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Evaluating Accessibility of Los Angeles Metropolitan Area 
Using Data-Driven Time-Dependent Reachability Analysis 

EXECUTIVE SUMMARY 

Accessibility to people, goods, services and places forms the basis of economic development in 
a city. The better and more efficient this access, the greater the economic benefits. As the 
population and employment grow in a city and the level of agglomeration gets higher, the city 
tends to have higher GDP per capita and higher levels of productivity. The way in which cities 
facilitate accessibility through their urban forms and transport systems also impacts directly on 
other measures of human development and well-being. Reliable evaluation of accessibility of 
city blocks for transport systems over a large area is essential for policymakers to achieve 
effective city planning as well as to improve well-being of citizens. 

One major way to evaluate the accessibility of public facilities such as hospitals is reachability 
analysis which determines whether certain city blocks can be reached from at least one of 
these facilities within a certain time span. An isochrone is generally defined as a curve drawn on 
a map connecting points at which moving objects (e.g., cars) arrive at the same time for a given 
starting point and time duration and it is one of the most efficient tools used in addressing the 
reachability analysis problem. Thus, their construction is an important task in many application 
domains. As an example, in urban planning, isochrones are essential when assessing the 
placement of public services like hospitals and fire departments.  

The objective of this proposal is to investigate how accessibility of city blocks is quantified 
through the transport systems and real traffic flow data from the Los Angeles Metropolitan 
Area. We will formally define the isochrone and reverse isochrone problems, describe our 
approach to solving them and provide a fully functional system that is capable of visualizing 
reachability maps. Unlike other studies, our approach is purely data-driven and does not 
depend on mathematical graph-theory to compute the isochrone which requires an intensive 
computation. Instead, we focus on directly processing the large amount of traffic flow data that 
our research center, the Integrated Media Systems Center at USC, has acquired from the Los 
Angeles County. This research exploits real-world big traffic sensor data collected from the 
Regional Integration of Intelligent Transportation Systems (RIITS) for more than ten years under 
our existing Archived Traffic Data Management System (ADMS) project. 

We use a data-driven grid-based approach for constructing time-dependent isochrone maps 
considering specific time of day, week, and month. Our reachability map construction is based 
on vehicle trajectories, however not many real trajectory data are publicly available in reality 
due to various reasons such as privacy. Thus, we devised the Data-Driven Trajectory Generator, 
dubbed DDTG, a data-driven, model-free, and parameter-less algorithm for generating realistic 
synthetic vehicle trajectory datasets from real-world ADMS traffic flow data. Since real world 
traffic flow data are incomplete with lots of temporal and spatial missing values, we studied 



 

 ii 

imputation and interpolation methods to complete the dataset before using them for synthetic 
trajectory generation.  

The main contributions of our work are: 

• Study and evaluate 1) imputation methods to handle temporally missing values for 
different lengths of imputing gaps, and 2) interpolation methods to estimate the traffic 
conditions near locations where sensor data is not available. 

• Propose an algorithm that aggregates traffic data over a region of interest and 
constructs a Traffic Index that summarizes the traffic flow (i.e., average speed) at a 
certain level of analysis zones. 

• Propose DDTG, a model-free algorithm that generates synthetic yet realistic vehicle 
trajectory datasets, and a set of metrics to evaluate the quality of generated datasets at 
both holistic and individual levels. 

• Generate lots of realistic synthetic vehicle trajectories in the City of Los Angeles using 
DDTG and conduct comprehensive experiments to evaluate the quality of the generated 
trajectory datasets. 

• Develop a web application (https://imscwww.usc.edu/app/) in which users can select a 
location, travel time, and the time of year and see the evaluated accessibility info in the 
form of isochrone maps. 

The outcomes of this project, synthetic vehicle trajectory dataset and reachability map 
construction will be helpful in evaluating accessibility of city blocks for transport systems over a 
large area so will become essential for policymakers to achieve effective city planning as well as 
to improve well-being of citizens.

https://imscwww.usc.edu/app/
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1. Introduction 

Accessibility to people, goods, services and places forms the basis of economic development 
and public health in a city. The better and more efficient this access, the greater the economic 
benefits and the better the public health. As the population and employment grow in a city and 
the level of agglomeration gets higher, the city tends to have higher GDP per capita and higher 
levels of productivity. The way in which a city facilitates accessibility through their urban forms 
and transport systems also impacts directly on other measures of human development and 
well-being. Reliable evaluation of accessibility of city blocks for transport systems over a large 
area is essential for policymakers to achieve effective city planning as well as to improve well-
being of citizens. 

One major way to evaluate the accessibility of public facilities (e.g., hospitals) is reachability 
analysis which determines whether certain city blocks can be reached from at least one of 
these facilities within a certain time span. An isochrone is generally defined as a curve drawn on 
a map connecting points to which moving objects (e.g., cars) leaving from a specific origin can 
arrive at the same time and it is one of the most efficient tools used in addressing the 
reachability analysis problem (Figure 1) [45]. Thus, their construction is an important step for 
many transportation applications. As an example, in urban planning, isochrones are essential 
when assessing the placement of public services like hospitals and fire departments. However, 
accessibility is a complex function of origin locations, destination locations, the underlying 
transportation network, the dynamic weights on the edges of the networks representing travel 
times during different times of the day, etc. Among many factors, the cost measurements are 
essential and usually take a variety of forms such as any combinations of Euclidean distance, 
network distance, travel time, monetary cost or fare, comfort or subjective ease of travel. 
Effective and efficient access is the goal of most transportation activities. To understand 
accessibility, a proper evaluation of accessibility is essential. However, it is challenging due to 
many factors affecting accessibility in a city: transportation demand and activities, mobility, 
transportation modes, land use, transport network connectivity, and even teleworking [1].  

The objective of this project is to investigate how accessibility of city blocks is quantified 
through the transport systems and real traffic flow data from the Los Angeles Metropolitan 
Area. The accurate and efficient construction of reachability maps is a challenging task. Towards 
that end, first, we will analyze the reachability at different times of the day and for that we 
need to construct time-dependent isochrone maps. Graph theory techniques attempt to solve 
this by assigning dynamic time-varying weights on edges [2], however, these techniques do not 
scale well to large and complex graphs such as large Los Angeles road networks.  

Unlike other conventional studies, our approach is data-driven and does not depend on 
mathematical graph-theory to compute the isochrone which is computationally expensive. 
Instead, we focus on directly processing the large amount of traffic flow data that our research 
center, the Integrated Media Systems Center at USC, has acquired from the Los Angeles County 
in the past decade. We devised a data-driven grid-based approach for constructing time-
dependent isochrone maps considering specific time of day, week, and month with the past, 
present and predicted data. The outcome of our work is the construction of time-dependent 
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isochrone map display web application. To demonstrate the results from the proposed 
research, we developed a web application in which users can select a location, travel time, and 
the time of year and see the evaluated accessibility information in the form of isochrone maps. 

 

Figure 1. An example of isochrone map 

1.1. Prior Work on Traffic Data Collection and Archiving 

At USC’s Integrated Media Systems Center (IMSC) with our partnership with Los Angeles 
Metropolitan Transportation Authority (LA Metro) and METRANS, we have developed a big 
transportation data warehouse: Archived Traffic Data Management System (ADMS) [3]. ADMS 
fuses and analyzes a very large-scale and high-resolution (both spatial and temporal) traffic 
sensor data from different transportation authorities in Southern California, including California 
Department of Transportation (Caltrans), Los Angeles Department of Transportation (LADOT), 
California Highway Patrol (CHP), Long Beach Transit (LBT). This dataset includes both inventory 
and real-time data with update rate as high as every 30 seconds for freeway and arterial traffic 
sensors (14,500 loop-detectors) covering 4,300 miles, 2,000 bus, and train automatic vehicle 
location (AVL), incidents such as accidents, traffic hazards and road closures reported 
(approximately 400 per day) by LAPD and CHP, and ramp meters. We have been continuously 
collecting and archiving datasets for the past 10 years. ADMS, with 11TB annual growth, is the 
largest traffic sensor data warehouse built so far in Southern California. Using this big traffic 
dataset, we have a unique opportunity to use data-driven approaches to understand the 
mobility and accessibility in the Los Angeles Metropolitan Area. 
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1.2. Constructing complete traffic dataset for the generation of synthetic 
trajectories 

The data we have collected from Los Angeles Metropolitan Area are traffic flow data (speed 
and volume), not trajectories. Thus, first, we make heavy use of synthetic trajectories due to 
the lack of available high-resolution trajectory datasets for Los Angeles area. Given an origin, a 
destination, and historical traffic data of a road network, our algorithm employs a time-
dependent routing algorithm to discover the shortest path from the origin to the destination. 
This time-dependent path is considered the generated trajectory of the vehicle. Thus, our first 
task is to develop an algorithm which takes the traffic conditions as input to generate realistic 
synthetic trajectories. However, we found that our historical traffic data are incomplete and 
have lots of missing values, temporally and spatially, which makes the generation of accurate 
synthetic trajectories hard. Thus, we needed to first work on the estimation of those missing 
values to make the dataset more complete.  

Our experiments showed that datasets with many small-scale gaps (missing values) can be 
accurately imputed using statistical approaches such as linear and spline interpolation without 
requiring any expensive pre-processing steps. On the other hand, as missing data gaps become 
longer and more frequent, data-driven approaches such as historical averages provide much 
more accurate results. This implies that archived historical traffic flow data is highly important. 

Through the project, it has been feasible to generate traffic flow data (i.e., average speed) for 
any given time and location in Los Angeles using both real sensed and/or estimated traffic flow 
data. A paper to estimate missing values was written and published. This includes algorithms to 
impute missing values spatially and temporally, and an algorithm to generate Traffic Index for 
the City of Los Angeles. Traffic Index is a spatial-temporal representation of the traffic 
conditions at a predefined region. 

