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ARTICLE

Plasma metabolites with mechanistic and clinical
links to the neurovascular disease cavernous
angioma
Abhinav Srinath 1,11, Bingqing Xie 2,11, Ying Li 1,3, Je Yeong Sone 1, Sharbel Romanos 1, Chang Chen4,

Anukriti Sharma 5,6, Sean Polster 1, Pieter C. Dorrestein 6,7, Kelly C. Weldon 6, Dorothy DeBiasse1,

Thomas Moore1, Rhonda Lightle1, Janne Koskimäki 1, Dongdong Zhang 1, Agnieszka Stadnik 1,

Kristina Piedad 1, Matthew Hagan 1, Abdallah Shkoukani 1, Julián Carrión-Penagos1, Dehua Bi 8,

Le Shen 1,5, Robert Shenkar 1, Yuan Ji 8, Ashley Sidebottom9, Eric Pamer 9, Jack A. Gilbert 5,6,

Mark L. Kahn10, Mark D’Souza9, Dinanath Sulakhe 9, Issam A. Awad 1,12✉ & Romuald Girard1,12

Abstract

Background: Cavernous angiomas (CAs) affect 0.5% of the population, predisposing to

serious neurologic sequelae from brain bleeding. A leaky gut epithelium associated with a

permissive gut microbiome, was identified in patients who develop CAs, favoring lipid

polysaccharide producing bacterial species. Micro-ribonucleic acids along with plasma levels

of proteins reflecting angiogenesis and inflammation were also previously correlated with CA

and CA with symptomatic hemorrhage.

Methods: The plasma metabolome of CA patients and CA patients with symptomatic

hemorrhage was assessed using liquid-chromatography mass spectrometry. Differential

metabolites were identified using partial least squares-discriminant analysis (p < 0.05, FDR

corrected). Interactions between these metabolites and the previously established CA

transcriptome, microbiome, and differential proteins were queried for mechanistic relevance.

Differential metabolites in CA patients with symptomatic hemorrhage were then validated in

an independent, propensity matched cohort. A machine learning-implemented, Bayesian

approach was used to integrate proteins, micro-RNAs and metabolites to develop a diag-

nostic model for CA patients with symptomatic hemorrhage.

Results: Here we identify plasma metabolites, including cholic acid and hypoxanthine dis-

tinguishing CA patients, while arachidonic and linoleic acids distinguish those with symp-

tomatic hemorrhage. Plasma metabolites are linked to the permissive microbiome genes, and

to previously implicated disease mechanisms. The metabolites distinguishing CA with

symptomatic hemorrhage are validated in an independent propensity-matched cohort, and

their integration, along with levels of circulating miRNAs, enhance the performance of plasma

protein biomarkers (up to 85% sensitivity and 80% specificity).

Conclusions: Plasma metabolites reflect CAs and their hemorrhagic activity. A model of their

multiomic integration is applicable to other pathologies.

https://doi.org/10.1038/s43856-023-00265-1 OPEN

A full list of author affiliations appears at the end of the paper.

Plain Language Summary
Cavernous angiomas (CAs) are

clusters of abnormal blood vessels

found in the brain or spinal cord. A

blood test that could identify people

with CAs that have recently bled

would help determine who need sur-

gery or closer medical monitoring.

We looked at the blood of people

with CAs to compare the levels of

metabolites, a type of small molecule

produced within the body, in those

who had recently bled and those who

had not. We found that some meta-

bolites may contribute to CA and

have an impact on CA symptoms.

Monitoring the levels of these meta-

bolites can determine whether there

had been a recent bleed. In the future,

drugs or other therapies could be

developed that would block or change

the levels of these molecules and

possibly be used to treat CA disease.
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Cavernous angiomas (CAs), also known as cerebral caver-
nous malformations, affect more than one million
Americans1. They are neurovascular lesions characterized

by dysmorphic dilated capillaries, or caverns, lined by a leaky
endothelium prone to hemorrhage2. The only current treatments
of CAs are surgical resection of symptomatic lesions, or radio-
surgical ablation of lesions, which are associated with high
morbidity as well as costs and are limited in cases of multiple
brain lesions2. Hence, there is a strong interest in developing non-
surgical therapies based on mechanistic pathobiology3–5.

About 30–40% of the cavernous angioma (CA) patients are
familial and harbor a germline dominant mutation in one of
three documented genes (CCM1/KRIT1, CCM2/malcavernin, or
CCM3/PDCD10)5. Familial-CA patients develop new multifocal
lesions throughout the brain during their life2. Sporadic cases
manifest a solitary lesion, often associated with a developmental
venous anomaly2. Both familial and sporadic CAs harbor somatic
mutations of CCM genes in the lesional endothelium resulting in
an indistinguishable lesion pathology6–9. In addition, CA patients
can experience an aggressive clinical course with earlier clinical
symptom onset, higher lesion burden, and more frequent
symptomatic hemorrhage10.

The clinical course of CA disease remains highly variable2,11.
Some patients live unfettered lives despite CA, while others could
be severely disabled by the disease2,11. While the risk of an initial
cavernous angioma manifesting symptomatic hemorrhage
(CASH) remains low, approximately 0.08% per year, a CASH is
more than tenfold more likely to rebleed with cumulative dis-
ability as compared to lesions that never bled2,11,12. Therefore,
there is a need for accurate biomarkers to distinguish high risk
cases, selecting them for invasive or novel interventions, and to
track disease status, progression, and response to therapies5,13.

Several mechanisms have been shown to contribute to CA
lesion genesis5,14. Multiple dysregulated pathways have been
validated within the transcriptome of CA, including MAPK/
MEKK3/ERK3, PI3K-Akt, and Notch. These dysregulated path-
ways affect blood–brain barrier permeability and endothelial tight
junction stability15. An upregulation of the MAPK/MEKK3/
ERK3 pathway, and the related KLF2 and KLF4 transcription
factors, have been reported to increase RhoA kinase activity in
preclinical murine models of CA disease, leading to destabiliza-
tion of endothelial barrier function14. Of interest, an increase in
lipopolysaccharide (LPS)-producing Gram-negative bacteria also
stimulates MAPK/MEKK3/ERK3 activity via toll-like receptor 4
(TLR4) in brain microvascular endothelium, suggesting a role of
the gut-brain axis in this disease16. Although many commensals
are gram negative, an alteration in their levels might produce
diseases. A leaky gut epithelium linked with a permissive gut
microbiome has been associated with CA lesion genesis, and
microbiome differences were shown in CASH cases17. In addi-
tion, disease severity has been linked to pro-inflammatory
genotypes18, a lesional anticoagulant domain19, and more
recently to somatic mutations of oncogenes in the same
lesions20–22.

Several plasma proteins linked to the above mechanisms are
being probed as potential biomarkers of CA23. While weighted
combinations of plasma protein levels have shown promise as a
biomarker of higher risk CASH cases13,24,25, diagnostic and
prognostic associations have remained imperfect. Several plasma
micro-ribonucleic acids (miRNAs) are differentially expressed
(DE) in CASH patients, suggesting their possible use as bio-
markers of hemorrhagic activity13,25, but their levels in the
plasma have not been specifically investigated. The bacterial
content of the gut microbiome also reflects various aspects of CA
disease and may enhance biomarker associations in combination
with plasma protein levels17. The analysis of an individual

patient’s microbiome remains impractical for clinical assessment;
there is therefore a need to identify other circulating molecules
that may reflect the permissive CA microbiome, or other
mechanistic aspects of CA pathogenesis.

Differential levels of circulating small-molecules (i.e.,
<1500 kDa) have recently been proposed as candidate markers of
neurologic diseases, cancers and aging26–28. The profile of these
molecules is referred to as the metabolome, and is thought to
include substrates, intermediates, products, and waste derivatives
of various physiological and metabolic cellular processes. These
plasma metabolites have neither been investigated in CAs, nor
have they been considered as candidate biomarkers in other
cerebrovascular diseases.

