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SUMMARY
Post-traumatic stress disorder (PTSD) is a multisystem syndrome. Integration of systems-level multi-modal
datasets can provide a molecular understanding of PTSD. Proteomic, metabolomic, and epigenomic assays
are conducted on blood samples of two cohorts of well-characterized PTSD cases and controls: 340 veterans
and 180 active-duty soldiers. All participants had been deployed to Iraq and/or Afghanistan and exposed to
military-service-related criterion A trauma. Molecular signatures are identified from a discovery cohort of 218
veterans (109/109 PTSD+/�). Identified molecular signatures are tested in 122 separate veterans (62/60
PTSD+/�) and in 180 active-duty soldiers (PTSD+/�). Molecular profiles are computationally integrated
with upstream regulators (genetic/methylation/microRNAs) and functional units (mRNAs/proteins/metabo-
lites). Reproducible molecular features of PTSD are identified, including activated inflammation, oxidative
stress, metabolic dysregulation, and impaired angiogenesis. These processes may play a role in psychiatric
and physical comorbidities, including impaired repair/wound healingmechanisms and cardiovascular, meta-
bolic, and psychiatric diseases.
INTRODUCTION

Post-traumatic stress disorder (PTSD) affects more than 12% of

combat-exposed soldiers and about 6% of the US population.1

PTSD, in addition to being a stress response with intrusive mem-

ories, avoidance of reminders, emotional numbing, negative

beliefs, and hyperarousal, can progress to a multisystem

syndrome with comorbidities. Despite its prevalence and

socio-economic burden, molecular mediators of onset, course,

and persistence of PTSD are not yet fully established. Particu-

larly, molecular signatures along its temporal and severity trajec-

tories are essential for better understanding of the molecular of
Cell R
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PTSD pathogenesis. This includes systems-level identification

of molecular alterations that underlie PTSD and its comorbidities

that can be profiled in circulating cellular and molecular entities.

Even though systemic responses vary by organ system, cellular

processes contributing to PTSD-related syndromes are shown

to be associated with circulating molecular species.

For example, alterations in circulating molecular features have

been implicated in mitochondrial dysfunction and inflamma-

tion,2–8 delayedwound healing,9–11 cardiovascular diseases,12–15

metabolic disorders,2,7,16,17 type 2 diabetes mellitus (T2DM),18

chronic pain,19,20 oxidative stress associated with inflammation

and endothelial cell dysfunction,21 immune modulation,22,23
eports Medicine 4, 101045, May 16, 2023 ª 2023 The Author(s). 1
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glucocorticoid receptor sensitivity,3 epigenetic aging,24 neurotro-

phic activity,25 and disease progression,26 including biomarker

panels to facilitate screening for PTSD diagnosis.8,27

Even with increased ongoing efforts, previous studies were

constrained by lack of adequate study cohorts at different

chronicity and severity levels of the disease, multi-modal

genome-wide datasets encompassing the full spectrum of mo-

lecular species (genetic, epigenetic, transcriptomics, proteomic,

and metabolomics), and/or computational integration of these

datasets. For example, most prior studies were conducted either

on veterans with chronic PTSD or onmore diverse civilian partic-

ipants and/or with limited multi-modal molecular datasets.

The present study comprises much larger proteomic data

(SomaLogic) along with genome-wide DNA methylation, micro-

RNA, and metabolomics datasets assayed on blood samples

collected from two well-characterized cohorts. Cohorts included

340 veterans (300 males and 40 females) with chronic PTSD and

180 active-duty soldiers (159 males and 21 females) including a

subset of service members with subclinical PTSD and a longitu-

dinal group of service members assessed pre- and post-deploy-

ment with recent-onset PTSD symptoms.

Compositions of cohorts and multi-omics assays were de-

signed to identify altered molecular signatures of the temporal

and severity trajectories of PTSD. First, the male cohorts were

evaluated for biomolecular signatures that correlated with clin-

ical features of PTSD severity and chronicity. Then findings

from the male cohorts of veterans and active-duty soldiers

were qualitatively compared with the smaller subgroups of

female veterans and active-duty service members. Molecular

signatures from these cohorts were also compared with pub-

lished postmortem gene expression data from brain subregions

of PTSD cases and controls28 and prior large-scale PTSD

genome-wide association studies (GWAS).29,30

Overall, this study combineddata-driven discovery approaches

with prior mechanistic insights of PTSD pathogenesis. Findings

presented here are not discrete collections of altered molecular

features and signaling pathways but rather a set of coherent mo-

lecular events interconnected across temporal and severity steps

of PTSD and its comorbidities. Differentially altered pathways, in

conjunction with pre-existing genetic and epigenetic factors, are

likely tomediate PTSD-related syndromes and seem to contribute

to the course, severity, and persistence of the disorder.

RESULTS

Cohort composition
The Systems Biology Consortium (SBC) and Fort Campbell

Cohort (FCC) cohorts were composed of 340 veterans (300

males and 40 females) and 180 active-duty service members

(159 males and 21 females) respectively (Figure 1). Twenty-six

members of the active-duty group were followed longitudinally

for an average of 13 ± 0.75 months. All participants (those with

and without PTSD) were exposed to military-service-related

PTSD criterion A events.

Participants were evaluated for psychiatric symptoms, work

and relationship functioning, and neurocognitive functioning

including measures of attention and emotion regulation.

Comprehensive biomarkers were ascertained from whole blood,
2 Cell Reports Medicine 4, 101045, May 16, 2023
plasma, serum, and buffy-coat samples (Table 1). Routine clin-

ical labs were collected including complete blood count, lipid

panel, inflammatory markers, and liver functioning tests.27,31

Molecular profiles associated with PTSD-related clinical features

were identified in a ‘‘training’’ dataset of 218 SBC male veterans

(SBC Training: 109/109 PTSD+/�) (Figure 1) and tested in a

newly recruited SBC Testing group of 82 male veterans (SBC

Testing: 43/39 PTSD+/�). Earlier molecular trajectories of identi-

fied molecular and pathway signatures were then validated in an

independent cohort of 180 FCC external validation (159 males

and 21 females) active-duty soldiers.

Molecular indicators of PTSD
A total of 1,305 proteins were assayed in serum samples from all

participants using the SomaLogic platform (Figures S1–S3 and

Table S1). Weighted gene correlation network analysis

(WGCNA) identified six co-expressed modular networks in the

SBC Training cohort that were highly preserved across SBC

Training, SBC Testing, FCC External Validation, and FCC

Subthreshold-PTSD groups (Figures 2A and 2B and Table S1).

Four of the six modular networks were associated with re-experi-

encing, avoidance, and hyperarousal criteria of PTSDas assessed

by theClinician-Administered PTSDScale (CAPS)32,33 (Figures 2C

and S3B). These pathway differences between PTSD cases and

controls persisted after adjusting for BMI, age, ancestry, self-re-

ported race, smoking/cotinine, mild TBI, BDI total, education,

and sample collection/processing batches. (Datasets from female

participants were analyzed separately due to sample size and sex

difference considerations including potential confounding from

unmeasured hormonal drug use or menstrual cycle.)

Consensus WGCNA network analyses
Four of the six identifiedmolecular networks (modules) (Figures 2

and S4 and Table S1) were significantly associated with path-

ways significantly correlated with clinical features of PTSD

(Figures 2D and 2E). Enriched pathways included inflammation,

response to oxidative stress, e.g., upregulation of positive regu-

lators (HIF1), downregulation of negative regulators of reactive

oxygen species (ROS; SOD2 and CAT), response to hormones

and growth factors, and advanced glycation endpoints/receptor

for advanced glycation endpoints (AGE/RAGE) signaling and

glycolytic processes (ENO1) (Figure S4 and Tables S1 and S2).

Parallel to identification of modular networks, PTSD cases vs.

controls comparisons were done to identify significant proteins

after adjusting for potential confounders (Figure S3A). Common

proteins among lists of significant proteins and nodes of highly

preserved (and PTSD-correlated) modules were used for down-

stream pathway enrichments and pathway activation analysis.

Also, from DNA methylation datasets (focusing on cis-regula-

tory sites, probes within 1,500 bp of the promoter regions), we

identified 10modular networks. Four of the 10modular networks

were significantly correlated with PTSD (Figures S3C –S3F).

Particularly, two modular networks were (1) highly preserved in

the male veterans and moderately preserved in male active-

duty soldiers and (2) significantly correlated with symptom

clusters of PTSD (Figure S3C). Using methylation datasets for

probes within the more proximal promoter regions (within

250 bp from transcription start sites) and the protein data (for



Figure 1. Overall workflow of the study

Identifying, validating, and characterizing of PTSD-associated proteins and integration with multi-modal molecular features from blood samples of veterans and

active-duty military participants, published postmortem brain regions, and summary statistics from publicly available genome-wide association studies. PTSD

cases and trauma-exposed healthy controls composed of two well-characterized cohorts: Systems Biology Consortium (SBC: 340 veterans) and Fort Campbell

Cohort (FCC: 180 active-duty service members). All participants had been deployed to Iraq and/or Afghanistan. The active-duty cohort included blood bio-

markers and clinical features assessed longitudinally before and after deployment. Male veterans with chronic PTSD (CAPS scores R 40;R3 months duration)

and matched controls (CAPS total score < 20) were recruited into training and testing cohorts. A smaller, case-control female veteran cohort with chronic PTSD

was recruited with the same inclusion criteria. Active-dutymales with recent PTSD (PCLR 38; 3 days before or 90–180 days post-deployment), active-dutymales

with subthreshold recent PTSD (PCL R 22 to < 38; 3 days before or 90–180 post-deployment), and active-duty females with recent PTSD; all cohorts included

matched controls (PCL < 22). Recent onset PTSD case-controls (n = 26) were a longitudinal male active-duty cohort with recent PTSD (n = 26 controls: PCL < 22 at

2 weeks pre-deployment; n = 26 cases: PCLR 31 at 3 days before or 90–180 days post-deployment). The FCC Validation and FCC Subthreshold groups shared

the same controls. Comparability of molecular datasets across cohorts was verified by quality control output graphs presented in Figures S1 and S2. CAPS:

Clinician-Administered PTSD Scale; PCL: PTSD Checklist.
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the corresponding proteins), we identified three consensus

modular networks and significantly associated pathways that

are matching with significant pathways identified from protein-

based modular networks (Figures 2F and 2G and S3H).