1.3. Constructing reachability map with synthetic trajectories 

Our approach to generate isochrone map does not consider the complex underlying road 
network graph. Instead, our methodology only takes into consideration the trajectories and 
consists of retrieving all the reachable GPS measurements from them to construct isochrone 
maps. For efficiency, we used a grid-based index that can be utilized to efficiently filter and 
process only those trajectories that are guaranteed to meet the query criteria. Thus, unlike 
most conventional approaches, our approach achieves much lower response times than those 
of conventional graph approaches because it is not affected by the complexity of large road 
networks.  

The challenge that we faced is the evaluation of the quality of isochrone map, which also 
depends on the quality (accuracy) of synthetic trajectories. However, there are few methods to 
evaluate the accuracy of synthetic vehicle trajectories in urban area, specifically for the City of 
Los Angeles. Thus, we needed to work on the evaluation of the quality of our synthetic 
trajectories. 
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We extracted real vehicle trajectories around Los Angeles from the Veraset trajectory dataset 
which is a large collection of real trajectories of moving objects including vehicles. We used the 
extracted real trajectories to evaluate the quality of our synthetic trajectories by quantifying 
the similarity of real and synthetic trajectories. 

Subsequently, we devised an algorithm to generate isochrone map for any given time and 
location in Los Angeles using synthetic trajectories. We also developed a web application and 
tested the overall method for evaluating accessibility of Los Angeles Area. Reachability maps 
are presented in a variety of ways with each representation offering a different view of the 
result for the City of Los Angeles. 

2. Traffic Data Imputation and Interpolation  

2.1. Traffic Imputation 

In reality, the consistency and completeness of time-series data generated by sensors is 
affected by many factors. Hardware malfunctions, infrastructure maintenance, and software 
updates are some of the examples that cause downtime, thus lead to gaps in time-series traffic 
data. Our analysis on historical traffic data shows that on average 15% of data is missing on a 
daily basis (Figure 2) due to various reasons such as sensor malfunctions, system maintenance, 
and data collection software problems. In this section, we explain how imputation methods can 
be employed to address the first challenge and discuss the advantages and disadvantages of 
several time-series imputation methods. 

 

Figure 2. Daily rate of missing traffic data in the years or 2017 and 2018 in Los Angeles 
County. 

2.1.1. Problem Definition 

Let 𝑇 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) be the sequence of traffic speed observations over a period of n time 
steps. Now suppose that values 𝑣5, 𝑣6, 𝑣7 are missing. The task of imputation aims to compute 
values �̃�5, �̃�6, �̃�7 that minimize the difference between the original and estimated values. The 

estimated values are generated by an estimator 𝑓(t; Ѳ), where t is the time step to be imputed 
and Ѳ is an optional vector that carries additional information or context. 
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2.1.2. Imputation Methods 

A natural way to fill in the missing values is by carrying forward the last available value; a 
method that is commonly known as forward-fill. Similarly, we can also carry backward the next 
available value. This method is commonly known as backward-fill. In an offline setting, both of 
these methods are expected to perform very similarly in terms of accuracy when the gap is not 
wide. However, in an online setting, backward-fill is infeasible as the next available value 
cannot be known in advance. Interpolation methods can also be used as imputation functions. 

Linear interpolation, for example, imputes a missing value 𝑣𝑖 using an estimator function 𝑓(x) 
that forms a straight line between the values exactly before and right after the gap. 

Unlike previously discussed methods that are univariate, i.e., each time series must be 
independently imputed as a single variable, multivariate imputation attempts to recover all 
missing values at a given time step by exploiting the correlations between the underlying time 
series. In this setting, each time series is considered to be an independent variable and the 
estimator is a function that is trained to fit the available data before used to ”predict” the 
missing values. 

Lastly, using historical traffic data, the expected behaviour (i.e., speed) of a sensor can be 
estimated and used to fill gaps in the data. More concretely, the average hourly speed of a 
sensor can be calculated from past observations. For example, if the speed was not observed at 
3:45pm, the average speed of 3-4pm may be used to impute the missing observation. The day 
of the week may also be considered when calculating the average speed in order to better 
capture daily behaviours (e.g., weekday vs. weekend traffic). 

2.1.3. Discussion 

The missing data gaps can be divided into two categories; (i) small gaps where the duration of 
missing data is short enough that no significant change in the traffic dynamics might have 
occurred, and (ii) large gaps where the duration of missing data is long enough for the traffic 
dynamics to vary significantly. Figure 3 shows a real-world traffic speed time-series spanning 
two days, Sunday and Monday, in March in Downtown Los Angeles. We observe that the 
second gap is very small (only one time step) and the speed between the start and end of the 
gap remains similar. However, all other gaps span more time steps during which the speed 
varies significantly. For example, the third gap is almost 3 hours long and the speed changes 
from 15mph to 20mph. 

Intuitively, small gaps such as the second gap in Figure 3 can be accurately imputed using 
simple approaches such as forward- and backward-fill. This is because, unlike other time-series, 
traffic flow data (e.g., speed measured by a sensor) do not vary dramatically from one time step 
to the next except during major incidents such as traffic accidents. However, the greedy nature 
of these methods fails to capture the gradual and progressive change in the traffic dynamics 
that occurs during large gaps and, hence, are not ideal candidates for long-term imputation 
which makes data-driven imputation methods more appropriate in such cases. 
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Figure 3. Real-world traffic speed measured by a sensor in Downtown LA during Mar. 2018 
spanning two days (Sunday and Monday). Periods when data is missing (gaps) are 
highlighted. 

2.2. Traffic Interpolation 

Installing traffic sensors such as loop detectors all over a metropolitan city is prohibitively 
expensive, resulting in sparse traffic sensor data. However, it is still critical to obtain and 
harness a dense and accurate representation of the traffic situation for many multi-disciplinary 
studies. Therefore, we evaluate several interpolation methods for estimating the traffic at 
arbitrary locations where traffic is not directly sensed. We refer to these algorithms as Traffic 
Interpolation methods and in this section we describe how interpolation can be used to 
produce a more dense and complete view of the traffic situation at the scale of a metropolitan 
city. 

2.2.1. Problem Definition 

Let 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑘) be a set of k sensors that monitor traffic flow (e.g., vehicle speed) at 
fixed locations s.loc. Traffic interpolation is the problem of estimating the traffic data at a query 
point q by aggregating information generated by the set of sensors S and any additional context 
θ. Formally, we define a function �̃� such that �̃�(q, t; S, θ) is equal to the traffic speed 𝑣 that was 
observed at location q at time t, where t is in the past. 

2.2.2. Interpolation Methods 

Suppose we want to obtain an estimation of the traffic speed at an arbitrary location (road 
segment) q at time t. Below we explain how this can be achieved using several interpolation 
methods and discuss the advantages and disadvantages of each. 

• k-Nearest Neighbors: The speed values at time t of the k-nearest sensors to q are 
averaged (arithmetic mean) and used as the speed value at location q. 
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• Inverse Distance Weighting: Similar to k-nearest neighbors with the key difference that 
a weighted average is performed instead. The weight of each sensor depends on its 
distance from q; the farther away the less the weight it is assigned. 

• Kriging: Based on Gaussian processes, this method produces an unbiased interpolation 
function for estimating the values at unsampled locations. However, it is 
computationally intensive and hard to scale without implementing approximation 
methods that affect its accuracy. It is commonly used in a variety of domains, including 
pollution estimation, where the data are spatially related and estimates to fill in spatial 
gaps from actual measurements are required. 

2.2.3. Discussion 

The interpolation accuracy highly depends on the direction of travel at the interpolated 
location. It is common for the two directions of a road to be congested at different times of the 
day. Therefore, when interpolating the traffic at a location, sensors in the same direction have a 
larger impact on the calculation of the interpolated value. As we show in our experiments, 
when the direction of travel is considered, the interpolation accuracy increases. 

2.3. Traffic Index 

For urban planners and decision makers, it is critical to view and understand traffic at the Traffic 
Analysis Zone (TAZ) [4] or a certain region, such as census block, level. Large corporations such 
as Google and Apple collect high resolution traffic data from their users to support their 
navigation systems. However, federal and state transportation agencies do not have access to 
these traffic data and have to, instead, rely on traffic sensors such as loop detectors. These 
traffic sensors are deployed on highway and arterial roads of a metropolitan city and measure 
the traffic at a discrete resolution both spatially and temporally. While this resolution can be 
helpful when making decisions at a small scale, e.g., traffic lights change duration, it may not 
provide useful information at a macro level traffic flow understanding of a metropolitan city. 
Therefore, traffic data within a region of interest must be processed and summarized. We refer 
to the data structure that stores the traffic summaries as the Traffic Index. 

The Traffic Index is a spatial-temporal representation of the traffic conditions at a predefined 
region. Spatially, the region is divided into a set of administrative districts, e.g., census blocks. 
Temporally, traffic values are aggregated to some predefined resolution, e.g., hourly. We use 
the notation 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑛) and 𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑚) for regions and time steps, respectively. 
Our algorithm constructs the traffic index of an interested region from a real-world traffic 
dataset in three steps: 

Imputation: All missing values of a traffic dataset D are imputed to obtain an estimated, yet 
complete traffic dataset D’. 

Interpolation: A grid that covers R is constructed. Each cell of the grid has a square shape 
with size s. Then, the traffic at the center of each cell c is interpolated for all time steps. 

