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A Dynamic Neural Field M odel of Speech Cue Compensation

Gavin W. Jenkins (gjenkins@sfu.ca)
Paul Tupper (pft3@sfu.ca)
Department of Mathematics, 8888 University Drive
Burnaby, B.C., V5A 1S6 Canada

Abstract

Categorical speech content can often be perceivexttlg
from continuous auditory cues in the speech strebut,
human-level performance on speech recognition tasks
requires compensation for contextual variables Bkeaker
identity. Regression modeling by McMurray and Joagm
(2011) has suggested that for many fricative phassna
compensation scheme can  substantially increase
categorization accuracy beyond even the informédtiom 24
un-compensated raw speech cues. Here, we simthiate
same dataset instead using a neurally rather thamaatly
implemented model: a hybrid dynamic neural fielddelcand
connectionist network. Our model achieved sligHtyer
accuracy than McMurray and Jongman’s but similauescy
patterns across most fricatives. Results also cogdpa
similarly to more recent models that were also lessrally
instantiated but somewhat closer fitting to humans
accuracy. An even less abstracted model is an inateed
future goal, as is expanding the present modeldthtianal
sensory modalities and constancy/compensationtsffec

Keywords: Speech recognition, concepts and categories,
neural networks, dynamic systems modeling, psydylo
linguistics, cognitive science

Constancy and Compensation in Perception

In most contexts, our senses provide more infolnathan
we require for a decision. This can make recogmitesks
difficult when the undesired, noisy informationrist just
alongside but integrally mixed with desired infotioa. As
examples, the overall lighting of a scene as weslltlze
reflectance or color of an object both affect tHgeot’s
perceived lightness and hue; the actual shape afbpact
and viewing angle both affect perceived shape; and
speaker’s gender and the content of his or hercspbeth
affect sound pitch. Humans are adept at discourmnimige
and ambiguities, achieving location, shape, or ciperie
constancy (Schneegans &choner, 2012; Rock, 1983;
Bendor & Wang, 2006 Here, we present a neurally
plausible, computational model potentially suitafde any
type of constancy that relies on discounting diner
feature information such as hue, shape cues, echpries.
Specifically, we test the model by identifyingcfative
consonants (‘fricatives’) from whole spoken sylkdl We

conveniently correlate with phoneme categories ugimo
there is some debate, see Stevens & Keyser, 2Bhf)er,
most or all cue information shifts contingently éd<on the
contextual vowel sounds, speed of speech, or speake

Recent empirical and modeling evidence suggeatsctie
invariance can be overcome by considering veryelarg
numbers (dozens) of speech cues and by activetyifdag
contexts then normalizing incoming speech compaoed
other contexts. Jongman, Wayland, and Wong (2000)
gathered human listener identification data for heig
fricatives (f, v,0, 9, s, z, 3) or henceforth (f, v, th, dh, s, z,
sh, zh) respectively, ranging from labiodental tostp
alveolar place of articulation and including bothiced and
voiceless fricatives at each place. Recordingsrioatives
spanned over 20 speakers and 6 vowel contexts. uvieiM
and Jongman (2011) then tested this corpus of.date an
abstract logistic regression model. They tested rttoalel
under several learning conditions, including a $mal
collection of 10 fricative-only cues, a large sét2d cues
that also added vowel cues, and the same 24 cueswith
expectation-based context compensation for vowed an
speaker, using the formal regression compensatatehC-
Cure (McMurray, Cole, & Munson, 2011). They detared
that higher numbers of cues contributed to moreurzate
identification per fricative, as did expectatiorsbd context
compensation. Context compensation also allowed the
model to fit human behavior more closely.