Pathway enrichment and activation analysis
Response to wounding (Z score = 0.41, q value < 3.98E-16) was

the most significantly enriched pathway overall (Figures 2D and

2E). Significantly enriched and activated pathways included in-

flammatory response (Z score = 1.9, q value < 1.42E-7), protein

metabolism (Z score = 1.4, q value < 1.42E-12), apoptosis

(Z score = 0.92, q < 4.0E-4), and response to oxidative stress

(activation Z score = 1.93, q < 6.4E-3). Inhibited pathways

included wound healing (Z score = �0.43, q value < 6.31E-8),

essentially normal upkeep/repair pathways such as vasculature

development (Z score = �1.0, q < 1E-10), angiogenesis

(Z score = �1, q < 1E-5), and hemostasis (coagulation)

(Z score = �0.74, q value < 2.51E-6).

Inflammation-related immune responseswereconsistently acti-

vatedacrosscohorts to includepathways involved in inflammatory

responses, leukocyte activation, and cell migration with enrich-

ment significant decreasing from veterans to active-duty partici-
pants with subclinical PTSD (in parallel to chronicity and severity)

(Figure 2E). Glycolytic processes and T2DM pathways were also

significantly activated (Figure 2). Pathways associated with

vascular development (angiogenesis) were significantly inhibited

across cohorts with greater inhibition in chronic PTSD cases in

the veterans compared with the more recent onset PTSD cases

in the active-duty participants (Figure 2E). Similar results were

seen in the female veteran group as in the male veteran groups

(Figure S5A). Pathways associated with neurogenesis, neural

development, and related pathways were highly inhibited in the

veterans but not significant in active-duty groups (Figures 2E

and S5A).

These pathways were also identified from enrichment ana-

lyses of molecular nodes of the three consensus modular

networks constructed using methylation datasets of the pro-

moter regions and protein datasets (Figures 2F and 2G). Two

of the three consensus networks were largely associated

with stress response and inflammation-related pathways (Fig-

ure 2F), and nodes of the third network were significantly asso-

ciated with response to wounding, oxidative stress, neurogen-

esis, angiogenesis/vasculature development, insulin signaling,

apoptosis, and mitochondrial damage (Figure 2G).
Cell Reports Medicine 4, 101045, May 16, 2023 3



Table 1. Input samples and platform for each of the multi-omics assays

Omics assay Input sample (blood fraction) Platform/kit (supplemental materials and methods)

Proteome serum appropriate blood fraction for SomaScan

(SomaLogic) proteomics platform

Metabolome plasma blood fraction appropriate for and assayed

using Metabolon metabolomics platform

MicroRNAs (miRs) exosomal miRs (exosomes isolated

from plasma)

exosomal miRs assayed using Illumina’s

small RNA-Seq kit (exosomal miRs are more

relevant blood compartment in interpreting

PTSD molecular signatures as they are more

likely to cross into the brain)

DNA methylome whole blood genomic DNA (isolated

from PAXgene blood DNA tubes)

the whole blood genomic DNA was bisulfite-

converted using the EZ96 DNA methylation

kit (Zymo Research), and the bisulfite-treated

DNA was assayed using Infinium

HumanMethylation450 BeadChip

(genome-wide DNA methylation array

from Illumina)

Note: during downstream normalization and analyses, appropriate covariates and potential confounders were assessed and corrected/accounted for.

The table summarizing blood tubes and samples for molecular assays is given with the supplemental material (Table S8).
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Association of altered molecules and pathways with
PTSD symptom progression, severity, and chronicity
We analyzed changes in multi-modal molecular and pathway

signatures in relation to PTSD symptom severity and chronicity

in the veterans and active-duty cohorts. The participants in the

veteran cohorts included individuals who were diagnosed

with chronic PTSD, while the active-duty FCC included partic-

ipants who were diagnosed with more recent onset PTSD

(13 months ± 3 weeks), which were also subdivided into those

with higher and lower PTSD Checklist (PCL) values, reflecting

different levels of severity of PTSD symptoms.

Correlations were determined between significantly en-

riched pathways and clinical features of PTSD (Figures 2C

and S6). Pathways associated with angiogenesis, inflamma-

tion, oxidative stress, metabolism, and response to wounding

were correlated with PTSD symptom severity and chronicity

as defined by CAPS total and PCL total scores (Figure 3).

Angiogenesis was negatively correlated with CAPS total and

PCL total scores across the SBC Training, SBC Testing,

FCC External Validation, and FCC Subthreshold-PTSD partic-

ipants, though to a different extent (Figure 3A). Molecular and

pathway alterations associated with inflammatory response,

oxidative stress, metabolic dysregulation, and response to

wounding were positively correlated with changes in PTSD

symptom severity and chronicity as defined by CAPS total

and PCL total scores (Figure 3B). PTSD symptom clusters

(CAPSB, re-experiencing; CAPSC, avoidance; and CAPSD,

hyperarousal) were negatively correlated with angiogenesis/

vasculature morphogenesis, epithelization, and coagulation

(Figures 2C and S6).

Altered molecular pathways and markers identified in
the longitudinal participants
Molecular pathways significantly associated with impaired

angiogenesis, activated inflammation, insulin resistance, mito-

chondrial dysfunction, decreased bioenergetics, and ROS
4 Cell Reports Medicine 4, 101045, May 16, 2023
were consistently altered in the longitudinal group of active-

duty participants, though to a lesser extent (Figure 2E).

Correlations among pathways
Strong positive correlations were observed between wound

healing and angiogenesis or coagulation/hemostasis pathways

and negative correlations of wound healing with pathways

related to inflammation, oxidative stress, and metabolic disor-

ders in the SBC Training, SBC Testing, and FCC External Valida-

tion groups (Figure 3C).

Metabolic dysregulations associated with PTSD
Pathways indicative of metabolic dysregulation such as those

associated with insulin resistance, T2DM, reduced bioener-

getics, and mitochondrial dysfunction pathways (Figure 2 and

Tables S2 and S3) were activated in PTSD cases compared

with controls in the SBC Training, SBC Testing, and FCC

External Validation groups. Specifically, proteins and metabo-

lites significantly associated with AGE-RAGE signaling (T2DM/

inflammation), insulin resistance, impaired glycolytic processes,

decreased cellular energy production, and mitochondrial

dysfunction were increased in PTSD cases compared with war-

zone-exposed healthy controls though with decreasing extent of

alterations in going from chronic to recent onset and subclinical

participants (Figures 2E and 2G and Tables S2 and S3).

Multi-omics integration
Regulatory or functional relations among molecular features

from the different omics datasets were used as a basis for the

multi-omics integration. Multi-omics analyses approaches

were used to evaluate extent of cross-cohort consistency of reg-

ulatory and functional relationships among quantitative trait loci,

genetic variants, cis-regulatory sites (differentially methylated

promoter regions [DMRs]), miRNAs, mRNAs, proteins, and me-

tabolites that were associated with the top enriched pathways

(Figures 4, S5B, and S8).



Figure 2. Modular networks and enriched pathways across cohorts

(A) Identification of protein co-expression modules associated with PTSD by weighted gene co-expression network analysis (WGCNA). Module identification by

hierarchical clustering tree (dendrogram) of the consensus network comprising 1,305 proteins where branches of the dendrogram grouped together densely

interconnected, highly co-expressed proteins. Modules were identified in the SBC Training group (109/109 PTSD+/�), shown in the first band underneath the

tree. Colors represent each modular network. Subsequent bands indicate modules in the SBC Testing (43/39 PTSD+/�), FCC Validation (47/44 PTSD+/�), and

FCC Subthreshold (68/44 PTSD subclinical/controls) groups.

(B) Module preservation identified six highly preservedmodules (preservation Z score > 10;R30 proteins per module). Four modules (turquoise, yellow, blue, and

red) were significantly correlated (p < 0.01) with PTSD across the SBC Testing, FCC Validation, and FCC Subthreshold (Figure S3).

(C) Biological processes and pathways identified using hypergeometric enrichment filter at q < 0.05, Bonferroni correction (family-wise error rate) followed by

pathway activation analyses. Ranking is based on pathway enrichment significance.

(D) Pathway or process significantly associated (FDR [false discovery rate]-corrected) with differentially altered proteins (PTSD cases vs. controls) in the SBC

Training, SBC Testing, FCC Validation, FCC Longitudinal, and FCC Subthreshold.

(E) Significantly activated or inhibited pathways that were correlated with CAPS total current (SBC cohort) and PCL scores (FCC cohort). Top panel, positive

correlation (red gradient); bottom panel, negative correlation (blue gradient).

(F and G) Pathways and biological processes significantly associated with member proteins of the methylation-protein consensusmodules (RP: receptor protein;

arrows indicate GeneOntology (GO) or pathway hierarchy from stem to leaves; background colors show the different classes of pathways). Bubble plots denote q

values (red, activated; blue, inhibited), where size corresponds with number of proteins. Complete data are in Figure S4. CAPS: Clinically Administered PTSD

Scale; CAPSTOT_Curr: CAPS current total; CAPSTOT_lt: CAPS lifetime total; CAPSB: CAPS criterion B (re-experiencing); CAPSC: criterion C (avoidance of

trauma reminders); CAPSD: CAPS criterion D (negative cognitions and affect).
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Multi-omics datasets comparing PTSD cases and controls

in the veteran and active-duty cohorts converged on inter-

connected pathways: activated inflammation, metabolic dys-

regulation, increased oxidative stress, impaired angiogen-

esis/vasculature development, epithelial dysfunction, and

response to wounding including patterns of impaired wound

healing (Figures 2D and S5A) in line with the temporal and

severity stages of PTSD (Figure 2E). Altered molecules

from other modalities that showed regulatory and functional

relations with significant proteins were corroborative of

these observations. Significantly and persistently altered

proteins and the corresponding metabolites also were

largely consistent with differential methylation of upstream
cis-regulatory sites and expression status of microRNAs

and mRNAs (Figure 4).