Summarization: The traffic of each 𝑟𝑖 ∈ R for every 𝑡𝑗 ∈ T is summarized by aggregating the 

interpolated values of all the cells that intersect with it. Suppose that 𝑆𝑖 ={𝑐1, 𝑐2,…, 𝑐𝐾} is 
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the set of K grid cells that intersect with region 𝑟𝑖. Then, its summarized traffic value at time 

𝑡𝑗 is calculated by 
1

𝐾
∑ �̃�𝑘

𝑗
𝑐𝑘 ∈𝑆𝑖

, where �̃�𝑘
𝑗
is the interpolated value of cell ck at time step tj . 

2.4. Experiments 

In this section we present the results of a comprehensive experimental study and discuss the 
trade-offs of each imputation and interpolation method. 

2.4.1. Experimental Setup 

All experiments were performed on an Ubuntu 18.04 server equipped with an Intel(R) Core(TM) 
i9-9980XE CPU at 3.00GHz and 128GB of RAM. The processor has 18 cores (36 threads) with 
private L1 (32KB for data and 32KB for instructions) and L2 (1MB) caches and a shared L3 
(24.75MB) cache. 

We use three real-world traffic speed datasets of the Downtown Los Angeles area: 

• DTLA032018: 781 arterial sensors, March 2018. 

• DTLA022020: 762 arterial sensors, February 2020. 

• DTLA032020: 770 arterial sensors, March 2020. 

In all datasets, the speed is recorded at 15-minute intervals and represents the average vehicle 
speed in miles per hour. In the original dataset, speed is reported every minute, however, for 
our experiments we use arithmetic average to estimate the speed of each interval (time step). 
We use Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute 
Percentage Error (MAPE) to evaluate the methods.  

2.4.2. Imputation Experiments 

In the first set of experiments, we study the performance of imputation methods. By nature, 
our real-world datasets contain missing values. Hence, in order to be able to test the accuracy 
of the imputation methods, we identify and select the five largest periods per dataset during 
which there are no missing data. Then, we randomly drop 10% of the values during those 
periods to simulate a Missing Completely at Random (MCR) situation and use the imputation 
methods described in Section III to recover them. We use the dropped values as the ground 
truth. Specifically, we compare the following imputation methods: 

• Fill Forward (FFILL) & Backward (BFILL) 

• Linear (LI) & Spline (SI) Interpolation 

• Polynomial Interpolation (PI) 

• Multivariate Imputation (MVI) 

• Hourly average speed (HA H) calculated using the past one year history of each sensor 
(∼750GB of data) 

• Hourly average speed per day of week (HA DH) calculated using the past one year 
history of each sensor (∼750GB of data) 
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• Hourly average speed per day of week (HA DH R) calculated using only the previous 
three months data of each sensor (∼200GB of data) 

Figure 5 summarizes the results. Out of all the methods, the multivariate imputation is 
consistently performing better than the other. An interesting observation is that using historical 
averages calculated by recent data instead of the entire history yields more accurate results. 
The intuition is that recent data better capture the ever-changing traffic dynamics of the period 
we want to impute. 

Next, we simulate a Missing at Random (MR) scenario in the temporal dimension by dropping 
consecutive values on the DTLA032018 dataset. Figure 4 shows the MAE, RMSE, MAPE, and 
elapsed time when varying the missing period length from 1–20 time steps (15 minutes to 5 
hours). The fastest methods are FFILL and BFILL, however, with significantly worse accuracy 
than the others. As expected, as the gaps become longer, it becomes more evident that using 
the data-driven methods, i.e., HA DH and HA DH R, yields much more accurate results. On the 
other hand, for very short gaps of up to 3–4 time steps, LI and SI yield accurate results without 
the need of calculating historical averages. 

2.4.3. Interpolation Experiments 

In the second set of experiments, we study the performance of interpolation methods. Since we 
cannot quantify the interpolation accuracy at arbitrary points, we instead split the sensors into 
two sets: train (90%) and test (10%). We use the sensors in the test set as the interpolation 
points and compute RMSE by comparing the interpolated to the actual values. Specifically, we 
compare the following interpolation methods: Nearest Neighbor (NN), Arithmetic Mean (AVG), 
Inverse Distance Weighting (IDW), and Kriging Method (KM). 

We run experiments using two variants of each method. The first variant considers all sensors 
during the interpolation whereas the second variant only considers sensors that are installed on 
roads with the same direction as the sensor at which we are interpolating the traffic. Figure 5(a) 
shows the performance of the methods in terms of RMSE. Besides NN, which performs the 
worst, all other methods exhibit similar performance with IDW achieving slightly better 
accuracy than the others when direction is considered. The cause of NN’s bad performance is 
that most of the times, the nearest sensor is the one installed on the opposite side of the road. 

The intuition is that the traffic dynamics of the two sides of a street can be quite different. For 
example, during the morning rush hour, the streets that lead towards the downtown area are 
congested by people going to work whereas the streets that lead away from downtown incur 
moderate to low traffic (the opposite happens during the afternoon rush hour). This also 
explains why the interpolation shows a 3% improvement on average when direction of travel is 
taken into consideration. Next, we study how the accuracy of IDW is affected depending on the 
number of sensors that are used to interpolate the traffic. Figure 5(b) shows the results. On the 
x-axis we vary the number of sensors from two to twenty and on the y-axis the average 
distance from the query point to a sensor (left) and the RMSE (right). We observe that as the 
number of sensors increases the RMSE drops, i.e., the interpolation becomes more accurate.  
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Figure 4. Imputation accuracy performance for different missing period lengths varying from 1 to 20 time steps (15 minutes to 5 
hours). 

 

Figure 5. Traffic interpolation performance in terms of RMSE.
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At the same time, we observe that the average distance between the query point and sensors 
increases which is expected. Furthermore, we observe that there is no noticeable improvement 
in accuracy when using more than 12 sensors. 

Lastly, we study how the accuracy of IDW is affected when we vary the size of the training set. 
Specifically, we randomly split the dataset into train and test sets at different ratios varying 
from 10% to 80% for the test size. Figure 5(c) depicts the results. In the x-axis we vary the size 
of the test set while on the y-axis we show the average distance between sensors and the query 
point (left) and the RMSE (right). The accuracy is highest when the training set is largest. 

2.4.4. Case Study: Los Angeles Traffic Index 

As we have already argued, the Traffic Index is critical for a variety of multi-disciplinary studies 
and is useful to many researchers. Our unique dataset emphasizes the real-world challenges we 
mention in this work and advocates the need for accurate temporal imputation and spatial 
interpolation methods in order to improve the performance of downstream tasks. We limit our 
case study to a subset of our traffic data, specifically Downtown Los Angeles in March 2018. 

First, we perform an analysis to evaluate the quality of the dataset. As we previously discussed, 
real-world data tend to contain a variety of discontinuity, i.e., missing data occur often and at 
random periods. This fact can be clearly seen in Figure 7, where we plot the periods of activity 
(black stripes) and inactivity (white stripes) for the first two weeks of March 2018. Specifically, 
at the top (Figure 7(a)) time steps with at least one sensor reporting traffic are considered 
active whereas, at the bottom (Figure 7(b)) time steps with at least 95% of the sensors 
reporting traffic are considered active. A total of 201 time steps have no active sensors, i.e., 7% 
of the time no traffic flow is reported. 

 

Figure 6. Traffic index aggregated at the level of TAZ for Downtown Los Angeles in March 
2018. 
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Figure 7. Periods of missing data (white stripes) in a real-world traffic dataset at Downtown 
Los Angeles in the first two weeks of March 2018. 

In order to construct the Traffic Index, we first impute the missing values using multi-variate 
imputation for short gaps up to four time steps (1 hour) and the historical average for larger 
gaps (e.g., between March 8th and March 10th). Then, we construct our interpolation grid with 
a cell size of 0.004 coordinate degrees (approximately 400 meters). Our grid contains a total of 
250 interpolation points covering Downtown Los Angeles and its surrounding areas. The traffic 
at every grid cell is interpolated with IDW. Lastly, we summarize the traffic at the level of Traffic 
Analysis Zones. 

The algorithm that constructs the Traffic Index incurs approximately 60 seconds of CPU time 
per time step, i.e., it takes approximately 24 milliseconds per cell for our 50x50 grid. In general, 
the time complexity of the algorithm is O(|T | × |G| × p), where |T | is the number of time 
steps, |G| the number of grid cells, and p is the complexity of the interpolation function that is 
used. In the case of IDW and using an R-tree to index the sensors, p = O(n· logN), where n is the 
number of nearest neighbors to use and N the total number of sensors. 

Figure 6 shows two instances of our Traffic Index at different time steps. We color code the 
zones based on how congested they are varying from heavy traffic (dark red) to no traffic (dark 
green). On the left (Figure 6(a)) shows the traffic index at a Monday morning whereas on the 
middle (Figure 6(b)) the traffic index on a Thursday afternoon. Both instances show the traffic 
during rush hours. 

3. Generating Synthetic Vehicle Trajectories 

3.1. Overview 

Big Trajectory Data provides limitless opportunities for understanding human mobility, human 
interactions [5], traffic congestion patterns [6], improving routing and planning [7], and more. 
At the same time, it also introduces challenges in protecting the privacy of individuals [8] [9] 
making them hard and costly to obtain. On one hand, even with their increasing availability, 
most publicly available trajectory datasets can only cover a portion of the population and are 
limited to crowded regions and active hours of the day, hence leading to biased observations. 
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On the other hand, proprietary trajectory datasets are more comprehensive but their data 
holders such as Google, Apple, and other private entities (e.g., private truck drivers) are not 
willing to share. 

In order to address these challenges, synthetic vehicle trajectory generation approaches have 
been proposed. The task of synthetic trajectory generation is useful when either the input set is 
small and we need more realistic trajectories for the downstream task (scale-up) or when the 
privacy of the input set must be preserved (privacy preservation). One can also use this 
methodology to generate trajectories for one geographical area (e.g., city, neighborhood) from 
the trajectories belonging to a different geographical area (diversification). 

