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Abstract 

A convenient representation of the solution to the asymmetric Graetz problem in channel 

flow is presented. The asymmetric Graetz problem in channel flow is similar to the classical 

Graetz problem of heat or mass transfer to a fluid flowing in a round duct. In the classical prob­

lem, the tube wall undergoes a step change in. concentration at a given axial position. In the 

asymmetric Graetz problem, the duct is flat, and the concentration step occurs at only one chan­

nel wall. It is shown how this solution to the asymmetric Graetz problem may be used in a 

superposition integral to determine the wall flux in problems where the arbitrary channel wall 

concentrations differ on the two walls . 
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Introduction 

The problem of mass transfer to fluids in laminar flow in ducts appears in many engineer­

ing applications. This problem has been solved for some special cases, 11-
101 but here we shall 

consider the case of a flat duct, or channel, where the surface-concentration boundary conditions 

are arbitrary, and may differ on the two channel walls. This problem is of interest when the 

channel gap is thinner than the diffusion-boundary-layer thickness. In such cases, the fluxes at 

the two channel walls are not independent. 

Since the detailed concentration profile within the flowing fluid is generally not needed, we 

shall emphasize the distribution of flux along the channel walls. Given this flux distribution, 

one can calculate the concentration at the exit by performing an overall material balance. 

To obtain the distribution of flux along the two channel walls, it is necessary to solve the 

convective diffusion equation with arbitrary nonlinear concentration boundary conditions. 

Because the convective diffusion equation is linear, however, Duhamel's superposition principle 

may be used to treat the nonlinear boundary conditions. According to Duhamel's theorem, the 

solution to a linear problem with nonlinear boundary conditions may be written as a superposi­

tion of solutions to the problem with step-function boundary conditions. [1 1•121 

The symmetric problem, which has step-function boundary conditions on both walls, has 

been solved. [~I When the surface concentration profiles are different on the two walls, however, 

it is necessary to solve the asymmetric problem. In the asymmetric problem, there is a step 

function in concentration on only one wall. Yih and Cermak171 and Schenk and Beckers181 have 

treated this asymmetric problem, but their results are only applicable far from the step change 

in concentration. Hatton and Turton's results can be used over a somewhat larger range. 191 

Cess and Schaffer1 101 solved the problem with a unit step change in flux, rather than concentra­

tion. The solution presented here is in the form of a function that is accurate at all axial posi-

tions. Therefore, when the surface concentrations are known at all axial positions, this function 

may be used in a superposition integral to determine the wall fluxes. 

{, . . 
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Problem Statement 

The convective diffusion equation for a species i is 

(1) 

For laminar flow in a channel, v1 is zero, and, if axial diffusion is negligible, a2c; I ax 2 can be 

neglected (see figure 1). Therefore, 

(2) 

where 

(3) 

and B is the channel halfwidth. · The origin of the coordinate system is chosen to be in the 

center of the channel for convenience .. 

Equation 2 may be written in dimensionless form by defining the variables 

( 4) 

(5) 

( 6) 

:f 
where C0 is the surface concentration and cb is the bulk concentration. Thus, the dimensionless 

convective diffusion equation is 

(7) 

If the boundary conditions are arbitrary, Duhamel's superposition theorem may be used to write 

the flux in terms of the solution to the problem with a step-function concentration boundary con-
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dition on one wall. For example, if wall "-1" is located at ~=-1, and wall "1" is located at 

~=1, then the flux of species i at wall "-1" is 

D; IX dci,-l I a8 • • 
N.1 1(x) =-- -- 1 • -(t-f ~=-1) dx .- B 0 dx x a~ ' ( 8) 

D x de 8 + - 1 I~ I • .£__(,__,..• 1:=1) dx• 
B 0 dx 'x a~ lo ' <; ' 

where c;,-1 is the surface concentration of species i at ~=-1 and e;, 1 is the concentration of 

species i at ~=1. The flux (in the +~direction) of species i at wall "1" is obtained by revers-

ing the wall subscripts and the signs: 

D1 Ix de;,I , a8 • • 
N.1 1(x) = - --: • -(t-t ~=-1) dx · 

· B 0 dx 1x a~ ' (9) 