Upstream regulatory elements of proteins (and metabolites)

associated with inflammatory responses, oxidative stress, and

metabolic dysregulation were related with significant minor al-

leles (SNPs), hypo-methylated DMRs, and downregulated

miRs; whereas proteins (and metabolites) that were potentially

under the regulatory control of these elements were largely

upregulated (Figure 4A). Other importantminor alleles, largely hy-

per-methylated DMRs and upregulated miRs were identified as

potential regulatory partners of proteins (and metabolites) asso-

ciated with inhibited pathways: wound healing, endothelial func-

tions, and vasculature development (angiogenesis) (Figure 4B).
Cell Reports Medicine 4, 101045, May 16, 2023 5



Figure 3. Correlations among significantly inhibited or activated pathways and PTSD diagnostic variables

(A) Significant pathways negatively correlated with CAPS total current (SBC cohort) or PCL scores (FCC cohort).

(B) Significant pathways positively correlated with CAPS total current (SBC cohort) or PCL scores (FCC cohort).

(C) Correlations between significantly inhibited or activated pathways with wound healing in SBC Training (109/109 PTSD+/�), SBC Testing (43/39 PTSD+/�),

and FCC Validating (47/44 PTSD+/�) cohorts. Correlations between wound healing and pathways associated with vasculature (top), inflammation/oxidative

stress (middle), and metabolic disorder/obesity (bottom) were evaluated in the SBC Training, SBC Testing, and FCC Validation cohorts. PCL, PTSD Checklist,

CAPSTOT_cur: the total current score for Clinically Administered PTSD Scale.
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Many of the proteins associated with vasculature develop-

ment (angiogenesis) and heart development showed expression

patterns consistent with impaired wound healing and epithelial

dysfunction (Figure 4B). Metabolites such as sphingosine-1-

phosphate and lactic acid were also associated with inhibited
6 Cell Reports Medicine 4, 101045, May 16, 2023
vasculature development (Figure 4B). Circulating levels of

glucose and decreased levels of polyunsaturated fatty acids,

omega-3 fatty acids, and essential fatty acids were associated

with proteins and DMRs that were implicated inmetabolic dysre-

gulation and vasculature development pathways (Figure 4).



Figure 4. Integrated multi-omics showing regulatory and functional relations (horizontally from right to left) across genetic variants,
epigenetic marks, microRNAs, mRNAs proteins, and metabolites

(A and B) Differentially expressed proteins (DEPs) that were persistent across PTSD cohorts and associated with (A) activated inflammatory response or oxidative

stress, (B) impaired angiogenesis, epithelial dysfunction, or cardiovascular function were integrated with multi-omics datasets and compared across SBC

(legend continued on next page)

Cell Reports Medicine 4, 101045, May 16, 2023 7
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Multi-omics analysis in female veterans and active-duty
participants: Qualitative comparisonswith findings from
male cohorts
Pathway-level changes in veteran and active-duty male PTSD

groups were generally also observed in veteran and active-

duty female groups. The top significant pathways consistently

differentiated in PTSD cases from controls in both male and fe-

male veterans and active-duty service members, though fewer

pathways were identified in the active-duty females (Figure S5A).

Overall, the multi-omics data corroborated findings from the

protein data, including identification of impaired angiogenesis,

activated inflammatory response, oxidative stress, metabolic

dysregulation, epithelial dysfunction, and wound healing as

among the significantly altered pathways in PTSD cases

compared with controls (Figures 2, 3, and 4).

Postmortem gene expression datasets from brain
regions of PTSD cases and controls
We used published expression data from brain subregions of

PTSD cases and controls28 to fill the regulatory gap between sig-

nificant proteins and significantly altered epigenetic marks. Pro-

tein signatures significantly associated with important pathways

were found to be largely consistent with significant transcripts

profiled from brain subregions implicated in PTSD (Figure 4). Sim-

ilarity in expression patterns of significant proteins and transcripts

from the postmortem expression data corroborate the regulatory

connectionsbetween theepigenetic layersand theenrichedpath-

ways aswell as the similarity of the responsesbetween the central

and the peripheral systems at the molecular level.

Relevance of significant proteins in prior large-scale
genetic studies
We assessed the enrichment/relevance of significant proteins

(belonging to altered pathways) using summary statistics from

GWAS of Million Veteran Program (MVP)29 for two PTSD pheno-

types: quantitative total PCL score anddichotomousPTSDcase-

control status. Thirty-seven unique proteins belonging to the

PTSD-relevant modular networks were found to contain sugges-

tively significant (P < 4E-04) genetic variants associatedwith PCL

score (Table S5). Proteins with the top significant variants include

PIK3CG (rs11773880, p = 8.61E-08), NCAM1 (rs2298527, p =

3.44E-07), and GRB2 (rs4789182, p = 7.60E-06), which are

important in wound healing, inflammatory response, and neuro-

genesis; CAMK1D (rs113990432, p = 2.58E-06) activates the

transcription factor CREB1 in promoting basal dendritic growth

of hippocampal neurons and regulates granulocyte function/res-

piratory burst; KIRREL3 (rs552640, 2.36E-05) is involved in

neurological/cognitive disorders; C3 (rs2241391, p = 2.59E-05)

is involved in inflammatory response and synaptic pruning;

ROBO2 (rs62268946, p = 3.0E-05) is important in axon guidance

and rhythmic processes; HS6ST1 (rs34800061, 3.26E-05)

is involved in vasculature development/angiogenesis; MB

(rs5750131, 3.48E-05) is important in response to oxidative
Training (109/109 PTSD+/�), SBC Testing (43/39 PTSD+/�), FCCValidation (47/4

PTSD subclinical/controls) cohorts. Vertical lanes of the protein heatmap correspo

the labels). SBC: Systems Biology Consortium (veteran cohort), FCC: Fort Camp

dorsolateral pre-frontal cortex (PFC); ACC, anterior cingulate cortex (ACC); dACC
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stress, glucose/energy metabolism, and regulation of nitric ox-

ide; CADM1 (rs2027618, p = 3.85E-05) is involved in apoptosis

and innate immune response; and PIAS4 (rs199754282, p =

4.57E-05) is important in the Wnt signaling pathway. A supple-

mental longer list of genetic variants with trending significance

is provided (Table S5).

Next, to examine the importance of strictly genome-wide

significant genetic variants, we collected a total of 41 distinct

genes that were associated with PTSD phenotypes in case-

control analysis on European and African ancestry partici-

pants, association analysis with total PCL score as the

outcome, and meta-analysis of the MVP and Psychiatric Ge-

nomics Consortium (PGC) case-control association studies.

Among the 41 distinct genes, EFNA5 (rs114851381, p =

1.21E-06), identified in case-control European ancestry of

MVP+PGC datasets, seems to be related with impaired angio-

genesis and epithelial dysfunction. Further, we explored the 41

PTSD implicated genes (from GWAS-MVP study) with PTSD-

correlated modules (identified using the promoter regions of

DNA methylation data). Of the 41, 33 genes have one or

more promoter CpG probe corresponding to the three mod-

ules. One of the modular networks, over-represented by

nervous system development among other highly enriched

pathways, contains 21 of the 41 genes (21/323 = 6.5%, p =

2.9E-8) (Table S6).

We have also identified SNPs with suggestive significance

levels within 1 Mb of each of the significant protein using GWAS

summary statistics from PGC for PTSD.30 Genome-wide trending

associations detected genetic variants at p < 5E-05 located on

two significant proteins NRXN3 [rs74503919, chr14] and

TGFBR3 [rs201374650, chr1] that were significantly associated

with impaired angiogenesis and epithelial dysfunction (Figure 4B).

A total of 371 SNPs belonging to other significant proteins have

suggestive p values < 5e-03 (Table S7).

Identification of PTSD-specific genetic controls of
protein levels using publicly available protein
quantitative trait loci (pQTL) datasets
We have assessed protein expression regulation in the blood of

PTSD patients that were dependent on genetic variants. We

identified significant and suggestive pQTLs through the analysis

of genetic and proteomic data derived from blood samples of

PTSD patients and trauma-exposed healthy controls. Genomic

region enrichment analysis of the identified pQTL variants re-

vealed 922 minor alleles (loci) that were cis-acting pQTLs

affecting the expression levels of 46 proteins that have signifi-

cant difference between PTSD cases and controls. The identified

cis-acting pQTLs were over-represented among variants sug-

gesting involvement of genetic polymorphisms in regulation of

protein expression in PTSD. Significant association of 33 of the

46 proteins in inflammation, oxidative stress, angiogenesis,

and cardiovascular functions provides insight into the functional

consequences of genetic variation in PTSD.
4 PTSD+/�), FCC Longitudinal (26/26 PTSD+/�), and FCCSubthreshold (68/44

nd to the fold changes of each protein from each group of cohorts (as shown by

bell (active-duty) Cohort; for brain regions (postmortem mRNA data): dIPFC,

, dorsal ACC; sgPFC, subgenual PFC; OFC, orbito-frontal cortex.



Figure 5. Summary of biological processes and pathways correlatedwith PTSD clinicals identified in integratedmulti-omics analyses across

cohorts

Multi-omics analyses identified inhibition and activation of specific components of pathways associated with impaired wound healing and comorbidities

indicative of chronic inflammation, endothelial injury, andmetabolic disorders. Disrupted and prolonged inflammation and redox signaling leading to inflammation

and injuries of endothelium and other tissues, metabolic dysregulation, and circulatory system dysfunction. The associated physiological dysregulations

correspond with long-term sequelae of PTSD, including cardiovascular disease, T2DM and neuropsychiatric disorders (anxiety, depression, and cognitive

decline). Although our study evaluated peripheral markers, the processes identifiedmay either reflect system-wide (including CNS) perturbations or elsemay lead

systemic disruptions related to PTSD pathology. Up arrows indicate upregulation/activation in PTSD; down arrows indicate downregulation/inhibition.
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Results summary
We evaluated both veterans with or without military-service-

related chronic PTSD and pre- and post-deployment active-

duty soldiers for molecular and pathway signatures of PTSD.

Our approach included integrating longitudinal and cross-

sectional multi-omics datasets and selected clinical features of

the different cohorts of participants with and without PTSD.

