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Abstract 

Categorical speech content can often be perceived directly 
from continuous auditory cues in the speech stream, but 
human-level performance on speech recognition tasks 
requires compensation for contextual variables like speaker 
identity. Regression modeling by McMurray and Jongman 
(2011) has suggested that for many fricative phonemes, a 
compensation scheme can substantially increase 
categorization accuracy beyond even the information from 24 
un-compensated raw speech cues.  Here, we simulate the 
same dataset instead using a neurally rather than abstractly 
implemented model: a hybrid dynamic neural field model and 
connectionist network. Our model achieved slightly lower 
accuracy than McMurray and Jongman’s but similar accuracy 
patterns across most fricatives. Results also compared 
similarly to more recent models that were also less neurally 
instantiated but somewhat closer fitting to humans in 
accuracy. An even less abstracted model is an immediate 
future goal, as is expanding the present model to additional 
sensory modalities and constancy/compensation effects. 

Keywords: Speech recognition, concepts and categories, 
neural networks, dynamic systems modeling, psychology, 
linguistics, cognitive science 

Constancy and Compensation in Perception 

In most contexts, our senses provide more information than 
we require for a decision. This can make recognition tasks 
difficult when the undesired, noisy information is not just 
alongside but integrally mixed with desired information. As 
examples, the overall lighting of a scene as well as the 
reflectance or color of an object both affect the object’s 
perceived lightness and hue; the actual shape of an object 
and viewing angle both affect perceived shape; and a 
speaker’s gender and the content of his or her speech both 
affect sound pitch. Humans are adept at discounting noise 
and ambiguities, achieving location, shape, or speech cue 
constancy (Schneegans & Schöner, 2012; Rock, 1983; 
Bendor & Wang, 2005). Here, we present a neurally 
plausible, computational model potentially suitable for any 
type of constancy that relies on discounting dimensional 
feature information such as hue, shape cues, or speech cues. 
 Specifically, we test the model by identifying fricative 
consonants (‘fricatives’) from whole spoken syllables. We 
assume a speech cue to phoneme model, in contrast to a 
more purely acoustic approach (Graves, Mohamed, & 
Hinton, 2013; Pisoni, 1997), but our model could adapt to a 
raw acoustic approach with very similar architecture.  
 In the speech cue approach, few, if any, speech cues for 
fricatives are considered “invariant.” That is, individual cues 
like vowel duration do not statically, cleanly, and 

conveniently correlate with phoneme categories (though 
there is some debate, see Stevens & Keyser, 2010). Rather, 
most or all cue information shifts contingently based on the 
contextual vowel sounds, speed of speech, or speaker. 
 Recent empirical and modeling evidence suggests that cue 
invariance can be overcome by considering very large 
numbers (dozens) of speech cues and by actively identifying 
contexts then normalizing incoming speech compared to 
other contexts. Jongman, Wayland, and Wong (2000) 
gathered human listener identification data for eight 
fricatives (f, v, θ, ð, s, z, ʃ, ʒ) or henceforth (f, v, th, dh, s, z, 
sh, zh) respectively, ranging from labiodental to post-
alveolar place of articulation and including both voiced and 
voiceless fricatives at each place. Recordings of fricatives 
spanned over 20 speakers and 6 vowel contexts.  McMurray 
and Jongman (2011) then tested this corpus of data using an 
abstract logistic regression model. They tested the model 
under several learning conditions, including a small 
collection of 10 fricative-only cues, a large set of 24 cues 
that also added vowel cues, and the same 24 cues, but with 
expectation-based context compensation for vowel and 
speaker, using the formal regression compensation model C-
Cure (McMurray, Cole, & Munson, 2011). They determined 
that higher numbers of cues contributed to more accurate 
identification per fricative, as did expectation-based context 
compensation. Context compensation also allowed the 
model to fit human behavior more closely. 