Herein, the differential plasma metabolome was assessed in CA
patients to investigate possible mechanistic links with the lesional
transcriptome, as well as the differential gut microbiome and
plasma proteome previously implicated in CA29. We hypothesize
that (1) the plasma metabolome identifies molecules associated
with the diagnosis of CA as well as its cardinal clinical manifes-
tation of symptomatic hemorrhage (SH); (2) metabolites asso-
ciated with clinical features are mechanistically related to genes
implicated in CA disease and the permissive microbiome; and (3)
we propose that multiomic integration of these metabolites with
plasma protein and miRNA levels using Bayesian modeling,
implemented using machine learning (ML) algorithms, may
enhance previously proposed diagnostic associations with symp-
tomatic hemorrhage, the critical clinical feature of this disease.

The analysis of the metabolome between CA patients and non-
CA patients identifies 15 metabolites (p < 0.05, false discovery rate
[FDR] corrected), including cholic acid and hypoxanthine that
show interactions with the CA transcriptome, microbiome, and
differential circulating proteins. In addition, the plasma levels of 4
metabolites (p < 0.05, FDR corrected), including arachidonic acid
and linoleic acid were different between CASH and non-CASH
patients. These results were further validated in an independent,
propensity-matched cohort. In addition, an integrative diagnostic
model of metabolites with circulating proteins and miRNAs was
able to distinguish CASH patients from non-CASH patients with
up to 85% sensitivity and 80% specificity. The development of
sensitive and specific biomarkers can stratify patients for surgery
and close medical intervention and could aid in the discovery of
therapeutics.

Methods
CA patients and clinical parameters. For this prospective study,
a discovery cohort of 53 consecutive CA patients (25 familial-CA,
and 28 sporadic-CA) was enrolled at a single referral center
(www.uchicagomedicine.org/ccm) between April 2017 and
August 2018, during routine consultations or follow-up visits
(Supplementary Table 1). The diagnosis of CA disease was
established using clinical 3-Tesla MRI scanners by a senior neu-
rosurgeon (IAA) with more than 30 years of experience in CA
disease management. Patients with partial or complete resection
of CA or any prior brain irradiation were excluded10,23,24.

In the discovery cohort, five patients experienced a CASH
within the year preceding collection of the blood sample. A CASH
is a cardinal event in the clinical course of CA disease14, and was
defined as an overt hemorrhagic event, noted on diagnostic
imaging, in conjunction with attributable neurological
symptoms30. An independent cohort was later recruited to
validate the metabolomic findings. One hundred and nine
consecutive CA subjects, enrolled between August 2016 and
October 2020 included 20 CASH cases. These were best matched
with 20 of the non-CASH cases for (1) age at enrollment, (2)
gender (male/female), (3) phenotype (sporadic/familial), and (4)
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harboring brainstem lesion (yes/no). A one-to-one mapping with
the single nearest neighbor was performed to match CASH and
non-CASH pairs using STATA version 16.0 (College Station, TX,
USA). The 20 CASH and 20 non-CASH patients who were most
closely matched were included as the validation cohort.

Finally, 17 healthy non-CA subjects were also concurrently
enrolled. Subjects were included if they did not have (a) any
medical or neurologic condition requiring ongoing follow-up or
medical treatment in the preceding year, (b) a history of
concussion or brain trauma in the preceding year, (c) a history
of prior brain irradiation at any time, (d) been pregnant or
lactating in the preceding year, (e) used recreational, psychoac-
tive, or neuroleptic drugs in the prior year.

All subjects gave written informed consent in compliance with
the Declaration of Helsinki, and the study was approved by the
University of Chicago Institutional Review Board, which is guided
by ethical principles consistent with the Belmont Report, and
comply with the rules and regulations of the US Department of
Health and Human Services Federal Policy for the Protection of
Human Subjects (56 FR 28003).

Whole blood collection and processing. Standard clinical 10 mL
heparinized vacutainer tubes (BD Vacutainer, Becton, Dickinson
and Company, Franklin Lakes, New Jersey, USA) were used to
draw blood samples in conjunction with clinic visits. The plasma
was isolated by centrifugation at 2300 rpm (1019 g) at 4 °C for
10 min (AllegraX-30R, Beckman Coulter, Brea, California, USA).
Subsequently, 300 μL of supernatant plasma was aliquoted into
1.7 mL microcentrifuge tubes for storage at −80 °C. These ali-
quots were used to assess the plasma metabolome, as well as
predefined proteins and miRNAs.

Liquid-chromatography-tandem mass spectrometry data
acquisition and analyses for plasma metabolites in the dis-
covery cohort. For each sample, 30 μL of plasma was thawed and
mixed with 120 μL of 100% methanol spiked with 1.25 μM sul-
famethazine. The solution was homogenized for 5 min at 25 Hz
using a Tissuelyser II (Qiagen, Hilden, Germany), and then stored
at −20 °C for 2 h. Afterwards, samples were centrifuged at
14000 rpm for 15 min, and 120 μL of the supernatant was
extracted and loaded in duplicate wells of a 96-wells plate. The
plate was then concentrated using a CentriVap Benchtop
Vacuum Concentrator (Labconco, Kansas City, USA) until dry,
and stored at −80 °C until further analysis.

As part of liquid-chromatography-tandem mass spectrometry
data acquisition (LC-MS/MS), samples were resuspended in
120 μL of a 1:1 water: methanol mixture. Samples were then
spiked with 1 μM of sulfadimethoxine, and transferred to a 96-
wells autosampler plate. Plasma metabolome analysis was
performed with an ultra-high-performance Thermo Dionex
Ultimate 3000 UHPLC (ThermoFisher, Waltham, MA, USA)
coupled to an ultra-high resolution quadrapole time of flight
Bruker Daltonics MaXis HD (Billerica, MA, USA) mass spectro-
meter. Chromatographic separation was performed using a
Phenomenex Kinetex column (Torrance, CA, USA). Two solvents
were used: solvent A consisted of LC-MS grade water with 0.1%
formic acid while the mobile phase (i.e., solvent B) consisted of
LC-MS grade acetonitrile with 0.1% formic acid. For each sample,
5 μL of solution was injected into a flow rate of 0.5 mL/min using
the following parameters for the gradient (1) 0–1 min at 5% of
solvent B, (2) 1–11 min linear increase to 100% B, (3)
11–11.5 min at 100% B, and (4) 11.5–12 min linear gradient to
5% of solvent B. The data acquisition was performed using
electrospray ionization in positive mode.

Data analyses were performed using a complete a lock mass
correction using hexakis (1H, 1H, 2H-difluoroethoxy) phospha-
zene (Synquest Laboratories, Alachua, FL, USA) implemented
within the Bruker Data Analysis Software. Feature detection was
done using MZmine v2.38 software (http://mzmine.github.io/
changelog.html)31. The parameters used were Centroid, Noise
Level MS1 − 5.0E2 and MS2 − 5.0E1 (Mass Detection); MS Level
1, Minimum Time Span –0.02, Minimum Height – 1.5E3, m/z
tolerance –0.02 m/z or 20 ppm (Chromatogram Builder);
Algorithm – Local Min Search, Chromatographic Threshold –
0.01%, Search minimum in RT range –0.3 min, Minimum relative
height –0.01%, Minimum absolute height –1.5E3, Min ratio of
peak top/edge –2, Peak duration range –0.02–0.50 min, m/z
center calculation –Median, m/z range for MS2 scan pairing (Da)
–0.01, RT range for MS2 scan pairing (min) –0.1; Isotopic Peak
Grouper: m/z tolerance –0.02m/z or 20 ppm, Retention time
tolerance –0.3 min, Maximum charge –4, Representative isotope
– Most Intense (Chromatogram Deconvolution);m/z tolerance
–0.02 m/z or 20 ppm, Weight for m/z –75, Retention time
tolerance –0.3 min, Weight for RT –25; Gapfilling (peak finder):
Intensity tolerance –20 %, m/z tolerance –0.005 m/z or 10 ppm,
Retention time tolerance –0.2; Peak Filter: area –1.0E4 to 1.0E20
(Join Aligner). The MS2 file and quantification table were used in
the Global Natural Products Social Molecular Networking feature
based molecular networking workflow32,33 to get both networks
and annotations for the metabolites. Discovery cohort metabo-
lomic quantifications were performed at the Center for Micro-
biome Innovation at the University of California San Diego.

