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Abstract

In this paper, we present a spiking neural model of context
dependent decision making. Prefrontal cortex (PFC) plays a
fundamental role in context dependent behaviour. We model
the PFC at the level of single spiking neurons, to explore the
underlying computations which determine its contextual re-
sponses. The model is built using the Neural Engineering
Framework and performs input selection and integration as a
nonlinear recurrent dynamical process. The results obtained
from the model closely match behavioural and neural experi-
mental data obtained from macaque monkeys that are trained
to perform a context sensitive perceptual decision task. The
close match suggests that the low-dimensional, nonlinear dy-
namical model we suggest captures central aspects of context
dependent decision making in primates.
Keywords: context dependent decision making; decision
making; neural engineering framework; neural dynamics; the-
oretical neuroscience

Introduction
Decision making is a complex process that involves the ag-
gregation of many sensory signals in order to produce a re-
sponse. What kinds of sensory information are relevant as
well as what to do with that information can be highly de-
pendent on the context of the situation. Prefrontal cortex
(PFC) contributes to representing and maintaining relevant
contextual information, ignoring irrelevant sensory informa-
tion. Neurons in PFC have been found to be involved in se-
lective attention and selection of an intended action (Tanji
& Hoshi, 2008). Thus the relevant sensory evidence can be
thought to be integrated in PFC before a decision is made in
a contextual situation.

Early selection models have been used in the past to ex-
plain the underlying context dependent computations in PFC.
These models suggest that the irrelevant inputs are filtered out
before the integration stage in PFC thus leading to a larger
effect of relevant as compared to the irrelevant sensory infor-
mation on context dependent behaviour. However, in a recent
experiment of context dependent behaviour in monkeys, no
evidence of early selection was found (Mante et al., 2013).
Instead it was found that the relevant sensory input is selected
late by the same PFC circuitry which integrates sensory evi-
dence to make a choice.

In this paper we present a spiking neural model of con-
text dependent decision making based on the above findings.
The model is built using the Neural Engineering Framework
(NEF; Eliasmith & Anderson (2003)) and is meant to provide
insight into the biological mechanisms behind context depen-
dent computations in PFC.

Related Work

To explore context dependent decision making in prefrontal
cortex, Mante et al. (2013) designed an experiment in which
macaque monkeys were trained to perform two different per-
ceptual discriminations on the same set of visual stimuli
based on the given context. On the basis of the results of
the experiment, they built a learned recurrent network model
to characterize the mechanisms underlying context dependent
behaviour.

Experiment

Two monkeys (monkey A and monkey F) were trained on a
perceptual discrimination task. On each trial of the task, the
monkey was shown a random dot display consisting of dots
of two different colours. A fraction of the dots moved co-
herently in one of the two directions (left or right), while the
remaining dots were transiently flashed at random locations.
The monkey was provided a contextual cue to instruct it to
either discriminate the direction of motion (i.e., the coherent
direction of motion of the dots) or the colour (i.e., which of
the two colours are on the largest number of dots). The mon-
key reported its choice with a saccade to one of the two visual
targets provided. After each trial the monkey was rewarded
for correct responses with a small quantity of juice.

To vary the difficulty of the colour discrimination, the rel-
ative number of dots of the two colours was parametrically
changed, while keeping the total number of dots constant.
The fraction of colour 1 to colour 2 dots i.e., colour coher-
ence (100% coherence: only one colour, 0%coherence: equal
number of dots of two colours) was fixed throughout a trial.
To vary the difficulty of the motion discrimination, the frac-
tion of dots moving coherently i.e., motion coherence (100%
coherence: all dots moving in the same direction, 0% coher-
ence: all dots moving randomly) was parametrically changed.
A total of 163,187 trials were performed and the trials varied
with respect to the colour coherence and motion coherence of
the random dot display, and the contextual cue provided.

