example, in Danish and German, embedded verb-second
movements exist only if the matrix verb is a “bridge-verb” a
verb expressing a cognitive state such as ‘believe’, "hope’ and
the like (Iatridou and Kroch 1992, Vikner 1994).

Clusters of weakly equivalent languages

In our system of parameters, as it is currently implemented,
the only lexical material that could possibly intervene between
the Agr and the Tense head is a subject NP in Spec-Agr.
It is important to realize, however, that this only happens
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Spec-C / \
b AgrP
v 0 Agr-bar Spec-Agr
o e e o o]
: : T VP Subj
®  Adv VP
3 oy
k ' Obj

e Verb

Figure 4: Alternative parses for *“Verb Adv Obj Subj”

when complements and specifiers are positioned in opposite
directions with respect to their heads, as it would happen
in languages that are comp-final and spec-initial or comp-
initial and spec-final. When a language is either comp-final
and spec-final or comp-initial and spec-initial, however, the
subject NP appears in the string either after or before both
the Tense and Agr (or Agr and Tense) positions respectively.
When this happens, the order of lexical elements in a string is
not sufficient to determine the internal structure of a sentence
with respect to the V-to-Agr and V-to-T movement and as
a result, three distinct parameter assignments (V-to-T+ and
V-to-Agr+; V-to-T+ and V-to-Agr—; V-to-T- and V-to-Agr+)
end up generating exactly the same set of strings.

In order to see how this state of affairs is problematic for the
STL, let’s step through the case in which the target language is
spec-final, comp-final, complementizer-initial, verb-second—,
embedded-verb-second— v-to-t+ and v-to-agr+. To simplify
the discussion, let’s assume that the STL has already correctly
determined the values of all parameters but V-to-T and V-to-
Agr.'! To start with, it is easy to see that the learner could

"It is actually instructive to see why a single sentence such as
“Verb Comp Verb Obj Subj Subj” would be sufficient for the STL
to establish this. The fact that the matrix verb appears in the first
position is an unambiguous indication that the language cannot be
verb-second+. So it has to be verb-second-, and therefore also
embedded-verb-second-. The subject of the matrix clause follows
the matrix verb, which indicates that the language is spec-final. The
fact that the embedded clause follows the matrix verb reveals that
the language is comp-final. Finally, since the complementizer of
the embedded clause precedes the embedded verb, the language is
complementizer-initial. The fact that so many parameter values can
be fixed on the basis of a single degree-| sentence is an attractive
feature of the STL. The cost of computing all possible ‘superparses’
for a sentence, however, especially at the beginning, when the 'su-
pergrammar’ is still very large, may offset this advantage. We are



not possibly unambiguously detect any verb movement until
it is presented with a sentence in which some lexical material
intervenes between the Agr head and the verb. This means
that verb movement will only be detected in sentences such as
“Verb Adv Obj Subj", where the verb moves past a preverbal
adverb that is left adjoined to the VP. Such a sentence is
impossible to parse without assuming that the verb has moved.
However, although it is at this point certain that the verb has
moved, in order to set V-to-T and V-to-Agr to their correct
value the parser also needs to determine unambiguously where
exactly the verb has landed (whether in Agr, or higher up, in
T). This, however, is impossible to do, since in this language
no lexical material intervenes between that T and the Agr
head. As a consequence, for every sentence with a pre-verbal
adverb (the only kind of sentence that would reveal anything
at all about verb movement), the parser will always return
three distinct parses:

(12) [cp - [r Verb] [ [agr t] [ . tObj]]]
(13) [ep - [7 Verb] [ [agr O] [.. t OBj]]]
(14) [cp ... [7 01 [ [agr Verb] [ tObj]1]

What this shows is that unambiguous ‘superparsing’ is
never possible for strings coming from a cluster of weakly
equivalent languages. But since the STL learns the value of
parameters only via unambiguous ‘superparsing’ this means
in turn that in this particular parameter space the value of
certain parameters is never acquired by the STL. It should
be noted that the problem we have cited is not simply that
the cue-learning mechanism converges on a grammar that is
only weakly equivalent to the "correct” grammar; rather, the
problem is that the cue-learning mechanism doesn’t converge
on a fully-specified parameter-setting at all; the relevant pa-
rameters remain unset, for any cue-learning mechanism.