 Neural Implementation of Cue Compensation 

McMurray and Jongman’s (2011) results are a compelling 
demonstration of the importance of a large number of cues 
and of cue compensation for fricative identification. 
However, the model is abstract and mathematical in both 
phoneme categorization and cue compensation. Such 
models are important, but a model in a neural framework 
offers a chance to discover and understand processes driving 
behavior that may derive from neural-level interactions not 
considered at an abstract level. Formal neural models also 
generate testable and informative neural level tests and 
predictions. Apfelbaum and McMurray (2015) presented a 
neural two layer PDP neural network for phoneme 
categorization, which performed impressively and 
comparably to McMurray and Jongman’s (2011) results, but 
cue representation, context identification and context 
compensation were all still abstracted mathematically. 
 Here, we present a neural model to capture the same 
behavioral data as McMurray and Jongman (2011) and to 
further expand and supplement our understanding of speech 
cue compensation from a neural perspective. We use a 
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dynamic neural field (DNF) model for attention, memory, 
and storage of known speaker speech profiles instead of 
direct coding of these steps into the model, a DNF cue 
compensation mechanism instead of C-Cure, and a single 
layer neural network to ultimately decide phonemes. 

The DNF architecture is described in detail below, but in 
general, DNF models involve fields of neural units whose 
receptive fields are systematically organized by dimensional 
information like space, size, color hue, or pitch. The DNF 
approach does not assume that all cognition is organized 
this way, only a subset of representations and processing 
that involve dimensional data. This includes attention to 
certain dimension values (attending to particular colors or 
points in space, for example), memory traces of those 
values, or in the current model, shifting cue values along a 
dimension to compensate for speaker identity. Beyond these 
processes, connectionist networks often take control. Hybrid 
models can include both in simulations, such as McMurray, 
Horst, Toscano, and Samuelson (2009) or the current model. 

DNF models have been used for simulating processes 
ranging from word learning (McMurray, et al., 2009; 
Samuelson, Spencer, & Jenkins, 2013), to motor planning 
(Erlhagen & Schöner, 2002), to object recognition (Faubel 
& Schöner, 2008) and more, and the current model uses 
many of the same neural fields as do the above models in 
the same layouts. Mechanisms for different cognitive 
processes provide testable predictions for one another and 
can potentially be considered together as a coherent whole 
and unified model. This is not an advantage exclusive to 
neural models, but it is natural to them, since a shared, 
fundamental language is encouraged by common neural 
level simulation.  
 Our model of fricative perception utilizes several already-
established DNF and connectionist mechanisms. The core 
neural field dynamics are common to all DNF models; the 
perceptual and memory portions of the model are common 
to DNF models that involve categorization; the phonetic cue 
compensation mechanism is inspired by a spatial 
transformation mechanism used in a DNF model of head 
and eye gaze spatial adjustment (Scheegans & Schöner, 
2012); and the categorization step is performed by a 
sigmoidal connectionist network rather than logistic 
regression, similar to Apfelbaum and McMurray (2015). 

Dynamic Neural Field Model Architecture 

The Dynamic Neural Field (DNF) model consists of many 
1- and 2-dimensional fields, shown as white rectangles in 
Figure 1. Units in fields are organized by one or two metric 
dimensions like cue values (such as voice onset time) or 
amount of adjustment needed to a cue. Each unit in a field 
has a receptive field maximally sensitive to one input value 
along its metric dimension(s) and less so to nearby values. 

Units within a field interact with one another, sending 
close, strong local excitation and weaker, more diffuse 
lateral inhibition to neighbors. Both these interactions and 
input receptive fields create Gaussian “peaks” and “ridges” 
of activation when a field is given even a single value of 

input. These interactions keep peaks stable and localized yet 
robust against noise. Fields can be parameterized to have 
peaks collapse once input is removed (such as for attention) 
or to sustain themselves afterward (for memory). 