Extracellular responses were recorded from the neurons in
the frontal eye field (an area of PFC involved in the selection
and execution of saccadic eye movements) while the mon-
keys performed this task. The responses of the population of
neurons as a whole were analyzed to understand the neural
mechanism underlying context-dependent selective integra-
tion of sensory stimuli.
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A learned recurrent network model
To identify the mechanism underlying context-dependent be-
haviour, Mante et al. (2013) trained a network of recurrently
connected neurons to solve a task analogous to the one solved
by monkeys. Their model reproduced the main features of the
data, and they analyzed the trained network to determine the
selection mechanism. The results of their analysis indicate
that the rich dynamics of PFC responses during selection and
integration of inputs can be understood with just two features
- a line attractor and a selection vector, which are defined only
at the level of the neural population. It’s important to note that
their results indicate that computations in PFC emerge from
collective dynamics of large populations of neurons. Further
details about this model can be found in Mante et al. (2013)
paper.

However, their model results do not fit the reported data
very closely, significantly deviating from the response dy-
namics reported for the monkey experiments. As well, be-
cause the model was learned from data, it is unclear precisely
what the nature of the underlying computation is. The iden-
tification of two degrees of freedom (i.e., memory and selec-
tion) is helpful, but is evident from performing dimensional-
ity reduction on the original data, without a model. Here we
propose a specific, low-dimensional, nonlinear computation
and demonstrate a superior fit to the original data. Addition-
ally, we show how such computations can be implemented in
biologically realistic spiking neurons.

A nonlinear dynamical model
The basic principle of the model we describe is that four dif-
ferent pieces of information must be represented by the same
group of neurons. The empirical data indicates that the neu-
rons in the frontal eye field change their activity based on
the context (whether the response should be based on colour
or motion), colour coherence (the proportion of dots of one
colour over another), motion coherence (the proportion of
dots moving in one direction over another), and the actual
choice being made. We denote this combination of four val-
ues as the vector x.

Rather than this information being held separately by dif-
ferent groups of neurons, it is distributed across a single pop-
ulation. This means that each neuron in the population is
sensitive to some combination of those four values. Some
neurons may be sensitive to colour and motion, while oth-
ers may respond primarily due to the final choice, and others
may be equally sensitive to all four values. In general, we
assume that each neuron has some particular combination of
values for which it will fire most strongly, consistent with the
standard idea of a preferred stimulus or a preferred direction
vector (Schwartz et al., 1988). If this vector is e (for “en-
coder”), then the amount of current flowing into a particular
neuron i will be αiei · x+ Ji, where α and Ji are a gain and
bias respectively. This current is used as the input to the stan-
dard leaky integrate-and-fire (LIF) neuron model to produce
spiking output (it is these spikes which flow through the con-

nections and not the continuous signals). The encoder, gain,
and bias are randomly chosen, so different neurons have dif-
ferent background firing rates and different maximum firing
rates (set here to be uniformly distributed between 20Hz and
120Hz) along their preferred direction.

The purpose of this model is to combine the three inputs
(context, colour coherence, and motion coherence) to produce
an appropriate fourth value (the appropriate choice). To pro-
vide the input, we directly stimulate the neurons based on the
sensory inputs of the given trial (we are not simulating the vi-
sual system). From these inputs, the neural population must
compute the resulting choice of action. To capture this com-
putation, the neurons are recurrently connected to compute a
nonlinear dynamical system that appropriately integrates the
inputs, and stores the resulting choice.

We achieve this by writing a mathematical expression for
how the choice value should be dynamically computed given
the sensory input, and then solving for the neural connectiv-
ity that optimally approximates that mathematical expression.
This mathematical expression is our hypothesis about how in-
formation is integrated in PFC to produce a choice. Specifi-
cally, writing the dynamics of the population as representing
the 4D state variable, x (where x4 is the final choice):

ẋ4 = f (x) (1)

we must determine the function f . In a simple PFC memory
model, f (x) = 0. However, here there are clearly context in-
teractions which must be accounted for. We propose that the
nonlinearity in the recurrent connection is given by

f (x) = (1+ x1)x2 +(1− x1)x3 (2)

where x1 is the task context (1 if the decision should be based
on motion, and -1 if it should be based on colour), x2 is the
motion stimulus (between -1 for completely leftward motion,
and +1 for completely rightward motion), and x3 is the colour
stimulus (between -1 for all one colour, and +1 for all the
other colour). In short, this nonlinearity essentially gates ei-
ther colour or motion information into a working memory
integrator, depending on the context signal. Consequently,
the model is a simple hypothesis of multiplicative gating in
PFC. Importantly, this multiplicative effect is achieved at the
network level using normal synapses between LIF neurons.
Mathematically, it basically forms a line attractor, however,
this needs to be explored further in future work.