Neural | mplementation of Cue Compensation

McMurray and Jongman’s (2011) results are a corimggll
demonstration of the importance of a large numliezues
and of cue compensation for fricative identificatio
However, the model is abstract and mathematicaiaith
phoneme categorization and cue compensation.

models are important, but a model in a neural fraonk
offers a chance to discover and understand progeisséng
behavior that may derive from neural-level intei@ts not
considered at an abstract level. Formal neural teoalso
generate testable and informative neural levelstestd
predictions. Apfelbaum and McMurray (2015) presdnge

neural two layer PDP neural network for phoneme
categorization, which performed impressively and

Such

assume a speech cue to phoneme model, in contrast t comparably to McMurray and Jongman’s (2011) resblis

more purely acoustic approach (Graves, Mohamed,
Hinton, 2013; Pisoni, 1997), but our model coulagtdo a
raw acoustic approach with very similar architegtur

In the speech cue approach, few, if any, speeek for
fricatives are considered “invariant.” That is, ividual cues

&ue

representation, context identification and exnt
compensation were all still abstracted mathemdyical

Here, we present a neural model to capture theesam
behavioral data as McMurray and Jongman (2011)tand
further expand and supplement our understandirgpeéch

like vowel duration do not statically, cleanly, and ;e compensation from a neural perspective. We ause
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dynamic neural field (DNF) model for attention, mamy
and storage of known speaker speech profiles idstéa
direct coding of these steps into the model, a Dille
compensation mechanism instead of C-Cure, and glesin
layer neural network to ultimately decide phonemes.

The DNF architecture is described in detail belbut, in
general, DNF models involve fields of neural unittose
receptive fields are systematically organized byatisional
information like space, size, color hue, or pitétne DNF
approach does not assume that all cognition isnizgd
this way, only a subset of representations and gasing
that involve dimensional data. This includes attentto
certain dimension values (attending to particulaliors or
points in space, for example), memory traces ofsé¢ho
values, or in the current model, shifting cue valaéong a
dimension to compensate for speaker identity. Bdybese
processes, connectionist networks often take comigdorid
models can include both in simulations, such as Micky,
Horst, Toscano, and Samuelson (2009) or the cumedtl.

input. These interactions keep peaks stable aralited yet
robust against noise. Fields can be parameterizduave
peaks collapse once input is removed (such asttiemtaon)
or to sustain themselves afterward (for memory).

Fields interact along shared dimensions. A fielghoized
by pitch might send activation from above-threshpédks
to contribute to corresponding peaks in other pitehls. A
1-dimensional field projecting to a 2-dimensionaheo
projects a “ridge” of activation across all unitsthe larger
field with the corresponding receptive fields armcewersa.

Fields also receive spatially correlated noise UiripThis
is insufficient to form peaks of activation alofmit is able
to meaningfully influence other, stronger activity.

Figure 1 shows the full layout ¢éist one speech cue in
the model. That is, all of Figure 1 is repeatedhi@ model
for every speech cue. Initial input arrives at thput cue
field (black star icon, blue region). In the examghown,
the listener is hearing two different values of we.cThis
could be due to hearing two speakers simultaneptaty

DNF models have been used for simulating processesxample. This input projects to the adjacent attanfield.
ranging from word learning (McMurray, et al., 2009; Attention is a competitive field, where above-tiivasl units
Samuelson, Spencer, & Jenkins, 2018) motor planning project global inhibition to the rest of the fieldading to a
(Erlhagen & Schoner, 2002), to object recognitiBaubel  winner-takes-all activation pattern.

& Schoner, 2008) and more, and the current modes us Both attention and input fields then project aatiion to a
many of the same neural fields as do the above Imade working memory (WM) field. This is a field with del
the same layouts. Mechanisms for different cogeitiv sustaining peaks, holding information for a timerafter it
processes provide testable predictions for onehanaind has died away in temporary perception or attenfielas.
can potentially be considered together as a coherbale WM connects to a number of other fields of units
and unified model. This is not an advantage exetusd  representing long term memory (LTM) of speech cues.
neural models, but it is natural to them, sinceharad, (right side of Figure 1). LTM fields are not dynamihey
fundamental language is encouraged by common neurate feed-forward and activated in a 1:1 correspooeevith
level simulation. working memory. Long term memory information isdhet

