
UC Davis
Research Reports

Title
Evaluating Accessibility of Los Angeles Metropolitan Area Using Data-Driven Time-
Dependent Reachability Analysis

Permalink
https://escholarship.org/uc/item/7pm429tk

Authors
Shahabi, Cyrus
Kim, Seon Ho

Publication Date
2023-07-01

DOI
10.7922/G2DB8049

Data Availability
The data associated with this publication are available at:
https://doi.org/10.5061/dryad.4j0zpc8gf

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7pm429tk
https://doi.org/10.5061/dryad.4j0zpc8gf
https://escholarship.org
http://www.cdlib.org/

Evaluating Accessibility
of Los Angeles
Metropolitan Area
Using Data-Driven Time-
Dependent Reachability
Analysis

July 2023
A Research Report from the National Center
for Sustainable Transportation

Cyrus Shahabi, University of Southern California

Seon Ho Kim, University of Southern California

TECHNICAL REPORT DOCUMENTATION PAGE
1. Report No.
NCST-USC-RR-23-25

2. Government Accession No.
N/A

3. Recipient’s Catalog No.
N/A

4. Title and Subtitle
Evaluating Accessibility of Los Angeles Metropolitan Area Using Data-Driven Time-
Dependent Reachability Analysis

5. Report Date
July 2023

6. Performing Organization Code
N/A

7. Author(s)
Seon Ho Kim, Ph.D., https://orcid.org/0000-0002-8410-0839
Cyrus Shahabi, Ph.D., https://orcid.org/0000-0001-9118-0681

8. Performing Organization Report No.
N/A

9. Performing Organization Name and Address
University of Southern California
METRANS Transportation Consortium
University Park Campus, VKC 367 MC:0626
Los Angeles, California 90089-0626

10. Work Unit No.
N/A

11. Contract or Grant No.
USDOT Grant 69A3551747114

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
1200 New Jersey Avenue, SE, Washington, DC 20590

13. Type of Report and Period Covered
Final Research Report (August 2021 –
August 2022)

14. Sponsoring Agency Code
USDOT OST-R

15. Supplementary Notes
DOI: https://doi.org/10.7922/G2DB8049
Dataset DOI: https://doi.org/10.5061/dryad.4j0zpc8gf
16. Abstract
This project is to investigate how accessibility of city blocks is quantified through the transport systems and real traffic flow data
from the Los Angeles Metropolitan Area. The authors investigate the reachability problem and provide a solution with a
functional system that is capable of visualizing the reachability map (isochrone). Unlike other studies, this approach is data-
driven and does not depend on mathematical graph-theory to compute the isochrone which requires intensive computation.
Instead, it focuses on directly processing the large amount of traffic flow data that the Integrated Media Systems Center at USC
has collected from the Regional Integration of Intelligent Transportation Systems (RIITS) for more than 10 years under the
Center’s existing Archived Traffic Data Management System (ADMS) project. The reachability map construction is based on
vehicle trajectories so the researchers devised the Data-Driven Trajectory Generator (DDTG), a data-driven, model-free, and
parameter-less algorithm for generating realistic vehicle trajectory datasets from ADMS data. Since real world traffic is
incomplete with lots of temporal and spatial missing data, the researchers studied imputation and interpolation methods to
complete the dataset. Their experiments with real-world trajectory and traffic data show that the datasets generated by DDTG
follow distributions that are very close to the distributions of a real trajectory dataset. Furthermore, to demonstrate the results
from the proposed research, a web application was developed in which users can select a location, travel time, and the time of
year to see the evaluated accessibility info in the form of an isochrone map. The outcomes of this project—synthetic vehicle
trajectory dataset and reachability map construction—will be helpful in evaluating accessibility of city blocks for transport
systems over a large area, essential for policymakers for effective city planning as well as to improve the well-being of citizens.
17. Key Words
Traffic index, synthetic trajectory, reachability

18. Distribution Statement
No restrictions.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
52

22. Price
N/A

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

https://orcid.org/0000-0002-8410-0839
https://orcid.org/0000-0001-9118-0681
https://doi.org/10.7922/G2DB8049
https://doi.org/10.5061/dryad.4j0zpc8gf

About the National Center for Sustainable Transportation

The National Center for Sustainable Transportation is a consortium of leading universities
committed to advancing an environmentally sustainable transportation system through cutting-
edge research, direct policy engagement, and education of our future leaders. Consortium
members include: University of California, Davis; University of California, Riverside; University
of Southern California; California State University, Long Beach; Georgia Institute of Technology;
and University of Vermont. More information can be found at: ncst.ucdavis.edu.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts
and the accuracy of the information presented herein. This document is disseminated in the
interest of information exchange. The report is funded, partially or entirely, by a grant from the
U.S. Department of Transportation’s University Transportation Centers Program. However, the
U.S. Government assumes no liability for the contents or use thereof.

The U.S. Department of Transportation requires that all University Transportation Center
reports be published publicly. To fulfill this requirement, the National Center for Sustainable
Transportation publishes reports on the University of California open access publication
repository, eScholarship. The authors may copyright any books, publications, or other
copyrightable materials developed in the course of, or under, or as a result of the funding grant;
however, the U.S. Department of Transportation reserves a royalty-free, nonexclusive and
irrevocable license to reproduce, publish, or otherwise use and to authorize others to use the
work for government purposes.

Acknowledgments

This study was funded, partially or entirely, by a grant from the National Center for Sustainable
Transportation (NCST), supported by the U.S. Department of Transportation (USDOT) through
the University Transportation Centers program. The authors would like to thank the NCST and
the USDOT for their support of university-based research in transportation, and especially for
the funding provided in support of this project.

Evaluating Accessibility of Los Angeles
Metropolitan Area Using Data-Driven Time-

Dependent Reachability Analysis
A National Center for Sustainable Transportation Research Report

July 2023

Cyrus Shahabi and Seon Ho Kim

Integrated Media Systems Center, University of Southern California

[page intentionally left blank]

 i

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... i

1. Introduction .. 1

1.1. Prior Work on Traffic Data Collection and Archiving ... 2

1.2. Constructing complete traffic dataset for the generation of synthetic trajectories 3

1.3. Constructing reachability map with synthetic trajectories ... 3

2. Traffic Data Imputation and Interpolation ... 4

2.1. Traffic Imputation .. 4

2.2. Traffic Interpolation ... 6

2.3. Traffic Index ... 7

2.4. Experiments ... 8

3. Generating Synthetic Vehicle Trajectories.. 12

3.1. Overview .. 12

3.2. Data Representation .. 14

3.3. Algorithm ... 15

3.4. Quality of Synthetic Trajectories ... 18

3.5. Experiments ... 20

4. Implementation of Web Application .. 25

4.1. Features of Web... 26

4.2. Implementation and Limitation ... 28

5. Related Work .. 34

5.1. Traffic Analytics .. 34

5.2. Temporal Imputation ... 34

5.3. Spatial Interpolation .. 34

5.4. Computational Generators of Synthetic Trajectories .. 34

5.5. Data-Driven Generators of Synthetic Trajectories .. 35

6. Conclusions and Future Directions ... 36

References .. 37

Data Summary... 41

 ii

List of Figures

Figure 1. An example of isochrone map ... 2

Figure 2. Daily rate of missing traffic data in the years or 2017 and 2018 in Los Angeles County. 4

Figure 3. Real-world traffic speed measured by a sensor in Downtown LA during Mar. 2018
spanning two days (Sunday and Monday). Periods when data is missing (gaps) are
highlighted. ... 6

Figure 4. Imputation accuracy performance for different missing period lengths varying from 1
to 20 time steps (15 minutes to 5 hours). .. 10

Figure 5. Traffic interpolation performance in terms of RMSE. ... 10

Figure 6. Traffic index aggregated at the level of TAZ for Downtown Los Angeles in March
2018. ... 11

Figure 7. Periods of missing data (white stripes) in a real-world traffic dataset at Downtown Los
Angeles in the first two weeks of March 2018. .. 12

Figure 8. Taxonomy of synthetic vehicle trajectory generators. .. 13

Figure 9. Distribution of origins in the real dataset (left) and the synthetic datasets generated by
DDTG (center-left), DDTG without OD matrix information (center-right), and SeqGAN (right).
DDTG imitates the real distribution with a higher accuracy. ... 17

Figure 10. Distribution of destinations in the real dataset (left) and the synthetic datasets
generated by DDTG (center-left), DDTG without OD matrix information (center-right), and
SeqGAN (right). DDTG imitates the real distribution with a higher accuracy. 22

Figure 11. Origin-destination matrix calculated from the real dataset (left) and the synthetic
datasets generated by DDTG (center-left), DDTG without OD matrix information (center-
right), and SeqGAN (right). DDTG imitates the real distribution with a higher accuracy. 22

Figure 12. Departure time distributions calculated from the real dataset (top), the synthetic
dataset generated by DDTG (middle), and the synthetic dataset generated by DDTG without
OD matrix information (bottom). ... 24

Figure 13. Distribution of Frechet (left) and Hausdorff (right) distances between generated and
corresponding real trajectories. ... 24

Figure 14. Examples of real trajectories (green lines) and corresponding synthetic trajectories
(red lines) generated by DDTG. .. 24

Figure 15. Example of traffic index input screen .. 26

Figure 16. View of Attributes on Web Application ... 27

Figure 17. Example of traffic index output screen.. 27

Figure 18. Example of reachability map screen .. 29

Figure 19. Implementation of Web Features ... 29

 iii

Figure 20. Spatial Interpolation Accuracy ... 30

Figure 21. RMSE vs. Number of Sensors ... 31

Figure 22. IDW building time vs execution time ... 32

Figure 23. Kriging building time vs execution time... 32

Figure 24. GeoJson-polygon property script... 33

Figure 25. Dockerize script .. 33

 i

Evaluating Accessibility of Los Angeles Metropolitan Area
Using Data-Driven Time-Dependent Reachability Analysis

EXECUTIVE SUMMARY

Accessibility to people, goods, services and places forms the basis of economic development in
a city. The better and more efficient this access, the greater the economic benefits. As the
population and employment grow in a city and the level of agglomeration gets higher, the city
tends to have higher GDP per capita and higher levels of productivity. The way in which cities
facilitate accessibility through their urban forms and transport systems also impacts directly on
other measures of human development and well-being. Reliable evaluation of accessibility of
city blocks for transport systems over a large area is essential for policymakers to achieve
effective city planning as well as to improve well-being of citizens.

One major way to evaluate the accessibility of public facilities such as hospitals is reachability
analysis which determines whether certain city blocks can be reached from at least one of
these facilities within a certain time span. An isochrone is generally defined as a curve drawn on
a map connecting points at which moving objects (e.g., cars) arrive at the same time for a given
starting point and time duration and it is one of the most efficient tools used in addressing the
reachability analysis problem. Thus, their construction is an important task in many application
domains. As an example, in urban planning, isochrones are essential when assessing the
placement of public services like hospitals and fire departments.

The objective of this proposal is to investigate how accessibility of city blocks is quantified
through the transport systems and real traffic flow data from the Los Angeles Metropolitan
Area. We will formally define the isochrone and reverse isochrone problems, describe our
approach to solving them and provide a fully functional system that is capable of visualizing
reachability maps. Unlike other studies, our approach is purely data-driven and does not
depend on mathematical graph-theory to compute the isochrone which requires an intensive
computation. Instead, we focus on directly processing the large amount of traffic flow data that
our research center, the Integrated Media Systems Center at USC, has acquired from the Los
Angeles County. This research exploits real-world big traffic sensor data collected from the
Regional Integration of Intelligent Transportation Systems (RIITS) for more than ten years under
our existing Archived Traffic Data Management System (ADMS) project.

We use a data-driven grid-based approach for constructing time-dependent isochrone maps
considering specific time of day, week, and month. Our reachability map construction is based
on vehicle trajectories, however not many real trajectory data are publicly available in reality
due to various reasons such as privacy. Thus, we devised the Data-Driven Trajectory Generator,
dubbed DDTG, a data-driven, model-free, and parameter-less algorithm for generating realistic
synthetic vehicle trajectory datasets from real-world ADMS traffic flow data. Since real world
traffic flow data are incomplete with lots of temporal and spatial missing values, we studied

 ii

imputation and interpolation methods to complete the dataset before using them for synthetic
trajectory generation.