The multi-modal molecular signatures and degrees of pathway

alterations in blood samples of participants with chronic and

more recent onset PTSD were correlated (generally proportion-

ate) to chronicity and symptom severity of PTSD. These findings

provided initial evidence that peripheral multi-modal molecular

signatures associated with PTSD are indicative of both neuro-

psychiatric and somatic disorders and are informative of its

probable key clinical features and outcomes. Molecular signa-

tures of PTSD cases for males that were overlapping signatures

for females were also preserved to some extent across cohorts

of veterans and active-duty subjects.

Here, we identified epigenetic patterns (miRNAs and DMRS),

proteomic and metabolomic signatures for angiogenesis,

response to wounding, inflammatory response, oxidative stress,

metabolic dysregulation, and mitochondrial dysfunction that

were significantly correlated with severity and chronicity of
PTSD symptoms (Figures 3 and 4). The relationship ofmetabolite

and protein signatures and epigenetic scores with PTSD suggest

inhibited vasculature morphogenesis and activated inflamma-

tion and oxidative stress that are associated with progression

and persistence of PTSD.15 Inflammation, oxidative stress, and

metabolic dysregulation appear to be important signals and

mechanisms in causing tissue damage and impaired tissue

renewal/repair leading to functional deterioration of vital systems

associated with cardiovascular disease, metabolic disorder, and

perturbed immune response with disease progression (Figure 5).

Replications of these findings in two independent groups of

males with different temporal steps of PTSD corroborate the po-

tential roles of identified molecular signatures in mediating the

course and persistence of PTSD-related syndromes.

Important pathways such as inflammatory response, oxidative

stress, angiogenic signaling, and endothelial dysfunctions also

were consistent with postmortem gene expression profiles ob-

tained from discrete brain regions28,34 (Figure 4). Identification

of genetic variants belonging to proteins associated with these

pathways indicates further that the multi-layer molecular events

convergently confirm the differentially altered pathways. These

observations corroborate that multi-omics molecular signatures,

including proteomic, epigenomic, and metabolomic changes,
Cell Reports Medicine 4, 101045, May 16, 2023 9
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correlated with PTSD symptoms, have the potential to serve as

gradient molecular signatures across temporal and severity

trajectories of PTSD.

DISCUSSION

This study employed an unbiased, integrated, systems-level

multi-omics approach to identify molecular signatures with acti-

vation levels of enriched pathways in military-service-related

PTSD cases compared with controls. Unbiased systems-level

molecular approaches hold promise for understanding the

molecular underpinnings of PTSD pathogenesis along its clinical

courses, severity, and persistence. Altered multi-modal molecu-

lar and pathway profiles, identified in the training set of 218 SBC

male veterans, were validated in independent case-control com-

parisons of male and female veterans with chronic PTSD and

persisted, though to a lesser extent, in active-duty FCC partici-

pants (with recent onset PTSD and subclinical PTSD groups).

Functional analysis of case-control comparisons across co-

horts identified pathways implicated in angiogenesis, inflamma-

tion, oxidative stress, and metabolism that correlated with PTSD

clinical assessments. Inhibition or activation levels of enriched

pathways correlated proportionately with clinical indicators of

PTSD progression and suggested important molecular profiles

corresponding to disease chronicity and severity. Namely,

inflammatory responses, oxidative stress, apoptosis, and auto-

phagy were significantly activated across cohorts. Coagulation,

platelet activation, and angiogenesis and cell adhesion path-

ways were inhibited. Several of these enriched pathways and

their activation patterns were indicative of impaired wound

healing (normal upkeep/repair mechanisms), consistent with an

independent meta-analysis study of co-expression networks

that identified an aberrant wound-healing module in men

exposed to combat trauma.35 Metabolic disturbances were re-

flected in changes in molecular components that are associated

with obesity, insulin resistance, T2DM, gluconeogenesis and

glycolytic pathways, mitochondrial dysfunction, and decreased

cellular energetics (Figure 5). Molecular indicators of inhibited

neurogenesis were associated with chronic but not with the

more recent nor to the subclinical PTSD (Figure 2E). Some of

these pathways—inflammation, oxidative stress, and mitochon-

drial dysfunction—have been reported in PTSD,2,7,8,27,35–40

whereas others—endothelial dysfunction, angiogenesis, and

wound healing—have been less frequently documented.35,41–43

These observations raise the possibility that molecular indica-

tors of perturbed angiogenesis (endothelial dysfunction), inflam-

mation, oxidative stress, and mitochondrial dysfunction may

play a role in the course and persistence of PTSD including

PTSD-related complications later in disease progression (Fig-

ure 5). In one hypothetical model, traumatic stress exposure pro-

motes the release of pro-inflammatory cells/molecules leading

to an inflammatory response with overproduction of ROS.15

Prolonged inflammation and oxidative stress may lead to pertur-

bation in a tetrad of pathophysiological processes, including

metabolic dysregulation, endothelial injury (circulatory system

damage), inflammation, and oxidative stress.44,45 Over time,

the persistence of these molecular changes may lead to long-

term sequelae, including cardiovascular disease, T2DM, obesity,
10 Cell Reports Medicine 4, 101045, May 16, 2023
insulin resistance, and neuropsychiatric disorders (anxiety,

depression, and cognitive decline) (Figure 5).3,25,46

Overall, this study uses a systems-level, multi-modal

approach to describe PTSD course, severity, and persistence

as a series of interconnected molecular pathways with discrete

protein, metabolite, cis-regulatory DMR, genetic, and miR com-

ponents (Figures 4 and S5B). Reported findings provide

support for theoretical models that describe PTSD systemic

pathogenesis associated with psychological trauma as an inter-

connected tetrad of inflammatory responses, oxidative stress,

mitochondrial/metabolic dysfunction,2,8,47 and impaired angio-

genesis, which have the potential to lead to cardiovascular

sequelae, T2DM, and/or neuropsychiatric disorders over time

(Figure 5),7,14,15,25,48,49 with the caveat that long-term medical

outcome data are not available for our subjects. The PTSD tetrad

of inflammation, oxidative stress, mitochondrial metabolism, and

vascular damage, which underlie impaired wound healing and

other comorbidities along disease progression and persistency,

are basic features we documented and will continue to describe.

Molecular indicators of suboptimal vasculature repair
We observed inhibition of angiogenic signaling pathways in

PTSD cases (activation Z score = �1, q < 7E-11). Impaired

angiogenesis and inhibited remodeling of the microvasculature

result from changes in the local production of angiogenic/antian-

giogenic factors and/or changes in endothelial responsiveness

to angiogenic stimuli. PTSD was associated with protein expres-

sion signature of impaired angiogenesis in the blood, potentially

reflecting microenvironments in the vasculature and organ sys-

tems that promote an antiangiogenic phenotype. Decreased

expression of VEGF, a major regulator of angiogenesis in many

tissues, and/or resistance to the effects of VEGF and platelet-

derived growth factor were important indicators for impaired

angiogenesis. Decreased expression of NOTCH1 (Figure S4

and Table S3), important in the stabilization of arterial endothelial

fate and cardiac valve homeostasis,45 further corroborates the

negative effect of PTSD on the cardiovascular system. A longitu-

dinal follow-up study of over 7.2 years demonstrated that veter-

ans with PTSD were at increased risk for developing heart failure

(hazard ratio = 1.47; 95% confidence interval = 1.13, 1.92)

compared with veterans without PTSD after adjusting for age,

gender, T2DM, hyperlipidemia, hypertension, BMI, combat ser-

vice, and military service period.48 Decreased angiogenesis is

also a risk factor for myocardial infarction and stroke in men

and women, independent of depression.14

PTSD-associated alterations in endothelial angiogenic pheno-

types and circulating biomolecules are also related to mitochon-

drial dysfunction, factors that may be related to metabolic

dysregulation. For example, NADPH oxidases and mitochon-

dria-derived ROS play critical roles in vascular aging by promot-

ing endothelial dysfunction.50 Like-wise, the plasma level of the

metabolite sphingosine-1-phosphate was differentially ex-

pressed in our PTSD cohorts and has network connections

with CDH5 (downregulated protein in PTSD cases compared

with controls) (Figure 4). Increased levels of sphingosine-1-phos-

phate may indicate decreased sensitivity of its receptor,

sphingosine-1-phosphate receptor 3 (S1PR3). S1PR3may regu-

late angiogenesis and vascular endothelial cell function.
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Previous reports show that elevated expression of S1PR3 in the

medial pre-frontal cortex promotes stress resilience by reducing

inflammatory processes in rats with chronic social defeat stress.

S1PR3 mRNA in blood was reported to be lower in combat-

exposed veterans with PTSD, and its expression negatively

correlated with symptom severity.51

Modulation of these pathways might be effective in improving

endothelial function and/or endothelial angiogenic capacity and

in restoring potentially impaired processes (in mitigating some

aspects of PTSD-related pathophysiological problems). Inflam-

mation, oxidative stress, and metabolic dysregulation also

were implicated in tissue injury and dysfunctions in the epithelia

of the vasculature system,15,52 potentially contributing to some

of the cardiovascular problems12,53,54 observed in PTSD pa-

tients (negatively impacting the health and lifespan of people

with the disorder).

Inflammation and oxidative stress
Molecular signatures of altered inflammation, oxidative stress,

integrin signaling, growth factor activity, metabolic dysregula-

tion, and inhibited angiogenesis can potentially affect wound

healing and other processes mediating PTSD pathogenesis.55

Stress can dysregulate immediate and regenerative immune

responses to cause excessive inflammation with functional dete-

rioration of multiple organ systems, including the noninfectious

injury to the heart,13,56,57 arterial inflammation,58 and cardiovas-

cular disease.15,54,59 Inflammatory response after traumatic

stress results in the recruitment and activation of leukocytes

from the bone marrow and local cytokine production in the

vasculature.13,15 Cytokine-mediated neutrophil activation pro-

duces ROS, proteases, cytokines, and lipids that propagate

endothelial injury. In response, endothelial cells increase expres-

sion of adhesion molecules, facilitating leukocyte binding and

leading to persistent inflammatory response with impaired

wound healing. ROS cause cell death via oxidative stress, and

excessive protease activity leads to increased degradation of

the extracellular matrix. Our study reports an increase in

apoptotic activity and increased expression of matrix metallo-

proteinase 9, an important mediator of remodeling after endo-

thelial injury.60 Aberrant cellular apoptosis and matrix degrada-

tion compromise endothelial structural integrity and result in a

maladaptive response to wounding. The innate immune

response can be further activated in response to apoptosis

and matrix degradation products leading to chronic inflamma-

tory response.