To simulate the model, we used the software package
Nengo, a Python-based simulation engine and environment
for constructing neural networks that includes facilities for
generating NEF-style networks (Bekolay et al., 2014).

A schematic of the model is shown in Figure 1. The cen-
tral group of neurons consists of 1000 randomly generated
LIF neurons with preferred direction vectors e such that each
neuron responds differentially to the four x values being rep-
resented. These neurons are connected recurrently back to
themselves in an all-to-all manner (for a total of 1 million
synapses), with the synaptic connection strengths optimized
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via the NEF to closely approximate equation 2. We also in-
cluded a separate group of neurons that just represent the final
choice (x4). The synaptic connection weights from the “pfc”
neurons to the “choice” neurons are also found using the NEF,
where the target function was simple choice = x4, providing
a simple readout of the model’s choice.

For each trial, the inputs were set as follows:

• Contextual cue (x1) - This indicates the context for each
trial and takes a value of 1 and -1 for motion and colour
contexts respectively. Recall, motion context implies dis-
criminating the direction of motion of the dots (i.e., make
a decision based on motion coherence) whereas the colour
context implies discriminating the colour of the dots (i.e.,
make a decision based on colour coherence).

• Colour coherence (x2) - For each trial one of the six signed
colour coherence values: [-0.50, -0.18, -0.06, 0.06, 0.18,
0.50] is randomly provided to the model as an input. The
sign of the values indicates different colours i.e., a negative
sign corresponds to colour 1 (red) while a positive sign cor-
responds to colour 2 (green).

• Motion coherence (x3) - For each trial one of the six signed
motion coherence values: [-0.50, -0.15, -0.05, 0.05, 0.15,
0.50] was randomly provided to the model as an input. The
sign of the values indicates the direction of motion i.e., a
negative sign indicates motion towards left while a positive
sign indicates motion towards right.

Different values of motion and colour coherence men-
tioned above were used to vary the strength of the motion
and colour signals between trials. The output of the model is
a choice (i.e., the decision made for a particular trial given the
context). Each trial in the model is 750ms long (i.e., inputs
are provided to the model for 750ms per trial) followed by a
delay period of 750ms between consecutive trials. This delay
period was added to avoid the influence of the previous trial
on the current trial, and can be thought of as analogous to the
period when the monkey was being rewarded between trials.

In the experiment, the monkeys were able to quickly switch
between behavioural contexts. This implies the presence of
rapid modulation or ‘gating’ mechanisms in the PFC that se-
lect relevant sensory information for decision making. In
our model, multiplicative gating is used to control the dy-
namics of “pfc”, such that only the relevant evidence in a
given context gets integrated. For example in motion con-
text (contextual cue = 1), only the motion coherence values
get integrated over time and the colour coherence values are
irrelevant to the final decision. This is analogous to the ac-
tual experiment because once the monkey knows the context,
it pays selective attention to only the relevant evidence and
the irrelevant evidence mostly gets ignored. When the inte-
grated relevant evidence passes beyond a threshold, the model
is considered to have made a choice.

Note that instead of early selection (i.e., selection of rele-
vant sensory input before the integration stage in PFC), input

selection and integration happens within the same PFC cir-
cuitry as a part of a single dynamical process.

Figure 1: A schematic diagram of the model structure built
using Nengo GUI (a graphical user interface to aid in the de-
sign and testing of Nengo networks). Here “pfc” contains
1000 neurons and “choice” contains 200 neurons.