Our model of fricative perception utilizes sevealitady- Hebbian connection weights between WM and LTM feld
established DNF and connectionist mechanisms. Dne ¢ Whenever peaks are active in WM fields, LTM units
neural field dynamics are common to all DNF modéte represent the mathematical product of recent memory
perceptual and memory portions of the model arengom activation and LTM patterns. Thus, the total adtova in
to DNF models that involve categorizatjdhe phonetic cue LTM fields is effectively a similarity rating betwea recent
compensation mechanism is inspired by a spatiadpeech cues and long term remembered patternsack e
transformation mechanism used in a DNF model ofdhealTM field and its Hebbian weights hold informatiof the
and eye gaze spatial adjustment (Scheegans & Schonaistory of cue values of an individual speakers gimilarity
2012); and thecategorization step is performed by asignal allows a listener to identify a known speakeoice
sigmoidal connectionist network rather than logisti by competitively comparing the summed activatiorL ©M
regression, similar to Apfelbaum and McMurray (2015 fields (top right of Figure 1).

Using speaker identity from above, the model atts a
corresponding memory of the correct adjustmenttfat
speaker’s irregularities (green region, Figure The 2-
dimensional transform field (green region) accejpfsut
from this adjustment value (top) and from the rateraded
value (right) and adds them into a normalized cakies
(lower left). Addition is performed by the overlaip
activation between raw and adjustment ridges argatin
intersecting diagonal ridge that projects to thenswed
value in the lower left diagonal neural field (rezgion of
Figure 1). The same mechanism is suggested by 8gans
and Schoner (2012) for adding the angle of head ratatio
and angle of eye gaze to determine angles betwasinand
objects in the visual environment.h&h an adjustment is

Dynamic Neural Field Model Architecture

The Dynamic Neural Field (DNF) model consists ofnga
1- and 2-dimensional fields, shown as white red&sgn
Figure 1. Units in fields are organized by oneweo tmetric
dimensions like cue values (such as voice onseg)tion
amount of adjustment needed to a cue. Each urtfiald
has a receptive field maximally sensitive to onguinvalue
along its metric dimension(s) and less so to neaalyes.
Units within a field interact with one another, damgy
close, strong local excitation and weaker, mordusdd
lateral inhibition to neighbors. Both these int¢i@ts and
input receptive fields create Gaussian “peaks” ‘aites”
of activation when a field is given even a singidue of
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24) and compensation (24 without vs 24
with) for accurate (and human behavior-
fitting) phoneme categorization.

Differences in DNF model architecture
compared to McMurray and Jongman’s
(2011) model necessitated some lesser
complexity in practical simulations. The
DNF model compensated only for speaker

adjust

n context, not vowel context, due to the
- o ability to only perform one compensation
—Z & in a transform field at a time. Two or more
4 § = compensations could simply and plausibly
s, / a ﬁ' be performed in two or more fields in
7 o
2 O XA 5 @ parallel, but would not better prove the
0 =gl 0 concept initially and would take much
sh O Adjustment = g = Long term I
B 8 & memon longer to simulate. The neural transform
=i c . . . agas
z % 2 % 5 product of WM field is also only capable of linear shifting
o Q’o S £ € and Hebb weights, . . . . .
s Normalized Cue, & 1 & 3 differentspeakers  adjustments along a dimension, which is
Rate Coded = g § less theoretically sophisticated than C-Cure

