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Abstract 
 

The Hepatic Integrated Stress Response Suppresses the Somatotroph Axis to Control 
Liver Damage in Nonalcoholic Fatty Liver Disease 

 
By 

 
Wei-Chieh Mu 

 
Doctor of Philosophy in Endocrinology 

 
University of California, Berkeley 

 
Professor Gary Firestone, Chair 

 
 
Nonalcoholic Fatty Liver Disease (NAFLD) is a progressive liver disease that can lead to 
liver cirrhosis and hepatocellular carcinoma, eventually resulting in death. The disease is 
prevalent worldwide, affecting around a quarter of the population, and is associated with 
risk factors such as obesity and type 2 diabetes. Currently, no standard treatment exists 
for NAFLD, which is characterized by excessive hepatic lipid accumulation leading to ER 
and mitochondrial stress, impaired insulin signaling, and inflammatory response. These 
events form a vicious cycle and exacerbate the progression of NAFLD. Sirtuin 7 (SIRT7), 
an NAD+-dependent deacetylase, is a nutrient sensor that alleviates ER stress and 
mitochondrial protein folding stress and prevents fatty liver. The insulin/IGF-1 signaling is 
the first nutrient-sensing pathway reported to regulate longevity in model organisms. 
Inhibiting the Insulin/IGF-1 signaling extends the lifespan of mice and worms. 
Paradoxically, low circulating IGF-1 is linked to hepatic steatosis and severe liver fibrosis 
in NAFLD. It remains unclear whether the somatotroph axis, which controls the 
insulin/IGF-1 signaling pathway, plays a role in liver damage during the progression of 
NAFLD. 
 
This dissertation aimed to explore the underlying mechanisms of NAFLD and develop a 
novel therapeutic strategy to combat this progressive liver disease. Chapter 1 provided a 
comprehensive review of the current state of nutrient-sensing pathways and oxidative 
stress response. We also discussed the therapeutic opportunities to prevent aging- or 
disease-driven tissue dysfunction by targeting the nutrient-sensing pathways. In Chapter 
2, we investigated the role of the somatotroph axis in NAFLD and identified a novel 
regulatory pathway involving hepatic ER stress and ATF3, which suppresses the 
somatotroph axis in hepatocytes and leads to decreased cell proliferation and ER stress-
induced cell death. Our findings in genetic and diet-induced NAFLD mouse models 
suggest that the suppressed somatotroph axis prevents apoptosis and inflammation but 
decreases hepatocyte proliferation and exacerbates fibrosis in the livers. Finally, we 
demonstrated that pharmacological activation of SIRT7 via NAD+ boosting reduces 
hepatic ER stress, rescues the suppressed somatotroph axis, and ameliorates NAFLD 
pathogenesis, offering a promising new therapeutic approach for treating this disease. 
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Chapter 1: Nutrient sensing, the oxidative stress response, and stem 
cell aging 
 
Abstract 
 
The free radical theory of aging was first proposed by Harman in the 1950s with the idea 
that oxidative damage accumulates with age and contributes to functional deteriorations 
during aging. Caloric restriction (CR) has been shown to be one of the most effective 
approaches to extend life span and health span. Recent advances in nutrient sensing 
have identified molecular regulators responsible for CR-mediated oxidative stress 
defense and underscore their importance in preserving stem cell maintenance and tissue 
integrity during aging. Deciphering molecular mechanisms of the oxidative stress 
response during CR will enhance our knowledge toward the biology of aging and provide 
insights into developing activators targeting the nutrient-sensing pathways to extend 
healthspan and lifespan. 
 
Introduction 
 
Nutritional intervention is an effective approach to extend lifespan and ameliorate age-
associated dysfunctions. In 1935, McCay published the first piece of evidence that 
reduced food intake extends the lifespan of rodents 3. Since then, this dietary regimen 
has been studied extensively in different model organisms 3-6. CR, which usually refers to 
a 20% to 50% reduction of total energy intake without malnutrition 7, is considered to be 
the most consistent and effective intervention to prolong lifespan across species including 
yeast, worms, rodents and perhaps non-human primates 3-6. In mammals, CR has been 
shown to induce a wide spectrum of health benefits and ameliorate the development of 
age-related diseases including cancer, immunological disorders, and neurodegenerative 
diseases 8-10. Besides restriction of calories, other nutrition restrictions, such as glucose 
restriction, methionine restriction, and protein restriction, also have profound effects on 
lifespan and healthspan 11-13, and sparked a widespread interest in understanding how 
nutrition restriction works.  
 
Proposed by Denham Harman in the 1950s, the free radical theory of aging postulated 
that aging and age-related degenerative diseases are attributed to the attacks of reactive 
oxygen species (ROS) on cell components such as lipids, DNA, and proteins 14-16. Since 
then, numerous studies have shown that ROS levels increase during aging 17-19. 
Coincidently, oxidative damage to lipids, DNA, and proteins accumulates in various 
animal models with age 20. Despite the surprising finding that genetic activation of a 
number of antioxidant enzymes did not extend the lifespan of mice 21, mounting evidence 
supporting a causal relationship between oxidative stress and aging continues to emerge 
21-26 and reestablishes oxidative stress as the focal point of aging research. Oxidative 
stress under normal physiological condition is considered oxidative eustress, when ROS 
act as signaling molecules to regulate cell proliferation, migration, and adaptive stress 
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responses 27,28. When intracellular concentrations of ROS are above the normal range, 
oxidative distress triggers inflammation, cell growth arrest, and cell death. 
 
Among various nutrition restrictions, CR has been studied most extensively. It was 
proposed that CR slows aging by reducing the metabolic rate and therefore preventing 
the production of ROS 29. However, recent advances in nutrient sensing challenged this 
traditional view and support the notion that CR triggers active oxidative stress responses 
elicited by nutrient sensors to reduce cellular oxidative damage and the mitochondrial 
deterioration, and that this regulatory network is particularly important in preserving adult 
stem cell maintenance and tissue homeostasis during the aging process. Deciphering the 
molecular mechanisms of the oxidative stress response during CR will enhance our 
knowledge toward the biology of aging and provide insights into therapeutic development 
to prevent or reverse aging-associated tissue degenerative conditions and diseases. 
 
Nutrient Sensing and the Oxidative Stress Response 
 
The most compelling evidence supporting an active oxidative stress response during CR 
came from the studies of SIRT3. SIRT3 belongs to the sirtuin family of NAD+-dependent 
deacylases and it is localized in the mitochondrial matrix 30,31. Mice lacking SIRT3 are 
phenotypically normal at a young age and exhibit no difference in oxidative damage 
markers compared to wild-type mice when fed ad libitum 32. However, while wild-type 
mice are protected from oxidative damage when fed a CR diet, SIRT3 KO mice are not 
32, providing direct genetic evidence linking SIRT3 to CR-induced protection from 
oxidative stress. Importantly, SIRT3-mediated protection from oxidative stress is 
physiologically relevant. While wild-type mice fed a CR diet are protected from hearing 
loss, a well-establish oxidative stress-related pathology, SIRT3 deficient mice lose such 
a protection 33 (Figure 1).  
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Figure 1. Caloric restriction induces nutrient sensors SIRT3 and SIRT7 to actively 
reduce oxidative stress and damage.  
 
During caloric restriction, cells undergo a metabolic switch from glycolysis to oxidative 
phosphorylation for efficient energy production. Caloric restriction induces SIRT3, which 
activates SOD2 and IDH2 via deacetylation to scavenge ROS, a byproduct of respiration. 
SIRT7 represses NRF1 and mitochondrial translation to alleviate mitochondrial protein 
folding stress induced by ROS. Together, SIRT3 and SIRT7 alleviate the mitochondrial 
oxidative stress and mitochondrial protein folding stress during caloric restriction. The 
enhanced stress resistance provides protection against age-related degeneration. 
OXPHOS: oxidative phosphorylation, SIRT3: sirtuin 3, SIRT7: sirtuin 7, IDH2: isocitrate 
dehydrogenase 2, SOD2: superoxide dismutase 2, NRF1: nuclear respiratory factory 1. 
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Mounting evidence has demonstrated that SIRT3 plays a universal role in ameliorating 
oxidative stress in various cell types. SIRT3 is needed to prevent oxidative stress and 
injury in hepatocytes, myoblasts, pancreatic beta cells, cardiomyocytes, mouse embryos, 
proximal tubular cells, neural stem cells, dopaminergic neurons, fibroblasts, and 
osteoblasts 34-44. SIRT3 also protects endothelial cells and oocytes from diet-induced 
oxidative stress 45-47.  
 
At the organismal level, SIRT3 deficient mice at an older age develop exacerbated 
oxidative stress-related physiological defects including diet-induced obesity, insulin 
resistance, hyperlipidemia, steatohepatitis, intracerebral hemorrhage, tumor formation, 
inflammation, sarcopenia, and reduced hematopoietic stem cell count and function 38,39,48-

57. Consistently, SIRT3 activity is inversely correlated with energy intake. SIRT3 mRNA 
and protein levels are increased by fasting or CR in mouse skeletal muscle, liver, and 
brown adipose tissue 39,51,58,59, whereas its expression is decreased by overnutrition 57. 
These studies suggest that SIRT3 is upregulated during CR and triggers a protective 
program to reduce oxidative stress and damage, contributing significantly to the wide 
spectrum of beneficial effects of this dietary regimen. 
 
Mechanistically, SIRT3 is the primary deacetylase located in the mitochondria. One 
critical downstream event that mediates SIRT3-induced reduction of oxidative stress is 
the activation of superoxide dismutase 2 (SOD2), a key antioxidant in the mitochondria 
that catalyzes the first step of superoxide detoxification 32,60. SOD2 is modified post-
translationally via acetylation in cells and is a bona fide substrate of SIRT3 32,60. By 
targeting the lysine residues adjacent to the catalytic center of SOD2 for deacetylation, 
SIRT3 promotes the enzymatic activity of SOD2 32. Conceivably, these two lysine 
residues, when exposed, increase the positive charge around the active site and improve 
the efficiency of trapping the negatively charged superoxide. SOD2 activity is induced via 
SIRT3-mediated deacetylation during CR as SIRT3 KO mice have higher acetylated 
SOD2 and lower enzymatic activity compared to the wild-type mice during CR but not 
when fed ad libitum 32 (Figure 1). 
 
Another SIRT3 substrate that accounts for its function to dampen oxidative stress is 
isocitrate dehydrogenase 2 (IDH2), an NADP+-dependent mitochondrial enzyme that 
controls the mitochondrial redox balance by generating the reducing agent NADPH 61. 
NADPH is used by glutathione reductase to regenerate glutathione (GSH) from its 
oxidized form glutathione disulfide (GSSG) 61. GSH can then be used by glutathione 
peroxidase to reduce hydrogen peroxide 62,63. SIRT3 directly deacetylates and activates 
IDH2 during CR in multiple tissues, resulting in increased oxidative stress resistance by 
enhancing NADPH levels and the ratio of reduced-to-oxidized glutathione (GSH: GSSG) 
33. These findings provide the molecular evidence that SIRT3 acts as a nutrient sensor 
that is turned on during CR to activate mitochondrial antioxidant defense system and 
alleviate oxidative stress and damage (Figure 1). 
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Interestingly, proteomic studies identified a large number of non-histone proteins that are 
modified post-translationally by acetylation, including roughly 30% of mitochondrial 
proteins 64-66. SIRT3 regulates the global acetylation landscape of mitochondrial proteins, 
many of which catalyze the rate-limiting steps of the metabolic pathways, and initiates a 
metabolic reprogramming toward activated metabolic flux in the mitochondria 54. This 
metabolic reprogramming allows animals to switch from glycolysis to fatty acid oxidation. 
This metabolic switch is essential for the survival of the CR animals, which have reduced 
levels of blood glucose, and prevents the development of hypoglycemia and death. This 
metabolic switch is also advantageous for animals experiencing limited food supplies, as 
switching from energy-inefficient glycolysis to energy-efficient oxidative phosphorylation 
allows the animals to produce the most energy out of the limited food supply. However, 
this metabolic switch comes at a cost, which is the production of ROS, a natural byproduct 
of cellular respiration. The activation of the mitochondrial antioxidative system 
concomitant with this metabolic switch is viewed as an evolved adaptation to cope with 
the increased production of ROS. The net effect is enhanced oxidative stress resistance 
and improved protection of the cells and the organisms.  
 
