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ABSTRACT 
We demonstrate a design scheme for weakly coupled 

resonators (WCRs) by integrating the supervised learning 

(SL) with the genetic algorithm (GA). In this work, three 

distinctive achievements have been accomplished: 1) the 

precise prediction of coupling characteristics of WCRs 

with an accuracy of 98.7% via SL; 2) the stepwise 

evolutionary optimization of WCR geometries while 

maintaining their geometric connectivity via GA; and 3) 

the highly efficient generation of WCR designs with a 

mean coupling factor down to 0.0056, which outperforms 

98% of random designs. The coupling behavior analysis 

and prediction are validated with experimental data of 

coupled microcantilevers from a published work. As such, 

this newly proposed scheme could shed light upon the 

structural optimization methods for high-performance 

MEMS devices with high degree of design freedom. 
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INTRODUCTION 

The application of the mode localization phenomenon 

in the weakly coupled resonators (WCRs) has shown 

promising potential in the design and development of 

highly sensitive micro electrometers, force/strain sensors, 

and accelerometers [1]. In general, WCR designs with low 

coupling factors are desirable to achieve high sensing 

performance in the aforementioned applications [2]. While 

considerable efforts have been made towards developing 

high-performing WCRs, the physical understandings of the 

modal coupling behavior are still limited [3]. As such, it 

has been laborious to optimize the complex WCR systems 

with high degrees of design freedom based on human 

intuitions.  

On the other hand, the emerging machine learning 

(ML) techniques have facilitated advancements in the field 

of microstructure designs [4, 5]. Most prior works have 

demonstrated that the underlying patterns for physical 

properties of MEMS structures, such as frequency 

characteristics and quality factors, can be captured and 

implicitly embedded in the deep neural networks by using 

the supervised learning (SL) algorithm. There is, however, 

a lack of well-defined inverse design strategies based on 

ML for the optimization of MEMS structures. Therefore, it 

is still very challenging to efficiently explore superior 

candidate designs in the high-dimensional design space, 

especially for the WCR design problems. 

Intelligent searching algorithms, especially the genetic 

algorithm (GA), are proven to be excellent candidates for 

guiding the design space explorations [6, 7]. Inspired by 

the process of natural selection, GA is commonly adopted 

for decision-making problems with impressive 

performances. By transforming the 2D features of MEMS 

designs into the gene sequences, optimization for the 

desired properties can be conducted by biologically 

inspired numerical operations, such as selection, crossover, 

and mutation as shown in this work.  

Here, we have developed a systematic approach for 

designing high-performance WCRs by the SL-GA scheme. 

The standard SL algorithm is utilized to capture the 

sophisticated mode coupling properties of WCRs via the 

deep neural networks. With sufficient training, the 

prediction accuracy of the SL-based model for the coupling 

factor of WCRs achieves a high score of 98.7%. The GA is 

integrated on top of this SL-based predictor for proposing 

progressively improved WCR design alternatives at each 

evolutionary iteration. By taking the advantage of the 

proposed SL-GA architecture, efficient exploration of 

high-performing WCR candidate designs in the 

astronomically large design space is demonstrated. As a 

result, the generated candidate designs can have a low 

mean coupling factor of 0.0056 from the proposed SL-GA 

framework and surpass ~98% of randomly generated 

designs. 

 

SYSTEM ARCHITECTURE 

The proposed SL-GA framework is illustrated by the 

flow chart in Figure 1. Each WCR design is represented by 

a 50×50 pixeled, black-and-white binary image, in which 

the black and white pixels correspond to solid constituent 

elements and empty spaces in the structure, respectively. 

The initial population of WCR designs is generated with 

two kinds of randomness introduced: 1) a random depth-

first search (DFS) algorithm is applied for the formation of 

the prototype designs, and 2) some pixels are randomly 

added or removed from the prototype designs, giving rise 

to the initial designs. Such procedures ensure that the initial 

designs satisfy the geometric connectivity and promote the 

diversity of the topological features in the design 

populations for a wide range of coupling factors. Next, a 

customized deep residual neural network framework is 

adopted, featuring three main components: 1) 

convolutional layers for the 2D topological feature 

extraction; 2) residual blocks to enable the very deep 

networks and strong representation capabilities; and 3) 

fully connected layers for outputting coupling factor 

predictions. The neural network is pretrained in a 

supervised fashion and applied as a high-speed coupling 

behavior predictor with excellent accuracy.  