D x de· 8 
- -

1 I~! . .£_(t-( ~=1) dx·. 
B 0 dx lx a~ ' 

Both fluxes are in the positive ~ direction. In equations 8 and 9, 8(t.~) is the solution to the 

dimensionless convective diffusion equation (equation 7) with boundary conditions 

8 = 1 at ~ = -1 (10) 

8 = 0 at ~ = 1 (11) 

8 = 0 at t = 0. (12) 

That is, 8 has a unit step function boundary condition on wall "-1". The quantity a8ja~ at 

either wall is related to the Nusselt number (dimensionless flux) by 

Nu = -2 _E! 
a~ , (13) 

where Nu is defined to be positive on both walls. Figure 2 illustrates the concentration profiles 

for this step-function boundary-condition problem. 
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The ~veque Approach 

In general, equation 2 must be solved numerically. If, however, the diffusion boundary 

layers are thin, an analytic solution for the flux can be obtained by assuming that the velocity 

profile is linear throughout the boundary layer. This approximation is known as the ~veque 

approximation. 12.3•
13

•
141 It should be noted that this approximation is not valid throughout a 

thin-gap channel, because the diffusion boundary layers can fill the entire gap and, hence, the 

velocity profiles are not linear. This approximation is useful, however, for treating the entrance 

region, where the diffusion boundary layers are thin. Norris and Streid have solved this 

~veque problem for channel flow. 161 

One can extend the range of applicability of the ~veque solution by writing a ~veque 

series for the Nusselt number. This has been done for the Graetz problem in a tube, 13•141 and a 

similar procedure may be used for a channel. (The procedure is illustrated for an annulus in 

problem 1 in chapter 17 of reference 13). The first three terms of the channel L:veque series 

are: 

ae 
Nu = -2 af !t--1 = L35659745r-''3 - 0.2 - o.060733452r''3 . (14) 

The Graetz Approach 

To treat the downstream region, the Graetz approach (separation of variables) should be 

used. The boundary conditions (equations 10-12) can be simplified by subtracting the down-

stream linear concentration profile from the actual concentration profile. Thus we define 

C = 8- 8 = (J- (..!.- l) 00 2 2 . (15) 

The new variable C still satisfies the dimensionless convective diffusion equation, but the boun-

dary conditions are symmetric and homogeneous: 

C = 0 at ~ = -1 (16) 
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C = 0 at ~ = 1 . (17) 

Using separation of variables transforms the partial differential equation into two ordinary 

differential equations: 

(18) 

( 19) 

where 

C = XU)Y(~). (20) 

Equation 18 can be solved readily: 

(21) 

· Equation 19, however, is an eigenvalue problem that must be solved numerically. 

To calculate the complete solution for the dimensionless concentration, 

(22) 

the coefficients Ak, the eigenvalues >.k, and the eigenfunctions Yk are needed. The coefficients 

are obtained by using the orthogonality of the eigenfunctions with respect to the weight function 

(1-e). Since fJ = 0 at r = 0, 

I (23) 

f [Yk(~)] 2 (I- e) d~ 
-I 

Equation 23 may be simplified because the eigenfunctions are either odd or even functions in f 

Thus, if Yk <n is an odd function, 
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I 

I~ o- e) Yk<~) d~ 
0 

I (24) 

2I Yk2<~) o- e) d~ 
0 

If Yk (~) is an even function, 

I 

-I (1- ~2) Yk(~) d~ 
0 

(25) I 

2 I yk2(~) o- ~2) d~ 

The eigenvalues and eigenfunctions must be obtained numerically from the eigenvalue 

problem 

(26) 

. with boundary conditions 

Y = 0 at~= -1 (27) 

Y = 0 at ~ = 1 . (28) 

Solution of the Eigenvalue Problem 

One can rewrite the eigenvalue problem in a form convenient for numerical solution by 

realizing that the eigenvalues X are constant. Thus, 

(29) 

(30) 

where the primes denote differentiation with respect to ~· To solve equations 29 and 30, three 

boundary conditions are needed. The first two boundary conditions are stated in equations 27 

and 28. The third boundary condition is a normalization condition 
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\Y1 = 1 at ~ = 1 . 
\ 

(31) 

This boundary condition can be imposed because the eigenfunctions are multiplied by the con-

stants Ak. Thus, the eigenfunctions may be chosen such that Yk 1 has the same value for all k. 