Results
The model runs through a series of trials consecutively, and
the choice the model makes for each trial is recorded, along
with the particular condition variables for that trial (context,
motion coherence, colour coherence, and correct choice).
Figure 2 shows the spike trains and decoded values from one
such trial. The spike trains are shown only for 10 random neu-
rons picked from a population of 1000 neurons in “pfc”, and
show that different neurons fire at different times according to
their preferred stimulus. The spike trains from each individ-
ual neuron are recorded for each trial. This allows the model
output to be compared to the monkey data on both the be-
havioural and neural level. Note that we compare our model
to the performance of monkey A since monkey A data has
primarily been discussed by Mante et al. (2013). Addition-
ally we fix our model parameters and use the data from the
same model for behavioural and neural comparisons.

Figure 2: Spike trains and the decoded values from “pfc”.
The decoded values show the context, choice and the sensory
inputs (i.e., colour and motion coherence).

Behavioural comparison
A comparison of the model output to the behavioural data of
the monkey is shown in Figure 3. The figure plots the per-
formance of the model as a function of motion and colour
coherence in a given behavioural context. The performance
is measured in terms of % of choices made to the right, which
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implies choosing ‘right’ direction in motion context and %
of choices made to green which implies choosing the ‘green’
colour (i.e., colour 2) in colour context. The plot on the top
left shows that in the motion context, the model makes very
few choices towards right for negative values of the motion
coherence (recall that negative values simulate dots moving to
the left). However the % choices made to the right increases
with an increase in the motion coherence, and is highest when
the motion coherence takes its maximum positive value (re-
call that positive values simulate dots moving to the right).
The plot on the top right shows that the colour coherence does
not have much effect on the choices in motion context. Over-
all, the two plots show that in the motion context, the choices
of the model depend strongly on motion coherence of the dots
whereas they depend only weakly on colour coherence. The
opposite pattern is observed in the colour context (bottom two
plots) in which the choices of the model are largely affected
by colour coherence and weakly by motion coherence.

These results show that the model successfully differenti-
ates the relevant sensory evidence in each context and ignores
the irrelevant evidence. The result also matches well with the
monkey data obtained experimentally as shown in Figure 2.
The overall % average error of our model with respect to the
experimental data is 7.33%, while that for the learned recur-
rent network model of Mante et al. (2013) is 7.45%. Impor-
tantly, in their model the response is completely independent
of the irrelevant input (e.g., the %choices to the right is con-
stant with respect to the motion coherence in colour context).
However, in our model, the irrelevant input has a weak ef-
fect on the response which is consistent with the experimen-
tal data. Our model captures this subtle feature since it is
built using biologically realistic LIF neurons. Moreover, our
model has only one parameter which is a constant transform
(0.45) applied to scale the motion and colour coherence in-
puts (this parameter was not tuned in the results we present).
The synaptic time constant (200ms) was fixed based on bio-
logical data (Flint et al., 1997) and the neural firing rates were
set to be uniformly distributed between 20Hz to 120Hz. The
connection strengths were not fit to the experimental data, but
to the equation that we are trying to approximate i.e., Equa-
tion 2, using the NEF (Eliasmith & Anderson, 2003). On the
other hand, the learned recurrent network model has many
parameters which are learned through training.

Analysis of neural spike data
In order to facilitate a quantitative comparison to the monkey
data, identical analysis methods as described in the supple-
mentary information from Mante et al. (2013) are used on
our spike data. All the analysis is performed on the spike data
obtained from the central population of neurons i.e., ”pfc” in
Figure 1.

First, we determine the condition average population re-
sponse by grouping the trials based on the unique combi-
nation of condition variables. There are five different con-
dition variables: context (motion or colour), motion coher-
ence (range of six values), colour coherence (range of six

Figure 3: Behavioural output of the model. Results are aver-
aged across 14,688 trials. Reference model and experimental
data used for the comparison are taken from Mante et al.
(2013) and were averaged across 14,400 and 163,187 trials
respectively.

values), choice (two options), and correctness (whether or
not the monkey made the correct choice for the given con-
dition). This amounts to a total of 288 possible unique condi-
tions (2×6×6×2×2).