The main contributions of our work are:

• Study and evaluate 1) imputation methods to handle temporally missing values for
different lengths of imputing gaps, and 2) interpolation methods to estimate the traffic
conditions near locations where sensor data is not available.

• Propose an algorithm that aggregates traffic data over a region of interest and
constructs a Traffic Index that summarizes the traffic flow (i.e., average speed) at a
certain level of analysis zones.

• Propose DDTG, a model-free algorithm that generates synthetic yet realistic vehicle
trajectory datasets, and a set of metrics to evaluate the quality of generated datasets at
both holistic and individual levels.

• Generate lots of realistic synthetic vehicle trajectories in the City of Los Angeles using
DDTG and conduct comprehensive experiments to evaluate the quality of the generated
trajectory datasets.

• Develop a web application (https://imscwww.usc.edu/app/) in which users can select a
location, travel time, and the time of year and see the evaluated accessibility info in the
form of isochrone maps.

The outcomes of this project, synthetic vehicle trajectory dataset and reachability map
construction will be helpful in evaluating accessibility of city blocks for transport systems over a
large area so will become essential for policymakers to achieve effective city planning as well as
to improve well-being of citizens.

https://imscwww.usc.edu/app/

 1

1. Introduction

Accessibility to people, goods, services and places forms the basis of economic development
and public health in a city. The better and more efficient this access, the greater the economic
benefits and the better the public health. As the population and employment grow in a city and
the level of agglomeration gets higher, the city tends to have higher GDP per capita and higher
levels of productivity. The way in which a city facilitates accessibility through their urban forms
and transport systems also impacts directly on other measures of human development and
well-being. Reliable evaluation of accessibility of city blocks for transport systems over a large
area is essential for policymakers to achieve effective city planning as well as to improve well-
being of citizens.

One major way to evaluate the accessibility of public facilities (e.g., hospitals) is reachability
analysis which determines whether certain city blocks can be reached from at least one of
these facilities within a certain time span. An isochrone is generally defined as a curve drawn on
a map connecting points to which moving objects (e.g., cars) leaving from a specific origin can
arrive at the same time and it is one of the most efficient tools used in addressing the
reachability analysis problem (Figure 1) [45]. Thus, their construction is an important step for
many transportation applications. As an example, in urban planning, isochrones are essential
when assessing the placement of public services like hospitals and fire departments. However,
accessibility is a complex function of origin locations, destination locations, the underlying
transportation network, the dynamic weights on the edges of the networks representing travel
times during different times of the day, etc. Among many factors, the cost measurements are
essential and usually take a variety of forms such as any combinations of Euclidean distance,
network distance, travel time, monetary cost or fare, comfort or subjective ease of travel.
Effective and efficient access is the goal of most transportation activities. To understand
accessibility, a proper evaluation of accessibility is essential. However, it is challenging due to
many factors affecting accessibility in a city: transportation demand and activities, mobility,
transportation modes, land use, transport network connectivity, and even teleworking [1].

The objective of this project is to investigate how accessibility of city blocks is quantified
through the transport systems and real traffic flow data from the Los Angeles Metropolitan
Area. The accurate and efficient construction of reachability maps is a challenging task. Towards
that end, first, we will analyze the reachability at different times of the day and for that we
need to construct time-dependent isochrone maps. Graph theory techniques attempt to solve
this by assigning dynamic time-varying weights on edges [2], however, these techniques do not
scale well to large and complex graphs such as large Los Angeles road networks.

Unlike other conventional studies, our approach is data-driven and does not depend on
mathematical graph-theory to compute the isochrone which is computationally expensive.
Instead, we focus on directly processing the large amount of traffic flow data that our research
center, the Integrated Media Systems Center at USC, has acquired from the Los Angeles County
in the past decade. We devised a data-driven grid-based approach for constructing time-
dependent isochrone maps considering specific time of day, week, and month with the past,
present and predicted data. The outcome of our work is the construction of time-dependent

 2

isochrone map display web application. To demonstrate the results from the proposed
research, we developed a web application in which users can select a location, travel time, and
the time of year and see the evaluated accessibility information in the form of isochrone maps.

Figure 1. An example of isochrone map

1.1. Prior Work on Traffic Data Collection and Archiving

At USC’s Integrated Media Systems Center (IMSC) with our partnership with Los Angeles
Metropolitan Transportation Authority (LA Metro) and METRANS, we have developed a big
transportation data warehouse: Archived Traffic Data Management System (ADMS) [3]. ADMS
fuses and analyzes a very large-scale and high-resolution (both spatial and temporal) traffic
sensor data from different transportation authorities in Southern California, including California
Department of Transportation (Caltrans), Los Angeles Department of Transportation (LADOT),
California Highway Patrol (CHP), Long Beach Transit (LBT). This dataset includes both inventory
and real-time data with update rate as high as every 30 seconds for freeway and arterial traffic
sensors (14,500 loop-detectors) covering 4,300 miles, 2,000 bus, and train automatic vehicle
location (AVL), incidents such as accidents, traffic hazards and road closures reported
(approximately 400 per day) by LAPD and CHP, and ramp meters. We have been continuously
collecting and archiving datasets for the past 10 years. ADMS, with 11TB annual growth, is the
largest traffic sensor data warehouse built so far in Southern California. Using this big traffic
dataset, we have a unique opportunity to use data-driven approaches to understand the
mobility and accessibility in the Los Angeles Metropolitan Area.

 3

1.2. Constructing complete traffic dataset for the generation of synthetic
trajectories

The data we have collected from Los Angeles Metropolitan Area are traffic flow data (speed
and volume), not trajectories. Thus, first, we make heavy use of synthetic trajectories due to
the lack of available high-resolution trajectory datasets for Los Angeles area. Given an origin, a
destination, and historical traffic data of a road network, our algorithm employs a time-
dependent routing algorithm to discover the shortest path from the origin to the destination.
This time-dependent path is considered the generated trajectory of the vehicle. Thus, our first
task is to develop an algorithm which takes the traffic conditions as input to generate realistic
synthetic trajectories. However, we found that our historical traffic data are incomplete and
have lots of missing values, temporally and spatially, which makes the generation of accurate
synthetic trajectories hard. Thus, we needed to first work on the estimation of those missing
values to make the dataset more complete.

Our experiments showed that datasets with many small-scale gaps (missing values) can be
accurately imputed using statistical approaches such as linear and spline interpolation without
requiring any expensive pre-processing steps. On the other hand, as missing data gaps become
longer and more frequent, data-driven approaches such as historical averages provide much
more accurate results. This implies that archived historical traffic flow data is highly important.

Through the project, it has been feasible to generate traffic flow data (i.e., average speed) for
any given time and location in Los Angeles using both real sensed and/or estimated traffic flow
data. A paper to estimate missing values was written and published. This includes algorithms to
impute missing values spatially and temporally, and an algorithm to generate Traffic Index for
the City of Los Angeles. Traffic Index is a spatial-temporal representation of the traffic
conditions at a predefined region.

1.3. Constructing reachability map with synthetic trajectories

Our approach to generate isochrone map does not consider the complex underlying road
network graph. Instead, our methodology only takes into consideration the trajectories and
consists of retrieving all the reachable GPS measurements from them to construct isochrone
maps. For efficiency, we used a grid-based index that can be utilized to efficiently filter and
process only those trajectories that are guaranteed to meet the query criteria. Thus, unlike
most conventional approaches, our approach achieves much lower response times than those
of conventional graph approaches because it is not affected by the complexity of large road
networks.

The challenge that we faced is the evaluation of the quality of isochrone map, which also
depends on the quality (accuracy) of synthetic trajectories. However, there are few methods to
evaluate the accuracy of synthetic vehicle trajectories in urban area, specifically for the City of
Los Angeles. Thus, we needed to work on the evaluation of the quality of our synthetic
trajectories.

 4

We extracted real vehicle trajectories around Los Angeles from the Veraset trajectory dataset
which is a large collection of real trajectories of moving objects including vehicles. We used the
extracted real trajectories to evaluate the quality of our synthetic trajectories by quantifying
the similarity of real and synthetic trajectories.

Subsequently, we devised an algorithm to generate isochrone map for any given time and
location in Los Angeles using synthetic trajectories. We also developed a web application and
tested the overall method for evaluating accessibility of Los Angeles Area. Reachability maps
are presented in a variety of ways with each representation offering a different view of the
result for the City of Los Angeles.

2. Traffic Data Imputation and Interpolation

2.1. Traffic Imputation

In reality, the consistency and completeness of time-series data generated by sensors is
affected by many factors. Hardware malfunctions, infrastructure maintenance, and software
updates are some of the examples that cause downtime, thus lead to gaps in time-series traffic
data. Our analysis on historical traffic data shows that on average 15% of data is missing on a
daily basis (Figure 2) due to various reasons such as sensor malfunctions, system maintenance,
and data collection software problems. In this section, we explain how imputation methods can
be employed to address the first challenge and discuss the advantages and disadvantages of
several time-series imputation methods.

Figure 2. Daily rate of missing traffic data in the years or 2017 and 2018 in Los Angeles
County.

2.1.1. Problem Definition

Let 𝑇 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) be the sequence of traffic speed observations over a period of n time
steps. Now suppose that values 𝑣5, 𝑣6, 𝑣7 are missing. The task of imputation aims to compute
values �̃�5, �̃�6, �̃�7 that minimize the difference between the original and estimated values. The

estimated values are generated by an estimator 𝑓(t; Ѳ), where t is the time step to be imputed
and Ѳ is an optional vector that carries additional information or context.

 5

2.1.2. Imputation Methods

A natural way to fill in the missing values is by carrying forward the last available value; a
method that is commonly known as forward-fill. Similarly, we can also carry backward the next
available value. This method is commonly known as backward-fill. In an offline setting, both of
these methods are expected to perform very similarly in terms of accuracy when the gap is not
wide. However, in an online setting, backward-fill is infeasible as the next available value
cannot be known in advance. Interpolation methods can also be used as imputation functions.

Linear interpolation, for example, imputes a missing value 𝑣𝑖 using an estimator function 𝑓(x)
that forms a straight line between the values exactly before and right after the gap.

Unlike previously discussed methods that are univariate, i.e., each time series must be
independently imputed as a single variable, multivariate imputation attempts to recover all
missing values at a given time step by exploiting the correlations between the underlying time
series. In this setting, each time series is considered to be an independent variable and the
estimator is a function that is trained to fit the available data before used to ”predict” the
missing values.

Lastly, using historical traffic data, the expected behaviour (i.e., speed) of a sensor can be
estimated and used to fill gaps in the data. More concretely, the average hourly speed of a
sensor can be calculated from past observations. For example, if the speed was not observed at
3:45pm, the average speed of 3-4pm may be used to impute the missing observation. The day
of the week may also be considered when calculating the average speed in order to better
capture daily behaviours (e.g., weekday vs. weekend traffic).

2.1.3. Discussion

The missing data gaps can be divided into two categories; (i) small gaps where the duration of
missing data is short enough that no significant change in the traffic dynamics might have
occurred, and (ii) large gaps where the duration of missing data is long enough for the traffic
dynamics to vary significantly. Figure 3 shows a real-world traffic speed time-series spanning
two days, Sunday and Monday, in March in Downtown Los Angeles. We observe that the
second gap is very small (only one time step) and the speed between the start and end of the
gap remains similar. However, all other gaps span more time steps during which the speed
varies significantly. For example, the third gap is almost 3 hours long and the speed changes
from 15mph to 20mph.

Intuitively, small gaps such as the second gap in Figure 3 can be accurately imputed using
simple approaches such as forward- and backward-fill. This is because, unlike other time-series,
traffic flow data (e.g., speed measured by a sensor) do not vary dramatically from one time step
to the next except during major incidents such as traffic accidents. However, the greedy nature
of these methods fails to capture the gradual and progressive change in the traffic dynamics
that occurs during large gaps and, hence, are not ideal candidates for long-term imputation
which makes data-driven imputation methods more appropriate in such cases.