Fields interact along shared dimensions. A field organized 
by pitch might send activation from above-threshold peaks 
to contribute to corresponding peaks in other pitch fields. A 
1-dimensional field projecting to a 2-dimensional one 
projects a “ridge” of activation across all units in the larger 
field with the corresponding receptive fields and vice versa. 

Fields also receive spatially correlated noise “input.” This 
is insufficient to form peaks of activation alone, but is able 
to meaningfully influence other, stronger activity. 

Figure 1 shows the full layout of just one speech cue in 
the model. That is, all of Figure 1 is repeated in the model 
for every speech cue. Initial input arrives at the input cue 
field (black star icon, blue region). In the example shown, 
the listener is hearing two different values of a cue. This 
could be due to hearing two speakers simultaneously, for 
example. This input projects to the adjacent attention field. 
Attention is a competitive field, where above-threshold units 
project global inhibition to the rest of the field, leading to a 
winner-takes-all activation pattern. 
 Both attention and input fields then project activation to a 
working memory (WM) field. This is a field with self-
sustaining peaks, holding information for a time even after it 
has died away in temporary perception or attention fields. 
WM connects to a number of other fields of units 
representing long term memory (LTM) of speech cues. 
(right side of Figure 1). LTM fields are not dynamic; they 
are feed-forward and activated in a 1:1 correspondence with 
working memory. Long term memory information is held in 
Hebbian connection weights between WM and LTM fields. 
Whenever peaks are active in WM fields, LTM units 
represent the mathematical product of recent memory 
activation and LTM patterns. Thus, the total activation in 
LTM fields is effectively a similarity rating between recent 
speech cues and long term remembered patterns. If each 
LTM field and its Hebbian weights hold information of the 
history of cue values of an individual speaker, this similarity 
signal allows a listener to identify a known speaker’s voice 
by competitively comparing the summed activation of LTM 
fields (top right of Figure 1). 
 Using speaker identity from above, the model activates a 
corresponding memory of the correct adjustment for that 
speaker’s irregularities (green region, Figure 1). The 2-
dimensional transform field (green region) accepts input 
from this adjustment value (top) and from the raw attended 
value (right) and adds them into a normalized cue value 
(lower left). Addition is performed by the overlap in 
activation between raw and adjustment ridges creating an 
intersecting diagonal ridge that projects to the summed 
value in the lower left diagonal neural field (red region of 
Figure 1). The same mechanism is suggested by Schneegans 
and Schöner (2012) for adding the angle of head rotation 
and angle of eye gaze to determine angles between body and 
objects in the visual environment. When an adjustment is 

509



not known, a default adjustment of zero is used (suppressed 
otherwise). 
 The now-normalized cue information is transformed from 
dimensionally coded to rate coded format (red region of 
Figure 1). A gradient of connection weights projects 
stronger activation to the rate unit for peaks on one side of 
the cue dimension than the other. The sum of the 
dimensionally coded field also projects to the rate unit, 
allowing it to distinguish between no peak and a peak at the 
weak end of the scale. An almost identical neural circuit for 
place-to-rate code conversions is suggested by Groh (2001). 
 Finally, the normalized, rate-coded cue information feeds 
across a single layer network to determine the model’s best 
guess at a phoneme. This final portion of the model equates 
to the neural portion of Apfelbaum and McMurray’s 2015 
PDP model of this data. Although only one cue node is 
shown, recall that all of the Figure 1 architecture is repeated 
per cue, creating a full [cues] x [phonemes] single layer 
network with one set of weights across speakers. 