The spike response of each neuron is averaged across all
trials having the same unique conditions, and then smoothed
by a gaussian filter with σ= 40ms. The result is then z-scored
for each neuron to give the overall response across all times
a zero mean and unit standard deviation. This results in a
two dimensional data matrix X of size Nneuron× (T.Ncondition)
containing the condition averaged population response. Here
Nneuron is the total number of neurons in the neural popula-
tion, Ncondition is the total number of unique conditions and
T is the number of time samples. Note that for our model
Nneuron = 1000, Ncondition = 288 and T = 750.

Next, we perform principal component analysis (PCA) on
the condition averaged response (X) to identify the dimen-
sions in state space that capture the most variance. The
PCA is done along the number of neurons and the princi-
ple components (PCs) are vectors of length Nneuros. We use
the first twelve PCs to define a de-noising matrix D of size
Nneuron×Nneuron using equation 3.

D =
12

∑
a=1

vavT
a (3)

Next, we perform linear regression to determine the effect
of various task variables (i.e., choice, motion, colour and con-
text) on the response of each neuron. In order to perform lin-
ear regression, the response of neuron i at time t is represented
as a linear combination of task variables as shown in equation
4, where ri,t(k) is the z-scored spike response of neuron i at
time t on trial k. The values of the four task variables also cor-
respond to trial k. The regression coefficients βi,t(v) for v =1
to 4 describe how the corresponding task variable affects the
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firing rate of neuron i at a given time t during the trial.

ri,t(k) = βi,t(1)choice(k)+βi,t(2)motion(k)

+βi,t(3)colour(k)+βi,t(4)context(k)+βi,t(5)
(4)

In order to estimate the regression coefficients, a set of con-
dition matrices is defined, one for each neuron. Each matrix
Fi is of the size Ncoe f f ×Ntrial , meaning there is a row for
each of the five regression coefficients and a column for each
trial. The first four rows of Fi contain the task variables for
each trial, while the last row contains only ones, and is used
solely to estimate βi,t(5). The regression coefficients are then
estimated using equation 5.

βi,t = (FiFT
i )−1Firi,t (5)

The matrix βi,t of length Ncoe f f is then rearranged to form
βv,t of length Nneuron which is de-noised by projecting it to the
subspace spanned by the first 12 PCs using equation 6.

β
pca
v,t = Dβv,t (6)

β
pca
v,t is of length Nneuron and contains the de-noised regres-

sion coefficients. Next step is to define the time-independent
de-noised regression vectors. To do this we determine the
time at which the corresponding set of vectors β

pca
v,t has the

maximum norm, and select the value of the regression coeffi-
cients at that time (equation 7).

β
max
v = β

pca
v,tmax (7)

βmax
v is of length Nneuron and is orthogonalized using QR

decomposition as shown in equation 8.

Bmax = [βmax
1 β

max
2 β

max
3 β

max
4 ] = QR (8)

The first four columns of Q become a set of orthogonalized
regression vectors β⊥v which define the task-related axes of
choice, motion, colour, and context. The condition averaged
population response (X) is then reorganized to form a set Xc
of Ncondtion matrices of size Nneuron × T . Then we project
Xc onto the task related axes (Equation 9) to allow for the
visualization of the task related representations in “pfc”.

pv,c = (β⊥v )
T Xc (9)

Neural comparison
Figure 4 shows the plots of the neural output of the model
along the various task-related axes in two different contexts.
The response trajectories start from a point in state space
close to the center of the plots, which corresponds to the pop-
ulation response at the beginning. When the sensory input is
provided, the response moves away from the center along the
axis of choice. Movement of the population response along
the choice axis is caused by integration of evidence while the
sensory input is being provided to the model. Additionally,
the population response moves away from the choice axis,

along the axis of motion/colour. The magnitude of the re-
sponse along the motion/colour axes reflects the strength of
the sensory evidence (motion/colour coherence), while its di-
rection (up or down) reflects the sign of the sensory evidence.