Human clinical studies have shed light on the potential to manipulate SIRT3 activity by 
CR and alleviate oxidative damage. 24-hr fasting in healthy individuals leads to the 
deacetylation and activation of SOD2, lower ROS levels, and less production of 
proinflammatory interleukin-1b in the peripheral blood mononuclear cells 55. 3 weeks of 
intermittent fasting, an alternative dietary regimen to CR achieved by alternating days of 
fasting (25% of normal caloric intake) and feasting (175% of normal), in healthy 
individuals leads to a trend of  increase in SIRT3 expression (p = 0.0772) in the peripheral 
blood mononuclear cells 67. More studies are needed to demonstrate the safety, feasibility, 
and effectiveness of different dietary regimens on alleviating oxidative stress and 
oxidative stress-related disease progression in humans. 
 
Nutrient Sensing and the Mitochondrial Protein Folding Stress Response 
 
The essence of the free radical theory of aging is that ROS generated as natural 
byproducts of cellular respiration cause damage to the molecular components inside the 
mitochondria due to proximity, unleashing a vicious cycle of defective electron transport 
chain and increased production of ROS 68. Thus, in addition to enhance the detoxification 
of ROS produced upon the metabolic switch during CR, it is equally important to enhance 
the repair of the damage to the molecular components inside the mitochondria. ROS 
cause protein damage 28,69 and the resulting protein folding stress in the mitochondria is 
alleviated by inducing the mitochondrial unfolded protein response (UPR), a retrograde 
signaling cascade from the mitochondria to the nucleus that induces the production of 
nucleus-encoded mitochondrial proteases and chaperones 70,71.  
 
SIRT7, a sirtuin family member in the nucleus and a histone deacetylase, was recently 
discovered to regulate a novel branch of the mitochondrial UPR 72. SIRT7 expression is 
induced upon mitochondrial protein folding stress and is recruited to the promoters of 
mitochondrial ribosomal proteins through its interaction with the transcription factor 
nuclear respiratory factory 1 (NRF1) to repress their gene expression. This leads to 
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reduced translation, limiting the amount of proteins produced and transported into the 
mitochondria and alleviating the protein folding burden in this organelle. Lack of SIRT7 
leads to constitutive mitochondrial protein folding stress and SIRT7-deficient cells are 
prone to cell death induced by mitochondrial protein folding stress 72 (Figure 1). At the 
organismal level, SIRT7 deficient mice develop fatty liver, hearing loss, heart failure, 
adipose tissue dystrophy, exercise intolerance, and hematopoietic stem cell aging, at 
least in part due to mitochondrial stress 72-75. 
 
Similar to SIRT3, SIRT7 also appears to play a role in nutrient sensing and its expression 
fluctuates under different nutrient status. It is increased by glucose deprivation and 
decreased upon overnutrition 72,76. Another layer of nutrient sensing by SIRT7 is at the 
level of post-translational modification. SIRT7 is methylated at arginine 388 and its 
enzymatic activity is reduced under high glucose conditions, and this modification and its 
activity are reversible under low glucose conditions 77. Fittingly, SIRT7 overexpression 
improves the survival of glucose-starved cells, whereas SIRT7 knockdown reduces the 
survival of glucose-starved cells partly mediated through NRF1, indicating that SIRT7 
promotes the survival of glucose starved cells at least in part by its protection of the 
mitochondrial stress 72. 
 
Oxidative Stress, Stem Cell Aging, and Tissue Degeneration 
 
The beneficial effects of mitochondrial oxidative stress resistance in metabolic tissues 
have been reviewed extensively. Here, we are focusing on the recent studies on adult 
stem cells, which persist throughout the lifespan to maintain and repair tissues. Stem-cell 
exhaustion is one hallmark of aging, which describes a decline in regenerative capacity 
of stem cells, contributing to the tissue degeneration and dysfunction during the aging 
process 78,79. Intriguingly, CR improves the maintenance of stem cells across tissues 80-

84.  
 
Stem cells in the hematopoietic system are among the best studied for their maintenance 
and deterioration during aging. Most of the adult hematopoietic stem cells (HSCs) remain 
in a quiescent state with low metabolic rate and mitochondria count, and they rely mainly 
on glycolysis for energy production 85-87. Indeed, HSCs have low levels of ROS compared 
to the differentiated progeny 49. In addition to low ROS production, HSCs are equipped 
with high capacity of ROS scavenge, as indicated by the enrichment of forkhead box O 
3a (FOXO3a) and SIRT3 in HSCs 49,88. FOXO3a is a transcription factor known as a 
longevity gene that controls the expression of antioxidant genes such as SOD2 89. HSCs 
have higher nuclear localization of FOXO3a compared to the differentiated progeny, 
where FOXO3a is mainly located in the cytosol and its transcriptional activity is silenced 
88. As for SIRT3, its expression level is magnitude higher in HSCs than in its differentiated 
progeny 49. The metabolic features of quiescent HSCs and a robust antioxidant defense 
system ensure the maintenance of HSCs and prevents the depletion of the HSCs pool 90. 
Elevated ROS levels caused by activation of AKT and TSC-mTOR pathway 91,92, impaired 
ATM-mediated DNA damage response 93,94, or defective antioxidative defense due to 
genetic ablations of FOXOs, NRF2, SIRT3, or TXNIP 49,95-98 all lead to loss of HSC 
quiescence and self-renewal capacity. 
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As HSCs transition from quiescence to proliferation, the mitochondrial biogenesis occurs 
and OXPHOS genes are upregulated in HSCs to support the increased energy demands 
99. Mitochondrial biogenesis and the metabolic switch to using OXPHOS lead to increased 
production of ROS. While long being viewed as a metabolic waste, ROS have been 
shown to have physiological functions, at least in the context of stem cells. ROS can act 
as signaling molecules to prime hematopoietic stem and progenitor cells for differentiation 
91,100. Supporting this view, increased ROS production triggers the differentiation of 
Drosophila hematopoietic progenitors, whereas scavenging ROS prevents their 
precocious differentiation into mature blood cells 100. On the other hand, ROS levels have 
been found increased in HSCs during aging and contribute to the functional deterioration 
of aged HSCs 49,72,93,101. These findings again support the free radical theory of aging, 
arguing that age-related oxidative stress can induce differentiation and death of stem cells, 
and ultimately drives stem cell aging and tissue degeneration.  
 
The canonical mitochondrial UPR genes are also elevated in HSCs during the transition 
from the quiescent stage to proliferation, indicating increased mitochondrial protein 
folding stress caused by mitochondrial biogenesis and ROS production 99. The 
mitochondrial UPR is induced to ensure the mitochondrial integrity upon HSC activation. 
SIRT7 plays an indispensable role in this transition to suppress mitochondrial protein 
folding stress 72. Dysregulation of the UPRmt resulting from SIRT7 deficiency leads to the 
loss of HSC quiescence and impaired regenerative capacity 72, suggesting that SIRT7 
ensures the surveillance of mitochondrial protein folding stress in HSCs and prevents 
stress-induced cell death.  
 
These observations are consistent with a model that the transition of HSCs from 
quiescence to proliferation is regulated by a mitochondrial metabolic checkpoint to 
examine the health of the mitochondria at the restriction point before progressing into the 
cell cycle 72,90,99. Mitochondrial biogenesis is accompanied by increased mitochondrial 
oxidative stress and protein folding stress, which are surveilled by SIRT3 and SIRT7 
respectively to reduce stress and return to quiescence until the damage is fixed. Failure 
of the surveillance system results in HSC death and the depletion of the HSC pool. 
Interestingly, the expression levels of SIRT3 and SIRT7 in HSCs decrease during aging, 
which correlate with increased cellular ROS and mitochondrial protein folding stress in 
aged HSCs 49,72. Overexpression of SIRT3 or SIRT7 in aged HSCs alleviates 
mitochondrial oxidative stress or mitochondrial protein folding stress, and increases the 
functional capacity of aged HSCs 49,72, indicating that dysregulation of the mitochondrial 
metabolic checkpoint underlies the functional deterioration of aged HSCs (Figure 2).   
 
The mitochondrial metabolic checkpoint model of HSC maintenance raises a question of 
how mitochondrial stress leads to the demise of HSCs. A potential clue came from a 
recent finding that the NLRP3 inflammasome is a regulator of HSC aging 102. The NLRP3 
inflammasome is an innate immune sensor that is highly expressed in macrophages and 
can be activated by multiple endogenous damage-associated molecular patterns such as 
ROS, leading to the activation of its downstream effector, caspase 1, and the secretion 
of pro-inflammatory cytokines and pyroptosis, a caspase 1-dependent programmed cell 
death 103-105. NLRP3 was found to be expressed in HSCs, albeit to a much lower level 
than in macrophages 102. Aged HSCs have aberrant activation of the NLRP3 
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inflammasome compared to young HSCs, and silencing NLRP3 or caspase 1 improves 
the function of aged HSCs 102. Alleviating mitochondrial stress by overexpressing SIRT3 
or SIRT7 reduces the caspase 1 activity in aged HSCs, while HSCs from mice lacking 
SIRT7 display increased caspase 1 activation 102. This study indicates that the NLRP3 
inflammasome relays the signal of mitochondrial stress to mediate HSC death.  
 
SIRT2, a sirtuin family member in the cytosol, appears to be a critical regulator of the 
NLRP3 inflammasome 102,106. SIRT2 deficient mice display age-dependent defects in 
HSCs 102. While SIRT2 KO mice are largely normal in HSCs at a young age, they have 
reduced HSC maintenance and functional capacity due to aberrant activation of the 
NLRP3 inflammasome 102. SIRT2 expression is also reduced in aged HSCs and its 
overexpression improved the functional capacity of aged HSCs, adding another nutrient 
sensor regulating the mitochondrial metabolic checkpoint of HSC maintenance and aging 
102 (Figure 2).  
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Figure 2. A mitochondrial metabolic checkpoint controls hematopoietic stem cell 
quiescence and aging. 
The transition of quiescent HSCs to proliferation involves mitochondrial biogenesis and 
elevated mitochondrial oxidative stress and protein folding stress. The mitochondrial 
stresses are surveilled by SIRT3 and SIRT7 for HSC maintenance. SIRT3 and SIRT7 
levels decline with age, which correlates with increased mitochondrial stress in old HSCs. 
Age-associated mitochondrial stress activates the NLRP3 inflammasome and leads to 
HSC death. SIRT2 represses the activation of the NLRP3 inflammasome and preserves 
HSC maintenance. Together, SIRT2, SIRT3, and SIRT7 regulate the mitochondrial 
metabolic checkpoint that determines the fate of HSCs to either stay quiescent, proliferate, 
or undergo cell death. CR: caloric restriction, NR: Nicotinamide riboside, NMN: 
nicotinamide mononucleotide, C12: 7-hydroxy-3-(4 ′ -methoxyphenyl) coumarin, HSC: 
hematopoietic stem cell, SIRT2: sirtuin 2, SIRT3: sirtuin 3, SIRT7: sirtuin 7. 
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The mitochondrial metabolic checkpoint, originally discovered in HSCs, also operates in 
stem cells of other tissue origins. Similar to HSCs, while low levels of ROS are required 
to stimulate the proliferation of other somatic stem cells such as neural stem cells (NSCs) 
107-110 and intestinal stem cells 111, high levels of ROS result in stem cell death. SIRT3 
protects NSCs from oxidative stress and apoptosis 40 and disrupting FOXOs causes 
premature differentiation of NSCs, decreases their self-renewal capacity and eventually 
leads to the depletion of NSCs 107,108. ROS also regulate aging of mesenchymal stem 
cells, and aged human mesenchymal stem cells have weakened antioxidant defense 
system indicated by decreased SOD2 activity 112.  
 
Mitochondrial UPR also appears to be a regulatory mechanism of stem cells across 
tissues. Like aged HSCs, aged muscle stem cells also have impaired mitochondrial 
functions in TCA cycle and OXPHOS, and the mitochondrial UPR gene expression levels 
are reduced in old muscle stem cells, suggesting that they have less protection against 
mitochondrial protein folding stress 113. Disruption of HSP60, a key chaperone in the 
mitochondria and a major player of the mitochondrial UPR, leads to compromised 
intestinal stem cell maintenance and function 114. 
 
Together, these findings raise the possibility that the oxidative stress-induced stem cell 
aging may be reversed by inducing cellular protective mechanisms. Activating these 
nutrient sensing pathways via CR or even better CR mimetics may be a useful strategy 
to enhance oxidative stress resistance, alleviate stem cell aging, and delay or even 
reverse tissue degeneration during aging.  
 