The MS2 file and quantification table were used in the Global
Natural Products Social Molecular Networking feature based
molecular networking workflow32,33 to get both networks and
annotations for the metabolites. Discovery cohort metabolomic
quantifications were performed at the Center for Microbiome
Innovation at the University of California San Diego.

Differential analyses of the plasma metabolome. The unsu-
pervised differential metabolome was assessed with PLS-
Discriminant Analysis (PLS-DA) using the R Software34. PLS-
DA was utilized to determine linear combinations of candidate
molecules for biomarker development, rather than a Student’s t
test, which would show distinguishing power of an individual
molecule. A random permutations analysis on the peak values of
the differentially expressed metabolite was performed to estimate
the significance of the computed PLS-DA coefficients. Only the
peaks with significant PLS-DA coefficients (p < 0.05, FDR cor-
rected) were selected. Normalized plasma concentrations of each
metabolite were calculated for each patient. Unannotated peaks
and peaks representing drug-related compounds were discarded.
The supervised analyses to validate the metabolites of interest
between CASH and non-CASH patients in the independent
propensity matched cohort followed the same approach.

Independent propensity-matched validation cohort. Fragmen-
tation patterns of the differential plasma metabolites between
patients with a CASH event in the prior year and non-CASH
patients were validated in an independent propensity matched
validation cohort using a supervised LC-MS/MS approach.

Metabolites were extracted using a 1:8 dilution (i.e., one
volume of plasma for eight volumes of extraction solvent
composed of 100% methanol spiked with internal standards).
Plasma samples were extracted at −80 °C for 1 h. Samples were
centrifuged at 20,000g for 15 min at −10 °C. Two-hundred µL of
the supernatant was dried down under nitrogen stream at 1 L/
min (bottom)−30 L/min (top) at 30 °C using the SPE Dry 96
Dual (Biotage, Uppsala, Sweden). The samples were then
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resuspended in 200 µL of 1:1 water:methanol diluent, and mixed
at 1000 rpm for 15 min at 4 °C using a thermomixer (Eppendorf).
Samples were then centrifuged at 20,000g for 15 min at 4 °C to
remove insoluble debris, and 150 µL of extracted supernatant was
taken through subsequent analysis on an Agilent 1290 infinity II
liquid-chromatography system coupled to an Agilent 6546 QTOF
mass spectrometer, equipped with an Agilent Jet Stream
Electrospray Ionization source. The detection window was set
to 100–1700m/z with continuous infusion of a reference mass
(Agilent ESI TOF Biopolymer Analysis Reference Mix) for mass
calibration.

Bile acids were analyzed in negative mode and 5 µL of extracted
supernatant was injected onto an XBridge BEH C18 Column
(Waters Corporation, Milford, MA, USA) fitted with an XBridge
BEH C18 guard (Waters Corporation) at 45 °C. The mobile phase
A was water with 0.1% formic acid, while the mobile phase B was
acetone with 0.1% formic acid. Gradient elution started with 28%
of the mobile phase B with a flow rate of 0.4 mL/min for 1 min,
and linearly increased to 33% over 5 min, then to 65% over
14 min. The flow rate was then increased to 0.6 mL/min, while the
mobile phase B was increased to 98% over 0.5 min. These
conditions were held constant for 3.5 min. Then, re-equilibration
was performed for 3 min at a flow rate of 0.4 mL/min with 28% of
the mobile phase B. The electrospray ionization conditions were
set with the capillary voltage at 3.5 kilovolts (kVs), nozzle voltage
at 2 kVsA ten-point calibration curve of glycodeoxycholic acid
was generated, starting at a concentration of 100 µg/mL diluted in
1:1 water:methanol followed by nine 1:3 serial dilutions.

Fatty acids and others metabolites. The fatty acids and other
metabolites of interest were assessed using 5 µL of the extracted
supernatant injected onto an Acquity UPLC HSS T3 Column
(Waters Corporation) fitted with an Acquity UPLC HSS T3 guard
(Waters Corporation) at 45 °C. The mobile phase A was water
with 0.1% formic acid and mobile phase B was 98% acetonitrile
with 0.1% formic acid. Gradient elution started with 5% of the
mobile phase B with a flow rate of 0.5 mL/min for 1 min, and
linearly increased to 75% over 1 min, then to 100% over 8 min.
Column washing was performed at 100% of the mobile phase B
for 4 min. Re-equilibration was performed for 3 min with 5% of
the mobile phase B. Fatty acids and bile acids were analyzed in
negative mode with capillary voltage at 3.5 kVs and nozzle voltage
at 2 kVs while other metabolites were analyzed in positive mode
with nozzle voltage at 500 Vs. An additional Level 1 confirmation
was completed to support the identification of linoleic acid using
known standards of linoleic and rumenic acids (Supplementary
Fig. 1).

All metabolites were separated and analyzed by ultra-high-
pressure liquid-chromatography quadrupole time-of-flight
(UHPLC-QTOF) using the 1290 infinity II liquid-
chromatography system (Agilent, Santa Clara, CA, USA)
coupled to the 6546 QTOF mass spectrometer (Agilent). The
detection window was set at 100–1700 m/z with continuous
infusion of the ESI TOF Biopolymer Analysis Reference Mix
(Agilent) used for mass calibration for the assessments of bile
and fatty acids as well as the other metabolites of interest.

All putative compound annotations from the discovery cohort
were validated against authentic standards (MilliporeSigma,
Darmstadt, Germany; Avanti Lipids, Alabaster, USA; Steraloids,
Newport, USA) in the independent propensity-matched valida-
tion cohort. Authentic standards and samples were run on the
same instrument and their retention times, detected m/z, and
fragmentation pattern were validated for all compounds (Supple-
mentary Data 1).

The data analyses were performed using MassHunter Profinder
Analysis version B.10 software (Agilent) and confirmed by

comparison with authentic standards. The metabolomic quanti-
fications were performed at Host-Microbe Metabolomics Facility
at the University of Chicago.

Plasma protein assays. Plasma protein concentrations were
determined using individual (ng/ml) enzyme-linked immunosorbent
assay (ELISA) assays or multiplex (pg/ml) electrochemiluminescence
immunoassays in accordance with manufacturer protocols23–25.

Individual ELISA assays were performed using commercially
available immunoassay kits to assess interleukin-10 (IL-10), CRP,
and sCD14 (R&D Systems, Minneapolis, Minnesota, USA).

All plates were washed with a BioTek 405TS plate washer
(BioTek Instruments, Winooski, VT, USA), and absorbances
were measured using a Bio-Rad iMark plate reader (Bio-Rad,
Hercules, CA, USA). The assays were performed in the
Neurovascular Research team laboratory at the University of
Chicago.

Multiplex electrochemiluminescence immunoassays plates
(Meso Scale Diagnostics, Rockville, MD, USA) were used to
quantify VEGF. Multiplex electrochemiluminescence immunoas-
says were processed using a V-plex multi-spot assay (Meso Scale
Diagnostics). Plate was washed with a BioTek 405TS plate washer
(BioTek Instruments, Winooski, VT, USA), and plasma levels
measurements were assessed using Bio-Rad MESO QuickPlex SQ
120 (Meso Scale Diagnostics), by measuring light signal when the
electrochemiluminescent labels are stimulated by electricity17.
The assessment was performed at the Flow Cytometry Core
Facility at the University of Chicago.

In each plate, the plasma samples were loaded in parallel
duplicate wells, and then averaged, as in ongoing protein
biomarker development projects in our laboratory13. Plasma
values greater ±2 standard deviations from the mean for each
group were excluded as statistical outliers.

Gut microbiome analyses. Gut microbiome analyses on a larger
cohort of CA patients and healthy non-CA subjects was pre-
viously published by our group17. That report included gut
microbiome data on the same patients enrolled herein in meta-
bolome and plasma protein assays. The report also includes
detailed methods of stool collection, 16S rRNA gene sequencing,
metagenomics shotgun sequencing and analyses of bacterial
abundance.