Conclusions

As usual, whenever a negative learnability result is provided,
it is possible to proceed in two different directions, depending
on what assumptions one is more attached to. For example,
one could argue that the parameter space should be refined
by including data that would reveal the actual landing site of
verb movement and make unambiguous ‘superparsing’ feasi-
ble. Alternatively, one could modify the STL algorithm, by
allowing a certain amount of guessing when the learner gets
pushed up against a cluster of weakly equivalent languages.
Such a change would obviously place the resulting algorithm
outside the class of cue-based learners. It must be noted,
however, that this solution encounters several problems. First
of all, there is an issue of ‘timing': how would the learner
know when it’s time to stop superparsing and to start guess-
ing? Secondly, this solution is guaranteed to work only when
all the languages in the remaining subspace are equivalent to
one another. The present case shows however that, since this
situation doesn’t always obtain, non-deterministic extensions
of the STL are not always guaranteed to succeed. Observe,
in fact, that a random assignment of value to the V-to-T and
V-to-Agr parameters has one chance in four of returning v-
to-t- and v-to-agr- yielding a language that, as the reader can
verify, is distinct from the intended target (v-to-t+; v-to-agr+).
Such cases are discussed at length in Bertolo et al. (1997).

currently investigating this issue.

54

Attempts to circumvent this second problem by letting the
learner select a random value assignment only among those
settings that yield weakly equivalent languages would require
the learner either to have access to a look-up table that lists
all the language equivalences or to be able to compute them.

Acknowledgments
Stefano Bertolo was supported by a post-doctoral fellowship
from the McDonnell-Pew foundation, Kevin Broihier (grant
DIR 9113607) and Edward Gibson and Kenneth Wexler (grant
SBR-9511167) were supported by grants from NSF.,

References

Bertolo, S. Broihier, K., Gibson, E. & Wexler, K. (1997).
Characterizing learnability conditions for cue-based learn-
ers in parametric language systems. MIT manuscript.

Brent, M. R. (1996). Advances in the computational study of
language acquisition. Cognition, 61, 1-38

Carnie, A. (1995) Non-Verbal Predication and Head-
Movement. Doctoral dissertation. Cambridge: MIT.

Chomsky, N. (1981). Lectures on Government and Binding.
Dordrecht: Foris Publications.

Clark, R. (1992). The selection of syntactic knowledge. Lan-
guage Acquisition, 24, 299-345

Dresher, E. & Kaye, J. (1990). A computational learning
model for metrical phonology. Cognition, 34, 137-195

Fodor, J. (1997). Unambiguous Triggers. To appear in Lin-
guistic Inquiry.

Frank, R. & Kapur, S. (1996). On the Use of Triggers in
Parameter Setting. Linguistic Inquiry, 27(4), 623-660

Gibson, E. & Wexler, K. (1994). Triggers. Linguistic Inquiry,
25(3), 407454

Iatridou, S. & Kroch, A. (1992). The licensing of CP-
recursion and its relevance to the Germanic verb-second
phenomenon. Working Papers in Scandinavian Syntax, 50,
1-24

Lightfoot, D. (1997). Catastrophic change and learning the-
ory. To appear in Lingua.

Mitchell, T. M. (1978). Version Spaces: An approach to con-
cept learning. Doctoral dissertation. Stanford University.

Niyogi, P. & Berwick R. C. (1996) A language learning model
for finite parameter spaces. Cognition,61(1-2), 161-193

Pollock, J.Y. (1989). Verb Movement, Universal Grammar,
and the structure of [P. Linguistic Inquiry, 20(3), 365-424

Roberts, I. (1996). Language change and learnability. In
S. Bertolo (Ed.), Learnability and Language Acquisition:
a self contained Tutorial for Linguists (pp.66-82). MIT
Manuscript.

Vikner, S. (1994). Verb Movement and Expletive Subjects
in the Germanic Languages. Oxford: Oxford University
Press.

Wexler, K. (1996). The Development of Inflection in a Bio-
logically Based Theory of Language Acquisition. In M.L.
Rice (Ed.), Toward a Genetics of Language. Mahwah, NJI:
Lawrence Erlbaum Assoc.

Wexler, K & Culicover, PW.(1980). Formal Principles of
Language Acquisition. Cambridge, MA: MIT Press.



	cogsci_1997_49-54