 6

Figure 3. Real-world traffic speed measured by a sensor in Downtown LA during Mar. 2018
spanning two days (Sunday and Monday). Periods when data is missing (gaps) are
highlighted.

2.2. Traffic Interpolation

Installing traffic sensors such as loop detectors all over a metropolitan city is prohibitively
expensive, resulting in sparse traffic sensor data. However, it is still critical to obtain and
harness a dense and accurate representation of the traffic situation for many multi-disciplinary
studies. Therefore, we evaluate several interpolation methods for estimating the traffic at
arbitrary locations where traffic is not directly sensed. We refer to these algorithms as Traffic
Interpolation methods and in this section we describe how interpolation can be used to
produce a more dense and complete view of the traffic situation at the scale of a metropolitan
city.

2.2.1. Problem Definition

Let 𝑆 = (𝑠1, 𝑠2, . . . , 𝑠𝑘) be a set of k sensors that monitor traffic flow (e.g., vehicle speed) at
fixed locations s.loc. Traffic interpolation is the problem of estimating the traffic data at a query
point q by aggregating information generated by the set of sensors S and any additional context
θ. Formally, we define a function �̃� such that �̃�(q, t; S, θ) is equal to the traffic speed 𝑣 that was
observed at location q at time t, where t is in the past.

2.2.2. Interpolation Methods

Suppose we want to obtain an estimation of the traffic speed at an arbitrary location (road
segment) q at time t. Below we explain how this can be achieved using several interpolation
methods and discuss the advantages and disadvantages of each.

• k-Nearest Neighbors: The speed values at time t of the k-nearest sensors to q are
averaged (arithmetic mean) and used as the speed value at location q.

 7

• Inverse Distance Weighting: Similar to k-nearest neighbors with the key difference that
a weighted average is performed instead. The weight of each sensor depends on its
distance from q; the farther away the less the weight it is assigned.

• Kriging: Based on Gaussian processes, this method produces an unbiased interpolation
function for estimating the values at unsampled locations. However, it is
computationally intensive and hard to scale without implementing approximation
methods that affect its accuracy. It is commonly used in a variety of domains, including
pollution estimation, where the data are spatially related and estimates to fill in spatial
gaps from actual measurements are required.

2.2.3. Discussion

The interpolation accuracy highly depends on the direction of travel at the interpolated
location. It is common for the two directions of a road to be congested at different times of the
day. Therefore, when interpolating the traffic at a location, sensors in the same direction have a
larger impact on the calculation of the interpolated value. As we show in our experiments,
when the direction of travel is considered, the interpolation accuracy increases.

2.3. Traffic Index

For urban planners and decision makers, it is critical to view and understand traffic at the Traffic
Analysis Zone (TAZ) [4] or a certain region, such as census block, level. Large corporations such
as Google and Apple collect high resolution traffic data from their users to support their
navigation systems. However, federal and state transportation agencies do not have access to
these traffic data and have to, instead, rely on traffic sensors such as loop detectors. These
traffic sensors are deployed on highway and arterial roads of a metropolitan city and measure
the traffic at a discrete resolution both spatially and temporally. While this resolution can be
helpful when making decisions at a small scale, e.g., traffic lights change duration, it may not
provide useful information at a macro level traffic flow understanding of a metropolitan city.
Therefore, traffic data within a region of interest must be processed and summarized. We refer
to the data structure that stores the traffic summaries as the Traffic Index.

The Traffic Index is a spatial-temporal representation of the traffic conditions at a predefined
region. Spatially, the region is divided into a set of administrative districts, e.g., census blocks.
Temporally, traffic values are aggregated to some predefined resolution, e.g., hourly. We use
the notation 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑛) and 𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑚) for regions and time steps, respectively.
Our algorithm constructs the traffic index of an interested region from a real-world traffic
dataset in three steps:

Imputation: All missing values of a traffic dataset D are imputed to obtain an estimated, yet
complete traffic dataset D’.

Interpolation: A grid that covers R is constructed. Each cell of the grid has a square shape
with size s. Then, the traffic at the center of each cell c is interpolated for all time steps.

Summarization: The traffic of each 𝑟𝑖 ∈ R for every 𝑡𝑗 ∈ T is summarized by aggregating the

interpolated values of all the cells that intersect with it. Suppose that 𝑆𝑖 ={𝑐1, 𝑐2,…, 𝑐𝐾} is

 8

the set of K grid cells that intersect with region 𝑟𝑖. Then, its summarized traffic value at time

𝑡𝑗 is calculated by
1

𝐾
∑ �̃�𝑘

𝑗
𝑐𝑘 ∈𝑆𝑖

, where �̃�𝑘
𝑗
is the interpolated value of cell ck at time step tj .

2.4. Experiments

In this section we present the results of a comprehensive experimental study and discuss the
trade-offs of each imputation and interpolation method.

2.4.1. Experimental Setup

All experiments were performed on an Ubuntu 18.04 server equipped with an Intel(R) Core(TM)
i9-9980XE CPU at 3.00GHz and 128GB of RAM. The processor has 18 cores (36 threads) with
private L1 (32KB for data and 32KB for instructions) and L2 (1MB) caches and a shared L3
(24.75MB) cache.

We use three real-world traffic speed datasets of the Downtown Los Angeles area:

• DTLA032018: 781 arterial sensors, March 2018.

• DTLA022020: 762 arterial sensors, February 2020.

• DTLA032020: 770 arterial sensors, March 2020.

In all datasets, the speed is recorded at 15-minute intervals and represents the average vehicle
speed in miles per hour. In the original dataset, speed is reported every minute, however, for
our experiments we use arithmetic average to estimate the speed of each interval (time step).
We use Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE) to evaluate the methods.

2.4.2. Imputation Experiments

In the first set of experiments, we study the performance of imputation methods. By nature,
our real-world datasets contain missing values. Hence, in order to be able to test the accuracy
of the imputation methods, we identify and select the five largest periods per dataset during
which there are no missing data. Then, we randomly drop 10% of the values during those
periods to simulate a Missing Completely at Random (MCR) situation and use the imputation
methods described in Section III to recover them. We use the dropped values as the ground
truth. Specifically, we compare the following imputation methods:

• Fill Forward (FFILL) & Backward (BFILL)

• Linear (LI) & Spline (SI) Interpolation

• Polynomial Interpolation (PI)

• Multivariate Imputation (MVI)

• Hourly average speed (HA H) calculated using the past one year history of each sensor
(∼750GB of data)

• Hourly average speed per day of week (HA DH) calculated using the past one year
history of each sensor (∼750GB of data)

 9

• Hourly average speed per day of week (HA DH R) calculated using only the previous
three months data of each sensor (∼200GB of data)

Figure 5 summarizes the results. Out of all the methods, the multivariate imputation is
consistently performing better than the other. An interesting observation is that using historical
averages calculated by recent data instead of the entire history yields more accurate results.
The intuition is that recent data better capture the ever-changing traffic dynamics of the period
we want to impute.

Next, we simulate a Missing at Random (MR) scenario in the temporal dimension by dropping
consecutive values on the DTLA032018 dataset. Figure 4 shows the MAE, RMSE, MAPE, and
elapsed time when varying the missing period length from 1–20 time steps (15 minutes to 5
hours). The fastest methods are FFILL and BFILL, however, with significantly worse accuracy
than the others. As expected, as the gaps become longer, it becomes more evident that using
the data-driven methods, i.e., HA DH and HA DH R, yields much more accurate results. On the
other hand, for very short gaps of up to 3–4 time steps, LI and SI yield accurate results without
the need of calculating historical averages.

2.4.3. Interpolation Experiments

In the second set of experiments, we study the performance of interpolation methods. Since we
cannot quantify the interpolation accuracy at arbitrary points, we instead split the sensors into
two sets: train (90%) and test (10%). We use the sensors in the test set as the interpolation
points and compute RMSE by comparing the interpolated to the actual values. Specifically, we
compare the following interpolation methods: Nearest Neighbor (NN), Arithmetic Mean (AVG),
Inverse Distance Weighting (IDW), and Kriging Method (KM).

We run experiments using two variants of each method. The first variant considers all sensors
during the interpolation whereas the second variant only considers sensors that are installed on
roads with the same direction as the sensor at which we are interpolating the traffic. Figure 5(a)
shows the performance of the methods in terms of RMSE. Besides NN, which performs the
worst, all other methods exhibit similar performance with IDW achieving slightly better
accuracy than the others when direction is considered. The cause of NN’s bad performance is
that most of the times, the nearest sensor is the one installed on the opposite side of the road.

The intuition is that the traffic dynamics of the two sides of a street can be quite different. For
example, during the morning rush hour, the streets that lead towards the downtown area are
congested by people going to work whereas the streets that lead away from downtown incur
moderate to low traffic (the opposite happens during the afternoon rush hour). This also
explains why the interpolation shows a 3% improvement on average when direction of travel is
taken into consideration. Next, we study how the accuracy of IDW is affected depending on the
number of sensors that are used to interpolate the traffic. Figure 5(b) shows the results. On the
x-axis we vary the number of sensors from two to twenty and on the y-axis the average
distance from the query point to a sensor (left) and the RMSE (right). We observe that as the
number of sensors increases the RMSE drops, i.e., the interpolation becomes more accurate.

 10

Figure 4. Imputation accuracy performance for different missing period lengths varying from 1 to 20 time steps (15 minutes to 5
hours).

Figure 5. Traffic interpolation performance in terms of RMSE.

 11

At the same time, we observe that the average distance between the query point and sensors
increases which is expected. Furthermore, we observe that there is no noticeable improvement
in accuracy when using more than 12 sensors.

Lastly, we study how the accuracy of IDW is affected when we vary the size of the training set.
Specifically, we randomly split the dataset into train and test sets at different ratios varying
from 10% to 80% for the test size. Figure 5(c) depicts the results. In the x-axis we vary the size
of the test set while on the y-axis we show the average distance between sensors and the query
point (left) and the RMSE (right). The accuracy is highest when the training set is largest.

2.4.4. Case Study: Los Angeles Traffic Index

As we have already argued, the Traffic Index is critical for a variety of multi-disciplinary studies
and is useful to many researchers. Our unique dataset emphasizes the real-world challenges we
mention in this work and advocates the need for accurate temporal imputation and spatial
interpolation methods in order to improve the performance of downstream tasks. We limit our
case study to a subset of our traffic data, specifically Downtown Los Angeles in March 2018.

First, we perform an analysis to evaluate the quality of the dataset. As we previously discussed,
real-world data tend to contain a variety of discontinuity, i.e., missing data occur often and at
random periods. This fact can be clearly seen in Figure 7, where we plot the periods of activity
(black stripes) and inactivity (white stripes) for the first two weeks of March 2018. Specifically,
at the top (Figure 7(a)) time steps with at least one sensor reporting traffic are considered
active whereas, at the bottom (Figure 7(b)) time steps with at least 95% of the sensors
reporting traffic are considered active. A total of 201 time steps have no active sensors, i.e., 7%
of the time no traffic flow is reported.

Figure 6. Traffic index aggregated at the level of TAZ for Downtown Los Angeles in March
2018.

 12

Figure 7. Periods of missing data (white stripes) in a real-world traffic dataset at Downtown
Los Angeles in the first two weeks of March 2018.

In order to construct the Traffic Index, we first impute the missing values using multi-variate
imputation for short gaps up to four time steps (1 hour) and the historical average for larger
gaps (e.g., between March 8th and March 10th). Then, we construct our interpolation grid with
a cell size of 0.004 coordinate degrees (approximately 400 meters). Our grid contains a total of
250 interpolation points covering Downtown Los Angeles and its surrounding areas. The traffic
at every grid cell is interpolated with IDW. Lastly, we summarize the traffic at the level of Traffic
Analysis Zones.