The 16S-sequencing libraries (Project ID= PRJEB35505) are
available at the European Molecular Biology Laboratory-
European Nucleotide Archive EMBL-ENA (https://www.ebi.ac.
uk/ena/data/view/PRJEB35505).

The metagenomic shotgun sequencing libraries (BioProject
ID= PRJNA629755) are available at the Sequence Read Archive
at National Center for Biotechnology Information (https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA629755).

Differential microbiome analyses and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways. Following 16S analyses
of the differentially detected bacterial species, the corresponding
genomes, ortholog genes, and pathways in CA and the disease
sub-categories were extracted from the KEGG database using the
REST API (https://www.kegg.jp/kegg/rest/keggapi.html).
The python library KEGG-parser (version 0.0.1) was used to
parse the queried data into a dictionary format. The annotation of
metabolite origins via networks AMON library implemented in
python (Python Software Foundation, Fredericksburg, VA, USA)
was used to perform batch query and find reactions that involved
genes differentially detected in the 16S experiment and metabo-
lites detected in the metabolome experiment35.
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Microbiome shotgun sequencing resulted as an abundance
matrix between the UniRef90 (https://www.uniprot.org/) proteins
within each detected microbiome species and CA patient samples.
The Uniprot protein IDs were mapped through the KEGG REST
API into the KEGG ortholog genes. The AMON python library
was used for the batch query and verifying the reactions involving
detected genes in the shotgun sequencing experiment and
metabolites detected in the metabolome experiment35.

Transcriptome and enriched-KEGG pathways analyses. The
transcriptome of human lesional CA neurovascular units (NVUs)
of surgically resected CA from 5 patients and autopsy samples
from 3 healthy non-CA subjects has previously been published by
our team36. NVUs were dissected using laser capture micro-
dissection. Following, RNA isolation and sequencing were com-
pleted to determine genes differentially expressed in CA lesions
compared to the NVU of healthy autopsy tissue. RNA was then
extracted using an RNA isolation kit (RNeasy Micro Kit, Qiagen).
cDNA libraries were generated using commercial low-input
strand-specific RNA-Seq kits (Clontech) and sequenced on the
Illumina HiSeq 4000 platform using single-end 50-bp reads
(Illumina). The raw sequencing data (accession number =
GSE123968) are available in the National Center for Bio-
technology Information’s Gene Expression Omnibus database.

Differentially expressed gene (DEG) analyses were conducted
using DESeq2, with an additive model for batch effect correction
when necessary. DEGs were then classified into (1) upregulated,
and (2) downregulated genes in CA patients (|Fold Change | >1.5;
p < 0.05, FDR corrected). Using these two gene lists, enrichment
analysis was generated with the web-based bioinformatic tool
Lynx (http://lynx.ci.uchicago.edu)37 to extract two sets of over-
represented KEGG pathways (p < 0.05, FDR corrected).

Correlation between plasma protein levels and differentially
expressed metabolites. The Pearson’s correlation was assessed
based on the normalized metabolite measurement x and plasma
protein concentration y from matched patients with both meta-
bolome and plasma proteome data. The test statistic was based on
Pearson’s coefficient cor(x, y) and followed a t distribution with
length(x)−2 degrees of freedom, assuming the samples followed
independent normal distributions. A two-sided test was used to
estimate the p-value. The p-values were corrected for multiple
tests from all the metabolite-plasma protein pairs using the FDR
B&H method. All the above steps were completed using the R
statistics library34.

Integrative analyses of differential metabolome, proteome, and
transcriptome of human CA disease. The interacting genes
associated with the differential metabolites identified in the
metabolome of CA patients (p < 0.05, FDR corrected) were
queried using the Comparative Toxicogenomics Database (http://
ctdbase.org/). The enriched-KEGG pathways containing at least
one of the interacting genes associated with the differential
metabolite were then identified using KEGG mapper (p < 0.05,
FDR corrected; Bayes>3) (Fig. 1).

The enriched-KEGG pathways (p < 0.05, FDR corrected; Bayes
Factor>3) associated with the upregulated and downregulated DEGs
(p < 0.05, FDR corrected) within the human lesional transcriptome
of NVUs (Gene Expression Omnibus #GSE123968)36 microdissected
from CA lesions were queried independently using Lynx (http://lynx.
ci.uchicago.edu)37. The common enriched-KEGG pathways between
the differential metabolome and the lesional transcriptome were then
identified (p < 0.05, FDR corrected; Bayes > 3) using KEGG mapper
(https://www.genome.jp/kegg/tool/map_pathway1.html) (Fig. 1).

For the proteome (Supplementary Data 2), the coding genes of
the plasma proteins with a documented role in CA disease were
first queried using Uniprot (https://www.uniprot.org/) and
Genecards (https://www.genecards.org/). KEGG pathway enrich-
ment analysis was then performed using Lynx. Finally, the
common enriched-KEGG pathways between the differential
plasma proteome and metabolome were identified using KEGG
mapper (p < 0.05, FDR corrected; Bayes>3).

The common enriched-KEGG pathways between the differ-
ential plasma metabolome and proteome as well as transcriptome
were finally integrated to create a cross-referenced master
pathway list.

Integration of differential metabolome and microbiome of
human CA disease. The genomes of the bacterial gut species
showing different relative abundances in CA disease were queried
using KEGG mapper (p < 0.05, FDR corrected; Bayes > 3)17. The
genes identified were further mapped into KEGG ortholog genes
using AMON software35 to extract reactions involving the
ortholog genes and metabolites of interest. Shotgun sequencing
was also queried to further support evidence for the presence of a
reaction link (AMON) (Fig. 1).

Plasma miRNome sequencing and differential expression
analyses. Total RNAs from 100 μl of plasma were extracted using
the miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany)
following the manufacturer’s recommendation25,38. cDNA
libraries were then generated with commercially available Illu-
mina small RNA-Seq kits (Clontech, Mountain View, CA, USA)
and sequenced with the Illumina HiSeq 4000 platform (Illumina,
San Diego, CA, USA) using single-end 50-bp reads, at the Uni-
versity of Chicago Genomics Core.

The differential expression analyses were conducted using R
bioconductor package DESeq2, and considered significant at
p < 0.05, FDR corrected. The in silico putative gene targets
analysis of the differentially expressed (DE) micro-RNAs
(miRNAs) was performed using miRWalk 3.039,40. Gene targets
were identified for the 3 different gene locations (3′ untranslated
region [UTR], 5′ UTR, and coding sequence) using a random
forest tree algorithm with a bonding prediction probability higher
than 95%. Only putative gene targets that appeared in at least 2 of
the 3 databases were considered25,36,38, and they were then
queried within the transcriptome of human lesional CA
NVUs25,36.

The DE plasma miRNAs were selected to be assessed using
reverse transcription quantitative PCR (RT-qPCR) if they (1)
were previously identified in preliminary analyses25, and/or (2)
had putative gene targets within the transcriptome of human
lesional CA related to at least 1 dysregulated KEGG pathway
related to CA disease.

RT-qPCR proof of feasibility. Relative and absolute quantifica-
tions of a panel of 6 pre-selected DE miRNAs were assessed using
RT-qPCR. An exogenous spike-in control, miR-cel-39-3p, was
added to all plasma samples prior to extraction and then mea-
sured to correct for extraction efficiency. The absolute quantifi-
cation (i.e., number of miRNAs strands/μl) of each miRNA was
estimated using a standard curve comprised of serial dilutions of
known concentrations of the miRNAs of interest.

For the relative quantification, miR-423-5p was used as an
endogenous control as it is expected to be expressed at equal levels
across tissue types and samples41. This was validated using the
NormFinder software, as miR-423-5p was shown to have the most
stable expression across the controls tested (https://moma.dk/
normfinder-software)42. For each miRNA, a relative quantification
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value greater than ±3 standard deviations away from the mean was
defined as an outlier43,44. Statistical analysis was performed on Prism
(GraphPad, San Diego, California) using a Mann–Whitney test.