compensation.
Figure 1.Architecture of a single cue in the DNF model. Thiemodel consists of eith The neural network (red) portion of the
10 or 24 copies of this entire figure, except fmtjone set of output nodes shown in thdDNF model was tuned first, without
lower left corner. See text for detailed descriptio dynamic neural field input. Dynamic
_ ) fields involve highly parallel processing,
not known, a default adjustment of zero is usepiisessed and are thus unrealistically slow to simulate ompaters.
otherwise). Dynamic fields were therefore switched on durinstitey
The now-normalized cue information is transfornfreain only. Training of the network used two out of evényee
dimensionally coded to rate coded format (red mregdd syjlable tokens from the same dataset categorizgd b
Figure 1). A gradient of connection weights progect hymans, pre-coded for speech cues. In each epoch of
stronger activation to the rate unit for peaks ae side of training, the network received all training tokensce,
the cue dimension than the other. The sum of th@jocked by speaker. The network received 2,000 fepoé
dimensionally coded field also projects to the rat8t,  training in each condition, with a learning rate®8 and
allowing it to distinguish between no peak and akpat the  sijgmoidal activation function. Cues were (matheozaity
weak end of the scale. An almost identical neurali for during training) Compensated during training fOieaiFEr
place-to-rate code conversions is suggested by @@01).  prior to the neural network, for conditions inclngi
Finally, the normalized, rate-coded cue infornmatieeds compensation.
across a single layer network to determine the obdest The DNF long term memory fields were also pre-lahde
guess at a phoneme. This final portion of the medelates  with memory traces matching each speaker's cueil@rof
to the neural portion of Apfelbaum and McMurray813  (representing our memories of specific people’sesj and
PDP model of this data. Although only one cue nele each speaker’s adjustment value. Adjustments weosen
shown, recall that all of the Figure 1 architectisreepeated gy ch that a linear shift would cause each speakeean
per cue, creating a full [cues] x [phonemes] single layeryajue in a cue across recordings to equal the ptpal

network with one set of weights across speakers. mean value in that cue among the whole set of speak
. . The model could capably establish this informatitself
Experimental Design with DNF during training, but this was impracticailow.

We tested the DNF model using the fricatives phanem At test, the entire model was connected and used as
dataset from Jongman, Wayland, and Wong (2000)vhole to categorize one epoch of the reserved gknation
including 8 fricatives spoken by 20 speakers eachg  tokens, using the previously trained neural network

vowel contexts (fricative + vowel syllables). McMay and We recorded accuracy across test trials using two
Jongman (2011) analyzed this data in several wayisywe  different choice rules, as did McMurray and Jongman
focus here on neurally replicating three analyses i(2011). A discrete-choice rule always chose thenphue
particular: phoneme categorization with 10 fricatonly ~ with the highest activation in the output of theciden
cues and no compensation; with 24 cues to botlatiie ~ network. A probabilistic rule treated relative aation of
and accompanying vowel with no compensation, artth wi €ach output node as relative probability of chogsinat

24 cues and compensation. Together, these test tioneme. The results figure (Figure 2) depicts realo
importance of number of cues and vowel informafibhvs  regions bounded by these two different measures.
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Results For other cues, like fricative duration (rightsidf Figure
3), there was a consistent relationship acrosskspedor
one phoneme’s values versus another, and compemsati
helped across all speakers.

Running the DNF model without the worst cues did, n
however, increase model fits. The best resultsalymall
margin) were found when the worst nine cues wefe le
uncompensated, but the overall improvement was not
significantly better fitting than when compensatadfcues,
suggesting the network in the model is capable of
discounting unproductive cues sufficiently. Low DNF
accuracy for ‘f and ‘v’ fricatives remains unexpiad.

Results of simulations are shown in Figure 2. Cambado
McMurray and Jongman’s (2011) mathematical moduwd, t
neural implementation of phoneme perception peréatrm
somewhat less absolutely accurately and somewssinell
fitted to human performance across conditions. Hane
the simulations were overall comparable while idahg
many neurally-implemented mechanisms previouslyy onl
abstractly implemented.

A large number of cues including vowel cues (2éscu
middle panel) provided moderate benefit comparedato
medium number of fricative-only cues (10 cues, papel)
in terms of raw accuracy (+8% McMurray and Jongmar No Speaker Compensation, 10 Cues
[M&J], +11% DNF). Fit to human data worsened for WM& 100
(RMSE from 0.077 to 0.099). Fit remained steady tfo
DNF model (RMSE of 0.156 in both cases), but rssult
broadly shifted in line with human results in batibdels.