The algorithm that constructs the Traffic Index incurs approximately 60 seconds of CPU time
per time step, i.e., it takes approximately 24 milliseconds per cell for our 50x50 grid. In general,
the time complexity of the algorithm is O(|T | × |G| × p), where |T | is the number of time
steps, |G| the number of grid cells, and p is the complexity of the interpolation function that is
used. In the case of IDW and using an R-tree to index the sensors, p = O(n· logN), where n is the
number of nearest neighbors to use and N the total number of sensors.

Figure 6 shows two instances of our Traffic Index at different time steps. We color code the
zones based on how congested they are varying from heavy traffic (dark red) to no traffic (dark
green). On the left (Figure 6(a)) shows the traffic index at a Monday morning whereas on the
middle (Figure 6(b)) the traffic index on a Thursday afternoon. Both instances show the traffic
during rush hours.

3. Generating Synthetic Vehicle Trajectories

3.1. Overview

Big Trajectory Data provides limitless opportunities for understanding human mobility, human
interactions [5], traffic congestion patterns [6], improving routing and planning [7], and more.
At the same time, it also introduces challenges in protecting the privacy of individuals [8] [9]
making them hard and costly to obtain. On one hand, even with their increasing availability,
most publicly available trajectory datasets can only cover a portion of the population and are
limited to crowded regions and active hours of the day, hence leading to biased observations.

 13

On the other hand, proprietary trajectory datasets are more comprehensive but their data
holders such as Google, Apple, and other private entities (e.g., private truck drivers) are not
willing to share.

In order to address these challenges, synthetic vehicle trajectory generation approaches have
been proposed. The task of synthetic trajectory generation is useful when either the input set is
small and we need more realistic trajectories for the downstream task (scale-up) or when the
privacy of the input set must be preserved (privacy preservation). One can also use this
methodology to generate trajectories for one geographical area (e.g., city, neighborhood) from
the trajectories belonging to a different geographical area (diversification).

We divide the synthetic trajectory generators into two main categories: (i) Computational, and
(ii) Data-Driven. The taxonomy of these generators is shown in Figure 8. Computational
generators typically process information about the environment to generate vehicle
trajectories. We further classify these into Simulators and Moving-object Generators.
Approaches in the latter class generate network based moving objects using demand-supply
models [10]. They used to be state-of-the-art back when they were originally proposed but are
now outdated. Approaches that fall under the former class simulate the actions of agents (e.g.,
vehicles) in a closed environment [11]. Every action updates the state (i.e., the location) of the
agent and their history represents a synthetic trajectory. In order to generate realistic vehicle
trajectories, computational generators require a fully calibrated environment. However,
acquiring and fine-tuning all their parameters is a challenging task [12].

Figure 8. Taxonomy of synthetic vehicle trajectory generators.

Data-driven generators leverage real-world experiences (data) to synthesize trajectories. The
current state-of-the-art in this category is the Generative Adversarial Networks (GAN). These
deep learning models train on existing vehicle trajectory data and learn a generator model that
synthesizes realistic vehicle trajectories given some noise as input [13]. Although GANs do not
require the complex calibration of the computational generators, they need large amounts of
data in order to be trained and, even with their increasing availability, most publicly available

 14

trajectory datasets can only cover a portion of the population and are limited to crowded
regions and active hours of the day. As a result of this data skew, training leads to biased
generative models. Another issue is that existing methods use a limited number of metrics that
can only evaluate the holistic statistics of the generated dataset, ignoring how realistic each
individual trajectory is on its own.

In this study, we propose a data-driven, model-free, and parameter-less method of generating
synthetic yet realistic trajectory datasets using only two inputs: (i) traffic data for the region of
interest, and (ii) a target Origin-Destination matrix. Unlike the computational methods, our
Data-Driven Trajectory Generator, dubbed DDTG, does not require any kind of calibration
before it starts generating trajectories and unlike GANs it does not require an existing dataset
to train on. In fact, the input to DDTG is aggregated data that is publicly available and free of
privacy concerns [14] [15] (aggregate data can also be released under stronger privacy
guarantees [16] [17]). Additionally, the datasets that are generated by DDTG can be used as
seed data for training generative models in lieu of real trajectory datasets which makes DDTG
orthogonal and complementary to GANs. In fact, as we show in our experiments, when real-
world and DDTG-generated trajectories are combined as training data, the trained model
generates higher quality synthetic trajectories. DDTG disaggregates traffic and OD matrix data
into individual trajectories, such that the collection of the generated trajectories results in the
same aggregate data. The main challenge is that these aggregate data are time-dependent and
hence the number and shape of individual trajectories differ depending on the time of the day.
The main intuition behind DDTG is that individuals tend to select the fastest (or at least one of
the fastest) path to their destination [10]. Thus, DDTG, in contrast to other methods, is only
suitable for generating urban vehicle trajectories but, as we show in our experiments, it is
capable of generating synthetic datasets that retain the underlying distributions of a real
vehicle trajectory dataset more accurately.

3.2. Data Representation

We define a vehicle trajectory 𝑠 = (𝑠(1), 𝑠(2), … , 𝑠(𝑀)) as a time-ordered sequence of spatio-
temporal points. Each point s(m) consists of a pair of spatial coordinates (i.e., latitude,
longitude) and its timestamp. A synthetic trajectory generator outputs a set 𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑛} of n trajectories that preserve the mobility characteristics of the real world.

Vehicle trajectories are by definition constrained to a road network. Because raw vehicle
trajectories are very often noisy due to errors in localization sensors (e.g., GPS), before a

trajectory dataset S is analyzed it is typically pre-processed so that every s ∈ S is map matched
to a road network G and converted into a more interpretable trajectory �̃�. The transformed

trajectory becomes a time-ordered sequence �̃� = {�̃�(1), �̃�(2), … , �̃�(𝑃)} where every �̃�(𝑝) consists
of the graph edge (i.e., road segment) and the timestamp at which the vehicle arrives at the
edge. In essence, the raw trajectory is converted to the corresponding path that the vehicle
took to reach its destination.

Unlike the computational methods that require calibration, and unlike GANs that require large
amounts of existing trajectory data, DDTG only needs aggregated traffic data and an OD matrix

 15

for the region of interest along with the road network. Fortunately, this kind of aggregated data
is free of any privacy concerns and very often publicly available as we provide examples below.

Road Network: Encoded as a graph G = (V,E) with every node v ∈ V representing an
intersection and every edge e ∈ E a road segment. Detailed public datasets are made available
for most cities in the world by OpenStreetMap [18].

Traffic Data: Traffic sensors (e.g., loop detectors) are deployed on the road network and
measure the average speed of passing vehicles at fixed time intervals. A traffic data point is a
tuple ρ = (l, t, v), where l are the spatial coordinates (i.e., latitude and longitude) of the sensor, t
the timestamp, and v the speed [1] [14].

Origin-Destination Matrix: An M ∈ RCxC matrix that corresponds to a grid with |C| cells

overlayed over the region of interest. For each pair of cells (𝑐𝑖 , 𝑐𝑗) the OD matrix measures the

probability that a trip originates within cell 𝑐𝑖 and terminates within 𝑐𝑗. Such data are made

available by some providers [19] but can also be estimated either from traffic [20] or trajectory
data.

3.3. Algorithm

DDTG operates in two phases. In the first phase, n trip definitions are sampled from a provided
OD matrix. A trip definition is a tuple (o, d, t), where o and d are the origin and destination
coordinates, respectively, and t is the departure time. Subsequently, in the second phase, the
trip definitions are processed and corresponding synthetic trajectories are generated. Every
generated trajectory is essentially a path constrained to a road network G and enriched with
the travel time on each road segment by using historical traffic data C. We elaborate on each
phase in turn.

3.3.1. Phase I

DDTG starts by sampling n trip definitions from an OD matrix. The pseudocode is shown in
Algorithm 1. The distribution specified by M is used to sample a pair of cells (𝑐𝑖 , 𝑐𝑗) (line 4).

Subsequently, the exact origin and destination coordinates are randomly sampled within the
origin and destination cells (lines 5-6), respectively. Next, a departure time is sampled. This
departure time must adhere to the real world distribution, i.e., a noon departure time is more
probable than a 2AM departure time. We capture the distribution as a histogram with bin size
ϕ minutes and we sample departure times from it.

The first phase of DDTG plays a critical role in generating datasets of high holistic quality.
Specifically, because the origins, destinations, and departure times are sampled from real-world
distributions, the more trajectories that DDTG generates, the closer it imitates these
distributions. In the previous section, we show how a bad choice of M (e.g., uniform) affects the
holistic quality of the generated dataset.

 16

Algorithm 1 Trip Sampler

Require: OD origin-destination matrix, 𝒯 time domain
1: procedure GENERATETRIPDEFINITIONS(𝑛)
2: 𝑆 ⟵ {}
3: for 1. . . 𝑛 do

4: (𝑐𝑖 , 𝑐𝑗) ⟵ 𝑆𝑎𝑚𝑝𝑙𝑒 (𝑂𝐷)

5: 𝑂 ⟵ 𝑃𝑖𝑐𝑘𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑖)
6: 𝐷 ⟵ 𝑃𝑖𝑐𝑘𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐𝑗)

7: 𝑇 ⟵ 𝑆𝑎𝑚𝑝𝑙𝑒(𝒯)
8: 𝑆 ⟵ 𝑆 ⋃ {(𝑂, 𝐷, 𝑇)}
9: end for
10: return 𝑆

11: end procedure

3.3.2. Phase II

After all the trip definitions are generated, the algorithm proceeds to generate corresponding
synthetic trajectories. The pseudocode of the second phase is depicted in Algorithm 2. Because
DDTG directly operates on the road network, the first step is to match the origin and
destination locations to their respective closest nodes u and v in G (lines 2-3). One challenge is
what path to select as a trajectory. Intuitively, individuals exhibit a strong preference for taking
a fast (typically the fastest but not always) path to their destination [10] instead of any other
kind of path (e.g., shortest, random walk). However, always using the fastest as a trajectory
leads to unrealistic datasets where all objects use the same path. To introduce the diversity of
choices and personal preferences, a number of feasible paths from u to v is calculated (line 4).
Specifically, the algorithm searches for the k time-dependent fastest paths [21] that have
limited overlaps. This is achieved by using a variant of the k-alternative shortest paths algorithm
[22] in which the cost function of the route becomes the travel time instead of the travel
distance. Finally, one of the k paths is chosen as the actual trajectory (line 5).

Algorithm 2 Trajectory Generator

Require: Road Network 𝐺, Traffic Data 𝐶, 𝑘
1: procedure GENERATETRAJECTORY(𝑂, 𝐷, 𝑇)
2: 𝑠 ⟵ 𝐿𝑜𝑜𝑘𝑢𝑝(𝐺, 𝑂) ⊳ 𝑆𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒
3: 𝑡 ⟵ 𝐿𝑜𝑜𝑘𝑢𝑝(𝐺, 𝐷) ⊳ 𝑇𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒
4: 𝑃 ⟵ 𝐹𝑖𝑛𝑑𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝐴𝑙𝑡 (𝐺, 𝐶, 𝑠, 𝑡, 𝑇, 𝑘) ⊳
k -Alternative fastest paths from s to t departing at T
5: 𝑝 ⟵ 𝐶ℎ𝑜𝑜𝑠𝑒𝑀𝑜𝑠𝑡𝐿𝑖𝑘𝑒𝑙𝑦(𝑃)
6: return 𝑝

7: end procedure

 17

The second phase of DDTG generates trajectories of high individual quality. Using real-world
traffic data, the travel times of the generated trajectories are accurately estimated. This is also
confirmed by our experiments (Figure 9).

Figure 9. Distribution of origins in the real dataset (left) and the synthetic datasets generated
by DDTG (center-left), DDTG without OD matrix information (center-right), and SeqGAN
(right). DDTG imitates the real distribution with a higher accuracy.