Assessment of selected DE plasma miRNAs using RT-qPCR.
The total RNA was first extracted from plasma using the Mag-
MAX mirVana Total RNA Isolation Kit (Thermo Fisher, Walt-
man, MA, USA). In addition, an exogenous control C. elegans
miR-39-3p (1.5 × 1010 copies of cel-miR-39-3p in 5 µl) was spiked
in during the total RNA extraction in order to assess the
extraction efficiency, as well as to ensure the inter-plate repro-
ducibility of the RT-qPCR45,46. RT-qPCR was performed using
the TaqMan Advanced miRNA Assays Kit (Thermo Fisher). A
miR-Amp reaction was performed to amplify miRNAs prior to
RT-qPCR using the QuantStudio3 (Thermo Fisher). The Cq
values of each selected plasma miRNA as well as of two human
endogenous control miR423-5p and miR16-5p, and of exogenous
control cel-miR39-3p were measured. The Cq values of the two
endogenous controls were compared in order to identify the most
stable one to be used to calculate the relative plasma expression47:

ΔCq ¼ CqmiRNAof interest � Cqendogenouscontrol ð1Þ

Three-step Bayesian approach to assess the performance of the
multi-omics diagnostic CASH biomarker. A three-step Bayesian
approach was implemented using a leave-one-out cross-
validation ML framework to assess if a multiomic integrative
combination of plasma ratio levels of metabolites and miRNAs
enhance the performance of the previously identified protein-
based CASH biomarker25. This three-step approach was first
applied using the plasma ratio levels of (1) metabolites (all:
p < 0.05), (2) miRNAs, both validated in the independent pro-
pensity scored matched validation cohort, and finally (3) the

protein-based CASH biomarker as well as the metabolites and
miRNAs.

Given the importance of clinical applicability, a smaller
number of compounds with high sensitivity was preferred. The
accuracy, specificity, sensitivity, receiver operating characteristic
curve, and canonical values were computed for each model. The
best-performing models were selected by having the highest
combination of sensitivity and specificity following the Youden
index method48–50. A parallel automatic ML framework of
correlation-based feature selection (CFS), logistic linear regres-
sion with 10-fold cross-validation, and tree-based model selection
of the model with the lowest AIC value was used to support these
results51. Leave-one-out or 10-fold cross-validation ML
approaches reduce overfitting effects, while identifying molecules
which would individually contribute to the model’s diagnostic
association. In addition, AIC criteria allowed for the selection of
the least complex model to additionally also prevent overfitting51.

The multinomial logistic regression model with a ridge
estimator (Weka) was applied as the classifier. This was given a
binary classification on n samples with m features. The
probability for the positive class for any sample i was estimated
using

P Xi

� � ¼ eXiβ

eXiβ þ 1
ð2Þ

where Xi is the feature vector for sample i and β is the vector of
the m coefficients.

The negative multinomial log-likelihood to be minimized is:

L ¼ � ∑
n

i¼1
Yi

�
ln pðXiÞ þ ð1� YiÞð1� ln pðXiÞÞ þ ridge � β2 ð3Þ

where Yi is the label for sample i and ridge= 1.0 × 10−8.
A quasi-Newton method was used to search for the optimized

values of the m features. Missing values were replaced using mean

Fig. 1 Methodology for analytic multi-omics integration of differential plasma metabolome and proteome, microbiome and lesional transcriptome, in
cavernous angioma (CA) disease. A pipeline was implemented to study the integration of multiomic datasets of CA disease. The interacting Comparative
Toxicogenomics Database (CTD) genes and their associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the differential plasma
metabolite (p < 0.05, FDR corrected; Bayes factor>3) were first identified and then analytically compared to the enriched-KEGG pathways of the differential
plasma proteome, and lesional transcriptome (p < 0.05, FDR corrected; Bayes factor>3). The differential metabolites were then validated in an independent
cohort, propensity matched for age, sex, brainstem lesion, and genotype. NVUs neurovascular units.
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values. Given the importance of clinical applicability, a smaller
number of compounds with high sensitivity was preferred.
Therefore, the AIC was calculated to evaluate each possible model
using (1) the mean absolute error estimated from logistic
regression classification with 10-fold cross-validation, (2) the
number of compounds included accounted for the complexity of
the model.

Statistics and reproducibility. PLS-DA was used for the identi-
fication of differential metabolites from the unsupervised meta-
bolome (p < 0.05, FDR corrected) in the CA (n= 53) vs. non-CA
(n= 17) as well as CASH (n= 5) vs. non-CASH (n= 48) ana-
lyses. Validation of the CASH metabolites in an independent
propensity matched cohort of (n= 20) CASH and (n= 20) non-
CASH was also completed using PLS-DA analysis. Unpaired
Student’s t test was used for the statistical analyses of the cano-
nical values in the CA vs. non-CA as well as CASH vs. non-CASH
analyses. The comparisons of the demographics of the discovery
and independent propensity score matched cohort were per-
formed with independent samples t test, Mann–Whitney U-test,
χ2-test, or Fisher’s exact test using SPSS v22.0 (IBM, Armonk,
NY, USA). Continuous variables were tested for normality using
Shapiro–Wilk test. All p-values were considered statistically sig-
nificant at α < 0.05.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Correlation of plasma levels of proteins and differentially
expressed metabolites. The correlation between the plasma
protein levels and normalized metabolite values were assessed
using Pearson’s coefficient. A two-sided t test was used to esti-
mate the p-value with FDR correction using the R software. The
analyses showed that the plasma levels of 5 metabolites and
protein were correlated (|r| > 0.5; p < 0.05, FDR corrected). These
include correlations between (1) linoleic acid and C reactive
protein (CRP), (2) tauroursodeoxycholic acid and IL-10, (3)
glycodeoxycholic acid and vascular endothelial growth factor
(VEGF), (4) glycocholic acid and VEGF, as well as (5) Phenyla-
lanylphenylalanine and angiopoietin-1 (ANG-1). These results
suggest that these molecules have mechanistic co-involvement.
Thereafter, correlational feature selection was used to only
include molecules with low inter-correlations and high predictive
ability in the diagnostic weighted combinations (Supplementary
Fig. 2).

Transcriptome enriched-KEGG pathways. The transcriptome of
human lesional NVUs of CA identified 1542 DEGs (p < 0.05, FDR
corrected)36. The enriched-KEGG pathway analyses were then
performed independently on each of the two lists and found 35
enriched-KEGG pathways (p < 0.05, FDR corrected; Bayes > 3) for
the upregulated DEGs, and 65 (p < 0.05, FDR corrected; Bayes >
3) for downregulated DEGs.

Plasma ratio levels of fifteen metabolites, including cholic acid
and hypoxanthine, distinguished CA patients from healthy
non-CA subjects. The unsupervised PLS-DA of the metabolome
identified 15 molecules with differential plasma ratio levels
(p < 0.05, false discovery rate [FDR] corrected) in a discovery
cohort comprised of 53 consecutive CA patients enrolled between
April 2017 and August 2018 compared to 17 healthy non-CA
controls (Fig. 2a, Supplementary Table 1, Supplementary Table 2,
Supplementary Data 3). This discovery cohort contains the same

patients reported in our recently published study on permissive
microbiome in CA disease17. In silico integrative analyses with
the microbiome bacterial species that had previously been shown
in different abundance (p < 0.01, FDR corrected) among CA vs
healthy non-CA (i.e., 16S-RNA seq) revealed interactions of
cholic acid and hypoxanthine with genes of Bifidobacterium
adolescentis, Faecalibacterium prausnitzii, and Odoribacter
splanchnicus (Fig. 3, Supplementary Data 4)17. Of interest, ten
genes linking the three species to hypoxanthine were identified
within shotgun metagenomic sequencing of the differential
microbiome of the same CA versus non-CA subjects17.

Further in silico analyses showed that nine of the 15
differential metabolites were involved in 20 KEGG pathways
commonly enriched within the previously published transcrip-
tome of human lesional NVUs36 and differential proteome of
CA disease (p < 0.05, FDR corrected; Bayes factor>3; Fig. 3,
Supplementary Fig. 3, Supplementary Data 4). Of interest,
cholic acid and hypoxanthine were related to PI3K-AKT,
MAPK, NF-KB, and Rap1 signaling (Fig. 3, Supplementary
Data 4, Supplementary Data 5) previously implicated the
pathogenesis of CAs16,20–22,52,53.