Experimental Design 
We tested the DNF model using the fricatives phoneme 
dataset from Jongman, Wayland, and Wong (2000), 
including 8 fricatives spoken by 20 speakers each, in 6 
vowel contexts (fricative + vowel syllables). McMurray and 
Jongman (2011) analyzed this data in several ways, but we 
focus here on neurally replicating three analyses in 
particular: phoneme categorization with 10 fricative-only 
cues and no compensation; with 24 cues to both fricative 
and accompanying vowel with no compensation, and with 
24 cues and compensation. Together, these test the 
importance of number of cues and vowel information (10 vs 

24) and compensation (24 without vs 24 
with) for accurate (and human behavior-
fitting) phoneme categorization. 
 Differences in DNF model architecture 
compared to McMurray and Jongman’s 
(2011) model necessitated some lesser 
complexity in practical simulations. The 
DNF model compensated only for speaker 
context, not vowel context, due to the 
ability to only perform one compensation 
in a transform field at a time. Two or more 
compensations could simply and plausibly 
be performed in two or more fields in 
parallel, but would not better prove the 
concept initially and would take much 
longer to simulate. The neural transform 
field is also only capable of linear shifting 
adjustments along a dimension, which is 
less theoretically sophisticated than C-Cure 
compensation. 

The neural network (red) portion of the 
DNF model was tuned first, without 
dynamic neural field input. Dynamic 
fields involve highly parallel processing, 

and are thus unrealistically slow to simulate on computers. 
Dynamic fields were therefore switched on during testing 
only. Training of the network used two out of every three 
syllable tokens from the same dataset categorized by 
humans, pre-coded for speech cues. In each epoch of 
training, the network received all training tokens once, 
blocked by speaker. The network received 2,000 epochs of 
training in each condition, with a learning rate of 0.3 and 
sigmoidal activation function. Cues were (mathematically 
during training) compensated during training for speaker 
prior to the neural network, for conditions including 
compensation. 

The DNF long term memory fields were also pre-loaded 
with memory traces matching each speaker’s cue profile 
(representing our memories of specific people’s voices) and 
each speaker’s adjustment value. Adjustments were chosen 
such that a linear shift would cause each speaker’s mean 
value in a cue across recordings to equal the population 
mean value in that cue among the whole set of speakers. 
The model could capably establish this information itself 
with DNF during training, but this was impractically slow. 

At test, the entire model was connected and used as a 
whole to categorize one epoch of the reserved generalization 
tokens, using the previously trained neural network. 

We recorded accuracy across test trials using two 
different choice rules, as did McMurray and Jongman 
(2011). A discrete-choice rule always chose the phoneme 
with the highest activation in the output of the decision 
network. A probabilistic rule treated relative activation of 
each output node as relative probability of choosing that 
phoneme. The results figure (Figure 2) depicts colored 
regions bounded by these two different measures. 

Figure 1. Architecture of a single cue in the DNF model. The full model consists of either 
10 or 24 copies of this entire figure, except for just one set of output nodes shown in the 

lower left corner. See text for detailed description. 
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Results 