Trajectories in the real-world exhibit a variety of mobility behaviors. For example, delivery
trucks very often begin and end their trips at the same location (e.g., post office, warehouse),
and their path is a round trip with many quick stops. One challenge with Algorithm 1 is that it
assumes that individuals always travel with a purpose, i.e., going directly from one location to
another with no stops or detours. Although the focus of this algorithm is on generating this
specific type of urban vehicle trajectories, a generalized variant of Algorithm 1 can be used to
generate delivery truck-like trajectories. In this generalized variant, trajectories are viewed as a
sequence of smaller sub-trajectories 𝑠1, 𝑠2, … , 𝑠𝑤 in which the destination of each 𝑠𝑖, where 1 <

i < w, is the origin of 𝑠𝑖+1. Trip definitions are also redefined to a tuple (�⃗� , 𝑡, 𝑤) such that �⃗� is a

sequence of l locations with 𝐿1
⃗⃗⃗⃗ being the origin and 𝐿𝑙

⃗⃗ ⃗ the final destination, t the trip departure
time, and w a sequence of l − 1 stay durations at each intermittent location along the trip.
Algorithm 3 presents the modified trajectory generator. The algorithm iterates over the trip
locations (line 3) and generates one trajectory per each consecutive pair of locations (lines 4-6).
After every generated trajectory, the departure time for the next trajectory is computed by
adding the travel time and stay duration to the current trajectory’s departure time (line 8).

Using this variant, it becomes straightforward to model delivery truck trajectories; 𝐿1
⃗⃗⃗⃗ and 𝐿𝑙

⃗⃗ ⃗

will typically be the warehouse and 𝐿2
⃗⃗⃗⃗ , . . . , 𝐿𝑙−1

⃗⃗ ⃗⃗⃗⃗ ⃗⃗ will be the delivery locations.

 18

Algorithm 3 Trajectory Via Stops Generator

1: procedure GENERATEVIATRAJECTORY(�⃗� , 𝑇, 𝑑)

2: �̃� ⟵ 𝑇

3: for 𝑖 = 2. . . |�⃗� | do

4: 𝑂 ⟵ �⃗� 𝑖−1

5: 𝐷 ⟵ �⃗� 𝑖

6: 𝑝 ⟵ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑂, 𝐷, �̃�)
7: yield 𝑝

8: �̃� ⟵ �̃� + 𝑝. 𝑡𝑟𝑎𝑣𝑒𝑙_𝑡𝑖𝑚𝑒 + 𝑑𝑖−1 ⊳ 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑛𝑒𝑥𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦
9: end for
10: end procedure

3.4. Quality of Synthetic Trajectories

Evaluating the quality of synthetic datasets and how realistic they are is a critical task. On one
hand, the generated dataset may be realistic at a high level (e.g., preserving the origin
destination matrix) while the individual trajectories are not reasonable (e.g., unrealistic travel
time). On the other hand, the individual trajectories may be realistic while the holistic dataset is
not. Therefore, a synthetic dataset must be evaluated at two levels: the holistic level and the
individual level. In this section, we describe a set of metrics that can be used for each
evaluation level.

3.4.1. Holistic Quality

At the dataset level, a synthetic trajectory dataset must retain the collective mobility
characteristics of the metropolitan city. Such characteristics include, but are not limited to, the
distribution of origins and destinations, the distribution of origin-destination pairs, the
distribution of departure times, and the congestion density. Calculating these in a continuous
space is computationally intractable, hence, the distributions are estimated by discretizing the
space (and time) into an RxC grid with cell size m. The finer the grid, the closer the estimation is
to the real distribution but the more computationally expensive.

We summarize these metrics below.

• Distribution of Origins (p(o)): The spatial distribution of the locations at which the
trajectories begin. This is typically the first location of a trajectory.

• Distribution of Destinations (p(d)): The spatial distribution of the locations at which the
trajectories end. This is typically the last location of a trajectory and implicitly represents
the popularity of locations.

• Origin-Destination (OD) Matrix (p(o, d)): The distribution of the OD pairs < O,D >, where
O is the origin of the trip and D is the destination. This captures the probability of
visiting a region (i.e., grid cell) from another.

 19

• Transition Matrix (p(𝑐𝑖 | 𝑐𝑗)): The probability of transitioning from cell 𝑐𝑖 to cell 𝑐𝑗.

Trajectories can be translated from a sequence of locations to a sequence of grid cells

�̃� = {�̃�1, �̃�2, … , �̃�𝑝}. Then, the pairs of consecutive cells in a trajectory can be used to

estimate the transition matrix.

• Distribution of Departures (p(τ)): The temporal distribution of the timestamps at which
the trajectories begin. This is typically the timestamp of the first location of a trajectory.

These distributions are estimated for both the real and generated datasets and compared using
Jensen-Shannon distance, a well-known distance metric for probability distributions. The
Jensen-Shannon distance 𝑑𝐽𝑆 is defined as follows:

 𝑑𝐽𝑆(𝑃, 𝑄) = √𝐽𝑆(𝑃||𝑄) = √
𝐾𝐿(𝑃||𝑀)+𝐾𝐿(𝑀||𝑄)

2
 (1)

where 𝐽𝑆(𝑃||𝑄) is the Jensen-Shannon divergence, 𝐾𝐿(𝑃||𝑄) is the Kullback-Leibler divergence

(Equation 2), and 𝑀 =
𝑃+𝑄

2
.

 𝐾𝐿(𝑃||𝑄) = ∑ 𝑝𝑖 log
𝑝𝑖

𝑞𝑖
𝑖 (2)

The value of 𝑑𝐽𝑆 ranges from 0 to 1, where 𝑑𝐽𝑆 = 0 when the two distributions are identical and

𝑑𝐽𝑆 = 1 when they are completely different. The Jensen-Shannon divergence JS, and as a result

the distance 𝑑𝐽𝑆, is symmetrical, i.e., JS(P||Q) = JS(Q||P).

When the number of trajectories in the two datasets is equal, the respective histograms may be
compared (instead of the distributions) using Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Mean Absolute Percentage Error (MAPE).

3.4.2. Individual Quality

At the individual level, the trajectories themselves must be examined for their quality. For
example, the travel time of a synthetic trajectory must be within an acceptable range of the
actual travel time. Additionally, the path from the origin to the destination must be reasonable,
i.e., not straying far away from the destination or driving in loops. We summarize these metrics
below.

• Travel time: The generated trajectory must be consistent with the traffic dynamics. Not
only the overall travel time but also the travel time of each segment of the trajectory
must be accurate. This can be verified using traffic data.

• Deviation: The generated trajectory should be mostly en route to the destination, i.e., it
should not be taking detours or heading in a direction that is opposite to the
destination. One way to evaluate this is by using Markov Models to check whether the
transitions from one location to the next make sense. Another way when a reference
dataset exists is to retrieve real trajectories that are similar (i.e., identical origin and
destination, similar departure time) and calculate the average distance. A low value
indicates that the generated trajectory does not differ much from a typical trajectory. A

 20

large value indicates that the generated trajectory follows a path that is not common (or
popular).

3.5. Experiments

In this section, we quantitatively and qualitatively evaluate synthetic trajectories generated by
DDTG with experiments on real-world data.

3.5.1. Environment Setup

All experiments were performed on an Ubuntu 18.04 server equipped with an Intel(R) Core(TM)
i9-9980XE CPU at 3.00GHz and 128GB of RAM. The processor has 18 cores (36 threads) with
private L1 (32KB for data and 32KB for instructions) and L2 (1MB) caches and a shared L3
(24.75MB) cache. The server is also equipped with a GeForce RTX 2080 Ti GPU card.

Datasets:

We limit our study to the metropolitan region of the City of Los Angeles.

(1) We make use of a real-world trajectory dataset from Veraset as the ground truth for
evaluation. The dataset contains tens of millions of trajectories out of which
approximately 4 million trajectories are within our region of interest. However, these
are raw trajectories that exhibit multiple behaviors. Every device that participates in this
dataset records continuous traces, hence, we pre-process each trace to extract vehicle
trajectories, i.e., when the device was actively traveling. The first step of the pre-
processing process is to split the trajectories when two consecutive GPS readings are
more than 5 minutes or 1500 meters apart. Next, we run a stay point detection
algorithm [23] on each sub-trajectory to identify GPS readings that belong to a stay
point and during which the device was not traveling. The resulting set contains 1.5
million trajectories spanning the first two weeks of December 2019.

(2) We use a real-world historical traffic dataset exported from ADMS [1]. The dataset
contains approximately 16,000 sensors covering more than 4,300 miles in the region of
interest. The sensors have a refresh rate of up to 60 seconds but we aggregate the
traffic speed data into 15-minute intervals. Furthermore, for every road segment, i.e.,
edge in the road network graph, we calculate its time-dependent travel time by
querying the traffic data for the speed. If traffic speed is not sensed at a particular road
segment, we obtain an estimation of the traffic at that segment using interpolation
methods [24].

(3) The origin-destination matrix p(o, d) for the region of interest is calculated from the
trajectory dataset. We use a grid with a cell size of 500 meters. The cell that contains the
first GPS reading of a trajectory is considered the origin. Similarly, the cell that contains
the last GPS reading of the trajectory is considered the destination. The OD matrix
measures the probability that a trajectory originates from a cell 𝑜 = 𝑐𝑖 having cell 𝑑 = 𝑐𝑗

as the destination.

 21

Compared Approaches: We compare the real-world trajectory dataset from Veraset with 3
synthetic datasets.

• SeqGAN: A synthetic dataset of 1.5 million trajectories generated by a sequential GAN
model [25]. The real trajectory dataset is used as training data for the model.

• DDTG w/o OD: A synthetic dataset of 1.5 million trajectories generated by DDTG without
origin-destination distribution information, i.e., all origin-destination pairs have equal
probability.

• DDTG: A synthetic dataset of 1.5 million trajectories generated by DDTG using an origin-
destination matrix as input that was extracted from the Veraset dataset.

3.5.2. Quality Analysis

We evaluate the quality of synthetic datasets at two levels using the metrics described in the
previous section.

3.5.2.1. Holistic Quality

We calculate the holistic quality distributions for both the real dataset and the synthetic
dataset and then use K-L divergence to evaluate how similar they are. Figure 9 shows the
distribution of origins in the four datasets as a function of the spatial coordinates (i.e., longitude
on the x-axis, latitude on the y-axis). We immediately observe that the distribution for DDTG
w/o OD information is almost uniform. This is expected because the algorithm samples origins
and destinations uniformly at random as it does not have any external information. SeqGAN is
able to capture some of the hotspots but does not come close to the real distribution. The
distribution of DDTG’s origins is very close to Veraset’s with some slightly different hot spots.
The JS distances between Veraset’s origins and synthetic origins are 0.1629, 0.3466, and 0.9299
for DDTG, DDTG w/o OD, and SeqGAN, respectively. Note that the distance between the real
and DDTG distributions is very close to 0. This means that the two distributions are very similar.
In contrast, the distance of the DDTG w/o OD is two times larger meaning that it is significantly
different from the ground truth.

Next, we compare the destination distributions of the datasets. These distributions are shown
in Figure 10 as functions of the spatial coordinates (i.e., longitude on x-axis, latitude on y-axis).
Similar to the origin distribution, DDTG w/o OD is almost uniform as expected, and while
SeqGAN captures some of the hotspots it only generates a very sparse distribution. Figure 10
shows that Veraset and DDTG destination distributions only have slight differences. In Veraset,
we can see a few hot spots close to the region’s eastern border, whereas, in DDTG, not as
much. This is mostly attributed to the cleaning method that was employed for the real dataset,
i.e., trajectories that had a destination outside the region of interest were cut short and their
destination was assumed to be at the boundary. The JS distances are 0.1326, 0.3292, and
0.9086 for DDTG, DDTG w/o OD, and SeqGAN, respectively. Even though there are minor
differences in the destination hot spots of Veraset and DDTG, the majority of the remaining grid
cells appear to incur similar probabilities of being the destination.

 22

An interesting observation is that in the real (Veraset) and SeqGAN datasets, some origins and
destinations appear to exist in the middle of the ocean (bottom left sub-region), whereas, in
both synthetic datasets no such cases exist. In the case of the real dataset, this is due to the
noise that GPS sensors naturally incur. In the case of SeqGAN, this happens because the model
has no information about the road network.