Naturally, Yk 1 cannot be chosen to be infinite or zero because the wall flux is finite. Note that 

equations 29 and 30, with boundary conditions 27, 28, and 31, are satisfied only for certain 

discrete eigenvalues .hk. 

The system of two ordinary differential equations with the three boundary conditions can 

be solved numerically using a finite-difference technique. l14•151 

The results of this procedure are tabulated in Tables I and II. A plot of the Graetz func-

tions for the asymmetric channel problem is shown in figure 3; the corresponding eigenvalues are 

shown in figure 4. Note that half of the eigenfunctions are even in ~. and half of them are odd. 

Comparison with literature 

Tables I and II show the eigenvalues and coefficients as calculated by various authors. 

The second column shows the accurate results of Brown for the even eigenfunctions. [ 41 The 

third column contains the asymmetric-boundary-condition results of Hatton and Turton, l91 and 

the fourth column contains the results of Yih and Cermak.£71 To calculate the coefficients, Akt 

from Yih and Cermak's work, it was necessary to estimate Yk '(l) from the tables and graphs of 

Yk. Sellars, Tribus, and Klein have presented a method for calculating the higher eigen-

values. [SJ The fifth column in tables I and II and figure 4 show the results of their procedure. 

Combining the Graetz and ~Yeque Solutions 

It should be noted that a truncated Graetz series (obtained from equation 22) is accurate 

for large r. while the ~vi:que series (equation 14) is valid for small r. The value of r that 

divides the two regions is that value at which the ratio of the two asymptotic solutions is closest 

to unity. If more terms are used in the Graetz series, this value of r becomes smaller, and the 
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accuracy is improved. Similarly, the accuracy can be improved by adding more terms to the 

L:veque series; then the value of f dividing the two regions becomes larger. By adding more 

terms to each of the two series, any desired degree of accuracy can be obtained. If three terms 

are used in each series, the maximum error in the Nusselt number is 0.48%. This maximum 

error occurs at f=0.11, the value that divides the two regions. 

Asymptotic Form; for Large Eigenvalues 

If greater accuracy than 0.48% is desired, then it is most efficient to add terms to the 

Graetz series. Therefore, it is useful to have simple asymptotic forms for calculating the higher 

eigenvalues and corresponding coefficients. 

For the Graetz problem in a tube, Newmanf 141 extended the asymptotic forms of Sellars et 

a/. [SJ to achieve accuracy over a greater range of eigenvalues. Using a similar procedure, we 

devised an asymptotic form for the asymmetric Graetz problem: 

where 

>. = Ao + 0.03254 0.11 
>.Jf3 - ~4/3 ' 

6k -I >.o=--
3 

for k =1, 2, · · · 

(32) 

(33) 

is the asymptotic form obtained by modifying the method of Sellars et a/. (see reference 9). 

The function in equation 32 may be used for ~. >.7, ••• , with a maximum error of !0"5%. 

The method of Sellars eta/. predicts that the coefficients behave as Ak = (-l)k+IK/A.ll3 

as >.k becomes large, where 

K 

24/3 rc 1.) 
__ _;3=-- = 1.012787288. 
3'16 rc!) "" 

3 

This asymptotic form was modified to 

(34) 



10 

A, - ( -1 )k+ I [X~' ) (l + 0. 03X;''' - 0. 03Xi'''> . (35) 

Equation 35 gives a maximum error of 4xl0~ fork ~6. 

Table III shows the comparison between the eigenvalues as calculated by solving the eigen­

value problem and the eigenvalues as calculated from the asymptotic form in equation 32. 

Table IV shows the comparison for the coefficients. 

By using these asymptotic forms in a Graetz series with many terms, one can achieve a 

high degree of accuracy in the Nusselt number. For example, if the most accurate eigenvalues 

and coefficients from tables I and II are used for k <5, Brown's coefficients are used for 

k=7,9,ll, and the asymptotic fonns are used everywhere else, a lO~term Graetz series can be 

used down to t=2.9xl~. with a maximum error in Nu of 7.5x10-4%. If a 3-term Graetz series 

is used, the maximum ~rror between the Graetz and L~veque series is 0.48%. 