In addition to the systemic consequences of activated inflam-

mation as a whole, individual cytokines were reported as impor-

tant signatures for combat-related PTSD onset and risk. For

example, significantly altered pro-inflammatory chemokines

have been implicated as markers of PTSD onset, risk, and resil-

ience in the US military service members deployed to Iraq and

Afghanistan.61 CCL2, which was increased in SBC and

decreased in FCC, and CCL15 and CXCL12, which were

decreased in SBC and increased in FCC, were associated with

PTSD in the first year following deployment. CCL25, which was

increased in both SBC and FCC cohorts, was positively corre-

lated with PCL scores.61 Other classes of pro-inflammatory

-molecules, including complements and complement receptors
including C2, C3, and C5, which have been reported in neurode-

generative disorders and delaying wound healing,62 showed

modest but consistent increase in the cases of the SBC and

FCC cohorts.

We also observed increased activation of oxidative stress

(Z score = 1.93, q < 6.4E-3)63 and decreased expression of

ROS-scavenging proteins including SOD2. NADPH oxidases

are major sources of ROS implicated in T2DM, hypertension,

hypercholesterolemia, and aging. High NADPH oxidase activ-

ity in leukocytes may contribute to increased systemic inflam-

mation and early vascular aging.44 Impaired antioxidant activ-

ity was indicated by decreased SOD2 expression, lower

circulating L-arginine,50 and increased phosphorylation of

ERK1/2.44 Mitochondria-derived oxidants can lead to oxida-

tive stress as well, independently of NADPH oxidase, and

result in increased phosphorylation of ERK1/2, increased

MAPK activation, and production of inflammatory cytokines,

contributing to suboptimal mitochondrial activity and energy

metabolism.64

Metabolism and energy homeostasis
We observed increased levels of insulin and glucose in partici-

pants with PTSD (Figure 4 and Tables S2 and S3). Hyperglyce-

mic conditions, along with reduced expression of insulin recep-

tors, are markers of decreased insulin signaling. As a precursor

to T2DM, insulin resistancemay be indicative of glucolipotoxicity

associated with b cell dysfunction.18 Under insulin-resistant

states, insulin response is impaired in liver, skeletal muscle,

white adipose tissue, the vasculature, and the kidney leading

to hyperglycemia, hyperinsulinemia, high plasma free fatty acid

levels, and inflammation-activated serine/threonine kinases.

Either directly or via lipid intermediates, these adaptor proteins

and phosphatases lead to mitochondrial dysfunction or the in-

duction of endoplasmic reticulum stress (Tables S2 and S3).

Activation of these negative regulators results in chronically

reduced cellular response to insulin.18

Other pathways related to insulin signaling such as PI3K-AKT,

MAPK, PKC, ERK1/2, and gluconeogenesis were also altered in

our PTSD cohorts. In the setting of insulin resistance, various

metabolic and inflammatory factors inhibit the actions of insulin

receptor targets, leading to reduced activation of the PI3K-AKT

axis. The resulting reduction in nitric oxide (NO) production leads

to impaired vasodilation, further shifting the insulin signal from

the PI3K axis to the MAPK axis. Activation of PKC in insulin-

resistant individuals results in phosphorylated endothelial NO

synthase (eNOS), which negatively regulates further NO produc-

tion. The MAPK axis alters expression of the vascular cell adhe-

sion molecule. Dysregulation of insulin-regulated pathways

culminates in and sustains the pathophysiological alterations

found in metabolic syndrome, such as reduced endothelial

function, mitochondrial dysfunction, and inhibited glycolytic pro-

cesses, which are changes observed early in the course of the

development of T2DM.18

Insulin-resistant states, as a feature of metabolic dysregula-

tion, can exacerbate elevated inflammation, oxidative stress,

and impairments in angiogenesis and wound healing processes

potentially contributing to persistent PTSD and related

medical comorbidities. Under glucolipotoxicity conditions, cell
Cell Reports Medicine 4, 101045, May 16, 2023 11



Article
ll

OPEN ACCESS
proliferation and migration are decreased, ROS production is

increased, AKT phosphorylation is decreased, and ERK1/2

phosphorylation is increased, leading to impaired fibroblast

proliferation and migration mediated by oxidative stress and

hence to delayed wound healing in diabetic conditions.15,46

These results provide support for the hypothesis that the

PTSD tetrad of symptoms are inter-related at the molecular

level.

We also observed increased plasma lactate and pyruvate and

decreased citrate levels, suggesting impaired mitochondrial

Krebs cycle/TCA cycle, which may also indicate a pro-diabetic

state or obesity or shunting of pyruvate metabolism from aerobic

(high ATP production) to anaerobic (low ATP production) meta-

bolism.3,7,65 Hyperglycemia and chronic inflammation fuels

ERK1/2 signaling coupled with glycolysis in pro-inflammatory

macrophages, which contribute to the expansion of white adi-

pose tissue leading to insufficient vascular remodeling. Hypoxia

(one of the significant pathways; Figure 2G) increases lactic acid

production by anaerobic metabolism, which was shown to be

higher in obesemice than in leanmice. Generally, adipose hyper-

trophy, hyperglycemia, and chronic inflammation exacerbate

-insulin resistance and metabolic disorders.66

Additionally, we observed decreased levels of polyunsatu-

rated fatty acids, omega-3 fatty acids, and essential fatty

acids in PTSD cases compared with controls (Figure 4). Un-

saturated fatty acids are implicated in both the wound healing

process and insulin resistance states. Previous direct evi-

dence has shown that fatty-acid-induced gut-brain signaling

attenuates neural and behavioral effects of sad emotion in hu-

mans.67 Fatty acids regulate lipid metabolism and cellular dif-

ferentiation and proliferation, in addition to contributing to

metabolic syndrome-related disorders (e.g., insulin resistance

and hypercholesterolemia).67 Our multi-modal integrative ana-

lyses identified that proteins associated with the fatty acid

metabolites (Figures S5B and 4) may also play a role in

PTSD-related somatic pathologies. Collectively, the reported

multi-omics integrative profiling is consistent with metabolic

dysregulation along with reduced energy production in PTSD

cases compared with controls.

Potential genetic risk factors associatedwith significant
proteins (altered pathways)
Potential genetic risk factors were found to be related with

proteins significantly associated with wound healing and in-

flammatory response (PIK3CG and GRB2), neurogenesis

(CAMK1D and NCAM1), cognitive disorders (KIRREL3,

CADM1, ROBO2, and C3), vasculature development/angio-

genesis (HS6ST1 and EFNA5), oxidative stress, and regulation

of nitric oxide (MB). These associations are important indica-

tors of the potential roles of significant genetic variants in

regulating the corresponding proteins and their probable roles

as risk factors. For example, genetic variations at the PIK3CG

loci have been associated with attention-deficit/hyperactivity

disorder,68 CAMK1D loci in T2DM,69 NCAM1 loci in cardiovas-

cular problem,70 NRXN3 loci in neurodevelopmental/neuro-

psychiatric disorders,71–74 cardiovascular disease,75–78 and

variants at TGFBR3 loci are shown to be risk factors in schizo-

phrenia, bipolar, and major depressive disorder,79 vasculature
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development, and cardiovascular health.80,81 These evi-

dences support that genetic variants associated with signifi-

cant proteins might underlie PTSD predisposition.

Taken together, the combined processes associated with

angiogenesis, inflammation, oxidative stress, endothelial

dysfunction, metabolic dysregulation, and other somatic/phys-

iological pathologies in the acute presentation of PTSD may

lead to cardiovascular and neuropsychiatric complications in

the later progression of the disorder. The data in the recent

onset PTSD cohort allowed us to identify molecular indicators

that were consistent with the literature, including pathways

indicative of tissue injury and suboptimal vasculature repair.

Inflammation and ROS production may contribute to tissue

damage, including endothelial cell dysfunction and vasculature

damage, which may progress to cardiovascular morbidities and

impaired neurogenesis. The integrated analysis facilitated dis-

covery and description of the interconnections among path-

ways significantly correlated with facets of PTSD-related symp-

toms. We speculate that vasculature damage and related

physiological pathologies potentially due to inflammation and

oxidative stress may precede neurological sequelae (e.g.,

cognitive decline). Our findings raise the possibility that tissue

injury and aborted healing of the injured tissue may contribute

to the onset, course, and persistence of PTSD including impor-

tant comorbidities (cardiovascular diseases, metabolic dysre-

gulation, T2DM, chronic pain, and neuropsychiatric disorders)

(Figure 5).

Although PTSD has primarily been conceptualized as a brain

disease, it is increasingly being recognized as a systemic condi-

tion affecting multiple physiological parts and associated with

divergent chronicmedical conditions.7,82–84 The present findings

are consistent with systemic physiological perturbations in

PTSD. The relevance of these peripheral markers to brain

biochemistry and function is uncertain. However, numerous lines

of evidence suggest that even peripheral oxidative, inflamma-

tory, vascular, and metabolomic dysregulation can affect brain

function and perpetuate PTSD symptoms.37–39,85–88 Thus,

PTSD is coming to be seen as a systemic disorder rather than

as a purely psychological illness.7,8,89

Conclusions
We identified reproducible molecular signatures of combat-

related PTSD including sequence-specific genetic variants,

epigenetic marks, microRNA, and proteomic and metabolomic

features indicative of inhibited angiogenesis, activated inflam-

mation, oxidative stress, and metabolic dysregulation. Degrees

of alterations of these multi-modal molecular signatures in blood

samples of participants with chronic and more recent onset

PTSD were significantly correlated with the different spectra of

disease progression and were generally proportionate to

severity and chronicity of the different facets of PTSD symptoms.