Additionally, we note that SeqGAN generates very sparse origin and destination distributions. In
essence, the model learns the skewed distribution of the input training dataset, i.e., trips
concentrated in certain regions or times of the data. As a result, the model is biased toward
generating trips in those areas instead of the entire region.

Figure 10. Distribution of destinations in the real dataset (left) and the synthetic datasets
generated by DDTG (center-left), DDTG without OD matrix information (center-right), and
SeqGAN (right). DDTG imitates the real distribution with a higher accuracy.

Figure 11. Origin-destination matrix calculated from the real dataset (left) and the synthetic
datasets generated by DDTG (center-left), DDTG without OD matrix information (center-
right), and SeqGAN (right). DDTG imitates the real distribution with a higher accuracy.

We also compare the distributions of origin-destination pairs. Figure 11 visualizes the OD
Matrix of the four datasets. On the x-axis is the origin and on the y-axis is the destination.
Again, as expected, the DDTG w/o OD information produces almost uniform results. SeqGAN

 23

achieves a visually similar distribution but with a great amount of noise. DDTG, on the other
hand, imitates the true distribution almost perfectly. Some OD pairs that appear more
prominently in the ground truth, are slightly smoothed out by DDTG due to the generator’s
randomness. However, the general distribution is preserved. The JS distance between Veraset’s
OD Matrix and DDTG’s is 0.3223 which, considering the vast amount of OD pairs, is close to
zero. Table 1 summarizes the Jensen-Shannon distances for all datasets.

Table 1. Jensen-Shannon Distances

Distribution Jensen-Shannon distance 𝑑𝐽𝑆

DDTG DDTG w/o OD SeqGAN

𝑝(𝑜) 0.1629 0.3466 0.9299

𝑝(𝑑) 0.1326 0.3292 0.9086

𝑝(𝑜, 𝑑) 0.3223 0.8881 0.9356

𝑝(𝑐𝑗|𝑐𝑖) 0.2348 0.3084 0.5928

𝑝(𝜏) 0.0158 0.2609 -

As we show in Table 1, DDTG generates trajectories that retain the transition matrix more
accurately than the others. Specifically, the JS distance of DDTG’s and the real transition matrix
is 0.2348, whereas SeqGAN’s is almost three times greater at 0.5928. This happens because
DDTG is able to leverage the road network and generate high-resolution trajectories that retain
the properties and constraints of the road network. On the other hand, trajectories generated
by SeqGAN are more likely to contain noise, i.e., jump from one cell to another while skipping
cells in between.

Lastly, we compare the distributions of departure times. Figure 12 plots the probability (y-axis)
of each departure time (x-axis). Not surprisingly, the distribution for DDTG w/o OD is uniform.
On the other hand, DDTG’s distribution is almost identical to that of the real dataset. These
results are confirmed by the JS distance values (Table 1). We omit the departure times for
SeqGAN because the model is highly discretized in the temporal domain.

 24

Figure 12. Departure time distributions calculated from the real dataset (top), the synthetic
dataset generated by DDTG (middle), and the synthetic dataset generated by DDTG without
OD matrix information (bottom).

Holistically, the dataset generated by DDTG retains the mobility characteristics of the real
dataset.

Figure 13. Distribution of Frechet (left) and Hausdorff (right) distances between generated
and corresponding real trajectories.

Figure 14. Examples of real trajectories (green lines) and corresponding synthetic trajectories
(red lines) generated by DDTG.

 25

3.5.2.2. Individual Quality

We verify how realistic each individual trajectory is by comparing how much it resembles
common paths from origins to destinations. Specifically, we randomly sample 50,000 synthetic
trajectories generated by DDTG and for each trajectory, we retrieve all similar real trajectories,
i.e., trajectories with identical origin and destination cells and similar departure times. Every
synthetic trajectory matched with 10-15 real trajectories. Next, the average distance between a
synthetic trajectory and its corresponding real trajectories is calculated. For our experiments
we use two distance metrics: the Frechet distance and the Hausdorff distance, two common
trajectory dissimilarity metrics between curves [46]. Figure 13 presents the histograms of these
distances. The lower the distance, the closer the synthetic trajectory is to the common real
trajectories. For both distance metrics, the histogram is skewed closer to 0. This means that the
generated trajectories are reasonably similar to the paths that individuals tend to follow. More
critically, the generated trajectories are not exactly identical to the real paths. This shows that,
while the individual trajectories make sense, they still protect the privacy of individuals.

Figure 14 presents 6 examples of real trajectories (green lines) and their corresponding
synthetic trajectories (red lines). Origins are marked with blue pins and destinations with red
pins. In the first three examples, the generated trajectory is very similar to the real trajectory.
This happens because the real path taken by the individual was one of the fastest (if not the
fastest) and DDTG itself uses that information to generate trajectories. In the last three
examples, the generated paths are quite different. This can happen either because DDTG chose
a different fastest path to the destination or because the real path itself was a detour and not
one of the fastest paths.

4. Implementation of Web Application

For multi-disciplinary studies of traffic and socio- economic analysis, it is essential to obtain a
high-level summarization of the traffic condition at different regions of an urban area. Traffic
Index summarizes the traffic at the level of census blocks (or other zone types) and at separate
times of the day. In this work, we proposed an algorithm that aggregates the traffic data of a
large region and constructs a Traffic Index that can estimate the traffic at any given location in
that region. This project started with the initial goal of building a platform to highlight these
algorithm's results both for a census block and for a specific point on online map.

The number of components in the application soon increased with the introduction of the
Reachability Map. A Reachability Map is defined as a polygon drawn on a map that defines an
area of reachability within a defined time buffer. Their construction is an important task in
many application domains. As an example, in urban planning, reachability maps are essential
when assessing the placement of public services like hospitals and fire departments.

To get this Reachability Map many synthetic trajectories are generated based on time and
location within a defined time buffer and finally, a polygon is constructed that circumscribes all
of them.

 26

The application has been developed using React for the frontend and Django for the backend
connected via restful services. This report gives a scrupulous walkthrough of all its features
along with areas of improvement.

4.1. Features of Web

We built a web page to demonstrate our research results – https://imscwww.usc.edu/app/

This website allows the users to get an estimate of traffic congestion and reachability based on
the day of the week, the time of the day and type of algorithm.

4.1.1. Traffic Index by Geo-Coordinates

As seen in the picture below, this component provides traffic estimation for a specific location
based on the following attributes as input:

• Date and Time

• Latitude and Longitude

• Algorithm to be used for traffic estimation

o Kriging Algorithm (Default)

o IDW

o Nearest Neighbour

Figure 15. Example of traffic index input screen

https://imscwww.usc.edu/app/

 27

When the user provides these attributes, he gets various layers of details about that location:

The estimated speed at that point, the number of sensors used for calculation, distance to the
nearest sensor, and average distance to the sensors. Figure 16 shows how it looks on the web
application.

The attribute Overall congestion is decided based on the speed at that point with speed less
than 5mph describing” Standstill”, 5mph to 10mph as” Very High”, 10mph to 15mph as” High”,
15mph to 25mph as” Low” and above 25mph as no traffic.

Figure 16. View of Attributes on Web Application

Figure 17. Example of traffic index output screen

 28

4.1.2. Traffic Index by Zone

As seen in Figure 17, this component provides traffic estimation based on specific zones, i.e.,
census blocks in our study.

The speed for each block is calculated by averaging out the speeds for all grid points passing
through that block. Grid points are obtained by the intersection of vertical and horizontal lines
500 meters (about 1640.42 ft) apart.

4.1.3. Reachability Map

To construct a Reachability Map, many synthetic trajectories are generated based on time and
location within a defined time buffer and finally, a polygon is constructed that circumscribes all
of them. Our approach processes isochrone queries by directly processing trajectories. Traffic
conditions can vary highly at different times of a day and, therefore, so do isochrone maps. Our
system integrates those traffic dynamics by generating time-dependent isochrone maps and
can support four types of time-dependent queries. Formally, in graph theory, an isochrone is
the minimal, possibly disconnected, sub-graph that covers all the vertices that are within a
given time span (or weight budget) from the query source vertex. However, our approach does
not consider the underlying road network graph. Instead, our methodology only takes into
consideration the trajectories and consists of retrieving all the reachable segments or data
points from them for the construction of isochrone maps.

A time-dependent single-source reachability query (SSRQ) is a tuple Q = (s; t; d), where s is the
query source point, t is the departure time, and d > 0 is the maximum acceptable time span.
The query result consists of all location points that are reachable from the source point s within
d minutes if one was to depart at time t. The query source can be any point of interest, we
assume that the source is selected as a tuple s = (id; loc) where id is a unique identifier for the
center and loc = (lat; lng) is its location in latitude and longitude degrees. The main idea is to
find all those trajectories that pass by the given query point and retrieve the segment of each
trajectory that falls within the given time limit. However, doing this in an efficient way is not an
easy task. A straightforward approach is to build an R-tree index on top of the trajectories.
Then, a radius search can retrieve all trajectories that pass by a given query point. A last pass
over these trajectories will be required to filter out all those that do not pass by the given
source at the given departure time. Therefore, this approach would not scale well for large and
dense trajectory datasets simply because the filtering step is an expensive linear search. For the
implementation we used a grid-based approach that we devised and presented in [26]. Figure
18 shows a generated polygon. The input attributes for the generation of reachability map are:
Date and Time, Circumscribing algorithm, and Time buffer.

4.2. Implementation and Limitation

Using React, we split each part of the main page into a single React class - components- in its
own file. These components are Traffic Index by Coordinates, Traffic Index by Zones, and
Reachability Map all of which are imported into the main component class. Since React allows

 29

for easy management of state variables, we can easily send down data from the main
component to the others.

Figure 18. Example of reachability map screen

Figure 19. Implementation of Web Features

Router

Components

-Traffic Index

- Reachability
Map

Services
Rest

Framework
Model Database

Reachability
Algorithm

Date, Time, Location
and Type of
Algorithms

- Reachability Map
- Traffic Estimation

React

HTTP

Django

gRPC

Axios

 30

4.2.1. Traffic Index by Geo-Coordinates

This component of the application can be accessed using the base path of /app. When the user
clicks on the map it fetches all the required attributes and generates a JSON which then hits the
Django server with a POST request. Based on the location, date, time, and type of chosen
algorithm traffic is estimated and the response is sent to the front end.

Three types of algorithms were implemented for traffic estimation:

• Kriging Algorithm (Default): Kriging, also known as Gaussian process regression, is a
method of interpolation based on Gaussian process governed by prior covariances.
Under suitable assumptions of the prior, kriging gives the best linear unbiased
prediction (BLUP) at unsampled locations. For Traffic Estimation we built a hyperplane
(Kriging) using 20 closest sensors. The close-by sensors are found by building a KD-Tree.
The built hyperplane is then used to get the speed at the unsampled location.

• IDW Algorithm: Inverse distance weighting (IDW) is a type of deterministic method for
multivariate interpolation with a known scattered set of points. The assigned values to
unknown points are calculated with a weighted average of the values available at the
known points. For traffic estimation 20 closest sensors were used inversely weighted on
their distance from the position of interest.

• Nearest Neighbour: It is an average of 20 closest sensors found using a KD-Tree.

Below figure shows the accuracy of the three algorithms

Figure 20. Spatial Interpolation Accuracy

The reason for using 20 closest sensors for traffic estimation is that model accuracy does not
increase any further by increasing the number of sensors.

 31

Figure 21. RMSE vs. Number of Sensors

For assorted reasons such as power failure etc. the data that we get from the sensors are
usually missing and they need to be imputed before we can do traffic estimation based on the
algorithms described above.

Imputing the data on every API call is a very repetitive and time-consuming process. To
overcome this challenge, all the missing sensor data is inputted beforehand and stored in the
database. The linear Imputation algorithm is used for filling up the missing values with an
average MAPE of 6%.

4.2.2. Traffic Index by Zone

This component of the application can be accessed using the base path of /app/traffic-index-
zone. When the user clicks on the submit button, it fetches all the required attributes and
generates a JSON which then hits the Django server with a POST request. Based on the date,
time, and type of chosen algorithm traffic is estimated and for all the census zone and the
response is sent to the front end.