Therapeutic Opportunities 
 
A large body of evidence supports that CR holds a promise to improve healthspan partly 
through alleviating oxidative stress. However, this diet is not sustainable by most people. 
Small-molecule CR mimetics is a tempting alternative to achieve its prolongevity effects 
through modulating the activities of nutrient sensors. Intriguingly, many nutrient sensors 
are enzymes and are likely druggable. There are several small molecule activators of 
sirtuins being reported over the past few years 115. The intermediates in the NAD+ 
biosynthetic pathways are intuitive candidates to serve as sirtuin activators due to their 
enzymatic dependence on NAD+. In mammals, NAD+ can be generated through the 
salvage pathway from nicotinamide mononucleotide (NMN) by NMN adenylyltransferase 
(NMNAT) 116. Nicotinamide riboside (NR), another key NAD+ precursor, is converted to 
NMN by nicotinamide riboside kinase 117. NAD+ can also be generated through the de 
novo NAD+ synthetic pathway from tryptophan. In the de novo pathway, the intermediate 
α-amino-β-carboxymuconate-ε-semialdehyde (ACMS) can be converted to a-amino-b-
muconate-ε-semialdehyde (AMS) by ACMS decarboxylase (ACMSD) and diverted away 
from NAD+ production 118,119. 
 
NAD+ level decreases with age in metabolic tissues (pancreas, liver, white adipose tissue 
and skeletal muscle) and hippocampus of mice 120-122. 6 weeks of CR or 1 week of NMN 
supplementation elevate NAD+ in the skeletal muscle of aged mice 123. NMN also 
increases NAD+ levels in the hippocampus and improves the proliferation and 
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maintenance of NSCs, suggesting it is able to cross the blood-brain barrier 122. 
Remarkably, a single dose of NMN is sufficient to reverse the glucose intolerance of aged 
diabetic mice 120. Moreover, a recent paper reported that 10-week NMN treatment (250 
mg/day) increased insulin sensitivity in the muscle of prediabetic women in a randomized, 
placebo-controlled, double-blind trial 124. Pharmacological inhibition of ACMSD, which is 
mainly expressed in the liver and kidney, boosts the endogenous NAD+ levels, induces 
SOD2 activity, and protects mice from diet-induced hepatic steatosis and acute kidney 
injury 125.  
 
NR increases NAD+ levels and activates SIRT3, which further leads to the deacetylation 
and activation of its target SOD2, and reduces ROS levels 55,126,127. Long-term NR 
supplementation showed tissue-specific inductions of NAD+ levels including skeletal 
muscle, muscle stem cells, liver, and brown adipose tissue, but not in the brain or white 
adipose tissue 113,126. NR induces the two mitochondrial stress defense systems, 
mitochondrial UPR and SOD2 activity 121. NR supplementation prevents diet-induced 
obesity in mice by increasing energy expenditure 126, and protects mice from hearing loss 
through the prevention of neurite retraction from inner hair cells, which is mediated by 
SIRT3 activity 127.  
 
Consistent with the role of sirtuins in the mitochondrial metabolic checkpoint that prevents 
stem cell aging and activation of the NLRP3 inflammasome, NR inhibits the activation of 
the NLRP3 inflammasome in macrophages 55 and prevents stem cell aging. In HSCs, NR 
represses mitochondrial activity, induces mitochondrial UPR, enhances the engraftment 
of human hematopoietic progenitor cells, and improves the survival of mice after lethal 
irradiation and limiting-dose-HSC transplantation 128. NR delays the senescence of adult 
muscle stem cells in aged mice by activating the mitochondrial UPR and improving 
mitochondrial function 113. NR also improves the function and numbers of neural and 
melanocyte stem cells 113. Importantly, NR increases the lifespan of aged mice when 
supplementation started at 24 months of age 113. A recent clinical trial suggests that 
chronic NR supplementation is well-tolerated in healthy middle-aged and older adults, 
and NR effectively increases NAD+ levels in peripheral blood mononuclear cells 129. 
Replenishing NAD+ shows promise to serve as CR mimetics and prevent stem cell aging 
and tissue degeneration through inducing mitochondrial stress resistance and improving 
mitochondrial function.   
 
Honokiol, a natural biphenolic compound with antioxidative property, increases SIRT3 
expression, induces the deacetylation of mitochondrial proteins, and reduces ROS levels 
in mice and rats 57,130-132. Honokiol limits ROS production and prevents the cardiac 
hypertrophic response in vitro and in vivo, but the protective effects were lost in SIRT3 
KO conditions 130. Additionally, Honokiol prevents high glucose-induced apoptosis and 
NF-κB activation in human umbilical vein endothelial cells 133. Honokiol reduces ROS 
levels in diabetic rats with intracerebral hemorrhage in a SIRT3-dependent manner, and 
subsequently decreases NLRP3 inflammasome activation 57. The antioxidant and 
antidiabetic effects of Honokiol have been studied mainly in animal models 134. Future 
studies are needed to evaluate its therapeutic potentials for human diseases. 
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Another activator of SIRT3, 7-hydroxy-3-(4′-methoxyphenyl) coumarin (C12), has been 
recently identified to activate SIRT3 and its substrate SOD2 135. C12 binds to the NAD+ 
pocket of SIRT3 and leads to the deacetylation and activation of SOD2 135. C12 reduces 
mitochondrial superoxide levels in HEK293T cells and primary rat astrocytes in a SIRT3-
dependent manner 135. In the motor neurons generated from amyotrophic lateral sclerosis 
(ALS) patient-derived induced pluripotent stem cells, C12 promotes their survival and 
improves neuronal morphology 136. Metabolically, C12 enhances mitochondrial 
respiration and complex I activity in ALS patient-derived motor neurons, while reduces 
glycolysis and mitochondrial ROS levels 136. These natural-derived small-molecule 
activators of SIRT3 may be useful CR mimetics and induce the favorable health outcome 
as CR. The SIRT3 activators need to be tested in a broader range of cell types and 
disease models but highlight the potentials to serve as treatments for oxidative stress-
related disease. It would also be critical to investigate if the time of administration, i.e., 
later in life, would influence the effectiveness of these SIRT3 activators on reducing 
oxidative damage and preventing tissue degeneration. Compared to SIRT3, small-
molecule activators of SIRT7 and SIRT2 remain to be developed.  
 
Since oxidative stress can trigger the activation of NLRP3 inflammasome, repressing its 
activation may alleviate the proinflammatory pathologies caused by ROS. MCC950 is a 
selective small-molecule inhibitor of NLRP3 that abolishes the assembly of NLRP3 
inflammasome, hence its activation and the production of proinflammatory cytokine IL-1b 
137. MCC950 inhibits the ROS-induced NLRP3 inflammasome activation in the lung 
ischemia-reperfusion mouse model and protects mice from lung injury 138. The inhibitor 
of NLRP3 inflammasome provides another layer of regulation of oxidative stress-induced 
damage and prevents tissue degeneration.  
 
Conclusion 
 
Recent advances in the molecular regulation of the oxidative stress response by nutrient 
sensors provide evidence that energy deprivation activates certain nutrient sensors to 
trigger the antioxidant defense system and subsequently prevent age-associated 
degeneration. Future studies of the oxidative stress response induced by CR in different 
tissues or cell types will elucidate if the response is tissue-specific or ubiquitous. It will 
also be important to investigate the physiological significance of this protective antioxidant 
defense mechanism induced by CR, that is, whether the activation of these nutrient 
sensors slows the aging process or delays the disease progression through reducing 
oxidative stress and damage. This knowledge will be a solid foundation for designing 
small molecule activators of these nutrient sensors to target oxidative stress-related 
diseases. 
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Chapter 2: The Hepatic Integrated Stress Response Suppresses the 
Somatotroph Axis to Control Liver Damage in Nonalcoholic Fatty Liver 
Disease 
 
Abstract 
 
Nonalcoholic fatty liver disease (NAFLD) can be ameliorated by calorie restriction, which 
leads to the suppressed somatotroph axis. Paradoxically, suppressed somatotroph axis 
is associated with NAFLD patients, in particular, correlated with the severity of fibrosis. 
How the somatotroph axis becomes dysregulated and whether the repressed 
somatotroph axis impacts liver damage during the progression of NAFLD are unknown. 
Here, we identified a regulatory branch of the hepatic integrated stress response (ISR), 
which represses the somatotroph axis in hepatocytes through ATF3, resulting in 
enhanced cell survival and reduced cell proliferation. In mouse models of NAFLD, the 
ISR represses the somatotroph axis, leading to reduced apoptosis and inflammation but 
decreased hepatocyte proliferation and exacerbated fibrosis in the livers. NAD+ repletion 
reduces the ISR, rescues the dysregulated somatotroph axis, and alleviates NAFLD. 
These results establish the hepatic ISR suppresses the somatotroph axis to control cell 
fate decision and liver damage in NAFLD. 
 
Introduction 
 
The current challenges in developing therapeutics against nonalcoholic fatty liver disease 
(NAFLD) reflect its complex nature, raising the question whether the solution requires a 
combination of drugs. NAFLD can be ameliorated by calorie restriction, which leads to 
the suppressed growth hormone/insulin-like growth factor-1 (IGF-1) somatotroph axis, a 
conserved regulator of lifespan that triggers the activation of cellular protective program 
and the re-allocation of resources from growth to somatic preservation 139-147. 
Paradoxically, suppression of the somatotroph axis is associated with NAFLD patients, in 
particular, correlated with the severity of fibrosis 148-157. Whether the somatotroph axis 
controls liver damage during the progression of NAFLD is unknown. 
 
NAFLD begins with hepatosteatosis and can progress to nonalcoholic steatohepatitis 
(NASH) in response to ER stress 158-160. The integrated stress response (ISR) is a critical 
regulator of protein homeostasis at the cellular and organismal level to control the 
pathogenesis of complex diseases 161. Little is known about the connectivity of the ISR to 
other intracellular signaling networks to determine cell fate decision and physiological 
output. The growth hormone/IGF-1 somatotroph axis includes the secretion of growth 
hormone from the somatotropes of the pituitary gland into the circulation and the 
subsequent stimulation of IGF-1 production, which is synthesized and secreted by the 
liver 162. While evidence is emerging that systemic ER stress induction leads to the 
suppressed somatotroph axis 163, whether hepatic ER stress regulates the somatotroph 
axis autonomously and the molecular mechanism underlying such regulation remain 
unexplored.  
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In this study, we show that hepatic ER stress suppresses the somatotroph axis 
autonomously through the transcription factor ATF3. We provide evidence that 
suppression of the somatotroph axis results in reduced apoptosis and inflammation but 
decreased hepatocyte proliferation and exacerbated fibrosis in the livers, offering 
explanations for the paradoxical observations that the suppressed somatotroph axis is 
associated with NAFLD patients while calorie restriction suppresses the somatotroph axis 
and prevents the development of NAFLD at the early stage. Finally, we demonstrate the 
therapeutic implication of this regulatory pathway for NAFLD.  
 
Results 
A mouse model of NAFLD with the suppressed somatotroph axis 
 
To investigate how ER stress and the ISR drive the progression of liver damage in NASH 
and avoid the confounding factors derived from the diets that are commonly used to 
induce NASH, we employed a mouse NASH model deficient in the histone deacetylase 
SIRT7, which develops spontaneous NASH resembling human fatty liver disease when 
fed a chow diet due to elevated ER stress 73,74,164. Single-cell RNA-sequencing of the 
livers of wild-type and SIRT7-/- mice using the 10x Genomics Chromium platform and the 
pathway analysis of differentially expressed genes showed that NAFLD genes were 
highly enriched in several cell populations (hepatocytes, macrophages, and plasma B 
cells) of SIRT7-/- livers (Figure 1A-C, Figure S1A-E, Table S1, 2), validating the NAFLD 
mouse model. 
 
Microarray analysis of the livers of wild-type and SIRT7-/- mice showed that a number of 
genes in the somatotroph growth axis and other mitogenic signals were differentially 
expressed between these two genotypes. The expression of several pro-growth factors, 
such as growth hormone receptor (GHR), fibroblast growth factor 1 (FGF1), epidermal 
growth factor receptor (EGFR), fibroblast growth factor receptor 4 (FGFR4), was 
suppressed in the livers of SIRT7-/- mice (Figure S2). IGF binding proteins that positively 
correlate with the level of IGF-1, such as IGF binding protein 3 (IGFBP3) and IGF binding 
protein acid labile (IGFALS), were also suppressed in the livers of SIRT7-/- mice, while 
IGF binding proteins that generally inhibit the activity of IGF-1, such as IGF binding protein 
1 (IGFBP1), were upregulated. This pattern of gene expression changes in the livers of 
SIRT7-/- mice and wild-type littermates was confirmed by quantitative real-time PCR 
(Figure 1D-I). The analysis of the single-cell RNA-sequencing data for the livers of wild-
type and SIRT7-/- mice revealed that the expression of the somatotroph gene IGF-1 was 
reduced in the hepatocytes of SIRT7-/- liver (Figure 1J, K). 
 