The altered molecules and pathways indicated interconnec-

tion and convergence of the underlying molecular mechanism

and provided relations between psychiatric and somatic comor-

bidities (associated with combat-related PTSD) at the molecular

level. Namely, molecular signatures of elevated inflammation

and oxidative stress, metabolic dysfunction, and inhibited angio-

genesis were implicated in tissue injury including impaired tissue
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repair and epithelial dysfunctions of the vasculature system. Tis-

sue injury and impaired healing of the injured tissue may

contribute to the onset, course, and persistence of PTSD

including comorbidities: cardiovascular diseases, T2DM,

chronic pain, and neuropsychiatric problems. These observa-

tions support that multi-omics features that were significantly

altered and correlated with PTSD symptoms seem to mediate

the course and persistence of PTSD in addition to being potential

markers across its temporal and severity trajectories. Such a

systems-level understanding of PTSD can help to address

PTSD-associated dysfunctions in a concerted approach and

may contribute to developing prevention, diagnosis, and treat-

ment strategies.

There are multiple strengths of this study, including (1) the

use of well-characterized cohorts of military personnel that

cover a spectrum of severity and chronicity of PTSD symp-

toms. (2) There was systems-level integration, based on

multi-omics profiling, to interrogate circulating molecular sig-

natures of PTSD, including both regulatory elements (DMRs

and miRs) and functional components (metabolites and pro-

teins). Importantly, the molecular signatures -correlate with

the clinical diagnostic criteria for PTSD. (3) Data from females

in both active-duty and veteran cohorts were available for

qualitative comparisons with the male military training, vali-

dating, and testing cohorts. (4) This study was conducted in

a group where some of the socio-economic factors such as

diet, poverty, and systemic racism were less likely to

confound the findings.

Limitations of the study
Limitations of the study include (1) the smaller sample size of

female cohorts and sex-related unmeasured potential con-

founders such as menstrual cycle or hormonal drugs. (2)

This study was focused on veterans and active-duty service

members, and it is not clear if the findings will generalize in

the wider civilian population. Particularly, they may not gener-

alize well for populations most at risk, which also have signif-

icant exposures to other environmental and psychosocial fac-

tors that contribute to adverse stress-related behavioral and

physical health outcomes. (3) The non-PTSD control groups

had all been exposed to PTSD diagnostic criterion A-level

combat trauma, yet they had not developed PTSD. Therefore,

they may represent an atypical highly resilient group, as

opposed to a non-exposed healthy control group (except

the longitudinal sub-cohort). Having a non-exposed control

group would be important in deducing whether the molecular

signatures we observed relate to PTSD in the cases or, rather,

to resiliency in the controls. In any event, having combat-

trauma-exposed controls facilitates interpretation of our

data, as pointing to the development of PTSD, rather than

non-specific effects of trauma exposure itself, in producing

the observed effects. (4) Although several of the physiological

perturbations we observed may predispose to the develop-

ment of serious medical conditions such as diabetes mellitus

type II (DMII), cardiovascular disease (CVD), immune dysfunc-

tion, etc., we do not have long-term medical follow-up data on

participants to determine if these perturbations did in fact

presage such conditions in our participants. The longitudinal
sub-cohorts have smaller n and were followed for a relatively

short period (<2 years). (5) Besides the first three principal

components from GWAS ancestry genotype, datasets were

also corrected for the confounding effect of ‘‘self-reported

race,’’ a social construct, and may not reflect the actual

ancestry.
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cess to protein-metabolite interaction databases

B Statistical analysis of differentially methylated regions

B Multi-omics integration and graphical representation of

results

B Networks, heatmaps, graphs and other forms of

graphical representations

B Genome-wide association study (GWAS) summary

data and protein quantitative trait locus (pQTL)analysis
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HumanMethylation450 BeadChip Illumina Inc., USA https://www.illumina.com/content/

dam/illumina-marketing/documents/

products/datasheets/datasheet_

humanmethylation450.pdf

Zymo Genomic DNA Clean &

Concentrator- 5 kit

Zymo Research, Orange, CA, USA Cat #D4067; https://www.zymoresearch.com/

QIAamp DNA Blood midi kit Qiagen, USA Cat # 51185; https://www.qiagen.com/

us/products/

Deposited data

Million Veteran Program (MVP) -

PTSD GWAS summary statistics

consists of 186,689 participants

for quantitative analysis and

214,408 (algorithmically defined

36,301 cases and 178,107 controls)

total participants

Stein et al.29 N/A

Psychiatric Genomic Consortium

(PGC) - PTSD GWAS summary

statistics freeze-2 summary

statistics data for European-

ancestry participants (23,212

cases and 151,447 controls)

Nievergelt et al.30 https://pgc-ptsd.com/

Psychiatric Genomic Consortium

(PGC) - MDD GWAS summary

statistics data (59,851 cases and

113,154 controls)

Wray et al.90 https://pgc.unc.edu/for-researchers/

working-groups/mdd/

UK Bio Bank broad GWAS depression

summary

statistics data (113,769 cases and

208,811 controls)

Howard et al.91 http://www.ukbiobank.ac.uk/

postmortem gene expression

data from brain-subregions of PTSD

cases and controls

Girgenti et al.28 https://www.nature.com/

articles/s41593-020-00748-7

Multi-omics and clinical datasets generated

from this study

SysBioCube https://sysbiocube-abcc.ncifcrf.gov

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R programming versions 4.1 & 4.2 The R Project for Statistical Computing https://www.r-project.org/

Manuscript custom R code Github https://github.com/smuhie/multi-

omics/blob/main/hPTSD_Transcriptome.R

ggplot2,92 weighted gene correlation network

analysis (WGCNA),93,94 ComplexHeatmap,95

circlize96 igraph97 metaboanalystR,98,99

biomaRt,100 edgeR, Limma,10 ChAMP v2.14.0,

RnBeads, MatrixEQTL,101 minfi v1.30.0

Comprehensive R Archive Network

&

Bioconductor v3.16

https://www.r-project.org/;

www.bioconductor.org

KEGGscape, Bingo (GO) and Reactome FI Cytoscape version 3.9 packages www.cytoscape.org

Python versions 3.9 & 3.11 Python Software Foundation https://www.python.org

Gephi92 version 0.10.1 The Open Graph Viz Platform https://gephi.org/

SPSS IBM, Armonk, NY https://www.ibm.com/spss/

Ingenuity Pathway Analyses (IPA) QIAGEN Redwood City, CA https://digitalinsights.qiagen.com/

products/qiagen-ipa

NetworkAnalyst Open-source online software https://www.networkanalyst.ca
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Marti

Jett (marti.jett-tilton.civ@health.mil).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All the multi-omics and clinical datasets are available with permission through the SysBioCube, at https://sysbiocube-abcc.

ncifcrf.gov. DOI is listed in the key resources table.

d Custom manuscript-related code is located https://github.com/smuhie/multi-omics/blob/main/hPTSD_Transcriptome.R DOI

is included in the key resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and informed consent of participants
Case-control cohorts were recruited as part of the PTSD Biomarker Consortium as previously described.2,27,31 For all cohorts, study

procedures were approved by the Institutional Review Board of NYU Grossman School of Medicine, as well as the Human Research

Protection Office of the United States Army at Fort Detrick, Maryland and Army Command of the 101st Airborne at Fort Campbell,

Kentucky. Participants were given written informed consent. All works and consents were obtained with the approval of the involved

Institutional ReviewBoards. Ethical principles for the conduct of human researchwere followed as described.31 And the investigators

have adhered to the policies for protection of human subjects as prescribed in AR 70–25.

Cohort description
Veterans were recruited from Operation Enduring Freedom (OEF) and/or Operation Iraqi Freedom (OIF). Study approval, recruitment

processes, inclusion criteria, clinical data collection, and clinical assessment parameters for veteran participants have been

previously described.2,27 Briefly, participants met the Diagnostic and Statistical Manual of Mental Disorders DSM-4 PTSD criteria

for current warzone-related PTSD for at least 3 months duration, and a Clinician-Administered PTSD Scale (CAPS) total score

R40. PTSD-negative controls were combat-exposed (OEF/OIF) veterans who were negative for lifetime combat or civilian PTSD

and had a current CAPS total score <20.
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Active-duty soldiers (n = 180) were recruited from the 101st Airborne at Fort Campbell, Kentucky and were assessed before and

after being deployed to Afghanistan in February 2014. This longitudinal study followed-up recruited participants at three different

phases (temporal steps). The first phase of recruitment occurred during a 2-week period immediately prior to deployment in February

2014. The second phase occurred 3 days after returning from a 10-month tour of duty. The third phase occurred 90 to 180 days post-

deployment. The deployment history and inclusion/exclusion criteria of participants are detailed earlier.31 PTSD symptoms were

assessed using the validated PTSD Checklist (PCL), a 17-item, DSM-5-based self-report measure. The rapid tempo of the deploy-

ment and limited time with each participant precluded administering a structured diagnostic interview. Current probable PTSD diag-

nosis was based on a PCL total scoreR38. Participants with PCLR22 and PCL <38 were regarded as subthreshold PTSD, whereas

subjects with PCL <22 were controls. Cut scores were based on a conservative application of recommendations for screening for

PTSD with the PTSD CheckList for DSM-5 (PCL-5) in active-duty military personnel (Wortmann, Psychological Assessment,

2016), Demographic data, such as age, gender, and self-reported race, were also collected. Controls (non-PTSD) were combat

exposed and age-, self-reported race-, deployment time-, and sex-matched participants.

Cohort composition
The chronic PTSD cohorts included veteran participants recruited into 3 independent case-control cohorts (Figure 1). The Systems

Biology Cohort (SBC) Training (n = 218) included combat-exposed male OEF/OIF veterans with PTSD (n = 109) and age-matched

combat-exposed male OEF/OIF veterans without PTSD (n = 109). The SBC Testing (n = 82) included combat-exposed male OEF/

OIF veterans with PTSD (n = 43) and age-matched, combat-exposed male OEF/OIF veterans without PTSD (n = 39). The participants

in the training and testing sets of SBC were recruited and samples were collected independently two years apart. The SBC Female

(n = 40) included combat-exposed female OEF/OIF veterans with PTSD (n = 19) and age-matched, combat-exposed female OEF/OIF

veterans without PTSD (n = 21).