The speed for each block is calculated by averaging out the speeds for all grid points passing
through that block. Grid points are obtained by the intersection of vertical and horizontal lines
500 meters (about 1640.42 ft) apart. The speed for each grid points is calculated in the same
way as the Traffic Index by Coordinates. The latitude and longitude of all grid locations are
hashed in the web application, to speed up the traffic estimation when a user clicks on the
submit button. The time to estimate speed for all the blocks varies from algorithm to algorithm.
Kriging takes the highest amount of time for estimation while IDW is the fastest. The model
building time increases linearly for IDW with the increase in number of close-by sensors, while
for Kriging the building time increases exponentially as can be seen in Figure 22 and Figure 23.

 32

Figure 22. IDW building time vs execution time

Figure 23. Kriging building time vs execution time

Because of this generating traffic index by zones takes close to 20 seconds for IDW while takes
more than 120 seconds (about 2 minutes) for Kriging, as the model building and execution is
happening on the fly.

4.2.3. Reachability MAP

This component of the application can be accessed using the base path of /app/reachability.
When the user clicks on the map it fetches all the required attributes and generates a JSON file
which then hits the Django server with a POST request. The Django server then encapsulates all
the information and sends it to the Reachability Algorithm hosted on port 80 via the gRPC
service. The Reachability Algorithm then sends back the required structure of the polygon in a
JSON format via gRPC services. To display the polygon on the front end the GeoJson-polygon
property in Mapbox is used.

 33

Figure 24. GeoJson-polygon property script

After building the individual components in Recat we converted all of them to static JS files,
using NPM RUN BUILD. The advantage of this is that we can move all of them to the
presentation layer (Template) of Django which helps us to avoid hosting the front-end and
back-end separately. Now we just need to Dockerize the Django to run the application.

The Dockerize script is follows:

Figure 25. Dockerize script

The above lines of code packages the application into a docker container by combining
applications source code with the operating system (OS) libraries and dependencies required to
run that code in any environment. As we can see the application would be running port 80,
which is publicly accessible.

4.2.4. Possible Improvements

• Execution time for traffic estimation can be enhanced. This can be achieved by saving in
the traffic index for all grid points in the database to avoid on-the-fly calculations.

• Connection to the Database currently is working only for a small subset of the data,
which can be extended to all data.

• More detailed displays in both Traffic Index and Reachability map might enhance human
perception of the results.

 34

5. Related Work

5.1. Traffic Analytics

Several systems have been proposed in the past for managing and analyzing traffic data to
derive insights. PeMS [14], short for Performance Evaluation Monitoring System, collects and
archives highway traffic data with the main goal of detecting traffic patterns and estimating the
travel time on highway links. ADMS [1], short for Archived Data Management System, is a big
data system that can support spatiotemporal queries through an interactive web-based
interface over a large transportation database. However, none of these systems focus on
improving the quality of the collected data or summarizing traffic at the level of TAZ.

5.2. Temporal Imputation

Data imputation methods are commonly divided into three categories: prediction-based,
interpolation-based, and statistical learning-based. Most recent studies are focused on
imputing time series data using machine learning methods. In [27] the authors train a large
Generative Adversarial Network (GAN) to impute the missing values in timeseries datasets. In
[28] a recurrent neural network (RNN) is employed to impute time series datasets. In this work,
the missing values are treated as variables in the RNN model and are iteratively filled during
backpropagation. MVLM [29] leverages the fact that driver behavior tends to be correlated in
both the spatial and temporal domains. Modified window-based nearest neighbor methods
have also been proposed for imputing traffic data [30], [31]. However, none of these previous
works offer a comprehensive comparison of the imputation performance on sensor-based
traffic data.

5.3. Spatial Interpolation

Most of the work in this field proposes general interpolation methods. Specifically, such
methods are applied to air quality data in order to interpolate pollution metrics at locations
where data is not sensed [32]. Adaptations of interpolation methods have also been proposed
for traffic data. In [33] the Kriging method is used on an Annual Average Daily Traffic (AADT)
dataset to interpolate the volume at unknown locations. An improved distance metric is later
proposed to replace the Euclidean distance that is widely used along with Kriging [34]. Previous
work mostly focuses on highway traffic which is fundamentally different from arterial (street)
traffic.

5.4. Computational Generators of Synthetic Trajectories

One of the first studies in spatio-temporal moving object generators (MOG) is [35] with the goal
to generate artificial trajectories with realistic spatiotemporal properties. An extension was
later proposed [36] to enable a greater degree of configuration by adding additional
parameters to the generator. These early MOGs, however, generate trajectories in free space
but vehicle trajectories are by definition constrained to a road network. To overcome this,
network-constrained generators have been proposed. The most widely cited attempt of
generating moving object constrained to a network in a realistic way is proposed in [10]. The

 35

framework selects origin and destination nodes and routes an agents along the network with
limited interactions with other agents on the network. Perhaps the most prominent simulator is
the Simulation of Urban MObility (SUMO) framework [37]. SUMO is a microscopic traffic
simulator that generates and exports trajectories by simulating the environment from three
inputs: road network, traffic infrastructure, and traffic demand. It also allows the user to specify
a variety of parameters such as traffic infrastructure (e.g., traffic lights), number of lanes, and
vehicle types.

Most of these methods are highly configurable. However, to generate realistic trajectories,
their parameters must be calibrated in order to match the target real-world environment; a
task that is often time-consuming and required domain knowledge. Additionally, as the region
of interest becomes large, e.g., at the scale of a metropolitan city, simulators require large
amounts of computational power, a fact that led to the proposal of distributed architectures
[38] [39]. DDTG does not require any calibration or time-consuming configuration before it can
generate realistic vehicle trajectories and can easily scale to metropolitan-sized road networks.
DDTG’s algorithm can also be parallelized to generate millions of trajectories in minutes.

5.5. Data-Driven Generators of Synthetic Trajectories

Computational generators, as mentioned above, require the calibration of complex parameters.
To address this, nonparametric machine learning methods have been proposed to synthesize
trajectories. In the earliest attempt [40], an LSTM architecture is proposed for predicting
movements from GPS traces. Because very often the training dataset size is limited due to
privacy and other constraints, the authors in [41] use a variational autoencoder to map the
input to a hidden space where the characteristics can be preserved.

More recently, Generative Adversarial Networks (GAN) have been proposed as the state-of-the-
art in generating synthetic trajectories. In [42], the authors discretize the input in both the
spatial and temporal domains and train a nonparametric generative model. The discretized
output is then converted back into location trajectories. [43] proposes a self attention-based
sequential modeling network as the generator to encode the complex temporal transitions of
human mobility. The authors also make use of a mobility regularity-aware loss in the
discriminator to help it distinguish between real and synthetic trajectories. In [13] the authors
formulate the task as an imitation learning problem in a partially observable Markov decision
process. In [21] the GAN is trained with a new loss function, named TrajLoss, that accounts for
the dissimilarity of generated trajectories to the input.

Generative models require large amounts of data in order to learn how to generate realistic
trajectories. However, even in big trajectory datasets, the distribution tends to be skewed, i.e.,
limited to only certain regions of the metropolitan city and hours of the day, and hence the
trained models are biased. Another shortcoming of these methods is that the optimization
objective is limited to the holistic level quality of the generated dataset and the quality of
individually generated trajectories is mostly ignored. DDTG only requires the traffic data and a
target OD matrix for the region of interest, both of which are very often publicly available and

 36

free of privacy concerns. The synthetic datasets generated by DDTG follow distributions that
are very close to those of real trajectory datasets.

6. Conclusions and Future Directions

We presented and compared methods for imputing data in time series traffic data and
interpolating the traffic values at locations where data is not sensed. On top of these methods,
we propose an algorithm to construct a metropolitan-scale Traffic Index that represents the
traffic condition at each census block at different times of the day. The result can be used not
only for visualization purposes, but also for informing downstream tasks such as socio-
economic analysis and urban planning. Our experiments showed that datasets with many small
scale gaps can be accurately imputed using statistical approaches such as linear and spline
interpolation without requiring any expensive pre-processing steps. On the other hand, as
missing data gaps become longer and more frequent, data-driven approaches such as historical
averages become much more accurate. This work was published in the IEEE International
Conference on Intelligent Transportation 2022 [24].

Real-world trajectory datasets are often unavailable due to privacy reasons or are limited in size
and spatio-temporal diversity. The task of synthetic trajectory generation aims to create a
realistic set of artificial trajectories that are representative of the true mobility characteristics
and underlying distributions. Existing methods require either a lot of complex parameters to be
calibrated (simulators) or existing trajectory datasets (GAN) in order to be able to generate
synthetic datasets. In this paper, we proposed DDTG, a data-driven, model-free, and
parameter-less algorithm for generating realistic vehicle trajectory datasets. Unlike existing
approaches, DDTG only requires two main inputs: the traffic data, and the origin-destination
matrix for the region of interest. These aggregated inputs are very often publicly available
because they do not reveal any private information. As we showed in our experiments, the
datasets generated by DDTG closely mimic the distributions of a real trajectory dataset. We also
argue that our method is not meant to replace the existing state-of-the-art methods but rather
complement them in generating synthetic datasets of higher quality. This work has been
accepted and will be published in the IEEE International Conference on Big Data 2022 [44].

 37

References

[1] T. Litman, Evaluating Accessibility for Transport Planning: Measuring People’s Ability to
Reach Desired Goods and Activities, Victoria Transport Policy Institute, June 2020,
https://www.vtpi.org/access.pdf.

[2] [B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths over large graphs,” in
EDBT’08, ser. EDBT ’08. New York, NY, USA: ACM, 2008, pp. 205–216.

[3] C. Anastasiou, J. Lin, C. He, Y.-Y. Chiang, and C. Shahabi, “Admsv2:A modern architecture for
transportation data management and analysis,” in Proceedings of the 2nd ACM SIGSPATIAL
International Workshop on Advances on Resilient and Intelligent Cities, 2019, pp. 25–28.

[4] L. M. Mart´ınez, J. M. Viegas, and E. A. Silva, “A traffic analysis zone definition: a new
methodology and algorithm,” Transportation, vol. 36, no. 5, pp. 581–599, 2009.

[5] Q. Huang and D. W. Wong, “Modeling and visualizing regular human mobility patterns with
uncertainty: An example using twitter data,” Annals of the Association of American
Geographers, vol. 105, no. 6, pp. 1179–1197, 2015.

[6] J. Kim and H. S. Mahmassani, “Spatial and temporal characterization of travel patterns in a
traffic network using vehicle trajectories,” Transportation Research Procedia, vol. 9, pp.
164–184, 2015.

[7] Q. Huang and Y. Xiao, “Geographic situational awareness: mining tweets for disaster
preparedness, emergency response, impact, and recovery,” ISPRS International Journal of
Geo-Information, vol. 4, no. 3, pp. 1549–1568, 2015.

[8] C. Keßler and G. McKenzie, “A geoprivacy manifesto,” Transactions in GIS, vol. 22, no. 1, pp.
3–19, 2018.

[9] C.-Y. Chow and M. F. Mokbel, “Trajectory privacy in location-based services and data
publication,” ACM Sigkdd Explorations Newsletter, vol. 13, no. 1, pp. 19–29, 2011.

[10] T. Brinkhoff, “A framework for generating network-based moving objects,”
GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.

[11] J. Barcel´o, E. Codina, J. Casas, J. L. Ferrer, and D. Garc´ıa, “Microscopic traffic simulation: A
tool for the design, analysis and evaluation of intelligent transport systems,” Journal of
intelligent and robotic systems, vol. 41, no. 2, pp. 173–203, 2005.

[12] Y. Hollander and R. Liu, “The principles of calibrating traffic microsimulationmodels,”
Transportation, vol. 35, no. 3, 2008.

[13] S. Choi, J. Kim, and H. Yeo, “Trajgail: Generating urban vehicle trajectories using generative
adversarial imitation learning,” Transportation Research Part C: Emerging Technologies,
vol. 128, p. 103091, 2021.