Empirical Approach 

Recall that the ~veque solution is only applicable on the wall with the step change in con­

centration. To fit the region of small t on the opposite wall, it is more convenient to use an 

empirical function than it is to use a very large number of terms in the Graetz series. 

The empirical function used here was derived by considering a simpler problem. If the 

fluid were in plug flow, rather than laminar flow, the mass-transfer problem would be analogous 

to the problem of transient heat conduction in a finite slab. If the temperature at one wall 

undergoes a step change at time t =0, the flux at the opposite wall increases with time. In the 

channel-flow problem, the flux increases with distance down the channel. Thus, the short-time 

solution is analogous to the small-t solution. 

Based on the short-time solution for heat conduction in a finite slab, it is assumed that Nu 

is proportional to e-bfr. This assumption can be tested by plotting the Graetz-series form of Nu 

(using a large number of terms). Indeed the plot of In Nu vs. 1/r is linear at high 1/t. and 
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this linear asymptote has a nonzero intercept. Therefore, at high 1/r, In Nu is approximately 

a-b Jr, where a is approximately 1.0 and b is approximately 0.6. To match the behavior at low 

1/r, a correction term of the form ce-dfl can be added, where the constants c and d are 

estimated from a plot of In (a - b H- In Nu) vs. 1/r. A better estimate of the constants was 

obtained by performing a least squares fit between In Nu as calculated from a 100-term Graetz 

series and In Nu = a - b Jr- ce-dfl, for various specified values of d. The least squares fit was 

designed to weight the region of small r. where the empirical function is to be used. The value 

of d was chosen to make the maximum absolute error as small as possible, while keeping the 

maximum relative error at a very small value of r. where Nu is small. The resulting fitting 

function for small r is 

Nu = -2 :: 1~- 1 = exp(0.9594- 0.6069 ~ - 0.4512e-{)·27611). (36) 

In the region of small r (r<0.3), the maximum absolute error between this function and the 

100-term Graetz-series representation of the Nusselt number is 2.3xl0-4. This maximum abso-

lute error occurs at r=0.25. Here, the relative error is 0.11%. The maximum relative error is 

0.2%, and it occurs at r=o.os. 

Recall that equation 36 is applicable only at small r. and the truncated Graetz series is 

applicable only at large r. Again, we choose to use a 3-term Graetz series. Comparison of this 

series with the 100-term series shows that the 3-term series is comparable in accuracy to the 

empirical function for r 2::: 0.16. Actually, however, the empirical function is superior to the 3-

term Graetz series for 0.16 < r < 0.18. Therefore, the value of r dividing the two regions was 

chosen to be 0.18. Here, the error between the 3-term Graetz series and the empirical function 

is 0.013%. 

Summary of Results 

In summary, a convenient representation of the Nusselt number for the asymmetric Graetz 

problem has been obtained. For the wall with the step change in concentration: 
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Nu = L35659745r-1
'
3

- o.2- o.o6o733452r1
'
3 for r < 0.11 (37) 

Nu = 1 + 2 ± I Ak I e -Ajt 
k-l for r > 0.11, (38) 

where 

A 1 = 0.8580866740 At = 1.6815953222 (39) 

A2 = -0.65921993 A2 = 3.6722904 (40) 

A 3 = 0.5694628499 A3 = 5.§698573459 . ( 41) 

For the wall without the step change: 

1 
Nu = exp(0.9594- 0.6069 f- 0.4512e...o·2761!) for r < 0.18 (42) 

3 -><lt Nu = 1-2 ~ Ake 
k-l for r > 0.18. ( 43) 

It has been shown that this solution may be used in a superposition integral to determine the 

. wall flux in problems where the channel wall concentrations are arbitrary and may differ on the 

two walls. 



13 

Acknowledgment 

This work was supported by the Assistant Secretary for Conservation and Renewable 

Energy, Office of Energy Systems Research, Energy Storage Division of the U. S. Department of 

Energy under Contract No. DE-AC03-76SF00098. 