Results of simulations are shown in Figure 2. Compared to 
McMurray and Jongman’s (2011) mathematical model, the 
neural implementation of phoneme perception performed 
somewhat less absolutely accurately and somewhat less well 
fitted to human performance across conditions. However, 
the simulations were overall comparable while including 
many neurally-implemented mechanisms previously only 
abstractly implemented.  
 A large number of cues including vowel cues (24 cues, 
middle panel) provided moderate benefit compared to a 
medium number of fricative-only cues (10 cues, top panel) 
in terms of raw accuracy (+8% McMurray and Jongman 
[M&J], +11% DNF). Fit to human data worsened for M&J 
(RMSE from 0.077 to 0.099). Fit remained steady for the 
DNF model (RMSE of 0.156 in both cases), but results 
broadly shifted in line with human results in both models. 
 The addition of a speaker compensation system boosted 
raw accuracy in both models (+8% M&J, +3% in the DNF 
model) and fit human data more closely for M&J (RMSE 
from 0.099 to 0.061) and more closely for the DNF model 
(RMSE from 0.1563 to 0.1231).  
 The bottom panel in Figure 2 includes two additional 
lines, representing results from Apfelbaum and McMurray 
(2015) models. The grey line shows the performance of 
their PDP neural decision network (but otherwise not 
neurally implemented) model. The PDP model performed 
well quantitatively but with a flat performance across 
fricatives. The green line shows the performance of an 
exemplar model that stored every individual syllable token 
from the training set in memory for use in categorizing test 
items. The exemplar model performed very well, but had no 
neural implementation, and storage of every individual 
syllable in memory is likely unrealistic. 
 Qualitatively, the pattern of accuracy in the DNF model 
fits human data in shape about as well as the other models. 
Non-sibilant fricatives ‘f’ and ‘v’ were routinely low 
accuracy compared to humans for the DNF model, but the 
‘th, dh, s’ dip shape is more accurately captured across 
conditions by the DNF model. 
 In an attempt to explore possible causes of our model’s 
consistently low accuracy for ‘f’ and ‘v’, we tested the 
model with portions of the data including only 2 phonemes 
and 1 cue at a time. Two examples of 2-phoneme, 1-cue 
results are shown in Figure 3. The top row is data before 
speaker compensation, and the bottom row after. Horizontal 
position is value along the listed cue dimension (measured 
from the normalized DNF cue field) and each thin rows of 
dots is a different speaker. For some cues like spectral 
kurtosis (left), linear speaker compensation was able to 
actually lower accuracy in this analysis. One speaker may 
have had higher values for ‘v’ than ‘zh’ while another had 
not just a shifted but an opposite relationship between the 
same phonemes. Thus, when speakers’ adjustments were 
chosen to match global means, some values for each 
phoneme shifted one direction, others shifted another, and 
confusion between the phonemes actually increased! 

 For other cues, like fricative duration (right side of Figure 
3), there was a consistent relationship across speakers for 
one phoneme’s values versus another, and compensation 
helped across all speakers. 
 Running the DNF model without the worst cues did not, 
however, increase model fits. The best results (by a small 
margin) were found when the worst nine cues were left 
uncompensated, but the overall improvement was not 
significantly better fitting than when compensating all cues, 
suggesting the network in the model is capable of 
discounting unproductive cues sufficiently. Low DNF 
accuracy for ‘f’ and ‘v’ fricatives remains unexplained. 

 

 

 
Figure 2. Simulation results. Shaded regions in the top two panels 

represent the accuracy range bounded by discrete-choice and 
probabilistic accuracy. The bottom panel shows only the mean of 

these two measures and dashed target line for easier reading.  
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Discussion 

The DNF model establishes a set of plausible neural 
mechanisms for categorizing speech cues and compensating 
for variance between speakers. Accuracy was unsurprisingly 
lower than more abstract models, but only slightly so, and 
the qualitative pattern of DNF model results realistically 
follows that of human behavior. 
 The weakest portion of the DNF model quantitatively is 
its ‘f’ and ‘v’ accuracy. The possibility that some cues like 
spectral kurtosis were unhelpful for these phonemes when 
compensating for speaker was investigated and rejected as a 
hypothesis. An alternative explanation for this relative 
weakness is a high priority for future modeling. 
 Other directions for future work involve capitalizing on 
the rich representations that exist in a neural implementation 
and removing automated processes in model simulations. 
 The DNF model currently pre-loads some information 
into long term memory fields, like speaker adjustment 
profiles (as do competitor models). One high priority for 
model improvement is to remove this artificial seeding of 
information into the model and replace it with online 
learning of speaker adjustments. Speaker adjustments will 
be learned when context clues in the speech environment 
provide information about a speaker’s intended phoneme 
beyond speech cues alone. Correct phoneme information 
can activate expected values for speech cues for that 
phoneme. These values can then be subtracted from the raw, 
perceived speech cue values of the speaker, using a 
transform field exactly like the one in the green region of 
Figure 1. The resulting adjustment value will then be stored 
for use later when context clues are unavailable (achieving 
the current starting point of the model). 
 The DNF model also currently blocks trials by speaker in 
order to conveniently activate one speaker memory profile 
at a time without rapid switching. Humans are able to utilize 
speaker information per syllable, however, so adapting the 
model to have this capability is a third modeling priority. 
This improvement requires only parameterization and gating 
of existing units to achieve more reliable timing.  
 Some of the DNF model’s features suggest testable 
predictions for future investigation as well. For example, the  
 