The addition of a speaker compensation systemtédos
raw accuracy in both models (+8% M&J, +3% in the DN
model) and fit human data more closely for M&J (RMS
from 0.099 to 0.061) and more closely for the DN&del ] v th dh . 5 < h
(RMSE from 0.1563 to 0.1231).

The bottom panel in Figure 2 includes two add#ion
lines, representing results from Apfelbaum and Maldy
(2015) models. The grey line shows the performaotce No Speaker Compensation, 24 Cues
their PDP neural decision network (but otherwiset no
neurally implemented) model. The PDP model perfarme _—\/—’,_
well quantitatively but with a flat performance ass
fricatives. The green line shows the performanceanf
exemplar model that stored every individual sykatiken
from the training set in memory for use in categjog test
items. The exemplar model performed very well, tad no
neural implementation, and storage of every indiald
syllable in memory is likely unrealistic.

Qualitatively, the pattern of accuracy in the DNBdel = Human, Whale Syllable McHurray & Jongman, 2011
fits human data in shape about as well as the otivefels. Dynamic Neural Field Model
Non-sibilant fricatives ‘f and ‘v’ were routinelylow
accuracy compared to humans for the DNF model thoit
‘th, dh, s’ dip shape is more accurately capturetbss
conditions by the DNF model.

In an attempt to explore possible causes of oudat®
consistently low accuracy for ' and ‘v, we testehe
model with portions of the data including only 2oplkemes
and 1 cue at a time. Two examples of 2-phonemayel-c
results are shown in Figure 3. The top row is dsdfore
speaker compensation, and the bottom row afterizbiotal f v th dh s z sh zh
position is value along the listed cue dimensioedsured ... Human, Whole Syllable McMurray & Jongman, 2011
from the normalized DNF cue field) and each thiwsoof Dynamic Neural Field Model
dots is a different Speaker_ For some cues ||k&;t§ﬂje Apfelbaum & McMurray, PDP Apfelbaum & McMurray, Exemplar
kurtosis (left), linear speaker compensation wake db Figure 2. Simulation results. Shaded regions irtépewo panels
actually lower accuracy in this analysis. One speaker may represent the accuracy range bounded by discreieechnd
have had higher values for ‘v’ than ‘zh’ while ahet had  Probabilistic accuracy. The bottom panel shows dnéymean of
not just a shifted but aapposite relationship between the these two measures and dashed target line for eaaiing.
same phonemes. Thus, when speakers’ adjustments wer
chosen to match global means, some values for each
phoneme shifted one direction, others shifted arotand
confusion between the phonemes actually increased!
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B
s & 2
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Figure 3. Cue values for test speakers before #iadspeaker compensation in the DNF model. Spidatiréosis
results in lower accuracy after compensation, wiitative duration results in higher accuracy.

Discussion

The DNF model establishes a set of plausible neuralifferent architecture than

mechanisms for categorizing speech cues and coruemns
for variance between speakers. Accuracy was urisingly
lower than more abstract models, but only sliglsthy and
the qualitative pattern of DNF model results rewmlaly
follows that of human behavior.

The weakest portion of the DNF model quantitativiel
its ‘f and ‘v’ accuracy. The possibility that sonteies like
spectral kurtosis were unhelpful for these phonemlesn
compensating for speaker was investigated andtegjexs a
hypothesis. An alternative explanation for thisatieke
weakness is a high priority for future modeling.