The pixel-level 2D features of individual designs are 

encoded as the corresponding gene sequences to be 

applicable for the evolutionary processes. Among initial 

populations, designs with low predicted coupling factors 

are selected, forming the mating pool for subsequent 

crossover and random mutation steps. The crossover step 

is implemented by choosing two individual designs from 
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the mating pool as the elite parents, and randomly 

swapping the positions of structure pixels in the parent 

configurations for offspring generations. Subsequently, 

randomly selected newborns go through the mutation 

processes, which are applied by the random changes of the 

mutable genes in the design patterns. The porosity, defined 

as the ratio of the number of black pixels to the total 

number of pixels, is fixed in the design domain. To comply 

with this constraint, the mutation step is executed by adding 

and removing the same amounts of mutable genes at 

different locations. After the mutation process, the new 

generations could be formed with lower coupling factors 

than those of the previous generations. In this manner, the 

elite individuals representing designs with high 

performances are favored to survive and reproduce to result 

in progressively improved designs as the generation 

number increases. Examinations on the geometric 

connectivity are conducted in every step to define 

permissible operations, which prevents the formation of 

topological invalid designs. The selection, crossover and 

mutation steps constitute the whole procedure, which 

iterates until the desired coupling factor is achieved. 

 
Figure 1: Overall flow chart of the proposed SL-GA framework. The framework consists of a customized deep residual 

neural network as an SL-based predictor, and a GA-based evolutionary procedure composed of the selection, crossover, 

and mutation steps. The green and red dots in the crossover section represent the exchangeable genes from the two parents. 

Similarly, the blue dots in the mutation section represent the mutable genes at the individual level. Such genes are defined 

to ensure the geometric connectivity. The iterative evolution stops when a desired value of coupling factor is reached in 

the generated design population. 

 

MODE COUPLING IN DISK RESONATOR 
The schematic of a circular-shaped disk resonator is 

demonstrated in Figure 2A. Polycrystalline silicon with 

Young’s modulus, E = 150 GPa, density, ρ = 2.3 × 103 

kg/m3, and Poisson’s ratio, ν = 0.29 is used for the resonator 

modeling. The stem anchor is located at the center with a 

diameter of 1.76 μm and a thickness of 0.7 μm. The inner 

and outer diameters of the annular-shaped resonator 

structure are 30.8 μm and 44.0 μm, respectively. The 

geometries of the solid annular structure and stem anchor 

are fixed, which are linked by the adjustable labyrinth-like 

patterns. These patterns are initialized and updated with the 

designated porosity while satisfying the geometric 

connectivity criterion, which is defined as all the solid 

elements in the resonator body being linked together.  

The mode coupling behavior of the disk resonators is 

investigated by analyzing their first two torsional modes. 

Since the geometry of a representative resonator in Figure 

2A is symmetric, it has two symmetrical torsional modes 

with rotations along the X- and Y-directions as shown in 

Figure 2B(i). In order to create the mode coupling effects, 

we deliberately applied certain symmetry breaking features 

on the anchor of each design, resulting in the weakly 

coupled systems. After such modifications, the rotational 

axes of the new torsional modes are deflected as shown in 

Figure 2B(ii). This indicates the coupling phenomenon 

between the pure X- and Y-rotations, which is caused by 

the asymmetric constraint imposed on the anchor. 

 
Figure 2: A) Geometry of a representative disk-shaped 

resonator. B) Mode shapes of two torsional modes in (ⅰ) 

symmetrical systems, and (ⅱ) weakly coupled systems. The 

asymmetrical system in B(ii) can be simplified by C) an 

equivalent vibrational disk model. Red springs represent 

the equivalent stiffness in the original symmetrical system 

while the green spring represents the equivalent coupling 

spring stiffness. 

 

The weakly coupled system with two torsional modes 

can be simplified to an equivalent model as shown in 

Figure 2C. The blue circular plate represents the resonator 

body, and the four red springs represent the elastic 

constraints imposed by the anchors and labyrinth-like 
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structures. The spring pairs placed on the X- and Y-axes 

account for the corresponding symmetrical torsional 

modes, respectively. The additional green spring, 

representing the asymmetric constraint, acts as a coupling 

spring to induce a weak coupling effect.  

 

RESULTS AND DISCUSSION 
Performances of SL-based predictor 

Coupled microcantilevers from a previous work [8] 

have been utilized as a validation example for the proposed 

framework. By adjusting the geometric parameters, finite 

element analysis (FEA) simulations are implemented on 

similar but different microcantilevers. These results are 

used as the training dataset for the proposed SL-based 

predictor. The exact referenced structure is left out of the 

training dataset for performance evaluation. After using 

sufficient samples in the dataset for the training process, 

results from the SL-based predictor show exceptional 

agreements in terms of the coupling factor with structures 

both from the FEA simulations and experimental results as 

illustrated in Table 1. The small error of only 2.4% between 

the SL model and the experimental result illustrates the 

effectiveness of the proposed predictor and the feasibility 

of the approach. Furthermore, the coupling factor evaluated 

by FEA also matches well with the experimental data, with 

a relative error of 1.5%, which validates the simulation 

setups for the data generation scheme.  