 
DNF model naturally accounts for both prototype and 
exemplar memory representations, with no qualitatively 
different architecture than is described above. The 
dimension-coded LTM fields (right side of Figure 1) can 
store a profile of information about a specific speaker’s 
history of one auditory cue’s values, but could as easily 
store a profile for “males” or “females” in general, or for a 
specific moment of speech in time. Such stored information 
should be able to capture known human behaviors. For 
instance, Johnson, Strand, and D’Imperio (1999) presented 
discrimination results between speakers by gender that may 
be captured by DNF modeling. Artificial groups of 
phoneme tokens should also be able to be constructed 
grouped by a features beyond gender or speaker, such as 
visual scene context, arbitrary label, or otherwise. The DNF 
model would predict that active compensation for any such 
grouping may be feasible, useful, and actually utilized by 
humans in categorizing those phonemes. 
 The fact that the DNF model can represent 24-cue stimuli 
at all in a neurally plausible way is an advantage over some 
accounts of stimulus representation that will be explored 
further. McMurray and Jongman (2011) established the 
importance of considering many cues for accuracy. Many 
models have represented multidimensional stimuli, 
however, only in an abstract, n-dimensional “feature space” 
(Richardson, 1938; Nosofsky, 1986). Such a space cannot 
exist biologically, since a handful of dimensions requires 
more neurons than exist in the brain. The DNF model offers 
a solution to this problem: the architecture for a single cue 
(Figure 1) need only be replicated linearly for additional 
cues. 24-cue stimuli require only 24 times more neural 
resources than single cue stimuli. 
 This advantage of easily incorporating many new 
dimensions of information extends beyond auditory cues to 
dimensional information of nearly every other type. Visual 
dimensional features, for example, like size, orientation, 
spatial frequency, or color hue can be represented in much 
the same way as speech cues. Critically, just as voice 
features can be compensated and discounted, then, so can 
environmental lighting, distance, or angle of view. The 
current model can therefore potentially provide a unified 
explanation of effects like shape or size constancy as a 

Figure 3. Cue values for test speakers before and after speaker compensation in the DNF model. Spectral kurtosis 
results in lower accuracy after compensation, while fricative duration results in higher accuracy. 
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result of the same or a similar mechanism to phoneme 
constancy shown here. The model may similarly be relevant 
to aftereffects in “high-level” sensory processing, like face 
distortion adaptation (Köhler & Wallach, 1944), as a result 
of adjustment peaks requiring a short period of time to shift 
or die away when a stimulus is changed. 
 A final advantage of the DNF model is that it can process 
several feature or cue values at once through its 
compensation mechanism. Only one adjustment is used here 
for practical simulation time during initial modeling, but 
any number of parallel fields could be used with only 
linearly increasing neural investment, allowing many types 
of compensation at once. This is unlikely to help phoneme 
categorization further, but it would predict an advantage for 
compensating for context information in whole “scenes” of 
information in other modalities, such as distinguishing 
between “forest sounds” and “jungle sounds,” benefitting 
from many parallel compensations along diverse dimensions 
at once. The DNF model not only predicts the capability of 
humans to perform normalized categorizations of this sort, 
but it predicts specific dynamics. If cue values are distinct, 
they should not interfere with one another, but if near one 
another along a dimension, lateral dynamics within the 
initial perceptual fields (blue region, Figure 1) fields should 
sharpen both peaks, or cause them to merge, etc., leading to 
distinct predicted categorization decisions.  
 Overall, compensation performance in the DNF model is 
promising. Future work will focus on increasing the model’s 
self-sufficiency without pre-loaded information, 
investigation of novel behavioral predictions of the model, 
and expanding simulations to other sensory domains. 
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