Circulating IGF-1 levels in SIRT7-/- mice were significantly lower than their wild-type 
counterparts (Figure 1L). Consistent with reduced levels of blood IGF-1, the IGF-1 
signaling was decreased in the livers of SIRT7-/- mice, as evidenced by reduced 
phosphorylation of Akt (Figure 1M, N). The downregulation of the growth hormone/IGF-1 
somatotroph axis in the livers of SIRT7-/- mice is consistent with their post-natal growth 
retardation 73,164. Together, these data indicate suppressed somatotroph axis in SIRT7-/- 
mice. This mouse model was therefore used to investigate how the somatotroph axis 
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becomes dysregulated in NAFLD and to dissect the role of the somatotroph axis in the 
progression of NASH. 

 
 
Figure 1. A mouse model of NAFLD with the suppressed somatotroph axis. 
(A) Single-cell RNA-sequencing of the livers of WT and SIRT7-/- mice using the 10x 
Genomics Chromium platform. UMAP clustering of single cell transcriptomes (3270 cells 
from WT and 8340 cells from SIRT7-/- mice) colored by cell type. n=3 mice. 
(B and C) Pathway analysis for the biological function of differentially expressed genes in 
hepatocyte 1 (pericentral), and hepatocyte 2 (periportal) of the livers of WT and SIRT7-/- 
mice. n=3 mice. 
(D-I) Quantitative real-time PCR analyses for the mRNA levels of the indicated genes in 
the livers of SIRT7-/- mice and wild type controls. GAPDH was used as an internal control. 
n=9-13 mice. 
(J and K) Violin plots comparing log-normalized expression values of IGF-1 in hepatocyte 
1 (pericentral) and hepatocyte 2 (periportal) in the livers of WT and SIRT7-/- mice. Each 
dot represents the gene expression levels in one cell. Wilcoxon rank-sum test. n=3 mice.  
(L) ELISA quantification of plasma levels of IGF-1 in SIRT7-/- mice and wild type controls. 
n=8 mice. 
(M and N) Western analyses (M) and quantification (N) of phosphorylated Akt in the livers 
of SIRT7-/- mice and wild type controls. n=3 mice. 
Error bars represent standard errors. * p < 0.05; ** p < 0.01; *** p <0.001.  
See also Figure S1 and S2.   
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Figure 1. A mouse model of NAFLD with the suppressed somatotroph axis
(A) Single-cell RNA sequencing of the livers of WT and SIRT7!/! mice using the 10x Genomics Chromium platform. Uniform manifold approximation and pro-

jection (UMAP) clustering of single-cell transcriptomes (3,270 cells from WT and 8,340 cells from SIRT7!/! mice) colored by cell type. n = 3 mice.

(B and C) Pathway analysis for the biological function of differentially expressed genes in hepatocyte 1 (pericentral) and hepatocyte 2 (periportal) of the livers of

WT and SIRT7!/! mice. n = 3 mice.

(D–I) Quantitative real-time PCR analyses for themRNA levels of the indicated genes in the livers ofSIRT7!/!mice andwild-type controls. GAPDHwas used as an

internal control. n = 9–13 mice.

(J and K) Violin plots comparing log-normalized expression values of IGF-1 in hepatocyte 1 (pericentral) and hepatocyte 2 (periportal) in the livers of WT and

SIRT7!/! mice. Each dot represents the gene expression levels in one cell. Wilcoxon rank-sum test. n = 3 mice.

(L) ELISA quantification of plasma levels of IGF-1 in SIRT7!/! mice and wild-type controls. n = 8 mice.

(M and N) Western analyses (M) and quantification (N) of phosphorylated Akt in the livers of SIRT7!/! mice and wild-type controls. n = 3 mice.

Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001.

See also Figure S1 and S2.
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Figure 1. A mouse model of NAFLD with the suppressed somatotroph axis
(A) Single-cell RNA sequencing of the livers of WT and SIRT7!/! mice using the 10x Genomics Chromium platform. Uniform manifold approximation and pro-

jection (UMAP) clustering of single-cell transcriptomes (3,270 cells from WT and 8,340 cells from SIRT7!/! mice) colored by cell type. n = 3 mice.

(B and C) Pathway analysis for the biological function of differentially expressed genes in hepatocyte 1 (pericentral) and hepatocyte 2 (periportal) of the livers of

WT and SIRT7!/! mice. n = 3 mice.

(D–I) Quantitative real-time PCR analyses for themRNA levels of the indicated genes in the livers ofSIRT7!/!mice andwild-type controls. GAPDHwas used as an

internal control. n = 9–13 mice.

(J and K) Violin plots comparing log-normalized expression values of IGF-1 in hepatocyte 1 (pericentral) and hepatocyte 2 (periportal) in the livers of WT and

SIRT7!/! mice. Each dot represents the gene expression levels in one cell. Wilcoxon rank-sum test. n = 3 mice.

(L) ELISA quantification of plasma levels of IGF-1 in SIRT7!/! mice and wild-type controls. n = 8 mice.

(M and N) Western analyses (M) and quantification (N) of phosphorylated Akt in the livers of SIRT7!/! mice and wild-type controls. n = 3 mice.

Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001.

See also Figure S1 and S2.
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Figure S1. A mouse model of NAFLD. 
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Related to Figure 1. 
(A and B) Quality control for 10x Genomics single-cell RNA-sequencing data of the livers 
of wild-type and SIRT7-/- mice. Track plot showing the expression of representative 
marker genes for each cell cluster. Each bar represents a cell and cells are grouped 
based on clustering. The cell identity assigned to each cluster is indicated at the bottom. 
Numbers on the right indicate maximum detected expression. The gene expression is 
represented by height (y values). Pericentral hepatocytes express highly genes for lipid 
metabolism, detoxification, and plasma protein production while periportal hepatocytes 
express highly genes for gluconeogenesis and ABC transporter. 
(C) Single-cell RNA-sequencing of the livers of WT and SIRT7-/- mice using the 10x 
Genomics Chromium platform. UMAP clustering of single cell transcriptomes (3270 cells 
from WT and 8340 cells from SIRT7-/- mice) colored by genotype. n=3 mice. Refer to 
Figure 1A for cell identity of each cluster. 
(D and E) Pathway analysis for the biological function of differentially expressed genes in 
noninflammatory macrophages and plasma B cells of the livers of WT and SIRT7-/- mice. 
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Figure S2. Suppressed somatotroph gene expression in the livers of SIRT7-/- mice. 
Related to Figure 1. 
A summary of genes in the somatotroph axis and mitogenic signaling that are differentially 
expressed in the livers of SIRT7-/- mice compare to the wild type controls based on the 
microarray analyses. The listed p values are not corrected for multiple testing.  
 
  

Gene Title Gene Symbol Fold Change p Value

Growth Hormone Receptor Ghr -1.3 0.0019

Fibroblast Growth Factor 1 Fgf1 -1.58 0.0018

Epidermal Growth Factor Receptor Egfr -1.39 0.02

Fibroblast Growth Factor Receptor 4 Fgfr4 -1.87 4.16E-06

Prolactin Receptor Prlr -2.64 0.0009

IGF Binding Protein, Acid Labile Igfals -1.64 0.0003

IGF Binding Protein 3 Igfbp3 -2.16 0.04

IGF Binding Protein 1 Igfbp1 3.74 0.0048

IGF Binding Protein 7 Igfbp7 1.28 0.005

IGF Binding Protein 6 Igfbp6 1.19 0.04

Figure S2. Suppressed somatotroph gene expression in the livers of SIRT7-/- mice. Related to Figure 1. 
A summary of genes in the somatotroph axis and mitogenic signaling that are differentially expressed 
in the livers of SIRT7-/- mice compare to the wild type controls based on the microarray analyses. The 
listed p values are not corrected for multiple testing. Refer to Data S2 for complete analyses including 
multiple testing. 
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Hepatic ER stress suppresses the somatotroph axis autonomously 
 
SIRT7 deficiency results in constitutive hepatic ER stress 73. We asked whether 
suppression of the somatotroph axis in SIRT7-/- mice could result from hepatic ER stress 
and the induction of the ISR autonomously.  SIRT7 suppresses ER stress by repressing 
the activity of the transcription factor Myc and reducing the expression of translation 
machinery 73. Consistently, the analysis of the single-cell RNA-sequencing data for the 
livers of wild-type and SIRT7-/- mice showed that ribosome genes were among the most 
significant changes in various cell types of the liver associated with SIRT7 expression 
(Figure 1B, C, Figure S1D, E). We knocked down the expression of Myc in the livers of 
SIRT7-/- mice via adenoassociated virus 8 (AAV8)-mediated gene transfer. Myc 
inactivation repressed the ISR in the livers of SIRT7-/- mice, as evidenced by the levels of 
phosphorylation of eIF2a (Figure 2A, B). Myc inactivation also rescued the expression of 
genes in the somatotroph axis that were dysregulated in the livers of SIRT7-/- mice (Figure 
2C-G), increased the plasma levels of IGF-1 (Figure 2H), and enhanced the hepatic IGF-
1 signaling (Figure 2I, J), consistent with the suppression of the somatotroph axis by the 
hepatic ISR autonomously. Furthermore, treatment of hepatocytes with ER stress 
inducers thapsigargin or tunicamycin resulted in reduced expression of genes in the 
somatotroph axis (Figure S3A-E). Together, these data suggest that hepatic ER stress 
and the ISR induction are sufficient to trigger the response in the somatotroph axis 
autonomously.  
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Figure 2. Hepatic ER stress suppresses the somatotroph axis autonomously. 
Comparison of wild type and SIRT7-/- mice with or without Myc knockdown mediated by 
AAV8-mediated gene delivery. Mice were analyzed 4 weeks after viral infection.  
(A and B) Western analyses (A) and quantification (B) for phosphorylated eIF2a in the 
livers. n=3 mice. 
(C-G) Quantitative real-time PCR analyses for the mRNA levels of the indicated genes in 
the livers. GAPDH was used as an internal control. n=4-5 mice.  
H, ELISA analyses of plasma levels of IGF-1. n=4 mice.  
(I and J) Western analyses (I) and quantification (J) for phosphorylated Akt in the livers. 
n=3 mice. 
Error bars represent standard errors. * p < 0.05; ** p < 0.01.  
See also Figure S3. 
 
  

ATF3 inactivation in the livers of SIRT7!/! mice also increased
the plasma levels of IGF-1 (Figure 3N) and the IGF-1 signaling
(Figures 3O and 3P). Together, these data suggest that ATF3me-
diates the hepatic ISR-induced repression of the somatotroph
axis in vivo.

Suppression of the somatotroph axis controls liver
damage in NAFLD
The progression from hepatosteatosis to NASH is associated
with increased hepatocyte apoptosis and liver damage, which
initiate inflammation to clear out dead cells and damaged tis-
sue and to facilitate tissue repair.34,35 Increased hepatocyte
proliferation is one such attempt to repair liver damage and

restore loss of mass,36–38 while hepatic stellate cells are
also activated and transdifferentiate into myofibroblasts,
which produce an excessive amount of extracellular matrix
proteins that form fibrous connective tissues to replace
normal parenchymal tissues.34 Hepatic fibrosis, the wound-
healing process mediated by hepatic stellate cells, is a key
feature used to determine the severity of NASH. Suppression
of the somatotroph axis in response to ER stress associated
with NASH suggests that this branch of the ISR might activate
the cellular protective program and prevent cell death, result-
ing in reduced inflammation but compromised parenchymal
repair due to repressed hepatocyte proliferation and compen-
satory fibrosis.
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Figure 2. Hepatic ER stress suppresses the somatotroph axis autonomously
Comparison of wild-type and SIRT7!/! mice with or without Myc knockdown mediated by AAV8-mediated gene delivery. Mice were analyzed 4 weeks after viral

infection.

(A and B) Western analyses (A) and quantification (B) for phosphorylated eIF2a in the livers. n = 3 mice.

(C–G) Quantitative real-time PCR analyses for the mRNA levels of the indicated genes in the livers. GAPDH was used as an internal control. n = 4–5 mice.

(H) ELISA analyses of plasma levels of IGF-1. n = 4 mice.

(I and J) Western analyses (I) and quantification (J) for phosphorylated Akt in the livers. n = 3 mice.

Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001.