Recent PTSD, Fort Campbell Cohort (FCC), included active-duty participants divided into 4 case-control groups (Figure 1). The

FCC Validation (n = 91) included combat-exposed male Fort Campbell active-duty participants with PTSD (n = 47) at 3-day or 90

to 180 days post-deployment (most post-deployment samples were phase 3, 90–180 days) and male Fort Campbell active-duty

participants without PTSD (n = 44) 2 weeks pre-deployment. The FCC Subthreshold (n = 112) included combat-exposed male

Fort Campbell active-duty personnel with subthreshold PTSD (n = 68) and male Fort Campbell active-duty personnel without

PTSD (n = 44) 2 weeks pre-deployment. The n = 44 participants without PTSD in the FCC Subthreshold group were the same n =

44 participants included in thematched control group in the FCC Validation group. The FCC Longitudinal (n = 26) were Fort Campbell

male active-duty personnel cohorts with PTSD after combat exposure at 90 to 180 days post-deployment (case; n = 26 phase 3 sam-

ples) and the same participants before combat exposure at 2 weeks pre-deployment without clinical PTSD (control; n = 26 phase 1

samples). The FCC Female group consisted of combat-exposed female Fort Campbell active-duty participants with PTSD (n = 8) and

female Fort Campbell active-duty participants without PTSD (n = 13) 2 weeks pre-deployment. Demographic composition of both

SBC and FCC cohorts given (Table S4).

Inclusion of civilian cohort for qualitative comparison
The Civilian cohort included 19male participants: 10 PTSD+ (CAPSDCombined Life currentR 15), and 9 PTSD- (CAPSDCombined

Life current% 5). These participants were recruited as part of the Grady Trauma Project and included for qualitative comparison with

the veteran and active-duty cohorts. Since the n of civilian is small, we excluded them from the main text.

The civilian participants were few in number and seem to bemore heterogeneous (as it was inferred from their molecular datasets).

And yet we observed consistency with other cohorts in terms of enrichment significances of some of the core pathways (Figure S5).

But not so consistent in terms of activation directions. It seems that much larger N needed to identify reliable PTSD signal to over-

come the diverse trauma types and heterogeneity of civilian participants.

Overall, the sampling strategies of this study were designed to include participants with chronic PTSD and those with more recent

trauma exposure, including those with a spectrum of symptom severity, providing an opportunity for identifying molecular signatures

and pathways that were altered across the course of disease progression.

METHOD DETAILS

Cohorts, clinical assessment, and blood collection/processing assays and data analysis steps are shown diagrammatically in

Figure 1.

Clinical assessments
Active-duty cohorts were clinically assessed prior to stressor exposure during the index deployment as well as at post-stress expo-

sure phases, and included sex, age, self-reported race, education, and BMI, as well as clinical self-report.31 In addition, participants

were evaluated for psychological symptoms and functioning, attention, emotion regulation, and executive function. Comprehensive

whole blood, plasma, serum, and buffy-coat markers were collected. Complete blood count, lipid panel, inflammatory markers, liver

functioning tests, metabolomics, and methylation markers were assessed.31
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Blood draws (from both veterans and active-duty)
Blood samples were drawn in the morning after a night of fasting in appropriate collection tubes, and were processed and aliquoted

for storage into whole blood, serum, plasma, buffy coat or peripheral blood mononuclear cells (PBMCs) depending on the assay (Ta-

ble 1 and S8). Blood samples for serum separation were collected in SST tubes and were processed following the manufacturer’s

protocol. EDTA plasma was used for metabolomics assays. PAXgene DNA tubes were collected for DNA isolation. Samples were

inventoried and stored frozen at �80�.

Molecular assays and data analysis
Blood sampleswere assayed for proteomics, DNAmethylomes,metabolomics, microRNAs, immune cell counts, endocrinemarkers,

cytokines, and routine clinical labs. Data were normalized and cleansed; covariate analysis was conducted; and weighted gene

correlation network analysis (WGNCA) was conducted to identify modular networks and module preservation across cohorts. Unbi-

ased pathway enrichments, activation status of significant pathways and correlations of pathways with PTSD clinicals were

determined.

Serum samples processing for SomaLogic proteomic assays
Whole blood samples were drawn directly into SST tubes via standard phlebotomy technique and all serum samples from SST tubes

were processed following standard serum isolation procedures. Briefly, this procedure involved inverting SST tubes 5 times and leav-

ing them at room temperature for 30min to allow clotting, followed by centrifuging for 10min at 1300rcf in a swinging bucket rotator at

room temperature. Isolated serum samples were aliquoted and immediately stored at �80�C until use. Other data types, such as

routine clinical lab values and physiological measurements, were collected using standard procedures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Proteomic assays
Proteins were evaluated using Aptamer based assay using SomaLogic platform consisting of 1.3K proteins (SomaLogic, Inc.,

Boulder, CO). Serum samples isolated from whole blood, were randomized across 7 high throughput 96 well plates (to minimize

batch difference). Sample aliquots (160ul) were shipped frozen to the Center for Human Immunology and Autoimmunity, and

Inflammation (CHI) facility, National Institute of Allergy and Infectious Disease, NIH (Bethesda, MD, USA) for the SOMAscan pro-

teomic assay. The process for proteins assay and raw data normalization has been described.102,103 Each 96 well plate had CHI

quality control (QC), SomaLogic calibrators, SOMAscan QC and no protein/buffer only controls. Quality control and calibrators

are pooled samples composed of the same matrix as the biological samples being measured in the plate. Expression levels

of 1305/1322 proteins/probes from cryopreserved serum samples were assayed on a 1.3K SOMAscan hybridization

microarray platform (SomaLogic, Inc., Boulder, CO). The proteomics data were expressed as abundance in relative fluores-

cence units.

Normalization and data cleansing
Proteomics data were normalized in 4 steps using 1) hybridization normalization which removes variability in the readout of individual

microarrays; 2) median signal normalization which removes inter-sample differences within a plate due to technical differences such

as pipetting variation and 3) between-run calibration normalization which removes variance across assay runs; and 4) inter-plate

normalization using CHI QC which is performed to allow normalization across experiments.102,103

Covariate analysis for confounders and filtering of differentially altered proteins between cases and controls
Covariate analysis was used to identify potential confounders. We applied regression methods for assessing covariates between

PTSD cases and controls for BMI, age, ancestry, self-reported race, smoking/cotinine, mild TBI, BDI total, education, and sample

collection/processing batches. Network modules identification and cutoffs for significances were done at the protein and pathway

levels. The less significant protein from modules were filtered out by intersecting with a list of significant proteins obtained through

comparative analysis of PTSD cases vs. control in each cohort. Overall, multi-layer stringency was used for inclusion of protein nodes

and corresponding pathways.

Weighted gene correlation network analysis (WGCNA) for identification of modular protein networks and module
preservation across cohorts
Weighted gene co-expression network analysis (WGCNA) was used to identify modular networks of proteins based on a correlation

of protein expression profiles.104 Networks were created using the WGCNA R package’s block-wise Modules function with a soft-

thresholding power of 4 to create unsigned networks with a minimum module size of 30 in the SBC Training cohort. The modules, in

each network, were evaluated for preservation in the other cohorts using theWGCNARpackage’s module preservation function with

300 permutations and using each of the originally identified networks as the reference network. Modules were visualized by selecting

the top significant proteins and nodes with the highest soft connectivity within the module and filtering out any connections between

those nodes with a correlation <0.05. Soft connectivity was calculated as the sum of correlations between the expression of a protein
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and all other proteins in the module. The detailed step-by-step procedures of WGCNA analyses and module preservation calcula-

tions are given.93,94

Comparability of protein datasets across cohorts
Protein datasets from different cohorts were assessed by correlating measures of average protein expressions and overall connec-

tivity as indicators of similarities and to ascertain comparability.94 Modular networks were identified using datasets from the SBC

Training cohort (veteran cohorts of N = 218: 109 cases and 109 controls) (Figure S1).

Choosing the soft-thresholding power: Analysis of network topology
Undirected correlation was used to identify co-expressed networks (modular protein sets). Co-expression similarity was raised to the

soft thresholding power of 4 to calculate adjacency to identify weighted protein networks. The soft thresholding power 4 was chosen

based on the criterion of approximate scale-free topology (using the function pick SoftThreshold that performs the analysis of

network topology which aids in choosing a proper soft-thresholding power) (Figure S2).

Calculation of Topological Overlap Matrix (TOM)
To minimize the effects of noise and spurious associations, we transformed the adjacency in Topological Overlap Matrix, and calcu-

lated the corresponding dissimilarity. Then hierarchical clustering was used to produce a hierarchical clustering tree (dendrogram).

Branches of the dendrogram group densely interconnected, highly co-expressed proteins together. Module identification amounts to

the identification of individual branches (‘‘cutting the branches of the dendrogram’’) using the Dynamic Tree Cut for branch cutting

from the package DynamicTreeCut. Similar modules that were highly co-expressed and highly correlated based on their eigengenes

were merged.

Calculation of consensus topological overlaps across datasets
The consensus Topological Overlap across datasets was calculated by taking the component-wise (‘‘parallel’’) minimumof the TOMs

in individual datasets. Thus, the consensus topological overlap of 2 proteins is only large if the corresponding entries in the other

datasets are also large.

Qualitative and quantitative measuring of network preservation at the module level
UsingWGCNA variables from the SBC Training dataset andmodule definitions, we assessed howwell modular networks identified in

the SBC Training dataset were preserved in datasets across the other 3 cohorts (SBC Testing, FCC Validation and FCC Subthresh-

old). As a qualitative assessment, we imposed the modules from SBC Training on the network for the dataset from the other cohorts,

and then plotted the resulting networks. These module labels still grouped together in datasets of other cohorts and were highly pre-

served. To quantify module preservation, we took advantage of theWGCNA built-in module Preservation function to assess howwell

a module in SBC Training was preserved in the other studies by calculating Z score summary. We assessed the preservation of each

module in each of the other cohorts (SBC Testing, FCC Validation, and FCC Subthreshold) usingmodule preservation Z score.105 For

example, the preservation of each module from SBC Training cohort was calculated in the SBC Testing, FCC Validation and FCC

Subthreshold cohort’s datasets, thus creating a comprehensive quantitative measure of similarity between every module of every

network (Figures 2A, 2B, and S3B). A module was defined as highly preserved in another cohort if its preservation Z score was above

10, and moderately preserved between 5 and 10.105

Intramodular analysis: Identifying proteins with high protein significance and module membership
Using the protein significance and module membership measures, we identified proteins that were significantly altered in PTSD

cases as well as module membership in the modules significantly correlated with PTSD clinical variables. We plotted scatterplot

of protein significance versus module membership in the 4 identified modules that were highly correlated with PTSD (Figures 2A,

2B, and S3B). Modules with high association with PTSD symptoms and clinical variables were identified, and their central players

by the module membership measure.