The individual receiver operating characteristic (ROC) curves
for each of the fifteen metabolites showed poor or fair sensitivity/
specificity to distinguish CA and non-CA healthy subjects
(Supplementary Table 2). A three step Bayesian ML approach,
however, further derived a weighted combination of five
differential plasma metabolites able to distinguish CA and non-
CA healthy subjects of the discovery cohort with 87.5% sensitivity
and 89% specificity:

Diagnostic CA biomarker ¼ 858:65*½linoleic acid� þ 1005:39*½glycocholic acid�
þ1091:07*½hydroxypalmitic acid� � 1857:99*½urobilin�

�2145:29*½7a� hydroxy � 3� oxo� 4� cholestenoic acid� þ 0:07

ð4Þ
Canonical values estimated with this model were higher in CA

patients compared to healthy non-CA patients (p < 0.0001). This
sensitivity and specificity of the combined metabolites in
differentiating CA from non-CA subjects is similar to that
reported with the permissive microbiome in the same subjects17.
Plasma metabolites reflecting the permissive microbiome and
other mechanisms distinguishing CA from non-CA subjects are
much more amenable to assays in individual subjects than
analyses of fecal bacterial composition.

The plasma ratio levels of four metabolites, including linoleic
and arachidonic acids, distinguished CASH and cavernous
angioma without symptomatic hemorrhage (non-CASH)
patients. The results of the unsupervised PLS-DA identified
showed that the plasma ratio levels of linoleic and arachidonic acids
were greater in CASH (n= 5) compared to non-CASH (n= 48)
patients in the discovery cohort, and lower for 1-oleoyl-sn-glycero-
3-phosphoethanolamine and glycodeoxycholic acid (all: p < 0.05,
FDR corrected; Fig. 2b, Supplementary Table 3A, Supplementary
Data 3). Arachidonic acid in fact interacts with specific genes of
Enterobacter cloacae, which has been found to be differentially
abundant in CASH compared to non-CASH patients17. Further in
silico analyses showed that arachidonic, linoleic, and glycodeoxy-
cholic acids were mapped through 23 common KEGG pathways
across the CA transcriptome and proteome (Supplementary Fig. 4,
Supplementary Data 5), including PI3K-Akt, MAPK, HIF-1, and
Rap1 signaling. Of interest, arachidonic acid was specifically cor-
related with 11 enriched-KEGG pathways common across the
transcriptome, proteome, and metabolome datasets (p < 0.05, FDR
corrected; Bayes factor>3; Fig. 4, Supplementary Data 4, Supple-
mentary Data 5).
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The four differentially present plasma metabolites identified in
CASH patients, compared to non-CASH, were validated in an
independent propensity matched cohort. A CASH is a cardinal
event in the clinical course of CA disease14. An independent
propensity matched cohort of CASH (n= 20) and non-CASH

(n= 20) patients identified among subsequent prospectively
enrolled subjects, was used to validate the metabolomic findings
(Supplementary Table 4). Twenty CASH and 20 non-CASH
patients were propensity score matched. The supervised PLS-DA
also showed that plasma ratio levels of linoleic (Supplementary

Fig. 2 Heatmaps of the differential metabolomic profiles in cavernous angioma (CA) disease and its clinical manifestations. A PLS-Discriminant
Analysis showed differences in the plasma levels for (a) 15 metabolites between CA patients (n= 53 biologically independent patient samples) and healthy
non-CA subjects (n= 17 biologically independent patient samples), (b) four metabolites between cavernous angioma with symptomatic hemorrhage
(CASH) patients (n= 5 biologically independent patient samples) and cavernous angioma without symptomatic hemorrhage (non-CASH) patients (n= 48
biologically independent patient samples) (p < 0.05, FDR corrected; Bayes factor>3). Z-scores were calculated to compare metabolite levels across
patients within each comparison group, with lower z scores (darker blue) representing lower relative plasma levels of metabolites. Metabolites with listed
PubChem IDs are identified in Supplementary Tables 2, 3.
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Fig. 1) (p= 0.003) and arachidonic (p= 0.06) acids were greater
in CASH compared to non-CASH patients of the validation
cohort, and lower for 1-oleoyl-sn-glycero-3-phosphoethanola-
mine (p= 0.02) and glycodeoxycholic acid (p= 0.0002) in CASH
compared to non-CASH patients, as in the discovery cohort, and
in the same direction (Supplementary Fig. 5; Supplementary
Table 3B).

The plasma ratio levels of six metabolites, including bilirubin,
distinguished aggressive vs. non-aggressive CA patients.
Aggressivity of CA disease is an important determinant for
understanding CA clinical course and developing therapeutic
strategies. Among the 53 CA patients of the discovery cohort, 19
were classified into aggressive and 34 as non-aggressive disease
based on their clinical records. Aggressive CA disease was defined
as: (1) age of symptom onset prior to 18 years of age, (2) a history
of two or more CASH events, (3) greater than 25 susceptibility
weighted imaging (SWI) lesions, or (4) greater than 5 T2-
weighted lesions >4 mm in diameter10,17,23. The differential
metabolome between aggressive and non-aggressive disease CA
patients included in the discovery cohort identified 6 metabolites
(p < 0.05, FDR corrected; Supplementary Fig. 6A, Supplementary
Table 5) in the discovery cohort. Among these metabolites,

bilirubin, as well as cis-9-hexadecenoic and tauroursodeoxycholic
acids interacted with 19 CA-enriched-KEGG pathways that also
overlapped across the transcriptome and proteome of CA disease
(Supplementary Data 5). Of these 19, the literature showed 10 to
be KEGG pathways with prior established relevance to CA disease
(Supplementary Fig. 7, Supplementary Data 5).

Three metabolites, including glycodeoxycholic acid and gly-
cocholic acid, distinguished familial- vs. sporadic-CA patients.
CA patients including within the discovery cohort harboring (1)
multiple lesions throughout the brain on T2-weighted imaging or
SWI, (2) a documented CCM1, CCM2, or CCM3 germline
mutation, and/or (3) first-degree relative with a history of CA
were classified as familial-CA (n= 25). Patients showing a soli-
tary or a cluster of lesions associated with a developmental venous
anomaly lesion were identified as sporadic-CA patients (n= 28)2.
The plasma levels of glycodeoxycholic and glycocholic acids, as
well as decanoyl-L-carnitine were different (p < 0.05, FDR cor-
rected; Supplementary Fig. 6B, Supplementary Table 6) between
familial- and sporadic-CA patients of the discovery cohort. Two
hundred thirty-one pathways were associated with the genes that
interact with or are affected by these three metabolites. Among
these 231 pathways, 37 overlapped with the enriched-KEGG

Fig. 3 Integrative analyses of cholic acid and hypoxanthine between the differential microbiome, plasma proteome and lesional transcriptome of
cavernous angioma (CA) disease. The plasma levels of cholic acid and hypoxanthine, which were lower in CA patients compared to healthy non-CA
subjects (p < 0.05, FDR corrected), were later linked to Bifidobacterium adolescentis, Faecalibacterium prausnitzii, and Odoribacter splanchnicus. Further
integrative analyses identified nine enriched Kyoto Encyclopedia of Genes and Genomes (KEGG)-pathways (p < 0.05, false discovery rate [FDR] corrected;
Bayes factor>3) that overlap between the differential plasma proteome and metabolome as well as with the lesional transcriptome of CA disease. Reported
to have a role in the physiopathogenesis of CAs, these nine pathways were categorized into six biological processes with pre-established relevance to CA
disease.
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pathways identified in the human lesional NVUs transcriptome.
Of the 37 enriched-KEGG pathways, 12 also overlap with the
proteome. Seven of these pathways had CA relevance from the
literature, including PI3K-Akt, HIF-1, and MAPK signaling
(Supplementary Fig. 8, Supplementary Data 5).