A 

B 

C; 

c 

K 

Nu 

' 

X 

X 

y 

y 

Greek 

(} 

list of Symbols 

coefficient in eigenfunction expansion of concentration 

channel halfwidth, em 

bulk concentration of species i, molfcm3 

concentration of species i, molfcm3 

surface concentration of species i, molfcm3 

dimensionless concentration defined in equation 20 

diffusion coefficient of species i, cm2 js 

constant defined in equation 34 

ac; 2B 
Nusselt number = -- ---­

ay Cb - C0 

fluid velocity, cmjs 

component of velocity .in the axial direction, cmfs 

component of velocity in the normal direction, cm/s 

axial coordinate, em 

axial dependence of concentration, defined in equation 20 
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normal dependence of concentration, defined in equation 20 

dimensionless axial coordinate defined in equation 6 

dimensionless concentration defined in equation 4 

downstream dimensionless concentration (see equation 15) 

eigenvalue in equation 19 

dimensionless normal coordinate defined in equation 5 

14 
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Subscripts 

b refers to bulk solution 

i refers to a particular species in solution 

k summation index in eigenfunction expansion (see equation 22) 

0 refers to wall surface 

00 downstream 

-1 wall located at ~ = -1 

wall located at ~ = 1 

0 refers to asymptotic solution of Sellars et a/. IS] 

Superscripts 

• dummy variable of integration 
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Table I 

Eigenvalues, Xk 

Hatton and Yih and Sellars, Tribus, 
k Present Work Brown Turton Cermak and Klein 

1.6815953 1.6815953222 1.681595 1.681 2/3 

2 3.6722904 3.672290 3.673 3 2/3 

3 5.6698573 5.6698573459 5.669858 5.670 5 2/3 

4 7.6688088 7.668809 7.669 7 2/3 

5 9.6682424 9.6682424625 9.668243 9.669 9 2/3 

6 11.667894 11.66790 11.60 11 2/3 

7 13.667661 13.6676614426 13.66766 13 2/3 

8 15.667496 15.66750 15 2/3 

9 17.667374 17.6673735653 17.66738 17 2/3 

10 19.667279 19.66729 19 2/3 

.• 

r 
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Table II 

Coefficients, Ak 

Hatton and Yih and Sellars, Tribus, 
k Present Work Brown Turton Cermak and Klein 

0.85808668 0.8580866740 0.8580871 0.8582 0.85421788 

2 -0.65921993 -0.6592200 -0.6490 -0.65679187 

3 0.56946285 0.5694628499 0.5694628 0.5665 0.56807937 

4 -0.51452221 -0.5145219 -0.5060 -0.51362882 

5 0.47606547 0.4760654555 0.4760652 0.4429 0.47543665 

6 -0.44701873 -0.4470184 ( -0.1142) -0.44654920 

7 0.42397373 0.4239737298 0.4239739 0.42360789 

8 -0.40504973 -0.4050497 -0.40475545 

9 0.38910871 0.3891087061 0.3891088 0.38886606 

10 -0.37541429 -0.3754147 -0.37521022 
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Table III 

Eigenvalues, Xk 

k Calculated Asymptotic 

1 1.6815953 1.6729924 

2 3.6722904 3.6721659 

3 5.6698573 5.6698540 

4 7.6688088 7.6688110 

5 9.6682424 9.6682441 

6 11.667894 11.667895 

7 13.667661 13.667662 

8 15.667496 15.667496 

9 17.667374 17.667374 

10 19.667279 19.667280 

r 
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Table IV 

Coefficients, Ak 

k Calculated Asymptotic 

1 0.85808668 0.85807016 

~ 2 -0.65921993 -0.65931889 

3 0.56946285 0.56949143 

4 -0.51452221 -0.51453243 

5 0.47606547 0.47606966 

6 -0.44701873 -0.44702059 

7 0.42397373 0.42397459 

8 -0.40504973 -0.40505013 

9 0.38910871 0.38910889 

10 -0.37541429 -0.37541436 

. 
"· 

.. 



24 

YL 8 
-·-- x ___________ _L ___ _ 

XBL836-5844 

Figure 1, 

' 
_ .. 



25 

XBL836-5845 

Figure 2. 
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