[14] “Pems: Freeway performance measurement system,” https://pems.eecs.berkeley.edu/,
accessed: 2022-08-13.

 38

[15] P. Krishnakumari, H. van Lint, T. Djukic, and O. Cats, “A data driven method for od matrix
estimation,” Transportation Research Procedia, vol. 38, pp. 139–159, 2019.

[16] S. Zeighami, R. Ahuja, G. Ghinita, and C. Shahabi, “A neural database for differentially
private spatial range queries,” Proceedings of the VLDB Endowment, vol. 15, no. 5, pp.
1066–1078, 2022.

[17] S. Shaham, G. Ghinita, and C. Shahabi, “Differentially private publication of origin-
destination matrices with intermediate stops,” Proceedings of the 25th International
Conference on Extending Database Technology (EDBT), 2022. [Online]. Available:
https://par.nsf.gov/biblio/10333510

[18] “Openstreetmap,” https://openstreetmap.org, accessed: 2022-08-13.

[19] “Veraset website,” https://www.veraset.com/about-veraset, accessed: 2022-08-13.

[20] T. Abrahamsson, “Estimation of origin-destination matrices using traffic counts: A literature
survey,” IIASA Interim Report, 1998.

[21] U. Demiryurek, F. Banaei-Kashani, C. Shahabi, and A. Ranganathan, “Online computation of
fastest path in time-dependent spatial networks,” in International Symposium on Spatial
and Temporal Databases. Springer, 2011, pp. 92–111.

[22] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser, and D. B. Blumenthal, “Finding k-
shortest paths with limited overlap,” The VLDB Journal, vol. 29, no. 5, pp. 1023–1047,
2020.

[23] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma, “Mining user similarity based on
location history,” in Proceedings of the 16th ACM SIGSPATIAL international conference on
Advances in geographic information systems, 2008, pp. 1–10.

[24] C. Anastasiou, J. Zhao, S. H. Kim, and C. Shahabi, “Data-driven traffic index from sparse and
incomplete data,” IEEE Transactions on Intelligent Transportation Systems, 2022.

[25] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets with
policy gradient,” in Proceedings of the AAAI conference on artificial intelligence, vol. 31,
no. 1, 2017.

[26] C. Anastasiou, C. Huangy, S. H. Kim, C. Shahabi. Time-Dependent Reachability Analysis: A
Data-Driven Approach. IEEE International Conference on Mobile Data Management (MDM
'19), June 2019.

[27] Y. Luo, X. Cai, Y. Zhang, J. Xu et al., “Multivariate time series imputation with generative
adversarial networks,” Advances in neural information processing systems, vol. 31, 2018.

[28] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional recurrent imputation for
time series,” Advances in neural information processing systems, vol. 31, 2018.

[29] L. Li, J. Zhang, Y. Wang, and B. Ran, “Missing value imputation for traffic-related time series
data based on a multi-view learning method,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 8, pp. 2933–2943, 2019.

 39

[30] B. Sun, L. Ma, W. Cheng, W. Wen, P. Goswami, and G. Bai, “An improved k-nearest
neighbours method for traffic time series imputation,” in 2017 Chinese Automation
Congress (CAC), 2017, pp. 7346–7351.

[31] S. Tak, S. Woo, and H. Yeo, “Data-driven imputation method for traffic data in sectional
units of road links,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 6,
pp. 1762–1771, 2016.

[32] D. W. Wong, L. Yuan, and S. A. Perlin, “Comparison of spatial interpolation methods for the
estimation of air quality data,” Journal of Exposure Science & Environmental Epidemiology,
vol. 14, no. 5, pp. 404–415, 2004.

[33] X. Wang and K. M. Kockelman, “Forecasting network data: Spatial interpolation of traffic
counts from texas data,” Transportation Research Record, vol. 2105, no. 1, pp. 100–108,
2009.

[34] H. Zou, Y. Yue, Q. Li, and A. G. Yeh, “An improved distance metric for the interpolation of
link-based traffic data using kriging: a case study of a large-scale urban road network,”
International Journal of Geographical Information Science, vol. 26, no. 4, pp. 667–689,
2012.

[35] Y. Theodoridis, J. R. Silva, and M. A. Nascimento, “On the generation of spatiotemporal
datasets,” in International Symposium on Spatial Databases. Springer, 1999, pp. 147–164.

[36] N. Xu, L. Trinh, S. Rambhatla, Z. Zeng, J. Chen, S. Assefa, and Y. Liu, “Simulating continuous-
time human mobility trajectories.”

[37] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Fl¨otter¨od, R. Hilbrich, L.
L¨ucken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation using
sumo,” in 2018 21st international conference on intelligent transportation systems (ITSC).
IEEE, 2018, pp. 2575–2582.

[38] H. Xie, E. Tanin, K. Ramamohanarao, S. Karunasekera, L. Kulik, R. Zhang, and J. Qi,
“Generating traffic data for any city using smarts simulator,” SIGSPATIAL Special, vol. 11,
no. 1, pp. 22–28, 2019.

[39] J. Yu, Z. Fu, and M. Sarwat, “Dissecting geosparksim: a scalable microscopic road network
traffic simulator in apache spark,” Distributed and Parallel Databases, vol. 38, no. 4, pp.
963–994, 2020.

[40] X. Song, H. Kanasugi, and R. Shibasaki, “Deeptransport: Prediction and simulation of human
mobility and transportation mode at a citywide level,” in Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, 2016, pp. 2618–2624.

[41] D. Huang, X. Song, Z. Fan, R. Jiang, R. Shibasaki, Y. Zhang, H. Wang, and Y. Kato, “A
variational autoencoder based generative model of urban human mobility,” in 2019 IEEE
Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2019, pp.
425–430.

[42] K. Ouyang, R. Shokri, D. S. Rosenblum, and W. Yang, “A nonparametric generative model
for human trajectories.” in IJCAI, vol. 18, 2018, pp. 3812–3817.

 40

[43] J. Feng, Z. Yang, F. Xu, H. Yu, M. Wang, and Y. Li, “Learning to simulate human mobility,” in
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, 2020, pp. 3426–3433.

[44] C. Anastasiou, S. H. Kim, C. Shahabi, “Generation of Synthetic Urban Vehicle Trajectories”,
To appear in the IEEE International Conference on Big Data (BigData 2022), Dec. 2022.

[45] V. Bauer, J. Gamper, R. Loperfido, S. Profanter, S. Putzer, and I. Timko, “Computing
isochrones in multi-modal, schedule-based transport networks”, In GIS’08, ser. GIS’08. New
York, NY, USA: ACM, 2008, pp. 78:1–78:2.

[46] de Berg, Mark, "Analyzing Trajectories of Moving Objects", Computational Geometry, Two
Selected Topics (PDF), pp. 11–75.

 41

Data Summary

Products of Research

This project produced time-dependent synthetic trajectory dataset for Los Angeles based on
the traffic flow data from 1) real sensors whenever available, and 2) estimation if sensors are
not available. These synthetic trajectory data were used for our reachability research. We also
have completed the steps to estimate missing values in generating synthetic trajectories. We
took the step to represent all data in popular structured formats following the recommendation
for data format and metadata standard in the NCST data management plan. The synthetic
dataset of 1.5M trajectories were stored on the UC's data repository, Dryad and made it
publicly accessible.

We generated two publications from this research:

• C. Anastasiou, J. Zhao, S. H. Kim, and C. Shahabi, “Data-driven traffic index from sparse
and incomplete data,” IEEE Transactions on Intelligent Transportation Systems, 2022.

• C. Anastasiou, S. H. Kim, C. Shahabi. Generation of Synthetic Urban Vehicle Trajectories.
To appear in the IEEE International Conference on Big Data (BigData 2022), Dec. 2022.

Data Format and Content

Title of Dataset: DDTG Synthetic Vehicle Trajectory Dataset

This dataset contains a total of 1.5 million (1.5M) synthetic trajectories generated by our DDTG
algorithm. The trajectories are limited to the Metropolitan City of Los Angeles (bounding box:
`top=34.335035 left=-118.667665 bottom=33.699820 right=-118.180532`) and to the month of
December 2019.

Description of the data and file structure: The dataset consists of two files. One file contains the
actual trajectory data in GPS measurements form. The other file contains metadata about each
trajectory. Both files are in Parquet (https://parquet.apache.org/) format.

File 1: trajectories.parquet
- uuid: Unique user id
- tuid: Unique trajectory id
- latitude: Latitude degree of location coordinate
- longitude: Longitude degree of location coordinate
- accuracy: GPS accuracy at time of reading (not used in this version)
- timestamp: Time of reading

File 2: trajectory_meta.parquet
- uuid: Unique user id
- tuid: Unique trajectory id
- origin_latitude: Latitude degree at the trip origin
- origin_longitude: Longitude degree at the trip origin

https://parquet.apache.org/

 42

- destination_latitude: Latitude degree at the trip destination
- destination_longitude: Longitude degree at the trip destination
- departure_time: Time at trip's departure
- travel_distance: Total distance travel in this trip
- travel_time: Total travel time of this trip (estimated with real-world traffic data)
- displacement: The total displacement from origin to destination
- count: Number of GPS readings in this trajectory

Data Access and Sharing

Data is available on the UC's data repository, Dryad. Anyone can download the two files from
the repository (https://doi.org/10.5061/dryad.4j0zpc8gf).

An example of Python code to access the data is:

```python 
import pandas as pd 

trajectories = pd.read_parquet('./trajectories.parquet') 
meta = pd.read_parquet('./trajectory_meta.parquet') 
``` 

Reuse and Redistribution

No restriction. Dataset should be cited as follows:

Anastasiou, Chrysovalantis (2022), Synthetic vehicle trajectory dataset for the metropolitan
city of Los Angeles using DDTG, Dryad, Dataset, https://doi.org/10.5061/dryad.4j0zpc8gf

https://doi.org/10.5061/dryad.4j0zpc8gf
https://doi.org/10.5061/dryad.4j0zpc8gf

	EXECUTIVE SUMMARY
	1. Introduction
	1.1. Prior Work on Traffic Data Collection and Archiving
	1.2. Constructing complete traffic dataset for the generation of synthetic trajectories
	1.3. Constructing reachability map with synthetic trajectories

	2. Traffic Data Imputation and Interpolation
	2.1. Traffic Imputation
	2.1.1. Problem Definition
	2.1.2. Imputation Methods
	2.1.3. Discussion

	2.2. Traffic Interpolation
	2.2.1. Problem Definition
	2.2.2. Interpolation Methods
	2.2.3. Discussion

	2.3. Traffic Index
	2.4. Experiments
	2.4.1. Experimental Setup
	2.4.2. Imputation Experiments
	2.4.3. Interpolation Experiments
	2.4.4. Case Study: Los Angeles Traffic Index

	3. Generating Synthetic Vehicle Trajectories
	3.1. Overview
	3.2. Data Representation
	3.3. Algorithm
	3.3.1. Phase I
	Algorithm 1 Trip Sampler

	3.3.2. Phase II
	Algorithm 2 Trajectory Generator
	Algorithm 3 Trajectory Via Stops Generator

	3.4. Quality of Synthetic Trajectories
	3.4.1. Holistic Quality
	3.4.2. Individual Quality

	3.5. Experiments
	3.5.1. Environment Setup
	3.5.2. Quality Analysis
	3.5.2.1. Holistic Quality
	3.5.2.2. Individual Quality

	4. Implementation of Web Application
	4.1. Features of Web
	4.1.1. Traffic Index by Geo-Coordinates
	4.1.2. Traffic Index by Zone
	4.1.3. Reachability Map

	4.2. Implementation and Limitation
	4.2.1. Traffic Index by Geo-Coordinates
	4.2.2. Traffic Index by Zone
	4.2.3. Reachability MAP
	4.2.4. Possible Improvements

	5. Related Work
	5.1. Traffic Analytics
	5.2. Temporal Imputation
	5.3. Spatial Interpolation
	5.4. Computational Generators of Synthetic Trajectories
	5.5. Data-Driven Generators of Synthetic Trajectories

	6. Conclusions and Future Directions
	References
	Data Summary