See also Figure S3.
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Figure S3. ER stress triggers the suppression of the somatotroph axis in 
hepatocytes. 
Related to Figure 2.  
(A-D) Quantitative real-time PCR and Western analyses of expression of indicated 
genes in Hepa 1-6 cells treated with thapsigargin (A, B) or tunicamycin (C, D). n=2. 
E, Quantitative real-time PCR analyses of expression of indicated genes in primary 
hepatocytes treated with tunicamycin. n=2. 
Error bars represent standard errors. * p < 0.05; ** p < 0.01. ***; p <0.001. 
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Figure S3. ER stress triggers the suppression of the somatotroph axis in hepatocytes. Related to Figure 2.
A-D, Quantitative real-time PCR and Western analyses of expression of indicated genes in Hepa 1-6 cells treated with 
thapsigargin (A, B) or tunicamycin (C, D). n=2.
E, Quantitative real-time PCR analyses of expression of indicated genes in primary hepatocytes treated with tunicamycin. 
n=2.
Error bars represent standard errors. * represents p < 0.05. ** represents p < 0.01. *** represents p <0.001. 
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Hepatic ER stress and the ISR suppress the somatotroph axis by inducing ATF3 
 
We next investigated how the hepatic ISR leads to the suppression of the somatotroph 
axis. ER stress elicits signaling transduction and stress response that allow the cells to 
restore protein homeostasis 165. Central to the ISR is the actions of the transcription 
factors ATF4 and ATF6.  ATF3 is also induced by ER stress by a mechanism requiring 
eIF2 kinases and ATF4, although its role in stress response is obscure ((Figure S4A, B) 
and 166). We used the Harmonizome web portal, which is a collection of processed 
datasets to mine information related to genes and proteins 167, to determine whether the 
ER stress-related transcription factors could regulate genes in the somatotroph axis. 
Chromatin immunoprecipitation (ChIP) sequencing data analyses revealed that ATF3 
bound to the promotors or enhancers of a number of IGF-related genes (Figure S4C) and 
ATF4 or ATF6 did not. The binding of ATF3 to the promoters of IGF-related genes was 
further confirmed by ChIP with an ATF3 antibody followed by quantitative real time PCR 
in parental hepatocytes (Figure 3A-C) and mouse livers (Figure S4D-F), and was 
abrogated in ATF3 knockdown (KD) cells generated using two independent short hairpin 
RNAs (Figure 3D-F). While treatment with the ER stress inducer tunicamycin reduced the 
expression of genes in the somatotroph axis, ATF3 inactivation blunted the effect (Figure 
3G), suggesting that ER stress and the ISR induction repress the somatotroph axis in 
hepatocytes by inducing ATF3. 
 
Suppression of the somatotroph axis leads to metabolic changes that shift energy usage 
from growth and proliferation to cellular protection in order to enhance stress resistance, 
a phenomenon termed hormesis 139,141-146. ATF3-mediated suppression of the 
somatotroph axis in response to ER stress and the ISR induction suggests that this 
branch of the ISR might prevent cell growth and proliferation while activating cellular 
protective programs and preventing cell death. ATF3 knockdown hepatocytes proliferated 
faster than control cells (Figure 3H) and exhibited increased apoptosis upon treatment 
with tunicamycin compared to control cells (Figure 3I). Together, these data suggest that 
ER stress and the ISR induce ATF3 to repress the somatotroph axis, resulting in reduced 
proliferation and improved survival of hepatocytes.  
 
ATF3 is a member of the CREB family of basic leucine zipper transcription factors and 
functions both as a transcriptional activator or repressor 168. ATF3 is induced in the livers 
of a rat model of severe steatosis and human NAFLD patients, correlative with the ER 
stress status 169. ATF3 was also induced in the livers of SIRT7-/- mice (Figure 3J, Table 
S3). Myc inactivation in the livers of SIRT7-/- mice via AAV8-mediated gene transfer 
suppressed the ISR (Figure 2A, B) and rescued the increased ATF3 expression (Figure 
3J), consistent with the induction of ATF3 expression upon the hepatic ISR. To determine 
whether hepatic ISR results in suppression of the somatotroph axis due to the induction 
of ATF3, we knocked down the expression of ATF3 in the livers of SIRT7-/- mice via AAV8-
mediated gene transfer (Figure 3K). ATF3 inactivation in the livers of SIRT7-/- mice 
rescued the dysregulated gene expression of the somatotroph axis (Figure 3L, M), in 
keeping with the binding of ATF3 to the promoters of IGF-related genes (Figure 3A-C, 
S4C-F). ATF3 inactivation in the livers of SIRT7-/- mice also increased the plasma levels 
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of IGF-1 (Figure 3N) and the IGF-1 signaling (Figure 3O, P). Together, these data suggest 
that ATF3 mediates the hepatic ISR-induced repression of the somatotroph axis in vivo.  
 

 
 
Figure 3. Hepatic ER stress and the ISR suppress the somatotroph axis by inducing 
ATF3. 
(A-C) ChIP with ATF3 antibody followed by quantitative real-time PCR showing ATF3 
occupancy at the gene promoters of IGFBP3 and IGF1R in Hepa 1-6 cells. Tubulin was 
used as a negative control. n = 2. 
(D) Western blots showing ATF3 expression in stable ATF3 knockdown Hepa 1-6 cells 
using shRNA. 
(E and F) ChIP with ATF3 antibody followed by quantitative real-time PCR showing 
reduced ATF3 occupancy at the gene promoters of IGFBP3 and IGF1R in ATF3 
knockdown Hepa 1-6 cells. n = 2. 
(G) Western analyses of GHR and ATF3 in control and ATF3 knockdown Hepa 1-6 cells 
with or without tunicamycin induction. 
(H) Proliferation of stable ATF3 knockdown Hepa 1-6 cells and control cells. n = 3. 
(I) Annexin V staining of ATF3 knockdown and control Hepa 1-6 cells with or without 
tunicamycin induction was analyzed with flow cytometry. n = 3. 
(J) Quantitative real-time PCR analyses of mRNA levels of ATF3 in the livers of SIRT7-/- 
mice and wild-type mice with or without Myc knockdown mediated by AAV8-mediated 
gene delivery. Mice were analyzed 4 weeks after viral infection. n = 4 mice. 

To test this possibility, we examined the physiological effects of
suppressing the somatotroph axis on liver damage in NASH. The
livers of SIRT7!/! mice exhibited increased inflammation
(Figures 4A and 4B), apoptosis (Figures 4A and 4C), proliferation
(Figures 4A and 4D), and fibrosis (Figures 4A and 4E), character-
istic of the cellular and pathophysiological features of
NASH.21,34–37 The analysis of the single-cell RNA sequencing
data for the livers of wild-type and SIRT7!/! mice revealed
increased expression of cell-cycle genes in hepatocytes of

SIRT7!/! mice, consistent with increased proliferation of hepato-
cytes as a way to repair damage and restore loss of mass (Fig-
ure S5). ATF3 inactivation in the livers of SIRT7!/! mice via
AAV8-mediated gene transfer rescued the suppression of the so-
matotroph axis (Figure 3K–3P). Liver terminal deoxynucleotidyl
transferase-mediateddeoxyuridine triphosphate nick end labeling
(TUNEL) staining demonstrated increased frequency of apoptotic
cells (Figures 4A and 4C), while liver Ki67 staining showed
increased frequency of proliferating cells (Figures 4A and 4D) in
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Figure 3. Hepatic ER stress and the ISR suppress the somatotroph axis by inducing ATF3
(A–C) ChIP with ATF3 antibody followed by quantitative real-time PCR showing ATF3 occupancy at the gene promoters of IGFBP3 and IGF1R in Hepa 1–6 cells.

Tubulin was used as a negative control. n = 2.

(D) Western blots showing ATF3 expression in stable ATF3 knockdown Hepa 1–6 cells using shRNA.

(E and F) ChIP with ATF3 antibody followed by quantitative real-time PCR showing reduced ATF3 occupancy at the gene promoters of IGFBP3 and IGF1R in ATF3

knockdown Hepa 1–6 cells. n = 2.

(G) Western analyses of GHR and ATF3 in control and ATF3 knockdown Hepa 1–6 cells with or without tunicamycin induction.

(H) Proliferation of stable ATF3 knockdown Hepa 1–6 cells and control cells. n = 3.

(I) Annexin V staining of ATF3 knockdown and control Hepa 1–6 cells with or without tunicamycin induction was analyzed with flow cytometry. n = 3.

(J) Quantitative real-time PCR analyses of mRNA levels of ATF3 in the livers of SIRT7!/! mice and wild-type mice with or without Myc knockdown mediated by

AAV8-mediated gene delivery. Mice were analyzed 4 weeks after viral infection. n = 4 mice.

(K–P) Comparison of SIRT7!/! mice and wild-type mice with or without ATF3 knockdown mediated by AAV8-mediated gene delivery. Mice were analyzed

4 weeks after viral infection.

(K–M) Quantitative real-time PCR analyses of mRNA levels of indicated genes in the livers. GAPDH was used as an internal control. n = 4–5 mice.

(N) Elisa analyses of plasma levels of IGF-1. n=4-5 mice.

(O and P) Western analyses (O) and quantification (P) for phosphorylated Akt in the livers. n = 3 mice.

Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001; ns p > 0.05.

See also Figure S4.
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(K-P) Comparison of SIRT7-/- mice and wild-type mice with or without ATF3 knockdown 
mediated by AAV8-mediated gene delivery. Mice were analyzed 4 weeks after viral 
infection. 
(K-M) Quantitative real-time PCR analyses of mRNA levels of indicated genes in the 
livers. GAPDH was used as an internal control. n = 4-5 mice. 
(N) Elisa analyses of plasma levels of IGF-1. n=4-5 mice. 
(O and P) Western analyses (O) and quantification (P) for phosphorylated Akt in the 
livers. n = 3 mice. 
Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001; ns p > 0.05. 
See also Figure S4. 
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Figure S4. ATF3 is induced by protein folding stress and binds to the promotors or 
enhancers of IGF-related genes.  
Related to Figure 3. 
(A and B) Quantitative real time PCR analyses comparing the mRNA expression of 
ATF3 in Hepa 1-6 cells treated with or without ER stress inducers thapsigargin (A), 
tumicamycin (B). n=2-3. 
(C) A summary of IGF-related genes as ATF3 targets based on ChIP sequencing 
analyses using the Harmonizome web portal. 
(D-F) ChIP with ATF3 antibody followed by quantitative real-time PCR showing ATF3 
occupancy at the promoters of the indicated genes in the mouse liver. n=2-3. 
Error bars represent standard errors. * p < 0.05; ** p < 0.01; *** p <0.001; ns represents 
p>0.05. 
  

Figure S4. ATF3 is induced by protein folding stress and binds to the promotors or enhancers of IGF-related genes. 
Related to Figure 3. 
A, B, Quantitative real time PCR analyses comparing the mRNA expression of ATF3 in Hepa 1-6 cells treated with  or 
without ER stress inducers thapsigargin (A), tumicamycin (B). n=2-3.
C, A summary of IGF-related genes as ATF3 targets based on ChIP sequencing analyses using the Harmonizome 
web portal. 
D-F, ChIP with ATF3 antibody followed by quantitative real-time PCR showing ATF3 occupancy at the promoters of 
the indicated genes in the mouse liver. n=2-3. 
Error bars represent standard errors. * represents p < 0.05. ** represents p < 0.01. *** represents p <0.001. ns 
represents p>0.05. 
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Suppression of the somatotroph axis controls liver damage in NAFLD 
 
The progression from hepatosteatosis to NASH is associated with increased hepatocyte 
apoptosis and liver damage, which initiate inflammation to clear out dead cells and 
damaged tissue and to facilitate tissue repair 170,171. Increased hepatocyte proliferation is 
one such attempt to repair liver damage and restore loss of mass 172-174, while hepatic 
stellate cells are also activated and transdifferentiate into myofibroblasts, which produce 
an excessive amount of extracellular matrix proteins  that form fibrous connective tissues 
to replace normal parenchymal tissues 170. Hepatic fibrosis, the wound healing process 
mediated by hepatic stellate cells, is a key feature used to determine the severity of NASH. 
Suppression of the somatotroph axis in response to ER stress associated with NASH 
suggests that this branch of the ISR might activate cellular protective program and 
prevent cell death, resulting in reduced inflammation but compromised parenchymal 
repair due to repressed hepatocyte proliferation and compensatory fibrosis.  
 