Persistency (across-cohorts) of modular networks and member proteins of modules that were significantly correlated with PTSD

clinicals were checked using protein expression parameters (including assessing their significance levels and direction of expression

or fold changes).

Relating modules to external clinical traits
Quantifying module – PTSD associations

To identify protein modules that are significantly associated with PTSD, the summary profile (eigengene)106 for each module was

correlated with clinical variables looking for the most significant associations. We quantified associations of modular networks

with PTSD by defining member proteins significance as (the absolute value of) the correlation between the module and the clinical

measurements relevant to PTSD. For eachmodule, we also defined a quantitative measure of module membership as the correlation

of the module eigengene and the protein expression profile. This allowed us to quantify the similarity of all proteins on the platform

(proteins that passed normalization QC) to every module.
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Using functional and trend associations
Functional grouping of proteins met 2 criteria: proteins with the same functions as the significant proteins (as evidenced in the liter-

ature by direct experiments), and which also have the same directional expression (trending in the same direction as their co-func-

tional significant proteins).

Meta-analyses across cohorts on multiple conditions
Twometa-analysis methods were used to identify proteins persistent, mainly, across SBC Training, SBC Testing and FCC Validation

cohorts.

Combining p Values

Stouffer’s combined probability test followed by Benjamini-Yekutieli’s correction for multiple hypothesis testing was used to identify

proteins that had a q-value <0.05 across SBC Training, SBC Testing and FCC Validation cohorts. Stouffer’s method (based on in-

verse normal transformation) incorporates weight (i.e., taking into account the sample size of each cohort) into the calculation, which

usually gives more sensitive and better results.

Combining effect sizes

Random effects model (REM), which gives more conservative results with more confidence, was used. REM’s effect size is based on

the difference between 2 groupmeans divided by standard deviation. The estimated effect size in each cohort was assumed to come

from an underlying true effect size plus measurement error, in addition to the assumption that each cohort contains a random effect

that can incorporate unknown cross-study heterogeneities in the model (which could be due to a batch or cohort difference). Statis-

tical heterogeneity, in this model, were estimated using Cochran’s Q tests.

Filtering for proteins with the same expression directions across cohorts
Proteins with the same expression directions across cohorts (that were also at least somehow significant p < 0.1) were selected as an

additional filtering approach.

Summary of Methods used for filtering proteins used for down-stream pathway and correlation analyses.

Identification of differentially expressed proteins that were persistent across cohorts
We employed 3 major steps and approaches to identify significant proteins that were persistent across (at least the three main co-

horts of participants: SBC Training, SBC Testing, and FCC Validation).

1. Identification of modular networks in the training cohort that were preserved in the SBC Testing, FCC Validation and FCC Sub-

threshold cohorts (Figure S3). Relevant modular networks were identified by correlating each of the preserved module with

PTSD and other important clinical measurements. Four of the six preserved modular networks were significantly correlated

with PTSD, and clinical symptoms: re-experiencing, avoidance and hyperarousal. Then significantmember proteins were iden-

tified by intersecting member proteins of each of the four (PTSD relevant) modules with list of proteins that were filtered using

FDR correction at q < 0.1 in the SBC Training cohort. These sets of proteins were found to have the most overlap with the list of

proteins identified using independent meta-analyses algorithms (described next) across the SBC Training, SBC Testing, and

FCC Validation cohorts.

2. We carried out independent meta-analyses across the SBC Training, SBC Testing and FCC Validation cohorts using two main

algorithms: (i) Stouffer’s method of combining p values (based on inverse normal transformation which incorporates weight

based on sample size of a cohort) which is more sensitive that Fisher’s; (ii) combining effects sizes, using random effects

models which was selected based on statistical heterogeneity estimated using Cochran’s Q tests.

3. Using functional and trend associations. Functional grouping of proteins which met two criteria: proteins with the same func-

tions as the significant proteins (as evidenced in the literature by direct experiments), and at the same time they have the same

directional expression (trending in the same direction as their co-functional significant proteins).

Dimension reduction to find correlation scores for each pathway (using WGCNA function)
Correlation values for each pathway was obtained by reducing pathway data matrix to vectors – that is, if there are 40 proteins asso-

ciated with inflammation (a mix of up and down regulated proteins corresponding to a specific subject or sample), then finding the

resultant value of all 40 proteins for that specific subject results a single value (here, we are more interested in the resultant effect of a

specific pathway on each of the subjects/samples) – so inflammatory pathway will have a single value for each subject or sample (a

vector of values corresponding to subjects); the idea of converting matrix to vector follows the principle of dimension reduction

without loosing much of the important information (which can be done using a linear algebra principle of calculating eigenvalue given

a constraint condition).

If there is a matrix A and vector u, then A u = lu whereas l is the eigenvalue

which means for non-zero u, A can be represented by l for a given value of u to make it clear using very simple example of a 23 2

matrix; A =

�
2 1
4 2

�
and u =

�
1
2

�
then A u =

�
4
8

�
= 4

�
1
2

�
which means lu = 4

�
1
2

�
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Hence l = 4 (eigenvalue) given that u =

�
1
2

�
which is the eigenvector.

That is, the matrix A has an eigenvalue of 4 for the eigen vector, u =

�
1
2

�
, and the A u =

�
4
8

�
; is a column vector, which is the prod-

uct of the 23 2 matrix with the eigenvector, belonging to the eigenvalue 4. For different values of u; the value of l change (value of l

for A is constrained by the values of the u vector).

Integration of significant proteins with other omics (microRNA, DNA methylation, metabolomics) datasets.

Identification of differentially expressed miRs and regulatory pairing with significant proteins

MiR datasets were analyzed for significance using edgeR (R package) or moderated t-test by adjusting for ancestry and BMI using

the Limma (R package) comparing combat-exposed PTSD-positive to combat-exposed control for the PTSD effect. The search for

down-stream regulatory targets for differentially expressed miRs among significant proteins was done by connecting to the data-

bases: TargetScan Human, TarBase, miRecords and Ingenuity Expert Findings via ingenuity pathway analysis (https://

digitalinsights.qiagen.com/products/qiagen-ipa).

Statistical analyses for significant metabolites and access to protein-metabolite interaction databases
Significant metabolites with differential levels were identified using R for the PTSD effect and were adjusted for coffee/energy drink

intake, age and BMI. We used custom R functions/scripts and packages MetaboAnalystR98,99 and biomartR100 to access multiple

databases of protein-metabolite interaction pathways and to search for the literature; wewere thus able to link significantmetabolites

and proteins to relevant pathways and phenotypes. The drug-metabolite relations were identified using a repository of molecular in-

teractions of ingenuity pathway analyses (IPA) (QIAGEN Redwood City, CA).

Statistical analysis of differentially methylated regions
Differentially methylated regions were identified using RnBeads (R package from Bioconductor), and Limma (R package). The out-

puts from RnBeads and Limma were overlapping with comparable significances (and rankings) of DMRs. Outputs from Limma were

used for downstream integration since it was more straightforward in adjusting for confounders (age, the first three principal com-

ponents of GWAS genotyping data for ancestry, BMI, cell composition, smoking status) as covariates while fitting the linear model.

Multi-omics integration and graphical representation of results
Clinical and multi-omics data integrations

MicroRNA protein regulator target interactions were identified using IPA. Protein-metabolome relations were created using

metaboanalystR98,99 biomaRt100 and custom R functions. Some of the regulatory relations among cis-regulatory sites (differentially

methylated regions or DMRs) and the corresponding proteins were identified based on the Encyclopedia of DNA Elements (ENCODE)

v99-102 (https://www.encodeproject.org) and the literature accessed using biomaRt100 and custom R functions.

Networks, heatmaps, graphs and other forms of graphical representations
Custom R scripts/functions along with multiple R packages from the Comprehensive R Archive Network (https://cran.r-project.org/)

and Bioconductor (www.bioconductor.org) such as ggplot2,92 WGCNA,93,94 ComplexHeatmap,95 circlize96 and igraph97 were used

for graphical representation of analysis results. Networks were also rendered using Cytoscape (www.cytoscape.org), R and its plu-

gins, igraph, and Gephi.107 Pathway and biological processes significantly associated with differentially changed proteins and me-

tabolites were identified from Kyoto Encyclopedia of Genes and Genomes (KEGG),108 Reactome109 and GO110,111 databases ac-

cessed using custom R/python scripts/functions and biomaRt, as well as using KEGGscape, Bingo and Reactome FI plugins of

Cytoscape, and NetworkAnalyst (https://www.networkanalyst.ca).

Genome-wide association study (GWAS) summary data and protein quantitative trait locus (pQTL)analysis
GWAS result tables were obtained from four large-scale publications: (1) MVP-PTSD genetic study consists of 186,689 participants

for quantitative analysis and 214,408 (algorithmically defined 36,301 cases and 178,107 controls) total participants,29 (2) PGC-PTSD

freeze-2 summary statistics data for European-ancestry participants (23,212 cases and 151,447 controls)30 and (3) PGC-MDD sum-

mary statistics data (59,851 cases and 113,154 controls),90 and (4) United Kingdom BioBank (UKBB) broad depression summary

statistics data (113,769 cases and 208,811 controls).91

Genomic locations for genes coding PTSD associated proteins were obtained from ensemble database. The genetic variant with

the lowest P-value in the GWAS data located in between the start and end location of the genes was identified for each gene. pQTL

analysis was done by regressing normalized protein levels on additively coded genotype for common variants (minor allele frequency

[MAF]>0.05). This analysis was done on SBC (n = 267) and FCC (n = 138) using MatrixEQTL R package.101 Only cis-regulated pQTL’s

are considered (defined as variants located within 1Mb of the protein coding gene).
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