Mante et al. (2013) obtained the neural data from two mon-
keys (monkey A and monkey F) trained to perform the same
task. The trajectory for monkey A is shown in Figure 4 while
the trajectory for monkey F can be found in the extended data
of Mante et al. (2013) paper (Extended Data Figure 7). The
response trajectories obtained for both monkeys varied sig-
nificantly from each other. However the following three key
features of population response were shared between the two
monkeys:

• In both contexts, movement along the same choice axis
corresponds to the integration of relevant evidence (Fig-
ure 4, plots a2 and f2).

• The motion evidence evokes response along the axis of mo-
tion which is different from the axis of choice in both con-
texts (Figure 4, plots a2 and d2).

• Motion evidence is strongly represented regardless of
whether it is relevant (Figure 4, plot a2) or irrelevant (Fig-
ure 4, plot d2).

The response trajectories obtained from our model are very
similar to the ones obtained from the experimental data. Im-
portantly, they exhibit the three key features of the popula-
tion response that were shared among the experimental data
from the two monkeys. Plots a1 and f1 in Figure 4 show
that the model trajectories show movement along the choice
axis which corresponds to the integration of relevant evidence
(i.e., motion in plot a1 and colour in plot f1). The move-
ment along the choice axis in plots c1 and d1 is not as much
because they plot the irrelevant sensory evidence in their re-
spective contexts. Plots a1 (motion context) and d1 (colour
context), both show that the motion evidence evokes response
along the axis of motion which is different from the axis of
choice. Moreover, these plots also show that motion evidence
is strongly represented in both contexts regardless of whether
it is relevant or not.

Figure 5 shows a comparison of our model to the learned
recurrent network model of Mante et al. (2013). Note that
the scaling on the choice axis in the figure is 1.5:1 for our
model and the monkey data, and 6:1 for the reference model.
The response trajectory obtained by our model is closer to
the trajectory obtained from the experimental data. While our
model is able to produce a curved trajectory as in the experi-
mental data, the model of Mante et al. (2013) doesn’t produce
a curved trajectory. This might be because the dynamics of
their model doesn’t capture the fact that neural response in a
given context is weakly dependent on irrelevant sensory input
(Figure 3).

Conclusion and Future Direction
The main purpose of this work was to test a hypothesis
(Equation 2) regarding the computations underlying context-
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Figure 4: Neural Output of the Spiking Model (plots a1 - f1).
Plots a2 - f2 show the neural response trajectories from the
experimental data (monkey A). Only the responses from cor-
rect trials are plotted. Units are arbitrary. a1, a2: Effect of
relevant motion input and choice in motion context where tri-
als are sorted by the relevant sensory input (motion). b1, b2:
Same data as in a1, a2 rotated by 90◦about the choice axis to
show the projection on to the colour axis. c1, c2: Same trials
as in a1, a2 but resorted by irrelevant sensory input (colour).
d-f: Responses plotted in the colour context, analogous to
a-c. Display format taken from Mante et al. (2013).

dependent behaviour in the frontal eye fields of the prefrontal
cortex (PFC). We have presented a spiking neural model to
explain how neural and behavioural data can be captured by
a simple nonlinear dynamical system. One limitation of the
current work is that we directly stimulate the neurons based
on the sensory inputs of the task without simulating the visual
system required for the task. However, this should not have a
major impact on the underlying computations in PFC.

In this model we simulated a task where the sensory infor-
mation is constant within each trial and the decision is made
only at the end of the trial. However, animals are able to
change their behaviour in a constantly changing environment.
The future work would involve investigation of neural mech-
anisms of such dynamic choices where the sensory informa-
tion is constantly changing (even within a given trial) and a

Figure 5: Comparison of our model and the reference model
to the experimentally recorded data for the motion context.
Data is sorted by motion coherence and plotted on the choice
and colour axes. Scaling on the choice axis is 1.5:1 for our
model and the monkey data, and 6:1 for the reference model.

decision can be made at any time. One such experiment has
been previously performed with monkeys where they were
trained to solve the tokens task (Thura & Cisek, 2014). Build-
ing a scalable and robust model which can not only perform
the task discussed in this paper, but also a more dynamic task
like the tokens task can provide insights to more precisely ex-
plain the computational mechanisms underlying context de-
pendent decision making in dynamic environments.
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