Other directions for future work involve capitatig on
the rich representations that exist in a neuralémgntation
and removing automated processes in model simofatio

DNF model naturally accounts for both prototype and
exemplar memory representations, with no qualiédyiv
is described above. The
dimension-coded LTM fields (right side of Figure dan
store a profile of information about a specific alper’s
history of one auditory cue’s values, but could easily
store a profile for “males” or “females” in general for a
specific moment of speech in time. Such storedrimédion
should be able to capture known human behaviors.
instance, Johnson, Strand, and D’Imperio (1999%er&d
discrimination results between speakers by gertagrmay
be captured by DNF modeling. Artificial groups of
phoneme tokens should also be able to be condfructe
grouped by a features beyond gender or speakeh, asic
visual scene context, arbitrary label, or otherwidee DNF
model would predict that active compensation foy anch
grouping may be feasible, useful, and actuallyiagd by

Fo

The DNF model currently pre-loads some informationhumans in categorizing those phonemes.

into long term memory fields, like speaker adjustine
profiles (as do competitor models). One high ptyofor
model improvement is to remove this artificial segdof
information into the model and replace it with omeli
learning of speaker adjustments. Speaker adjustmeitit
be learned when context clues in the speech emaah
provide information about a speaker’s intended pehom

The fact that the DNF model can represent 24-toeib
at all in a neurally plausible way is an advantager some
accounts of stimulus representation that will beleved
further. McMurray and Jongman (2011) established th
importance of considering many cues for accuracgnyvi
models have represented multidimensional stimuli,
however, only in an abstract, n-dimensional “featspace”

beyond _speech cues alone. Correct phoneme infamati (Richardson, 1938; Nosofsky, 1986uch a space cannot
can activate expected values for speech cues far thexist biologically, since a handful of dimensiorejuires

phoneme. These values can then be subtracted fi@nmat,
perceived speech cue values of the speaker,
transform field exactly like the one in the greegion of
Figure 1. The resulting adjustment value will thenstored
for use later when context clues are unavailabtdiéaing
the current starting point of the model).

The DNF model also currently blocks trials by dqgan
order to conveniently activate one speaker memoofile
at a time without rapid switching. Humans are dblatilize
speaker information per syllable, however, so ddgpthe
model to have this capability is a third modelingopty.
This improvement requires only parameterization gaitihg
of existing units to achieve more reliable timing.

more neurons than exist in the brain. The DNF moffelrs

using g@solution to this problem: the architecture fasimgle cue

(Figure 1) need only be replicated linearly for itiddal
cues. 24-cue stimuli require only 24 times more rakeu
resources than single cue stimuli.

This advantage of easily incorporating many new
dimensions of information extends beyond auditargscto
dimensional information of nearly every other typésual
dimensional features, for example, like size, ddagan,
spatial frequency, or color hue can be represeimteduch
the same way as speech cues. Critically, just dsevo
features can be compensated and discounted, therars
environmental lighting, distance, or angle of vieWhe

Some of the DNF model's features suggest testablgurrent model can therefore potentially provide rafied

predictions for future investigation as well. Feample, the

explanation of effects like shape or size constaasya
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result of the same or a similar mechanism to ph@nem

constancy shown here. The model may similarly leveat
to aftereffects in “high-level” sensory processitige face
distortion adaptation (Kéhler & Wallach, 1944), asesult
of adjustment peaks requiring a short period oktim shift
or die away when a stimulus is changed.

A final advantage of the DNF model is that it gancess
several feature or cue values at once through
compensation mechanism. Only one adjustment is luse=
for practical simulation time during initial modeg, but
any number of parallel fields could be used withyon
linearly increasing neural investment, allowing maypes
of compensation at once. This is unlikely to hellmpeme
categorization further, but it would predict an adtage for
compensating for context information in whole “seghof
information in other modalities, such as distinging
between “forest sounds” and “jungle sounds,” betie
from many parallel compensations along diverse dsiums
at once. The DNF model not only predicts the cdpgluf
humans to perfornrmormalized categorizations of this sort,
but it predicts specific dynamics. If cue values distinct,
they should not interfere with one another, butéfr one
another along a dimension, lateral dynamics witthie
initial perceptual fields (blue region, Figure iglds should
sharpen both peaks, or cause them to merge, eading to
distinct predicted categorization decisions.

Overall, compensation performance in the DNF maslel
promising. Future work will focus on increasing thedel’s
self-sufficiency without pre-loaded information,
investigation of novel behavioral predictions oé tmodel,
and expanding simulations to other sensory domains.
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