To test this possibility, we examined the physiological effects of suppressing the 
somatotroph axis on liver damage in NASH. The livers of SIRT7-/- mice exhibited 
increased inflammation (Figure 4A, B), apoptosis (Figure 4A, C), proliferation (Figure 4A, 
D), and fibrosis (Figure 4A, E), characteristic of the cellular and pathophysiological 
features of NASH 159,170-173. The analysis of the single-cell RNA-sequencing data for the 
livers of wild-type and SIRT7-/- mice revealed increased expression of cell cycle genes in 
hepatocytes of SIRT7-/- mice, consistent with increased proliferation of hepatocytes as a 
way to repair damage and restore loss of mass (Figure S5). ATF3 inactivation in the livers 
of SIRT7-/- mice via AAV8-mediated gene transfer rescued the suppression of the 
somatotroph axis (Figure 3K-P). Liver terminal deoxynucleotidyl transferase-mediated 
deoxyuridine triphosphate nick end labeling (TUNEL) staining demonstrated increased 
frequency of apoptotic cells (Figure 4A, C), while liver Ki67 staining showed increased 
frequency of proliferating cells (Figure 4A, D) in SIRT7-/- mice with ATF3 inactivation 
compared to SIRT7-/- control mice.  Compared to SIRT7-/- control mice, SIRT7-/- mice with 
ATF3 inactivation showed increased inflammation in the livers, as evidenced by staining 
of CD68, a marker for macrophages (Figure 4A, B). Hepatic fibrosis as measured with 
Sirius Red staining was reduced in SIRT7-/- mice with ATF3 inactivation (Figure 4A, E). 
Consistent with these observations, ATF3 KO mice showed increased hepatic apoptosis, 
liver damage, and inflammation upon liver ischemia/reperfusion injury 175. These data 
suggest that suppression of the somatotroph axis prevents hepatocyte apoptosis, liver 
damage, and inflammation, while suppressing hepatocyte proliferation and parenchymal 
repair, and promoting compensatory fibrosis (Figure 4F).  
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Figure 4. Suppression of the somatotroph axis controls liver damage in NAFLD. 
(A-E) Liver sections stained for Ki67, TUNEL, CD68, and Sirius red (A) and their 
quantifications (B-E) for SIRT7-/- mice and wild-type mice with or without ATF3 knockdown 
mediated by AAV8-mediated gene delivery. Mice were analyzed 4 weeks after viral 
infection. n = 4-5 mice. Scale bar: 100 µm. 
(F) A proposed model. Hepatic ER stress and the ISR induce ATF3 expression and the 
suppression of the somatotroph axis, leading to reduced hepatocyte death, liver damage, 
and inflammation, while reducing hepatocyte proliferation and parenchymal repair, 
resulting in compensatory fibrosis. 
Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001; ns p > 0.05.  
See also Figure S5. 
  

SIRT7!/! mice with ATF3 inactivation compared with SIRT7!/!

control mice. Compared with SIRT7!/! control mice, SIRT7!/!

mice with ATF3 inactivation showed increased inflammation in
the livers as evidenced by staining of CD68, a marker for macro-
phages (Figures 4A and 4B). Hepatic fibrosis as measured with
Sirius red staining was reduced in SIRT7!/! mice with ATF3 inac-
tivation (Figures 4A and 4E). Consistent with these observations,
ATF3KOmiceshowed increasedhepatic apoptosis, liver damage,
and inflammation upon liver ischemia/reperfusion injury.39 These
data suggest that suppression of the somatotroph axis prevents
hepatocyte apoptosis, liver damage, and inflammation while sup-
pressinghepatocyteproliferationandparenchymal repair andpro-
moting compensatory fibrosis (Figure 4F).

Diet-inducedNASHmousemodelsshowreducedplasma IGF-1
levels.40–42 We therefore next tested whether hepatic ER stress
and the ISRsuppress the somatotrophaxis tocontrol liver damage
in commonly used preclinical NASH models. Wild-type mice with

ATF3 inactivation in the livers via AAV8-mediated gene transfer
and mice treated with control virus were fed a choline-deficient
high-fat diet (CD-HFD) to induce hepatic steatosis, liver damage,
and fibrosis35 (Figure 5A, 5B, S6A, and S6B). ATF3 was induced
in the livers of mice fed a CD-HFD compared with mice fed a
chow diet (Figures 5A and 5B). Compared with chow-fed mice,
CD-HFDmice had reduced expression of the somatotroph genes
in the livers (Figures S6C and S6D) and reduced plasma IGF-1
levels (Figure 5C). ATF3 inactivation in the livers of CD-HFD-fed
mice increased the plasma IGF-1 levels (Figure 5C). Staining of
liver samples showed increased frequency of Ki67 (Figures 5D
and 5E), TUNEL (Figures 5D and 5F), and CD68-positive cells
(Figures 5D and 5G) and decreased staining of Sirius red
(Figures 5D and 5H) in CD-HFD mice with ATF3 inactivation
compared with CD-HFD control mice. ATF3 inactivation also
increased the expression of inflammatory marker genes in the
livers of CD-HFD mice (Figures S6E and S6F).
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Figure 4. Suppression of the somatotroph axis controls liver damage in NAFLD
(A–E) Liver sections stained for Ki67, TUNEL, CD68, and Sirius red (A) and their quantifications (B–E) for SIRT7!/! mice and wild-type mice with or without ATF3

knockdown mediated by AAV8-mediated gene delivery. Mice were analyzed 4 weeks after viral infection. n = 4–5 mice. Scale bar: 100 mm.

(F) A proposedmodel. Hepatic ER stress and the ISR induce ATF3 expression and the suppression of the somatotroph axis, leading to reduced hepatocyte death,

liver damage, and inflammation, while reducing hepatocyte proliferation and parenchymal repair, resulting in compensatory fibrosis.

Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001; ns p > 0.05.

See also Figure S5.
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Figure S5. Increased expression of cell cycle genes in hepatocytes of the livers of 
SIRT7-/- mice. 
Related to Figure 4. 
Violin plots showing the expression of representative cell cycle genes in hepatocytes of 
the livers of WT and SIRT7-/- mice. Each dot represents the gene expression levels in 
one cell. n=3 mice. P values are false discovery rate-corrected, MAST differential 
expression test. 
  

Figure S5. Increased expression of cell cycle genes in hepatocytes of the livers of SIRT7-/-mice. Related to 
Figure 4. 
Violin plots showing the expression of representative cell cycle genes in hepatocytes of the livers of WT and 
SIRT7-/-mice. Each dot represents the gene expression levels in one cell. n=3 mice. P values are false discovery 
rate-corrected, MAST differential expression test. 
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Diet-induced NASH mouse models show reduced plasma IGF-1 levels 176-178. We 
therefore next tested whether hepatic ER stress and the ISR suppress the somatotroph 
axis to control liver damage in commonly used preclinical NASH models. Wild-type mice 
with ATF3 inactivation in the livers via AAV8-mediated gene transfer and the mice treated 
with control virus were fed a choline-deficient high fat diet (CD-HFD) to induce hepatic 
steatosis, liver damage, and fibrosis 171 (Figure 5A, B, S6A, B). ATF3 was induced in the 
livers of mice fed a CD-HFD compared to mice fed a chow diet (Figure 5A, B). Compared 
to chow fed mice, CD-HFD mice had reduced expression of the somatotroph genes in the 
livers (Figure S6C, D) and reduced plasma IGF-1 level (Figure 5C). ATF3 inactivation in 
the livers of CD-HFD fed mice increased the plasma IGF-1 levels (Figure 5C). Staining of 
liver samples showed increased frequency of Ki67 (Figure 5D, E), TUNEL (Figure 5D, F), 
CD68 positive cells (Figure 5D, G) and decreased staining of Sirius Red (Figure 5D, H) 
in CD-HFD mice with ATF3 inactivation compared to CD-HFD control mice. ATF3 
inactivation also increased the expression of inflammatory marker genes in the livers of 
CD-HFD mice (Figure S6E, F). 
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Figure 5. Suppression of the somatotroph axis controls liver damage in mice fed 
a CD-HFD. 
Comparison of wild-type mice with or without ATF3 knockdown in the livers fed a chow 
diet or a CD-HFD for 8 weeks. 
(A and B) Western analyses (A) and quantification (B) of ATF3 in the livers. n = 3 mice. 
(C) ELISA analyses of plasma levels of IGF-1. n = 8 mice. 
(D-H) Liver sections stained for Ki67, TUNEL, CD68, and Sirius red (D) and their 
quantifications (E-H). n = 5-6 mice. Scale bars: 200 µm (Ki67), 100 µm (TUNEL, Sirius 
red), and 50 µm (CD68). 
Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001.  
See also Figure S6. 
 
  

To test directly the effects of IGF-1 on liver damage in NASH,
we treated either SIRT7!/! mice or CD-HFD mice with IGF-1 for
4 weeks. Staining of liver samples showed increased frequency
of CD68-positive cells and decreased staining of Sirius red in
SIRT7!/! mice (Figures 6A–6C) or CD-HFD mice (Figures 6D–
6F) treated with IGF-1 compared with their respective controls.
These results are consistent with the effects of upregulating
the somatotroph axis via ATF3 KD on liver damage in NASH (Fig-
ures 4 and 5).
Together, these data are consistent with the model that ATF3

activation represses the somatotroph axis, leading to reduced
hepatic apoptosis and inflammation but decreased hepatic pro-
liferation and increased fibrosis (Figure 4F). Therefore, an effec-
tive approach to ameliorate both inflammation and fibrosis, two

major indications for effective NAFLD therapeutics, would be tar-
geting an event upstream of the suppression of the somatotroph
axis, such as ER stress.

NAD+ repletion reduces hepatic ER stress and
ameliorates liver damage in NAFLD
We took a pharmacological approach to activate SIRT7 and sup-
press ER stress. NAD+ boosters are emerging to be attractive
means to activate sirtuins.43–45 We treated CD-HFD mice with
78c, an NAD+ booster, for 4 weeks46 (Figures S7A and S7B).
78c treatment reduced ER stress and the ISR induction in
the liver (Figures 7A–7C), rescued dysregulated somatotroph
gene expression (Figures 7D and 7E), increased the plasma
IGF-1 levels (Figure 7F), reduced hepatic triglyceride content
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Figure 5. Suppression of the somatotroph axis controls liver damage in mice fed a CD-HFD
Comparison of wild-type mice with or without ATF3 knockdown in the livers fed a chow diet or a CD-HFD for 8 weeks.

(A and B) Western analyses (A) and quantification (B) of ATF3 in the livers. n = 3 mice.

(C) ELISA analyses of plasma levels of IGF-1. n = 8 mice.

(D–H) Liver sections stained for Ki67, TUNEL, CD68, and Sirius red (D) and their quantifications (E–H). n = 5–6mice. Scale bars: 200 (Ki67), 100 (TUNEL, Sirius red),

and 50 mm (CD68).

Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001.

See also Figure S6.
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Figure S6. Suppression of the somatotroph axis controls liver damage in mice fed 
a CD-HFD. 
Related to Figure 5. 
Comparison of wild type mice with or without ATF3 knockdown in the livers fed a chow 
diet or a CD-HFD for 8 weeks.  
(A) Body weight. n=5-6 mice. 
(B) Liver weight. n=5-6 mice. 
(C-F) Quantitative real-time PCR analyses of expression of indicated genes in the livers. 
n=5-6 mice 
Error bars represent standard errors. * p < 0.05. *** p <0.001. ns represents p>0.05. 
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A, Body weight. n=5-6 mice.
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C-F, Quantitative real-time PCR analyses of expression of indicated genes in the livers. n=5-6 mice
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To test directly the effects of IGF-1 on liver damage in NASH, we treated either SIRT7-/- 
mice or CD-HFD mice with IGF-1 for 4 weeks. Staining of liver samples showed increased 
frequency of CD68 positive cells and decreased staining of Sirius Red in SIRT7-/- mice 
(Figure 6A-C) or CD-HFD mice (Figure 6D-F) treated with IGF-1 compared to their 
respective controls. These results are consistent with the effects of upregulating the 
somatotroph axis via ATF3 knockdown on liver damage in NASH (Figure 4, 5).  
 

 
 
Figure 6. IGF-1 controls liver damage in NAFLD. 
(A-C) Comparison of wild-type and SIRT7-/- mice treated with or without IGF-1 for 4 
weeks. Data shown are liver sections stained for CD68 and Sirius red (A) and their 
quantifications (B and C). n = 7 mice. Scale bar: 100 µm. 
(D-F) Comparison of wild-type mice fed a CD-HFD for 3 weeks followed by treatment 
with or without IGF-1 for 4 weeks. Data shown are liver sections stained for CD68 and 
Sirius red (D) and their quantifications (E and F). n = 6-8 mice (E) and 7 mice (F). Scale 
bar: 100 mm. 
Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001. 
  

(Figure 7G), and reduced hepatic inflammation (Figures 7H–7K)
and fibrosis (Figures 7J and 7L).