 

Table 1: Coupling factors of the coupled microcantilevers 

for validating the proposed SL-based predictor. 

 Experimental 

Data [8] 
FEA 

Simulation 

SL-based 

Predictor 

Coupling 

Factor 
0.0328 0.0323 0.0320 

 

 
Figure 3: Predicted coupling factors given by the SL-based 

predictor compared with the simulated coupling factors 

acquired from FEA which are utilized as the true values. 

 

For our weakly coupled disk-shaped micro resonators, 

the SL-based predictor is trained with computational 

results from over 100,000 FEA simulation tasks to 

accurately predict the coupling factors of individual 

designs. The accuracy of the SL-based predictor is 

analyzed before optimizing with the GA scheme. Figure 3 

shows an excellent match with an accuracy of 98.7% 

between the predicted coupling factors by the SL model 

and the true coupling factors by FEA simulations. All the 

data points from both the training and testing datasets are 

located in a narrow band around the 45-degree line, 

implying the consistency between the predictions and the 

real values. 

 
Figure 4: Averaged and minimum coupling factors with 

respect to the number of generations. As the number of 

generations increases, the curves drop steadily, indicating 

that the proposed candidate designs are progressively 

improved. 

 

Optimization with GA 

The learning curves in Figure 4 show the optimization 

process for the average and minimum coupling factors with 

respect to the number of generations, illustrating the 

effectiveness of the scheme. An initial population with the 

average and minimum coupling factors of 0.022 and 0.009, 

respectively, is chosen for the evolution iterations. In the 

first several generation cycles, well-performed individuals 

are selected and inferior ones are eliminated, resulting in 

the sharp decline of the curve. As the number of generation 

cycles increases, the influence of selection and mutation 

gradually fades and the change in the curve reduces. After 

100 generations, the average and minimum coupling factor 

values decrease to 0.0054 and 0.0045, respectively. 

Finally, a high-ranking design with a minimum coupling 

factor of ~0.0027 is identified by the SL-GA framework 

after about 200 generations, which indicates an 88% 

reduction in coupling factor as compared to that from the 

initial designs.  

 
Figure 5: Geometric patterns with the smallest coupling 

factors generated by the proposed SL-GA framework.  

 

The best 10 optimized candidate designs are listed in 

Figure 5, with some common beneficial features. For 

instance, a unidirectional beam in the middle is observed 
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among all the top designs, which is one key attribute for 

achieving such low coupling factors. This observation is 

intuitive since this key geometry feature can effectively 

intervene the influence from the torsional motions along 

the corresponding perpendicular directions, thus giving rise 

to the minimized coupling factors.  

 
Figure 6: Coupling factor distributions of the initial 

random population and the final population after 200 

generations. A significant distribution shift is observed, 

revealing the effective optimization consequence. 

 

The distribution shift of the coupling factors is 

demonstrated in Figure 6, showing high efficiency of the 

proposed framework. Most initial designs have coupling 

factors in the wide range from 0.0035 to 0.05, with a 

relatively uniform distribution profile. After about 200 

generations, final designs with significant performance 

enhancements are obtained. The resulting mean coupling 

factor can drop to 0.0056, outperforming ~98% of initial 

random designs. Furthermore, some elite individuals with 

coupling factors lower than 0.003 exist in the evolved 

populations, showing the capability of GA to search even 

better patterns out of the distribution of initial designs. 

 

CONCLUSION 
This paper demonstrates the optimization for MEMS 

WCR designs by machine learning-based method. A large 

amount of data generated from FEA is used to train the SL-

based analyzer to predict coupling factors with good 

accuracy. Through the combination of the SL-based 

analyzer and the genetic algorithm, highly efficient 

evolutions are constructed to search the optimized 

resonator with the lowest coupling factor. It is found that 

within 200 generations, coupling factors are reduced 

significantly to reach a mean value of 0.0056 in the design 

population, which is lower than 98% of the initial random 

designs. Furthermore, the common features shared by the 

best designs are clearly observed as a design guideline for 

circular-shaped disk resonators with high sensitivity. As a 

future direction, we plan to implement more advanced 

intelligent design space exploration algorithms, such as 

Collaborative Deep Q-Networks and Conservative Q-

Learning [9, 10], to optimize MEMS device designs with 

high computational efficiencies and improved 

performances.  
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