We divide the synthetic trajectory generators into two main categories: (i) Computational, and 
(ii) Data-Driven. The taxonomy of these generators is shown in Figure 8. Computational 
generators typically process information about the environment to generate vehicle 
trajectories. We further classify these into Simulators and Moving-object Generators. 
Approaches in the latter class generate network based moving objects using demand-supply 
models [10]. They used to be state-of-the-art back when they were originally proposed but are 
now outdated. Approaches that fall under the former class simulate the actions of agents (e.g., 
vehicles) in a closed environment [11]. Every action updates the state (i.e., the location) of the 
agent and their history represents a synthetic trajectory. In order to generate realistic vehicle 
trajectories, computational generators require a fully calibrated environment. However, 
acquiring and fine-tuning all their parameters is a challenging task [12]. 

 

Figure 8. Taxonomy of synthetic vehicle trajectory generators. 

Data-driven generators leverage real-world experiences (data) to synthesize trajectories. The 
current state-of-the-art in this category is the Generative Adversarial Networks (GAN). These 
deep learning models train on existing vehicle trajectory data and learn a generator model that 
synthesizes realistic vehicle trajectories given some noise as input [13]. Although GANs do not 
require the complex calibration of the computational generators, they need large amounts of 
data in order to be trained and, even with their increasing availability, most publicly available 
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trajectory datasets can only cover a portion of the population and are limited to crowded 
regions and active hours of the day. As a result of this data skew, training leads to biased 
generative models. Another issue is that existing methods use a limited number of metrics that 
can only evaluate the holistic statistics of the generated dataset, ignoring how realistic each 
individual trajectory is on its own. 

In this study, we propose a data-driven, model-free, and parameter-less method of generating 
synthetic yet realistic trajectory datasets using only two inputs: (i) traffic data for the region of 
interest, and (ii) a target Origin-Destination matrix. Unlike the computational methods, our 
Data-Driven Trajectory Generator, dubbed DDTG, does not require any kind of calibration 
before it starts generating trajectories and unlike GANs it does not require an existing dataset 
to train on. In fact, the input to DDTG is aggregated data that is publicly available and free of 
privacy concerns [14] [15] (aggregate data can also be released under stronger privacy 
guarantees [16] [17]). Additionally, the datasets that are generated by DDTG can be used as 
seed data for training generative models in lieu of real trajectory datasets which makes DDTG 
orthogonal and complementary to GANs. In fact, as we show in our experiments, when real-
world and DDTG-generated trajectories are combined as training data, the trained model 
generates higher quality synthetic trajectories. DDTG disaggregates traffic and OD matrix data 
into individual trajectories, such that the collection of the generated trajectories results in the 
same aggregate data. The main challenge is that these aggregate data are time-dependent and 
hence the number and shape of individual trajectories differ depending on the time of the day. 
The main intuition behind DDTG is that individuals tend to select the fastest (or at least one of 
the fastest) path to their destination [10]. Thus, DDTG, in contrast to other methods, is only 
suitable for generating urban vehicle trajectories but, as we show in our experiments, it is 
capable of generating synthetic datasets that retain the underlying distributions of a real 
vehicle trajectory dataset more accurately. 

3.2. Data Representation 

We define a vehicle trajectory 𝑠 = (𝑠(1), 𝑠(2), … , 𝑠(𝑀) ) as a time-ordered sequence of spatio-
temporal points. Each point s(m) consists of a pair of spatial coordinates (i.e., latitude, 
longitude) and its timestamp. A synthetic trajectory generator outputs a set 𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑛} of n trajectories that preserve the mobility characteristics of the real world. 

Vehicle trajectories are by definition constrained to a road network. Because raw vehicle 
trajectories are very often noisy due to errors in localization sensors (e.g., GPS), before a 

trajectory dataset S is analyzed it is typically pre-processed so that every s ∈ S is map matched 
to a road network G and converted into a more interpretable trajectory �̃�. The transformed 

trajectory becomes a time-ordered sequence �̃� = {�̃�(1), �̃�(2), … , �̃�(𝑃)} where every �̃�(𝑝) consists 
of the graph edge (i.e., road segment) and the timestamp at which the vehicle arrives at the 
edge. In essence, the raw trajectory is converted to the corresponding path that the vehicle 
took to reach its destination. 

Unlike the computational methods that require calibration, and unlike GANs that require large 
amounts of existing trajectory data, DDTG only needs aggregated traffic data and an OD matrix 



 

 15 

for the region of interest along with the road network. Fortunately, this kind of aggregated data 
is free of any privacy concerns and very often publicly available as we provide examples below. 

Road Network: Encoded as a graph G = (V,E) with every node v ∈ V representing an 
intersection and every edge e ∈ E a road segment. Detailed public datasets are made available 
for most cities in the world by OpenStreetMap [18]. 

Traffic Data: Traffic sensors (e.g., loop detectors) are deployed on the road network and 
measure the average speed of passing vehicles at fixed time intervals. A traffic data point is a 
tuple ρ = (l, t, v), where l are the spatial coordinates (i.e., latitude and longitude) of the sensor, t 
the timestamp, and v the speed [1] [14]. 

Origin-Destination Matrix: An M ∈ RCxC matrix that corresponds to a grid with |C| cells 

overlayed over the region of interest. For each pair of cells (𝑐𝑖 , 𝑐𝑗) the OD matrix measures the 

probability that a trip originates within cell 𝑐𝑖 and terminates within 𝑐𝑗. Such data are made 

available by some providers [19] but can also be estimated either from traffic [20] or trajectory 
data. 

3.3. Algorithm 

DDTG operates in two phases. In the first phase, n trip definitions are sampled from a provided 
OD matrix. A trip definition is a tuple (o, d, t), where o and d are the origin and destination 
coordinates, respectively, and t is the departure time. Subsequently, in the second phase, the 
trip definitions are processed and corresponding synthetic trajectories are generated. Every 
generated trajectory is essentially a path constrained to a road network G and enriched with 
the travel time on each road segment by using historical traffic data C. We elaborate on each 
phase in turn. 

3.3.1. Phase I 

DDTG starts by sampling n trip definitions from an OD matrix. The pseudocode is shown in 
Algorithm 1. The distribution specified by M is used to sample a pair of cells (𝑐𝑖 , 𝑐𝑗) (line 4). 

Subsequently, the exact origin and destination coordinates are randomly sampled within the 
origin and destination cells (lines 5-6), respectively. Next, a departure time is sampled. This 
departure time must adhere to the real world distribution, i.e., a noon departure time is more 
probable than a 2AM departure time. We capture the distribution as a histogram with bin size 
ϕ minutes and we sample departure times from it. 

The first phase of DDTG plays a critical role in generating datasets of high holistic quality. 
Specifically, because the origins, destinations, and departure times are sampled from real-world 
distributions, the more trajectories that DDTG generates, the closer it imitates these 
distributions. In the previous section, we show how a bad choice of M (e.g., uniform) affects the 
holistic quality of the generated dataset. 
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Algorithm 1 Trip Sampler 

Require: OD origin-destination matrix, 𝒯 time domain 
1: procedure GENERATETRIPDEFINITIONS(𝑛) 
2: 𝑆 ⟵ {} 
3: for 1. . . 𝑛 do 

4:  (𝑐𝑖 , 𝑐𝑗) ⟵  𝑆𝑎𝑚𝑝𝑙𝑒 (𝑂𝐷) 

5:  𝑂 ⟵ 𝑃𝑖𝑐𝑘𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑖) 
6:  𝐷 ⟵ 𝑃𝑖𝑐𝑘𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑗) 

7:  𝑇 ⟵ 𝑆𝑎𝑚𝑝𝑙𝑒(𝒯) 
8:  𝑆 ⟵  𝑆 ⋃ {(𝑂, 𝐷, 𝑇)} 
9: end for 
10: return 𝑆 

11: end procedure 

3.3.2. Phase II  

After all the trip definitions are generated, the algorithm proceeds to generate corresponding 
synthetic trajectories. The pseudocode of the second phase is depicted in Algorithm 2. Because 
DDTG directly operates on the road network, the first step is to match the origin and 
destination locations to their respective closest nodes u and v in G (lines 2-3). One challenge is 
what path to select as a trajectory. Intuitively, individuals exhibit a strong preference for taking 
a fast (typically the fastest but not always) path to their destination [10] instead of any other 
kind of path (e.g., shortest, random walk). However, always using the fastest as a trajectory 
leads to unrealistic datasets where all objects use the same path. To introduce the diversity of 
choices and personal preferences, a number of feasible paths from u to v is calculated (line 4). 
Specifically, the algorithm searches for the k time-dependent fastest paths [21] that have 
limited overlaps. This is achieved by using a variant of the k-alternative shortest paths algorithm 
[22] in which the cost function of the route becomes the travel time instead of the travel 
distance. Finally, one of the k paths is chosen as the actual trajectory (line 5). 

Algorithm 2 Trajectory Generator 

Require: Road Network 𝐺, Traffic Data 𝐶, 𝑘 
1: procedure GENERATETRAJECTORY(𝑂, 𝐷, 𝑇) 
2: 𝑠 ⟵ 𝐿𝑜𝑜𝑘𝑢𝑝(𝐺, 𝑂)                           ⊳  𝑆𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒  
3: 𝑡 ⟵ 𝐿𝑜𝑜𝑘𝑢𝑝(𝐺, 𝐷)                           ⊳  𝑇𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒 
4: 𝑃 ⟵ 𝐹𝑖𝑛𝑑𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝐴𝑙𝑡 (𝐺, 𝐶, 𝑠, 𝑡, 𝑇, 𝑘)                   ⊳ 
k -Alternative fastest paths from s to t departing at T 
5: 𝑝 ⟵ 𝐶ℎ𝑜𝑜𝑠𝑒𝑀𝑜𝑠𝑡𝐿𝑖𝑘𝑒𝑙𝑦(𝑃) 
6: return 𝑝 

7: end procedure 
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The second phase of DDTG generates trajectories of high individual quality. Using real-world 
traffic data, the travel times of the generated trajectories are accurately estimated. This is also 
confirmed by our experiments (Figure 9).  