DISCUSSION

Our studies establish suppression of the somatotroph axis as a
physiological response to hepatic ER stress that controls liver
damage during the progression of NASH. Suppression of the so-
matotroph axis results in improved hepatocyte survival and
reduced inflammation, but repressed hepatocyte proliferation
and parenchymal repair, and compensatory fibrosis (Figures 4,
5, and 6). These findings provide mechanistic insights into the
epidemiological observations that suppression of the somato-
troph axis is associated with patients with NAFLD, in particular
the severity of fibrosis.10–19 These findings also offer an explana-
tion that NAFLD can be ameliorated by calorie restriction at the
early stage, which elicits the suppressed somatotroph axis and
prevents hepatocyte cell death and further liver damage.1–9

Our studies identify a regulatory branch of the hepatic ISR and
uncover ATF3 as a stress-induced transcription factor that or-
chestrates the gene expression of the somatotroph axis.
Although ATF3 is known to be induced by ER stress,30 its role
in stress response is obscure. We show that ATF3 binds to the
promoters or enhances of the somatotroph genes to control their
expression (Figures S4C–S4F and 3A–3F). The suppressed so-

matotroph axis leads to reduced cell proliferation but increased
stress resistance to improve cell survival (Figures 3G–3I). Thus,
this regulatory branch of ISR constitutes a stress response to
prevent cell death.
Overnutrition and obesity are strongly associated with NAFLD,

while calorie restriction is an effective intervention that prevents
NAFLD in humans.20,21,47–50 Sirtuins are nutrient sensors that
mediate the responses to calorie restriction and overnutri-
tion.26,27,51–55 Indeed, evidence is emerging showing dysregu-
lated sirtuin expression in the livers of patients with NAFLD56

and linking sirtuins to nutritional regulation of PNPLA3, which is
strongly linked to NAFLD.57 SIRT7 alleviates diet-induced
NAFLD.27 Therefore, sirtuins are thought to be relevant to the
pathogenesis and prevention of NAFLD associated with nutrition
and obesity.
Furthermore, dysregulated NAD+ metabolism has been linked

to human NAFLD. For example, the levels of NAMPT, a rate-
limiting enzyme for NAD+ biosynthesis, is reduced in the livers
and plasma of patients with NAFLD.58 NAMPT functions to pre-
vent hepatocyte apoptosis.58 The NAD+ level is reduced in the
livers of patients with NASH.59 Sirtuins are the major NAD+-
consuming enzymes that mediate the signaling effects of NAD+

and are thought to be the mediators of NAD+ metabolism in
NAFLD. Indeed, overexpression of SIRT7 rescues diet-induced
NAFLD in mice.27
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Figure 6. IGF-1 controls liver damage in NAFLD
(A–C) Comparison of wild-type andSIRT7!/!mice treated with or without IGF-1 for 4 weeks. Data shown are liver sections stained for CD68 and Sirius red (A) and

their quantifications (B and C). n = 7 mice. Scale bar: 100 mm.

(D–F) Comparison of wild-type mice fed a CD-HFD for 3 weeks followed by treatment with or without IGF-1 for 4 weeks. Data shown are liver sections stained for

CD68 and Sirius red (D) and their quantifications (E and F). n = 6–8 mice (E) and 7 mice (F). Scale bar: 100 mm.

Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001.
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Together, these data are consistent with the model that ATF3 activation represses the 
somatotroph axis, leading to reduced hepatic apoptosis and inflammation, but decreased 
hepatic proliferation and increased fibrosis (Figure 4F). Therefore, an effective approach 
to ameliorate both inflammation and fibrosis, two major indications for effective NAFLD 
therapeutics, would be targeting an event upstream of the suppression of the somatotroph 
axis, such as the ER stress. 
 
NAD+ repletion reduces hepatic ER stress and ameliorates liver damage in NAFLD 
 
We took a pharmacological approach to activate SIRT7 and suppress ER stress. NAD+ 
boosters are emerging to be attractive means to activate sirtuins 179-181. We treated CD-
HFD mice with 78c, an NAD+ booster, for 4 weeks 182 (Figure S7A, B). 78c treatment 
reduced ER stress and the ISR induction in the liver (Figure 7A, B, C), rescued 
dysregulated somatotroph gene expression (Figure 7D, E), increased the plasma IGF-1 
levels (Figure 7F), reduced hepatic triglyceride content (Figure 7G), reduced hepatic 
inflammation (Figure 7H-K) and fibrosis (Figure 7J, L).  
 

 
 
Figure 7. NAD+ repletion ameliorates hepatic ER stress, dysregulated somatotroph 
axis, and liver damage in NAFLD.  

Given the association of sirtuins to known risk factors of NAFLD,
such as diet, obesity, and NAD+, the prominent NAFLD phenotype
in theSIRT7!/!mousemodel,26–28 and the observation that SIRT7
prevents thedevelopment of NAFLDby suppressingERstress,27 a
major driver of the progression from NAFLD to NASH,22 the
SIRT7!/! mouse model is relevant to human NASH, although hu-
man genome-wide association study (GWAS) data linking SIRT7
to NAFLD have not emerged yet. Indeed, our single-cell RNA
sequencing analysis provided further support that the SIRT7!/!

mouse model develops NAFLD (Figures 1B, 1C, S1D, and S1E).
Using the SIRT7!/! mouse model, we showed that suppression
of the somatotroph axis reduces hepatic inflammation but
promotes fibrosis (Figures 4 and 6A–6C). This finding was further

validated using the CD-HFD mouse model (Figure 5, 6D–6F, 7,
S6, and S7). The consistent findings in both mouse models of
NAFLDfurthersupport the relevanceof theSIRT7!/!mousemodel
to NAFLD.
NAD+ boosting has demonstrated therapeutic potential for a

number of diseases.43–45 Our studies show that NAD+ boosting
via 78c can ameliorate NASH, a prevalent metabolic disease
that needs a cure, at least in part by modulating the hepatic
ISR and the somatotroph axis in mouse models (Figure 7),
demonstrating the therapeutic potential of modulating this
pathway. Suppression of the somatotroph axis in response to
ER stress uncouples inflammation and fibrosis (Figures 4, 5,
and 6), providing a basis for combination therapies or targeting

Chow CD-HFD CD-HFD/78c

Sirius Red

CD68

EBA

F

C

G

J

Chow

CD-H
FD

CD-H
FD/78

c
0.0

0.5

1.0

1.5

2.0

IG
FB

P3
 m

RN
A 

le
ve

l

5 7 8

Chow

CD-H
FD

CD-H
FD/78

c
0.0

0.5

1.0

1.5

2.0

IG
F1

 m
RN

A 
le

ve
l

5 7 8

Chow

CD-H
FD

CD-H
FD/78

c
0

5

10

15

CD
68

 m
RN

A 
le

ve
l

5
7 8

Chow

CD-H
FD

CD-H
FD/78

c
0

100

200

300

400

CD
68

+/
fie

ld

5 7 8

Chow

CD-H
FD

CD-H
FD/78

c
0.0

2.5

5.0

7.5

10.0

Fi
br

os
is

 (%
 a

re
a)

5 7 8

I

LK

CD-H
FD

CD-H
FD/78

c
0.0

0.5

1.0

1.5

AT
F3

/G
AP

DH

**

4 4

CD-H
FD

CD-H
FD/78

c
0.0

0.5

1.0

1.5

p-
eI

F2
D

/e
IF

2D

*

3 3

D

H

Chow

CD-H
FD

CD-H
FD/78

c
0

100

200

300

Pl
as

m
a 

IG
F-

1 
(n

g/
m

l)

5 7 8

*** *

Chow

CD-H
FD

CD-H
FD/78

c
0

100

200

300

TG
 (m

g/
g 

liv
er

)

5 7 8

*** *

Figure 7. NAD+ repletion ameliorates hepatic ER stress, dysregulated somatotroph axis, and liver damage in NAFLD
Comparison of mice fed a chow diet or a CD-HFD for 3 weeks followed by treatment with or without 78c for 4 weeks.

(A–C) Western analyses (A) and quantification (B and C) for phosphorylated eIF2a and ATF3 in the livers. n = 3–4 mice.

(D and E) Quantitative real-time PCR analyses for the mRNA levels of indicated genes in the livers. GAPDH was used as an internal control. n = 5–8 mice.

(F) ELISA analyses of plasma levels of IGF-1. n = 5–8 mice.

(G) Liver triglyceride quantification. n = 5–8 mice.

(H and I) Quantitative real-time PCR analyses for the mRNA levels of the indicated genes in the livers. GAPDH was used as an internal control. n = 5–8 mice.

(J–L) Liver sections stained for CD68 and Sirius red (J) and their quantifications (K and L). n = 5–8 mice. Scale bars: 100 (CD68) and 200 mm (Sirius red).

Error bars represent standard errors. *p < 0.05; **p < 0.01; ***p < 0.001.

See also Figure S7.
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Comparison of mice fed a chow diet or a CD-HFD for 3 weeks followed by treatment with 
or without 78c for 4 weeks. 
(A-C) Western analyses (A) and quantification (B and C) for phosphorylated eIF2a and 
ATF3 in the livers. n = 3-4 mice. 
(D and E) Quantitative real-time PCR analyses for the mRNA levels of indicated genes in 
the livers. GAPDH was used as an internal control. n = 5-8 mice. (F) ELISA analyses of 
plasma levels of IGF-1. n = 5-8 mice. 
(G) Liver triglyceride quantification. n = 5-8 mice. 
(H and I) Quantitative real-time PCR analyses for the mRNA levels of the indicated genes 
in the livers. GAPDH was used as an internal control. n = 5-8 mice. (J-L) Liver sections 
stained for CD68 and Sirius red (J) and their quantifications (K and L). n = 5-8 mice. Scale 
bars: 100 µm (CD68) and 200 µm (Sirius red). Error bars represent standard errors. *p < 
0.05; **p < 0.01; ***p < 0.001. 
See also Figure S7. 
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Figure S7. The effects of 78c on CD-HFD mice. 
Related to Figure 7. 
Mice were fed a chow diet or a CD-HFD for 3 weeks before the treatment with or 
without 78c for 4 weeks. Data shown are body weight (A) and liver weight (B). n=5-8 
mice. 
 
  

Figure S7. The effects of 78c on CD-HFD mice. Related to Figure 7. 
Mice were fed a chow diet or a CD-HFD for 3 weeks before the treatment with or without 78c for 4 
weeks.  Data shown are body weight (A) and liver weight (B). n=5-8 mice
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Discussion 
 
Our studies establish suppression of the somatotroph axis as a physiological response to 
hepatic ER stress that controls liver damage during the progression of NASH. 
Suppression of the somatotroph axis results in improved hepatocyte survival and reduced 
inflammation, but repressed hepatocyte proliferation and parenchymal repair, and 
compensatory fibrosis (Figure 4-6). These findings provide mechanistic insights into the 
epidemiological observations that suppression of the somatotroph axis is associated with 
NAFLD patients, in particular the severity of fibrosis 148-157. These findings also offer an 
explanation that NAFLD can be ameliorated by calorie restriction at the early stage, which 
elicits the suppressed somatotroph axis and prevents the hepatocyte cell death and 
further liver damage 139-147.  
 
Our studies identify a regulatory branch of the hepatic ISR and uncover ATF3 as a stress-
induced transcription factor that orchestrates the gene expression of the somatotroph axis. 
Although ATF3 is known to be induced by ER stress 166, its role in stress response is 
obscure. We show that ATF3 binds to the promoters or enhances of the somatotroph 
genes to control their expression (Figure S4C-F, 3A-F). The suppressed somatotroph 
axis leads to reduced cell proliferation but increased stress resistance to improve cell 
survival (Figure 3G-I). Thus, this regulatory branch of ISR constitutes a stress response 
to prevent cell death.  

Overnutrition and obesity are strongly associated with NAFLD while calorie restriction is 
an effective intervention that prevents NAFLD in humans 158,159,183-186. Sirtuins are nutrient 
sensors that mediate the responses to calorie restriction and overnutrition 32,33,72-74,187,188. 
Indeed, evidence is emerging showing dysregulated sirtuin expression in the livers of 
NAFLD patients 189 and linking sirtuins to nutritional regulation of PNPLA3, which is 
strongly linked to NAFLD 190. SIRT7 alleviates diet-induced NAFLD 73.Therefore, sirtuins 
are thought to be relevant to the pathogenesis and prevention of NAFLD associated with 
nutrition and obesity.  

Furthermore, dysregulated NAD+ metabolism has been linked to human NAFLD. For 
example, the levels of NAMPT, a rate-limiting enzyme for NAD+ biosynthesis, is reduced 
in the livers and the plasma of NAFLD patients 191. NAMPT functions to prevent 
hepatocyte apoptosis  191. The NAD+ level is reduced in the livers of NASH patients 192. 
Sirtuins are the major NAD+ consuming enzymes that mediate the signaling effects of 
NAD+ and are thought to be the mediators of NAD+ metabolism in NAFLD. Indeed, 
overexpression of SIRT7 rescues diet-induced NAFLD in mice 73.  