Nineteen plasma miRNAs are differentially expressed in the
propensity matched cohort of 20 CASH and 20 non-CASH
patients. Differential expression analyses identified 19 DE plasma
miRNAs (p < 0.05, FDR corrected) between the CASH and non-
CASH patients of the propensity matched cohort (Supplementary
Data 6). Among these 19 DE miRNAs, 8 were assessed using RT-
qPCR. Plasma DE miR-486-5p, miR-25-3p, miR-16-5p, miR-183-
5p and miR-501-3p were independently discovered in previous
preliminary analyses25. In addition, miR-182-5p, miR-20a-5p and
miR-92a-3p had at least 2 putative gene targets within the tran-
scriptome of lesional human CA NVUs25,36, related to enriched-
KEGG pathways with documented mechanistic role in the phy-
siopathogenesis of CAs including HIF-1, MAPK, PI3K-Akt, Rap1
and VEGF signaling20–22,54.

Diagnosis of CA characteristics with metabolites alone.
Weighted combination to distinguish aggressive and non-
aggressive CA patients. The weighted model to distinguish
patients with aggressive and non-aggressive disease of the

discovery cohort achieved 85% sensitivity and 79% specificity:

Lðnon-aggressive diseaseÞ ¼ 3682:02*½cis-9-hexadecenoic acid�
�19165:94*½1-palmitoyl-sn-glycero-3-phosphocholine�

þ962:10*½bilirubin�-0:48
ð5Þ

The canonical values derived from this model were lower in
CA patients with aggressive disease (p < 0.0001).

Weighted combination to distinguish familial- and sporadic- CA
patients. Finally, the best weighted model, including only the
plasma metabolites differentially expressed between the familial-
CA and sporadic-CA patients of the discovery cohort, achieved
37% sensitivity and 86% specificity.

LðFamilial-CAÞ ¼ 1236:91*½decanoyl-L-carnitine�-0:37 ð6Þ
The canonical values derived from this last analysis trended

higher in familial-CA disease compared to sporadic-CA disease
(p= 0.09).

Multi-omics integration of plasma levels of metabolites, miR-
NAs and proteins enhances the diagnostic association with
CASH. Levels of DE miRNAs had not been previously considered
in combined biomarker analyses. We hence sought to examine
whether the combination of previously identified proteins and
miRNAs differentiating CASH from non-CASH along with the
differential metabolites can enhance the sensitivity and specificity
of the diagnostic association.

Fig. 4 Arachidonic acid links Enterobacter cloacae and 11 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched across the differential
proteome and transcriptome of cavernous angioma with symptomatic hemorrhage (CASH) patients. The integrative analyses draw a link between
higher plasma levels of arachidonic acid and Enterobacter cloacae in CASH patients (p < 0.05, false discovery rate [FDR] corrected; Bayes factor>3). Further
analyses also identified 11 enriched-KEGG pathways with a role in cavernous angioma (CA) disease that overlapped between the differential plasma
metabolome and proteome as well as the lesional transcriptome of CA disease. These 11 pathways were then categorized into six biological processes
mechanistically related to CA disease (p < 0.05, FDR corrected; Bayes factor>3).
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First, the previously published weighted combination of four
proteins was again confirmed to distinguish CASH and non-
CASH patients of the independent propensity score matched
cohort with 60% sensitivity and 70% specificity (Accu-
racy=69.3%, area under the curve [AUC]= 69.2%), in the same
range as reported previously in a different cohort25. A three steps
Bayesian approach using a leave-one-out cross-validation (CV)
ML framework was then implemented to determine if a weighted
combination of plasma levels of metabolites, proteins and
miRNAs improves the diagnostic association with CASH
(Supplementary Fig. 9). The integrative weighted combination
of plasma levels of one metabolite, three miRNAs and the same
protein CASH biomarkers improved the diagnostic association
distinguishing CASH patients versus non-CASH patients to 80%
sensitivity and 95% specificity (Accuracy= 87.5%, AUC= 90.3%,
Akaike Information Criterion [AIC]= 45.6; Fig. 5, Supplemen-
tary Data 7):

Integrated diagnostic CASHbiomarker ¼ �3:37 � ½sCD14� þ 1:47*½CRP�
�0:36*½VEGF� � 0:57*½IL� 10� þ 316:54*½linoleicacid�r

�6:06*½miR� 20a� 5p�r þ 5:41*½miR� 25� 3p�r þ 1:26*½miR� 486� 5p�r
ð7Þ

The canonical values estimated using this integrated diagnostic
CASH biomarker were higher in CASH compared to non-CASH
patients (p < 0.0001; Fig. 5, Supplementary Data 7).

A parallel 10-fold cross-validation ML approach yielded similar
results with 85% sensitivity and 80% specificity (Accuracy=
82.5%, AUC= 90.8%, AIC= 31.9).

Discussion
We performed unsupervised differential plasma metabolomic
analysis in CA patients versus healthy non-CA subjects, and in
CA patients with different disease features. Multiomic integrative
analyses showed that several differential metabolites were asso-
ciated not only with enriched-KEGG pathways dysregulated
within the transcriptome of lesional NVUs and plasma proteome,
but also with gut microbiota species showing differential relative
abundances in CA patients. This is the first plasma metabolomic
analysis in any neurovascular disease. Metabolites with different
levels in CAs with and without SH, the most important clinical
feature of the disease, were validated in a propensity matched
independent patient cohort. A Bayesian approach implemented
with ML algorithms showed that normalized levels of plasma
metabolites and miRNAs enhanced the performance of a pre-
viously published protein-based CASH biomarker. This inte-
grative biomarker development strategy is applicable in other
pathologies.

The initial differential analyses of the metabolome showed that
the plasma concentrations of cholic, glycocholic, glycodeoxy-
cholic, and tauroursodeoxycholic acids were different between
CA patients and healthy non-CA subjects. Cholic and glycocholic
acids are two compounds synthesized in the liver and, after
conjugation with glycine, secreted in bile55. These molecules have
previously been shown to play a role in maintaining blood–brain
barrier integrity, downregulating apoptosis, and mitigating
inflammatory damage following a hypoxic state56. Of interest, the
plasma levels of glycocholic acid and VEGF were correlated
(Supplementary Fig. 2). It has been shown that glycocholic acid
inhibits VEGF-induced angiogenesis in choroidal endothelial
cells, and protects against oxidative damage57. Recently, TLR4-
MEKK3-KLF2/4 signaling, driven by the gut microbiome via
gram-negative bacterial lipopolysaccharide, has been postulated
to drive CA physiopathogenesis16. Specifically, this study sug-
gested that TLR4, in association with its co-receptor CD14 on

brain endothelial cells, stimulates MEKK3-KLF2/4 signaling16.
Specific to CA disease, activated MEKK3-KLF4 signaling could
impair PI3K-mTOR signaling, while also increasing expression of
a second MEKK3 effector, the secreted versicanase ADAMTS5,
increasing CA lesion formation58.

While mutations in the CCM proteins have noteworthy
structural effects on endothelial cells, previous studies have also
shown an inflammatory component in CA disease. Recent studies
have shown oligoclonal IgG synthesis, immune complex forma-
tion, and inflammatory cell infiltration, including CD4+ and
CD8+ T-cells, within CA lesions59. The relationship of cholic acid
and hypoxanthine with several inflammation-related KEGG
pathways is consistent with their association with CA lesion
development, and their potential role as disease biomarkers.

It is well-documented that the risk of re-bleeding after a
first CASH increases approximately 10-fold, however, it is
unclear what predisposes these patients to this increased
susceptibility11. Ongoing inflammation and angiogenesis may
contribute to this underlying process. Further differential ana-
lyses of the metabolome showed greater plasma levels of ara-
chidonic and linoleic acids in CASH patients. The in silico
incorporation of microbiota data showed that arachidonic acid
identified a link to Enterobacter cloacae, while also interacting
with MAPK/MEKK3/ERK3, PI3K-Akt, Rap1, and T-cell
receptor signaling pathways. Cyclooxygenase-1 (COX-1) and
cyclooxygenase-2 (COX-2) downstream synthesized products
of arachidonic acid, play a role in mediating angiogenesis
as well as inflammatory interactions of leukotrienes and
prostaglandins60. We note that LPS, in addition to its role in
TLR4 signaling and MAPK/MEKK3/ERK3 upregulation, indu-
ces COX-1 and COX-2 expression, possibly explaining the
increased arachidonic acid seen in CASH patients61. In addi-
tion, linoleic acid was shown to interact with the NF-KB
pathway, which is important in the regulation of both the
adaptive and innate immune systems as well as acting as a
mediator of inflammatory response62. Activation of this path-
way has been associated with inhibition of angiogenesis62.