 

Figure 9. Distribution of origins in the real dataset (left) and the synthetic datasets generated 
by DDTG (center-left), DDTG without OD matrix information (center-right), and SeqGAN 
(right). DDTG imitates the real distribution with a higher accuracy. 

Trajectories in the real-world exhibit a variety of mobility behaviors. For example, delivery 
trucks very often begin and end their trips at the same location (e.g., post office, warehouse), 
and their path is a round trip with many quick stops. One challenge with Algorithm 1 is that it 
assumes that individuals always travel with a purpose, i.e., going directly from one location to 
another with no stops or detours. Although the focus of this algorithm is on generating this 
specific type of urban vehicle trajectories, a generalized variant of Algorithm 1 can be used to 
generate delivery truck-like trajectories. In this generalized variant, trajectories are viewed as a 
sequence of smaller sub-trajectories 𝑠1, 𝑠2, … , 𝑠𝑤 in which the destination of each 𝑠𝑖, where 1 < 

i < w, is the origin of 𝑠𝑖+1. Trip definitions are also redefined to a tuple (�⃗� , 𝑡, 𝑤) such that �⃗�  is a 

sequence of l locations with 𝐿1
⃗⃗⃗⃗  being the origin and 𝐿𝑙

⃗⃗  ⃗ the final destination, t the trip departure 
time, and w a sequence of l − 1 stay durations at each intermittent location along the trip. 
Algorithm 3 presents the modified trajectory generator. The algorithm iterates over the trip 
locations (line 3) and generates one trajectory per each consecutive pair of locations (lines 4-6). 
After every generated trajectory, the departure time for the next trajectory is computed by 
adding the travel time and stay duration to the current trajectory’s departure time (line 8). 

Using this variant, it becomes straightforward to model delivery truck trajectories; 𝐿1
⃗⃗⃗⃗  and 𝐿𝑙

⃗⃗  ⃗ 

will typically be the warehouse and 𝐿2
⃗⃗⃗⃗ , . . . , 𝐿𝑙−1

⃗⃗ ⃗⃗⃗⃗ ⃗⃗  will be the delivery locations. 
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Algorithm 3 Trajectory Via Stops Generator 

1: procedure GENERATEVIATRAJECTORY(�⃗� , 𝑇, 𝑑) 

2: �̃� ⟵ 𝑇 

3: for 𝑖 = 2. . . |�⃗� | do 

4:  𝑂 ⟵ �⃗� 𝑖−1 

5:  𝐷 ⟵ �⃗� 𝑖 

6:  𝑝 ⟵ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑂, 𝐷, �̃�) 
7:  yield 𝑝 

8:  �̃� ⟵ �̃� + 𝑝. 𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒 + 𝑑𝑖−1  ⊳  𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑛𝑒𝑥𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 
9: end for 
10: end procedure 

3.4. Quality of Synthetic Trajectories 

Evaluating the quality of synthetic datasets and how realistic they are is a critical task. On one 
hand, the generated dataset may be realistic at a high level (e.g., preserving the origin 
destination matrix) while the individual trajectories are not reasonable (e.g., unrealistic travel 
time). On the other hand, the individual trajectories may be realistic while the holistic dataset is 
not. Therefore, a synthetic dataset must be evaluated at two levels: the holistic level and the 
individual level. In this section, we describe a set of metrics that can be used for each 
evaluation level. 

3.4.1. Holistic Quality 

At the dataset level, a synthetic trajectory dataset must retain the collective mobility 
characteristics of the metropolitan city. Such characteristics include, but are not limited to, the 
distribution of origins and destinations, the distribution of origin-destination pairs, the 
distribution of departure times, and the congestion density. Calculating these in a continuous 
space is computationally intractable, hence, the distributions are estimated by discretizing the 
space (and time) into an RxC grid with cell size m. The finer the grid, the closer the estimation is 
to the real distribution but the more computationally expensive. 

We summarize these metrics below. 

• Distribution of Origins (p(o)): The spatial distribution of the locations at which the 
trajectories begin. This is typically the first location of a trajectory. 

• Distribution of Destinations (p(d)): The spatial distribution of the locations at which the 
trajectories end. This is typically the last location of a trajectory and implicitly represents 
the popularity of locations. 

• Origin-Destination (OD) Matrix (p(o, d)): The distribution of the OD pairs < O,D >, where 
O is the origin of the trip and D is the destination. This captures the probability of 
visiting a region (i.e., grid cell) from another. 
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• Transition Matrix (p(𝑐𝑖 | 𝑐𝑗)): The probability of transitioning from cell 𝑐𝑖 to cell 𝑐𝑗. 

Trajectories can be translated from a sequence of locations to a sequence of grid cells 

�̃� = {�̃�1, �̃�2, … , �̃�𝑝}. Then, the pairs of consecutive cells in a trajectory can be used to 

estimate the transition matrix. 

• Distribution of Departures (p(τ )): The temporal distribution of the timestamps at which 
the trajectories begin. This is typically the timestamp of the first location of a trajectory.  

These distributions are estimated for both the real and generated datasets and compared using 
Jensen-Shannon distance, a well-known distance metric for probability distributions. The 
Jensen-Shannon distance 𝑑𝐽𝑆 is defined as follows: 

 𝑑𝐽𝑆(𝑃, 𝑄) = √𝐽𝑆(𝑃||𝑄) = √
𝐾𝐿(𝑃||𝑀)+𝐾𝐿(𝑀||𝑄) 

2
 (1) 

where 𝐽𝑆(𝑃||𝑄) is the Jensen-Shannon divergence, 𝐾𝐿(𝑃||𝑄) is the Kullback-Leibler divergence 

(Equation 2), and 𝑀 =
𝑃+𝑄 

2
. 

 𝐾𝐿(𝑃||𝑄) = ∑ 𝑝𝑖 log
𝑝𝑖

𝑞𝑖
𝑖  (2) 

The value of 𝑑𝐽𝑆 ranges from 0 to 1, where 𝑑𝐽𝑆 = 0 when the two distributions are identical and 

𝑑𝐽𝑆 = 1 when they are completely different. The Jensen-Shannon divergence JS, and as a result 

the distance 𝑑𝐽𝑆, is symmetrical, i.e., JS(P||Q) = JS(Q||P). 

When the number of trajectories in the two datasets is equal, the respective histograms may be 
compared (instead of the distributions) using Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), and Mean Absolute Percentage Error (MAPE). 

3.4.2. Individual Quality 

At the individual level, the trajectories themselves must be examined for their quality. For 
example, the travel time of a synthetic trajectory must be within an acceptable range of the 
actual travel time. Additionally, the path from the origin to the destination must be reasonable, 
i.e., not straying far away from the destination or driving in loops. We summarize these metrics 
below. 

• Travel time: The generated trajectory must be consistent with the traffic dynamics. Not 
only the overall travel time but also the travel time of each segment of the trajectory 
must be accurate. This can be verified using traffic data. 

• Deviation: The generated trajectory should be mostly en route to the destination, i.e., it 
should not be taking detours or heading in a direction that is opposite to the 
destination. One way to evaluate this is by using Markov Models to check whether the 
transitions from one location to the next make sense. Another way when a reference 
dataset exists is to retrieve real trajectories that are similar (i.e., identical origin and 
destination, similar departure time) and calculate the average distance. A low value 
indicates that the generated trajectory does not differ much from a typical trajectory. A 
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large value indicates that the generated trajectory follows a path that is not common (or 
popular). 

3.5. Experiments 

In this section, we quantitatively and qualitatively evaluate synthetic trajectories generated by 
DDTG with experiments on real-world data. 

3.5.1. Environment Setup 

All experiments were performed on an Ubuntu 18.04 server equipped with an Intel(R) Core(TM) 
i9-9980XE CPU at 3.00GHz and 128GB of RAM. The processor has 18 cores (36 threads) with 
private L1 (32KB for data and 32KB for instructions) and L2 (1MB) caches and a shared L3 
(24.75MB) cache. The server is also equipped with a GeForce RTX 2080 Ti GPU card. 

Datasets:  

We limit our study to the metropolitan region of the City of Los Angeles. 

(1) We make use of a real-world trajectory dataset from Veraset as the ground truth for 
evaluation. The dataset contains tens of millions of trajectories out of which 
approximately 4 million trajectories are within our region of interest. However, these 
are raw trajectories that exhibit multiple behaviors. Every device that participates in this 
dataset records continuous traces, hence, we pre-process each trace to extract vehicle 
trajectories, i.e., when the device was actively traveling. The first step of the pre-
processing process is to split the trajectories when two consecutive GPS readings are 
more than 5 minutes or 1500 meters apart. Next, we run a stay point detection 
algorithm [23] on each sub-trajectory to identify GPS readings that belong to a stay 
point and during which the device was not traveling. The resulting set contains 1.5 
million trajectories spanning the first two weeks of December 2019. 

(2) We use a real-world historical traffic dataset exported from ADMS [1]. The dataset 
contains approximately 16,000 sensors covering more than 4,300 miles in the region of 
interest. The sensors have a refresh rate of up to 60 seconds but we aggregate the 
traffic speed data into 15-minute intervals. Furthermore, for every road segment, i.e., 
edge in the road network graph, we calculate its time-dependent travel time by 
querying the traffic data for the speed. If traffic speed is not sensed at a particular road 
segment, we obtain an estimation of the traffic at that segment using interpolation 
methods [24]. 