The plasma levels of the vast majority of metabolites and
putative proteins previously associated with CA disease23–25 did
not correlate, and hence contributed complementary biomarker
information (Supplementary Fig. 2). Consistent with this obser-
vation, the three step Bayesian approach using a ML framework
showed that multiomic integration improves the efficacy of
CASH diagnosis, the most relevant clinical context in this disease.
The molecules embedded in the best weighted biomarker com-
bination have strong mechanistic rationale in CA disease.

Lower plasma concentrations of bilirubin were observed in CA
patients experiencing a more aggressive clinical course during
their lifetime. Bilirubin is a catabolic product of heme from the
hepatic reticuloendothelial system that has antioxidant properties
protecting the NVUs63,64. It may be cautiously interpreted that
decreased levels of bilirubin may also alter angiogenic signaling
through VEGFR1 as well as play a role in altering MAPK/
MEKK3/ERK3 signaling, therefore increasing lesion number,
formation, and hemorrhagic activity65. In addition, lower plasma
levels of bilirubin have been reported in cerebrovascular diseases,
such as deep white matter hyperintensities66. Oxidative stress
related to low bilirubin levels is consistent with the pro-
inflammatory characteristics observed in-situ in CAs66. Lower
levels of bilirubin in patients with aggressive CA disease suggest
the first possible link between reduced bilirubin antioxidant effect
and cumulative activity of CA disease during a patient’s lifetime,
which will need to be confirmed in mechanistic studies.

The genotype analyses differentiating familial- versus sporadic-
CA patients revealed many KEGG pathways central to CA disease
such as those mentioned above. However, given the low accuracy,
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and high mean absolute error, even the combination of plasma
metabolites and proteins was unable to develop an accurate
biomarker of genotype. There were small numbers of cases with
each genotype, and larger cohorts might improve the perfor-
mance of combinations of plasma metabolites and proteins. The
incorporation of other circulating molecules, such as miRNAs
may increase the accuracy and develop a more clinically applic-
able diagnostic biomarker of familial disease25.

This is a single site study, with inherent limitations and
potential biases of referrals and enrollments. The imbalance
between the number of CASH and non-CASH cases in the dis-
covery cohort reflects the natural clinical course of this disease,
with fewer than 15% of cases seen in clinical practice representing

CASH11. The discovery cohorts were not matched for sex, age,
disease features, or other potential confounders, and the small
sample did not allow for specific analyses of interactions between
metabolites and these features. However, the results of the dis-
covery cohort were further validated in a four-fold larger
independent cohort of CASH cases, propensity matched for
potential confounders (age, sex, brainstem lesion location, and
phenotype)13 with an identical number of non-CASH cases. The
numbers of cases enrolled in discovery and validation cohorts are
the largest ever reported in this rare disease, providing a first
proof of concept for combined plasma metabolite, protein, and
miRNA biomarkers for improved accuracy in specific clinical
contexts of use. Because of these results, metabolomic discovery

Fig. 5 Weighted combinations of plasma ratio of metabolites and micro-RNAs (miRNAs) improve the performance of the proteins-based cavernous
angioma with symptomatic hemorrhage (CASH) biomarker. The canonical values estimated with the optimal integrative weighted model were (a) higher
(unpaired Student’s t test, p < 0.0001) in the CASH (n= 20 biologically independent patient samples) compared with cavernous angioma without
symptomatic hemorrhage (non-CASH) patients (n= 20 biologically independent patient samples) included in the independent propensity matched
validation cohort. b The receiver operating characteristic (ROC) analyses showed that this integrative model differentiated CASH patients from non-CASH
patients with 80% sensitivity and 95% specificity (area under the curve [AUC]= 90.25%). c An alternative optimal integrative weighted model developed
using a parallel 10-fold cross-validation machine learning approach showed higher canonical values higher (unpaired Student’s t test, p < 0.0001) in CASH
compared with non-CASH patients. d The ROC analysis showed that the alternative optimal integrative model differentiated CASH from non-CASH with
85% sensitivity and 80% specificity (AUC= 90.75%). CI, confidence interval; ***p < 0.001. Error bars represent standard error of the mean.
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will now be incorporated in an ongoing large study sponsored by
the U.S. National Institutes of Health (R01 NS114552) aimed at
developing biomarkers of CASH, with a sample size powered to
examine independent effects of multisite enrollment, age, sex,
lesion location and genotype13.

Another limitation is that the lesional transcriptome data36 was
not from the same individuals as the microbiome, metabolome
and proteome. The lesional transcriptome can only be derived
from patients undergoing surgical lesion resection. Previously
published microbiome data included the discovery cohort
reported herein where metabolites were identified17.

Our protein assays included candidate molecules implicated in
CA disease23–25. It is possible that other proteins might emerge as
promising targets in unsupervised proteomic analyses, or in
future mechanistic studies. We tested herein candidate protein
biomarkers of CASH that had shown significant associations in
previous studies with independent cohorts.

The metabolomic discoveries were unsupervised, and included
peaks related to known drug molecules and their metabolites (e.g.,
such as anticonvulsants, migraine medications) commonly used in
CA patients. These were discarded. However, several potentially
meaningful molecules in the differential metabolome were unan-
notated and could not be identified by current techniques, and
these may contribute mechanistic links or strong biomarker per-
formance not examined herein. In addition, there are limitations to
mass spectrometry with respect to isomer differentiation. We
mitigated this concern by using internal standards of the com-
pounds from our discovery study67,68. Differentiation of all isomers
can be performed using nuclear magnetic resonance or high-
performance liquid-chromatography techniques but is outside the
scope of this work69. Many of the identified metabolites
were remarkably linked to relevant CA lesion transcriptome, dis-
ease microbiome, and mechanistically plausible pathways. While
these molecules may play important roles as biomarkers of CA
disease, currently, mechanistic conclusions cannot be made about
the causal relationships of these molecules to CA pathogenesis.
Further mechanistic understanding of their roles in disease
pathology could lead to the development of therapeutics in the
treatment of CA disease. Following establishment of diagnostic
biomarkers, studies shall be undertaken to develop prognostic
biomarkers to predict future symptomatic hemorrhage as well as
monitoring biomarkers to monitor the effects of therapies70.

Plasma levels of metabolites reflecting the permissive gut
microbiome are easier to assay in the clinical context, than the
analysis of bacterial genes in fecal specimens. Circulating levels
(assayed by qPCR) of miRNAs that had been shown to be DE in
discovery cohorts, also present major advantages in comparison
to the sequencing of plasma microRNome in individual subjects.

We identify interactions of the differential plasma metabolome
and proteome, lesion transcriptome, and gut microbiome asso-
ciated with CA, resulting in cross-validation of postulated
mechanisms of disease. Bayesian and ML algorithms imple-
mented herein led to the development of highly accurate markers
of CA diagnosis and CASH. The levels of mechanistically linked
metabolites, miRNAs and proteins were validated in independent
cohorts, and their weighted combination enhanced biomarker
performance in relation to SH, the most relevant clinical context
of use. The testing of these biomarkers in larger populations
across multiple sites could lead to further confidence in smart
blood tests based on multiomic mechanistic links in this and
other diseases.

Data availability
All metabolomic data for the discovery cohort study are available in the GNPS repository, at
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b82b664f25854df492aeec5420b95d45. All

metabolomic data for the validation cohort study are available on the MassIVE repository,
Accession number MSV000091098, https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
d833d707661e432d91dc91c67d76d1ee. Data underlying all figures in the main manuscript
are provided as supplementary data files. Supplementary Data 3 contains the source data for
Fig. 2. Supplementary Data 4 contains the source data for Figs. 3, 4. Supplementary Data 7
contains the source data for Fig. 5. Any additional records are available from the
corresponding authors upon reasonable request.

Code availability
All scripts used in the generation of this data can be found at 10.5281/zenodo.763054671.
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