(3) The origin-destination matrix p(o, d) for the region of interest is calculated from the 
trajectory dataset. We use a grid with a cell size of 500 meters. The cell that contains the 
first GPS reading of a trajectory is considered the origin. Similarly, the cell that contains 
the last GPS reading of the trajectory is considered the destination. The OD matrix 
measures the probability that a trajectory originates from a cell 𝑜 = 𝑐𝑖 having cell 𝑑 = 𝑐𝑗 

as the destination. 
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Compared Approaches: We compare the real-world trajectory dataset from Veraset with 3 
synthetic datasets. 

• SeqGAN: A synthetic dataset of 1.5 million trajectories generated by a sequential GAN 
model [25]. The real trajectory dataset is used as training data for the model. 

• DDTG w/o OD: A synthetic dataset of 1.5 million trajectories generated by DDTG without 
origin-destination distribution information, i.e., all origin-destination pairs have equal 
probability. 

• DDTG: A synthetic dataset of 1.5 million trajectories generated by DDTG using an origin-
destination matrix as input that was extracted from the Veraset dataset. 

3.5.2. Quality Analysis 

We evaluate the quality of synthetic datasets at two levels using the metrics described in the 
previous section. 

3.5.2.1. Holistic Quality 

We calculate the holistic quality distributions for both the real dataset and the synthetic 
dataset and then use K-L divergence to evaluate how similar they are. Figure 9 shows the 
distribution of origins in the four datasets as a function of the spatial coordinates (i.e., longitude 
on the x-axis, latitude on the y-axis). We immediately observe that the distribution for DDTG 
w/o OD information is almost uniform. This is expected because the algorithm samples origins 
and destinations uniformly at random as it does not have any external information. SeqGAN is 
able to capture some of the hotspots but does not come close to the real distribution. The 
distribution of DDTG’s origins is very close to Veraset’s with some slightly different hot spots. 
The JS distances between Veraset’s origins and synthetic origins are 0.1629, 0.3466, and 0.9299 
for DDTG, DDTG w/o OD, and SeqGAN, respectively. Note that the distance between the real 
and DDTG distributions is very close to 0. This means that the two distributions are very similar. 
In contrast, the distance of the DDTG w/o OD is two times larger meaning that it is significantly 
different from the ground truth. 

Next, we compare the destination distributions of the datasets. These distributions are shown 
in Figure 10 as functions of the spatial coordinates (i.e., longitude on x-axis, latitude on y-axis). 
Similar to the origin distribution, DDTG w/o OD is almost uniform as expected, and while 
SeqGAN captures some of the hotspots it only generates a very sparse distribution. Figure 10 
shows that Veraset and DDTG destination distributions only have slight differences. In Veraset, 
we can see a few hot spots close to the region’s eastern border, whereas, in DDTG, not as 
much. This is mostly attributed to the cleaning method that was employed for the real dataset, 
i.e., trajectories that had a destination outside the region of interest were cut short and their 
destination was assumed to be at the boundary. The JS distances are 0.1326, 0.3292, and 
0.9086 for DDTG, DDTG w/o OD, and SeqGAN, respectively. Even though there are minor 
differences in the destination hot spots of Veraset and DDTG, the majority of the remaining grid 
cells appear to incur similar probabilities of being the destination. 
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An interesting observation is that in the real (Veraset) and SeqGAN datasets, some origins and 
destinations appear to exist in the middle of the ocean (bottom left sub-region), whereas, in 
both synthetic datasets no such cases exist. In the case of the real dataset, this is due to the 
noise that GPS sensors naturally incur. In the case of SeqGAN, this happens because the model 
has no information about the road network. 

Additionally, we note that SeqGAN generates very sparse origin and destination distributions. In 
essence, the model learns the skewed distribution of the input training dataset, i.e., trips 
concentrated in certain regions or times of the data. As a result, the model is biased toward 
generating trips in those areas instead of the entire region. 

 

Figure 10. Distribution of destinations in the real dataset (left) and the synthetic datasets 
generated by DDTG (center-left), DDTG without OD matrix information (center-right), and 
SeqGAN (right). DDTG imitates the real distribution with a higher accuracy. 

 

Figure 11. Origin-destination matrix calculated from the real dataset (left) and the synthetic 
datasets generated by DDTG (center-left), DDTG without OD matrix information (center-
right), and SeqGAN (right). DDTG imitates the real distribution with a higher accuracy. 

We also compare the distributions of origin-destination pairs. Figure 11 visualizes the OD 
Matrix of the four datasets. On the x-axis is the origin and on the y-axis is the destination. 
Again, as expected, the DDTG w/o OD information produces almost uniform results. SeqGAN 
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achieves a visually similar distribution but with a great amount of noise. DDTG, on the other 
hand, imitates the true distribution almost perfectly. Some OD pairs that appear more 
prominently in the ground truth, are slightly smoothed out by DDTG due to the generator’s 
randomness. However, the general distribution is preserved. The JS distance between Veraset’s 
OD Matrix and DDTG’s is 0.3223 which, considering the vast amount of OD pairs, is close to 
zero. Table 1 summarizes the Jensen-Shannon distances for all datasets. 

Table 1. Jensen-Shannon Distances 

Distribution Jensen-Shannon distance 𝑑𝐽𝑆 

DDTG DDTG w/o OD SeqGAN 

𝑝(𝑜) 0.1629 0.3466 0.9299 

𝑝(𝑑) 0.1326 0.3292 0.9086 

𝑝(𝑜, 𝑑) 0.3223 0.8881 0.9356 

𝑝(𝑐𝑗|𝑐𝑖) 0.2348 0.3084 0.5928 

𝑝(𝜏) 0.0158 0.2609 - 

As we show in Table 1, DDTG generates trajectories that retain the transition matrix more 
accurately than the others. Specifically, the JS distance of DDTG’s and the real transition matrix 
is 0.2348, whereas SeqGAN’s is almost three times greater at 0.5928. This happens because 
DDTG is able to leverage the road network and generate high-resolution trajectories that retain 
the properties and constraints of the road network. On the other hand, trajectories generated 
by SeqGAN are more likely to contain noise, i.e., jump from one cell to another while skipping 
cells in between. 

Lastly, we compare the distributions of departure times. Figure 12 plots the probability (y-axis) 
of each departure time (x-axis). Not surprisingly, the distribution for DDTG w/o OD is uniform. 
On the other hand, DDTG’s distribution is almost identical to that of the real dataset. These 
results are confirmed by the JS distance values (Table 1). We omit the departure times for 
SeqGAN because the model is highly discretized in the temporal domain.  
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Figure 12. Departure time distributions calculated from the real dataset (top), the synthetic 
dataset generated by DDTG (middle), and the synthetic dataset generated by DDTG without 
OD matrix information (bottom). 

Holistically, the dataset generated by DDTG retains the mobility characteristics of the real 
dataset. 

 

Figure 13. Distribution of Frechet (left) and Hausdorff (right) distances between generated 
and corresponding real trajectories. 

 

Figure 14. Examples of real trajectories (green lines) and corresponding synthetic trajectories 
(red lines) generated by DDTG. 
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3.5.2.2. Individual Quality 

We verify how realistic each individual trajectory is by comparing how much it resembles 
common paths from origins to destinations. Specifically, we randomly sample 50,000 synthetic 
trajectories generated by DDTG and for each trajectory, we retrieve all similar real trajectories, 
i.e., trajectories with identical origin and destination cells and similar departure times. Every 
synthetic trajectory matched with 10-15 real trajectories. Next, the average distance between a 
synthetic trajectory and its corresponding real trajectories is calculated. For our experiments 
we use two distance metrics: the Frechet distance and the Hausdorff distance, two common 
trajectory dissimilarity metrics between curves [46]. Figure 13 presents the histograms of these 
distances. The lower the distance, the closer the synthetic trajectory is to the common real 
trajectories. For both distance metrics, the histogram is skewed closer to 0. This means that the 
generated trajectories are reasonably similar to the paths that individuals tend to follow. More 
critically, the generated trajectories are not exactly identical to the real paths. This shows that, 
while the individual trajectories make sense, they still protect the privacy of individuals. 

Figure 14 presents 6 examples of real trajectories (green lines) and their corresponding 
synthetic trajectories (red lines). Origins are marked with blue pins and destinations with red 
pins. In the first three examples, the generated trajectory is very similar to the real trajectory. 
This happens because the real path taken by the individual was one of the fastest (if not the 
fastest) and DDTG itself uses that information to generate trajectories. In the last three 
examples, the generated paths are quite different. This can happen either because DDTG chose 
a different fastest path to the destination or because the real path itself was a detour and not 
one of the fastest paths. 

4. Implementation of Web Application 

For multi-disciplinary studies of traffic and socio- economic analysis, it is essential to obtain a 
high-level summarization of the traffic condition at different regions of an urban area. Traffic 
Index summarizes the traffic at the level of census blocks (or other zone types) and at separate 
times of the day. In this work, we proposed an algorithm that aggregates the traffic data of a 
large region and constructs a Traffic Index that can estimate the traffic at any given location in 
that region. This project started with the initial goal of building a platform to highlight these 
algorithm's results both for a census block and for a specific point on online map. 

The number of components in the application soon increased with the introduction of the 
Reachability Map. A Reachability Map is defined as a polygon drawn on a map that defines an 
area of reachability within a defined time buffer. Their construction is an important task in 
many application domains. As an example, in urban planning, reachability maps are essential 
when assessing the placement of public services like hospitals and fire departments. 

To get this Reachability Map many synthetic trajectories are generated based on time and 
location within a defined time buffer and finally, a polygon is constructed that circumscribes all 
of them. 
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The application has been developed using React for the frontend and Django for the backend 
connected via restful services. This report gives a scrupulous walkthrough of all its features 
along with areas of improvement. 

4.1. Features of Web 

We built a web page to demonstrate our research results – https://imscwww.usc.edu/app/ 

This website allows the users to get an estimate of traffic congestion and reachability based on 
the day of the week, the time of the day and type of algorithm. 

4.1.1. Traffic Index by Geo-Coordinates 

As seen in the picture below, this component provides traffic estimation for a specific location 
based on the following attributes as input: 

• Date and Time 

• Latitude and Longitude 

• Algorithm to be used for traffic estimation 

o Kriging Algorithm (Default) 

o IDW 

o Nearest Neighbour 

 

Figure 15. Example of traffic index input screen 

https://imscwww.usc.edu/app/
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When the user provides these attributes, he gets various layers of details about that location:  

The estimated speed at that point, the number of sensors used for calculation, distance to the 
nearest sensor, and average distance to the sensors. Figure 16 shows how it looks on the web 
application.  

The attribute Overall congestion is decided based on the speed at that point with speed less 
than 5mph describing” Standstill”, 5mph to 10mph as” Very High”, 10mph to 15mph as” High”, 
15mph to 25mph as” Low” and above 25mph as no traffic. 

 

Figure 16. View of Attributes on Web Application 

 

Figure 17. Example of traffic index output screen 
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4.1.2. Traffic Index by Zone 

As seen in Figure 17, this component provides traffic estimation based on specific zones, i.e., 
census blocks in our study. 

The speed for each block is calculated by averaging out the speeds for all grid points passing 
through that block. Grid points are obtained by the intersection of vertical and horizontal lines 
500 meters (about 1640.42 ft) apart. 

4.1.3. Reachability Map 

To construct a Reachability Map, many synthetic trajectories are generated based on time and 
location within a defined time buffer and finally, a polygon is constructed that circumscribes all 
of them. Our approach processes isochrone queries by directly processing trajectories. Traffic 
conditions can vary highly at different times of a day and, therefore, so do isochrone maps. Our 
system integrates those traffic dynamics by generating time-dependent isochrone maps and 
can support four types of time-dependent queries. Formally, in graph theory, an isochrone is 
the minimal, possibly disconnected, sub-graph that covers all the vertices that are within a 
given time span (or weight budget) from the query source vertex. However, our approach does 
not consider the underlying road network graph. Instead, our methodology only takes into 
consideration the trajectories and consists of retrieving all the reachable segments or data 
points from them for the construction of isochrone maps. 

A time-dependent single-source reachability query (SSRQ) is a tuple Q = (s; t; d), where s is the 
query source point, t is the departure time, and d > 0 is the maximum acceptable time span. 
The query result consists of all location points that are reachable from the source point s within 
d minutes if one was to depart at time t. The query source can be any point of interest, we 
assume that the source is selected as a tuple s = (id; loc) where id is a unique identifier for the 
center and loc = (lat; lng) is its location in latitude and longitude degrees. The main idea is to 
find all those trajectories that pass by the given query point and retrieve the segment of each 
trajectory that falls within the given time limit. However, doing this in an efficient way is not an 
easy task. A straightforward approach is to build an R-tree index on top of the trajectories. 
Then, a radius search can retrieve all trajectories that pass by a given query point. A last pass 
over these trajectories will be required to filter out all those that do not pass by the given 
source at the given departure time. Therefore, this approach would not scale well for large and 
dense trajectory datasets simply because the filtering step is an expensive linear search. For the 
implementation we used a grid-based approach that we devised and presented in [26]. Figure 
18 shows a generated polygon. The input attributes for the generation of reachability map are: 
Date and Time, Circumscribing algorithm, and Time buffer. 

4.2. Implementation and Limitation 

Using React, we split each part of the main page into a single React class - components- in its 
own file. These components are Traffic Index by Coordinates, Traffic Index by Zones, and 
Reachability Map all of which are imported into the main component class. Since React allows 
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for easy management of state variables, we can easily send down data from the main 
component to the others.  

 

Figure 18. Example of reachability map screen 

 

Figure 19. Implementation of Web Features 
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4.2.1. Traffic Index by Geo-Coordinates 

This component of the application can be accessed using the base path of /app. When the user 
clicks on the map it fetches all the required attributes and generates a JSON which then hits the 
Django server with a POST request. Based on the location, date, time, and type of chosen 
algorithm traffic is estimated and the response is sent to the front end. 

Three types of algorithms were implemented for traffic estimation:  

• Kriging Algorithm (Default): Kriging, also known as Gaussian process regression, is a 
method of interpolation based on Gaussian process governed by prior covariances. 
Under suitable assumptions of the prior, kriging gives the best linear unbiased 
prediction (BLUP) at unsampled locations. For Traffic Estimation we built a hyperplane 
(Kriging) using 20 closest sensors. The close-by sensors are found by building a KD-Tree. 
The built hyperplane is then used to get the speed at the unsampled location. 

• IDW Algorithm: Inverse distance weighting (IDW) is a type of deterministic method for 
multivariate interpolation with a known scattered set of points. The assigned values to 
unknown points are calculated with a weighted average of the values available at the 
known points. For traffic estimation 20 closest sensors were used inversely weighted on 
their distance from the position of interest. 

• Nearest Neighbour: It is an average of 20 closest sensors found using a KD-Tree. 

Below figure shows the accuracy of the three algorithms 

 

Figure 20. Spatial Interpolation Accuracy 

The reason for using 20 closest sensors for traffic estimation is that model accuracy does not 
increase any further by increasing the number of sensors.  
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Figure 21. RMSE vs. Number of Sensors 

For assorted reasons such as power failure etc. the data that we get from the sensors are 
usually missing and they need to be imputed before we can do traffic estimation based on the 
algorithms described above. 

Imputing the data on every API call is a very repetitive and time-consuming process. To 
overcome this challenge, all the missing sensor data is inputted beforehand and stored in the 
database. The linear Imputation algorithm is used for filling up the missing values with an 
average MAPE of 6%. 

4.2.2. Traffic Index by Zone 

This component of the application can be accessed using the base path of /app/traffic-index-
zone. When the user clicks on the submit button, it fetches all the required attributes and 
generates a JSON which then hits the Django server with a POST request. Based on the date, 
time, and type of chosen algorithm traffic is estimated and for all the census zone and the 
response is sent to the front end. 

The speed for each block is calculated by averaging out the speeds for all grid points passing 
through that block. Grid points are obtained by the intersection of vertical and horizontal lines 
500 meters (about 1640.42 ft) apart. The speed for each grid points is calculated in the same 
way as the Traffic Index by Coordinates. The latitude and longitude of all grid locations are 
hashed in the web application, to speed up the traffic estimation when a user clicks on the 
submit button. The time to estimate speed for all the blocks varies from algorithm to algorithm. 
Kriging takes the highest amount of time for estimation while IDW is the fastest. The model 
building time increases linearly for IDW with the increase in number of close-by sensors, while 
for Kriging the building time increases exponentially as can be seen in Figure 22 and Figure 23. 
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Figure 22. IDW building time vs execution time 

 

Figure 23. Kriging building time vs execution time 

Because of this generating traffic index by zones takes close to 20 seconds for IDW while takes 
more than 120 seconds (about 2 minutes) for Kriging, as the model building and execution is 
happening on the fly. 

4.2.3. Reachability MAP 

This component of the application can be accessed using the base path of /app/reachability. 
When the user clicks on the map it fetches all the required attributes and generates a JSON file 
which then hits the Django server with a POST request. The Django server then encapsulates all 
the information and sends it to the Reachability Algorithm hosted on port 80 via the gRPC 
service. The Reachability Algorithm then sends back the required structure of the polygon in a 
JSON format via gRPC services. To display the polygon on the front end the GeoJson-polygon 
property in Mapbox is used. 
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Figure 24. GeoJson-polygon property script 

After building the individual components in Recat we converted all of them to static JS files, 
using NPM RUN BUILD. The advantage of this is that we can move all of them to the 
presentation layer (Template) of Django which helps us to avoid hosting the front-end and 
back-end separately. Now we just need to Dockerize the Django to run the application. 

The Dockerize script is follows: 

 

Figure 25. Dockerize script 

The above lines of code packages the application into a docker container by combining 
applications source code with the operating system (OS) libraries and dependencies required to 
run that code in any environment. As we can see the application would be running port 80, 
which is publicly accessible. 

4.2.4. Possible Improvements 

• Execution time for traffic estimation can be enhanced. This can be achieved by saving in 
the traffic index for all grid points in the database to avoid on-the-fly calculations. 

• Connection to the Database currently is working only for a small subset of the data, 
which can be extended to all data. 

• More detailed displays in both Traffic Index and Reachability map might enhance human 
perception of the results. 
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5. Related Work 

5.1. Traffic Analytics 

Several systems have been proposed in the past for managing and analyzing traffic data to 
derive insights. PeMS [14], short for Performance Evaluation Monitoring System, collects and 
archives highway traffic data with the main goal of detecting traffic patterns and estimating the 
travel time on highway links. ADMS [1], short for Archived Data Management System, is a big 
data system that can support spatiotemporal queries through an interactive web-based 
interface over a large transportation database. However, none of these systems focus on 
improving the quality of the collected data or summarizing traffic at the level of TAZ. 

5.2. Temporal Imputation 

Data imputation methods are commonly divided into three categories: prediction-based, 
interpolation-based, and statistical learning-based. Most recent studies are focused on 
imputing time series data using machine learning methods. In [27] the authors train a large 
Generative Adversarial Network (GAN) to impute the missing values in timeseries datasets. In 
[28] a recurrent neural network (RNN) is employed to impute time series datasets. In this work, 
the missing values are treated as variables in the RNN model and are iteratively filled during 
backpropagation. MVLM [29] leverages the fact that driver behavior tends to be correlated in 
both the spatial and temporal domains. Modified window-based nearest neighbor methods 
have also been proposed for imputing traffic data [30], [31]. However, none of these previous 
works offer a comprehensive comparison of the imputation performance on sensor-based 
traffic data. 

5.3. Spatial Interpolation 

Most of the work in this field proposes general interpolation methods. Specifically, such 
methods are applied to air quality data in order to interpolate pollution metrics at locations 
where data is not sensed [32]. Adaptations of interpolation methods have also been proposed 
for traffic data. In [33] the Kriging method is used on an Annual Average Daily Traffic (AADT) 
dataset to interpolate the volume at unknown locations. An improved distance metric is later 
proposed to replace the Euclidean distance that is widely used along with Kriging [34]. Previous 
work mostly focuses on highway traffic which is fundamentally different from arterial (street) 
traffic. 

5.4. Computational Generators of Synthetic Trajectories 

One of the first studies in spatio-temporal moving object generators (MOG) is [35] with the goal 
to generate artificial trajectories with realistic spatiotemporal properties. An extension was 
later proposed [36] to enable a greater degree of configuration by adding additional 
parameters to the generator. These early MOGs, however, generate trajectories in free space 
but vehicle trajectories are by definition constrained to a road network. To overcome this, 
network-constrained generators have been proposed. The most widely cited attempt of 
generating moving object constrained to a network in a realistic way is proposed in [10]. The 
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framework selects origin and destination nodes and routes an agents along the network with 
limited interactions with other agents on the network. Perhaps the most prominent simulator is 
the Simulation of Urban MObility (SUMO) framework [37]. SUMO is a microscopic traffic 
simulator that generates and exports trajectories by simulating the environment from three 
inputs: road network, traffic infrastructure, and traffic demand. It also allows the user to specify 
a variety of parameters such as traffic infrastructure (e.g., traffic lights), number of lanes, and 
vehicle types. 

Most of these methods are highly configurable. However, to generate realistic trajectories, 
their parameters must be calibrated in order to match the target real-world environment; a 
task that is often time-consuming and required domain knowledge. Additionally, as the region 
of interest becomes large, e.g., at the scale of a metropolitan city, simulators require large 
amounts of computational power, a fact that led to the proposal of distributed architectures 
[38] [39]. DDTG does not require any calibration or time-consuming configuration before it can 
generate realistic vehicle trajectories and can easily scale to metropolitan-sized road networks. 
DDTG’s algorithm can also be parallelized to generate millions of trajectories in minutes. 

5.5. Data-Driven Generators of Synthetic Trajectories 

Computational generators, as mentioned above, require the calibration of complex parameters. 
To address this, nonparametric machine learning methods have been proposed to synthesize 
trajectories. In the earliest attempt [40], an LSTM architecture is proposed for predicting 
movements from GPS traces. Because very often the training dataset size is limited due to 
privacy and other constraints, the authors in [41] use a variational autoencoder to map the 
input to a hidden space where the characteristics can be preserved. 

More recently, Generative Adversarial Networks (GAN) have been proposed as the state-of-the-
art in generating synthetic trajectories. In [42], the authors discretize the input in both the 
spatial and temporal domains and train a nonparametric generative model. The discretized 
output is then converted back into location trajectories. [43] proposes a self attention-based 
sequential modeling network as the generator to encode the complex temporal transitions of 
human mobility. The authors also make use of a mobility regularity-aware loss in the 
discriminator to help it distinguish between real and synthetic trajectories. In [13] the authors 
formulate the task as an imitation learning problem in a partially observable Markov decision 
process. In [21] the GAN is trained with a new loss function, named TrajLoss, that accounts for 
the dissimilarity of generated trajectories to the input. 

Generative models require large amounts of data in order to learn how to generate realistic 
trajectories. However, even in big trajectory datasets, the distribution tends to be skewed, i.e., 
limited to only certain regions of the metropolitan city and hours of the day, and hence the 
trained models are biased. Another shortcoming of these methods is that the optimization 
objective is limited to the holistic level quality of the generated dataset and the quality of 
individually generated trajectories is mostly ignored. DDTG only requires the traffic data and a 
target OD matrix for the region of interest, both of which are very often publicly available and 
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free of privacy concerns. The synthetic datasets generated by DDTG follow distributions that 
are very close to those of real trajectory datasets. 

6. Conclusions and Future Directions 

We presented and compared methods for imputing data in time series traffic data and 
interpolating the traffic values at locations where data is not sensed. On top of these methods, 
we propose an algorithm to construct a metropolitan-scale Traffic Index that represents the 
traffic condition at each census block at different times of the day. The result can be used not 
only for visualization purposes, but also for informing downstream tasks such as socio-
economic analysis and urban planning. Our experiments showed that datasets with many small 
scale gaps can be accurately imputed using statistical approaches such as linear and spline 
interpolation without requiring any expensive pre-processing steps. On the other hand, as 
missing data gaps become longer and more frequent, data-driven approaches such as historical 
averages become much more accurate. This work was published in the IEEE International 
Conference on Intelligent Transportation 2022 [24]. 

Real-world trajectory datasets are often unavailable due to privacy reasons or are limited in size 
and spatio-temporal diversity. The task of synthetic trajectory generation aims to create a 
realistic set of artificial trajectories that are representative of the true mobility characteristics 
and underlying distributions. Existing methods require either a lot of complex parameters to be 
calibrated (simulators) or existing trajectory datasets (GAN) in order to be able to generate 
synthetic datasets. In this paper, we proposed DDTG, a data-driven, model-free, and 
parameter-less algorithm for generating realistic vehicle trajectory datasets. Unlike existing 
approaches, DDTG only requires two main inputs: the traffic data, and the origin-destination 
matrix for the region of interest. These aggregated inputs are very often publicly available 
because they do not reveal any private information. As we showed in our experiments, the 
datasets generated by DDTG closely mimic the distributions of a real trajectory dataset. We also 
argue that our method is not meant to replace the existing state-of-the-art methods but rather 
complement them in generating synthetic datasets of higher quality. This work has been 
accepted and will be published in the IEEE International Conference on Big Data 2022 [44].  
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Data Summary 

Products of Research  

This project produced time-dependent synthetic trajectory dataset for Los Angeles based on 
the traffic flow data from 1) real sensors whenever available, and 2) estimation if sensors are 
not available. These synthetic trajectory data were used for our reachability research. We also 
have completed the steps to estimate missing values in generating synthetic trajectories. We 
took the step to represent all data in popular structured formats following the recommendation 
for data format and metadata standard in the NCST data management plan. The synthetic 
dataset of 1.5M trajectories were stored on the UC's data repository, Dryad and made it 
publicly accessible.  

We generated two publications from this research: 

• C. Anastasiou, J. Zhao, S. H. Kim, and C. Shahabi, “Data-driven traffic index from sparse 
and incomplete data,” IEEE Transactions on Intelligent Transportation Systems, 2022. 

• C. Anastasiou, S. H. Kim, C. Shahabi. Generation of Synthetic Urban Vehicle Trajectories. 
To appear in the IEEE International Conference on Big Data (BigData 2022), Dec. 2022. 

Data Format and Content  

Title of Dataset: DDTG Synthetic Vehicle Trajectory Dataset 

This dataset contains a total of 1.5 million (1.5M) synthetic trajectories generated by our DDTG 
algorithm. The trajectories are limited to the Metropolitan City of Los Angeles (bounding box: 
`top=34.335035 left=-118.667665 bottom=33.699820 right=-118.180532`) and to the month of 
December 2019. 

Description of the data and file structure: The dataset consists of two files. One file contains the 
actual trajectory data in GPS measurements form. The other file contains metadata about each 
trajectory. Both files are in Parquet (https://parquet.apache.org/) format.  

File 1: trajectories.parquet 
- uuid: Unique user id 
- tuid: Unique trajectory id 
- latitude: Latitude degree of location coordinate 
- longitude: Longitude degree of location coordinate 
- accuracy: GPS accuracy at time of reading (not used in this version) 
- timestamp: Time of reading 

File 2: trajectory_meta.parquet 
- uuid: Unique user id 
- tuid: Unique trajectory id 
- origin_latitude: Latitude degree at the trip origin 
- origin_longitude: Longitude degree at the trip origin 

https://parquet.apache.org/
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- destination_latitude: Latitude degree at the trip destination 
- destination_longitude: Longitude degree at the trip destination 
- departure_time: Time at trip's departure 
- travel_distance: Total distance travel in this trip 
- travel_time: Total travel time of this trip (estimated with real-world traffic data) 
- displacement: The total displacement from origin to destination 
- count: Number of GPS readings in this trajectory 

Data Access and Sharing  

Data is available on the UC's data repository, Dryad. Anyone can download the two files from 
the repository (https://doi.org/10.5061/dryad.4j0zpc8gf). 

An example of Python code to access the data is: 

```python 
import pandas as pd 

trajectories = pd.read_parquet('./trajectories.parquet') 
meta = pd.read_parquet('./trajectory_meta.parquet') 
``` 

Reuse and Redistribution  

No restriction. Dataset should be cited as follows: 

Anastasiou, Chrysovalantis (2022), Synthetic vehicle trajectory dataset for the metropolitan 
city of Los Angeles using DDTG, Dryad, Dataset, https://doi.org/10.5061/dryad.4j0zpc8gf 

https://doi.org/10.5061/dryad.4j0zpc8gf
https://doi.org/10.5061/dryad.4j0zpc8gf
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