Given the association of sirtuins to known risk factors of NAFLD, such as diet, obesity, 
and NAD+, the prominent NAFLD phenotype in the SIRT7-/- mouse model 73,74,164, and the 
observation that SIRT7 prevents the development of NAFLD by suppressing ER stress 
73, a major driver of the progression from NAFLD to NASH 160, the SIRT7-/- mouse model 
is relevant to human NASH, although human GWAS data linking SIRT7 to NAFLD have 
not emerged yet. Indeed, our single-cell RNA-sequencing analysis provided further 
support that the SIRT7-/- mouse model develops NAFLD (Figure 1B, C, S1D, E). Using 
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the SIRT7-/- mouse model, we showed that suppression of the somatotroph axis reduces 
hepatic inflammation but promotes fibrosis (Figure 4, 6A-C). This finding was further 
validated using the CD-HFD mouse model (Figure 5, 6D-F, 7, S6, S7).  The consistent 
findings in both mouse models of NAFLD further support the relevance of the SIRT7-/- 
mouse model to NAFLD.  

NAD+ boosting has demonstrated the therapeutic potential for a number of diseases 179-

181. Our studies show that NAD+ boosting via 78c can ameliorate NASH, a prevalent 
metabolic disease that needs a cure, at least in part by modulating the hepatic ISR and 
the somatotroph axis in mouse models (Figure 7), demonstrating the therapeutic potential 
of modulating this pathway. Suppression of the somatotroph axis in response to ER stress 
uncouples inflammation and fibrosis (Figure 4-6), providing a basis for combination 
therapies or targeting an initiating event, such as ER stress, for this metabolic disease 
(Figure 7). 
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Materials and Methods 
Mice 
SIRT7-/- mice have been described previously 72,73. For a diet-induced NAFLD mouse 
model, C57BL/6 male mice were fed with choline-deficient high-fat diet (Research Diet, 
A06071302) consisting of 60 kcal% fat with 0.1% methionine and no added choline for 3 
weeks before either 78c treatment or IGF-1 treatment. 78c was administered to mice by 
intraperitoneal injection (10 mg/kg/dose) twice daily for 4 weeks. Control mice received 
vehicle (5% DMSO, 15% PEG400, 80% of 15% hydroxypropyl-g-cyclodextrin (in citrate 
buffer pH 6.0)) injections. IGF-1 (Pepro Tech) dissolved in 0.1% BSA/PBS was 
administered to mice by subcutaneous injection (20 µg/kg/day) for 4 weeks. All mice were 
housed on a 12:12 hr light:dark cycle at 25°C and were given free access to food and 
water. All animal procedures were in accordance with the animal care committee at the 
University of California, Berkeley.  
 
Cell culture  
Hepa 1-6 cells were acquired from cell culture facility at the University of California, 
Berkeley. Cells were cultured in advanced Dulbecco’s modified Eagle’s medium (Gibco) 
supplemented with 10% FBS (Gibco). For ER stress induction, cells were treated with 
tunicamycin (Sigma, 2µg/ml) or thapsigargin (Sigma, 0.1µM) for 24 hr before biochemical 
analysis. For ATF3 knockdown, Hepa 1-6 cells were transfected with AllStars Negative 
Control siRNA (Qiagen, 1027281) or ATF3 siRNA (Qiagen, GS11910) using RNAiMAX 
(Invitrogen, 13778100) according to manufacture's instruction. To generate Hepa 1-6 
cells with stable ATF3 knockdown, cells were infected with lentivirus. For lentiviral 
packaging, 293T cells were co-transfected with packaging vectors (pCMV-dR8.2 dvpr and 
pCMV-VSV-G) and the pLKO.1-ATF3 shRNA (Sigma, TRCN0000082129, 
TRCN0000082132) or control construct. Viral supernatant was harvested after 48 hours 
and 72 hours after transfection, as described previously 193. For transduction, cells were 
incubated with virus-containing supernatant in the presence of 10 μg/mL polybrene. After 
48 hours, infected cells were selected with puromycin (4μg/mL).  For cell proliferation, 
0.3x106 cells were seeded in a 6-well plate. Two days later, 20% cells were passaged to 
a new well and were counted 24 hours later.  
 
Primary hepatocytes were suspended in plating medium (DMEM low glucose, 5% FBS 
and 1%Pen/Strep) and plated on collagen-coated cell culture plates (Sigma-Aldrich 
C3867-1VL). After 3 hours, it was changed to maintenance media (Williams E media, 1% 
Glutamine and 1% Pen/Strep). The next day cells were treated with tunicamycin for 24 
hours (Sigma, 4µg/ml) before analysis. 
 
Apoptosis assay 
Apoptotic cells were assayed using propidium iodide (BioLegend) and FITC Annexin V 
staining (BioLegend) according to the manufacturer’s instruction (BioLegend). All data 
were collected on an LSR Fortessa (BD Bioscience), and data analysis was performed 
with FlowJo (TreeStar).  
  



 39 

Chromatin immunoprecipitation 
Cells were prepared for ChIP as previously described 194, with the exception that DNA 
was washed and eluted using a QIAprep Spin Miniprep kit (Qiagen) rather than by phenol-
chloroform extraction.  For ChIP with mouse livers, 150 mg mouse liver were minced and 
dounce homogenized with 10 strokes in hypotonic lysis buffer (10mM HEPES, pH7.5, 
10mM KCl, 1.5mM MgCl2, 250mM Sucrose, 0.5% NP40, and protease inhibitor cocktail). 
Lysates were filtered through a 100um cell strainer and spin at 1500g for 5 min. Lipid and 
cytoplasmic fractions were removed and the nuclear pellet was resuspended in lysis 
buffer, cross-linked with fresh formaldehyde (1%) for 5 min at room temperature, 
quenched with glycine (125mM), and washed twice with PBS.   
 
Affymetrix microarray  
Total RNA was isolated from the livers of wild type and SIRT7-/- mice using an RNA 
isolation kit (Qiagen). Microarray hybridizations were performed at the University of 
California, Berkeley Functional Genomics Laboratory using Affymetrix GeneChip mouse 
430As according to the instructions of the manufacturer (Affymetrix). RMA normalization 
was applied and the limma package was used to identify the differentially expressed 
genes. Differentially expressed genes were selected using the Benjamini-Hochberg 
method to control the FDR at 15%.  
 
Single-cell RNA-sequencing of livers using 10x Genomics Chromium.  
Hepatocytes and non-parenchymal cells (NPCs) were isolated by a two-step collagenase 
perfusion method 195. Briefly, after the inferior vena cava was cannulated with a 25 gauge 
catheter and the portal vein was cut, the liver was perfused at 10 ml/minute with Liver 
Perfusion Medium (Gibco 17701-038) at 37°C for 5 minutes, followed by perfusion with 
collagenase type IV (Worthington LS004188) in HBSS (GIBCO) at 37°C for 5 minutes. 
The liver was dissected out and transferred to petri dish with William E medium (Gibco 
12551-032) containing 200 mM L-glutamine, 1% pen/strep and 1% non-essential amino 
acid. Then gently shake out the cells from liver capsule.  The released liver cells were 
passed through a 100 µm filter. Hepatocytes were separated from NPCs by low-speed 
centrifugation (50 x g, 4 minutes, 3x, brake=2) and further purified by Percoll gradient 
centrifugation (50% v/v) to remove dead cells 196. NPCs were pelleted from supernatant 
by centrifugation (300 xg, 10 minutes) then purified by Percoll gradient centrifugation (33% 
v/v) to remove dead cells 197. Cell viability was confirmed by trypan blue exclusion. 3000 
hepatocytes and 3000 NPCs were mixed and used directly for scRNA-seq analysis using 
10X Genomics Chromium Single-Cell 3’ according to the manufacturer’s instructions. 
 
10x Genomics single-cell RNA-sequencing data pre-processing, UMAP analysis, 
and identification of cell clusters.  
RNA reads from sequencing were demultiplexed and aligned to mouse transcriptome 
(mm10) using the Cell Ranger software (10x Genomics, v.6.0.0). The Scanpy Python 
package (v.1.6.0) was used for the pre-processing of the single-cell RNA seq data 198. 
Cells with less than 500 unique genes or more than 5% mitochondrial genes were 
removed. Genes detected in less than 3 cells were excluded. We included 11610 cells 
with 3270 cells from wild type and 8340 cells from SIRT7-/-, and 16623 genes for further 
analysis. The data was normalized such that every cell has 10,000 counts and then log 
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transformed with an offset of 1. The batch correction was done by the bbknn batch-
alignment algorithm . We computed the highly variable genes with the top 1,000 genes 
and the flavor set to ‘cell_ranger’. The highly variable genes were used for principal 
components analysis. The data was visualized by UMAP (Uniform Manifold 
Approximation and Projection) projection using Scanpy 198. Unsupervised clustering was 
done by the Leiden algorithm 199 with a resolution of 0.35. Marker genes for each cluster 
were calculated by Wilcoxon rank-sum test. The cell identity of each cluster was 
determined by comparing the marker genes of each cluster with the marker genes 
identified in the literature.  
 
Differential gene expression analysis, bar plots, violin plots, and dot plots for gene 
expression in single cells, and pathway enrichment analysis.  
Adaptive thresholding of the single-cell gene expression data was performed with the 
MAST R package (v1.12.0), and differential gene expression analysis of wild type and 
SIRT7-/- cells from each cluster using a hurdle model with the wild type cells as the 
reference 200. To visualize the expression of genes, log-normalized expressions of genes 
were extracted from the data after adaptive thresholding and plotted for every cell with a 
violin plot and an overlying strip plot by the Seaborn Python package (v.0.9.0). The bar 
plots were generated by Seaborn. The UMAP plots, dot plots, and track plots were 
generated by Scanpy. The GSEAPY Python package (v.0.10.3) was used for pathway 
enrichment analysis.  
 
Quantitative Real-Time PCR 
RNA was isolated from cells or tissues using Trizol reagent (Invitrogen) following the 
manufacturer’s instructions. cDNA was generated using the qScript cDNA SuperMix 
(Quanta Biosciences). Gene expression was determined by quantitative real time PCR 
using Eva qPCR SuperMix kit (BioChain Institute) on an ABI StepOnePlus system. All 
data were normalized to GAPDH expression. 
 
AAV8-mediated gene transfer 
For AAV8-mediated gene transfer to the mouse liver, Myc knockdown target sequence 
was cloned into dsAAV-RSVeGFP-U6 vector. AAV8 for knocking down Myc was 
produced by Vigene biosciences. AAV8 for knocking down ATF3 was acquired from 
Vector biolabs. Myc knockdown target sequence: 5’-CCCAAGGTAGTGATCCTCAAA-3’. 
ATF3 knockdown target sequence: 5’-TGCTGCCAAGTGTCGAAACAA-3’. Each mouse 
was injected with 3 × 1011 genome copies of virus via tail vein. Mice were characterized 
four weeks after viral infection (wild-type and SIRT7-/- mice) or eight weeks after viral 
infection (CD-HFD mice).  
 
Plasma IGF-1 levels 
To detect IGF-1 in the plasma, the plasma was pretreated with acid-ethanol extraction 
solution to release IGF-1 from binding proteins. Briefly, 120 μL of acid-ethanol extraction 
buffer (hydrochloric acid:water:ethanol = 1:4:35, v/v/v) was added to 30 μL of plasma. 
The extract was incubated for 30 min at room temperature with shaking. The extract was 
centrifuged at 10,000 rpm for 5 min and 100 μL of supernatant was collected. 200 uL of 
Tris buffer (pH = 7.6) was added to the supernatant. IGF-1 was detected using IGF-1 
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Mouse ELISA Kit (Invitrogen). 
 
Immunohistochemistry 
Tissue sections (5 µm) were mounted on glass slides. Slides were fixed with 10% formalin. 
Tissue processing and immunohistochemistry was performed on sections. Primary 
antibodies were: mouse anti-CD68 (Biolegend, 137001); Ki67 (Biolegend, 652409). After 
overnight incubation, primary antibody staining was revealed using fluorescence 
conjugated secondary antibodies. Nuclei were counter stained using DAPI. Images were 
taken with Zeiss AxioImager microscope. The positive cells were manually counted or 
counted using ImageJ.  
 
Fibrosis staining 
Liver sections were fixed with 10% formalin and then stained with Sirius Red (Sigma)/Fast 
Green (Sigma). Images were taken with Zeiss AxioImager microscope. The positive area 
was quantified using ImageJ. 
 
TUNEL staining 
Apoptosis was detected with Apo-Brdu in situ DNA fragmentation assay kit according to 
the manufacturer’s instruction (Biovision). Nuclei were counter stained using DAPI. 
TUNEL-positive cells were imaged using Zeiss AxioImager microscope.  
 
Western Blot 
Tissues or cells were homogenized in a lysis buffer that contained protease inhibitor, and 
total protein was extracted with gentle rotation for 30 min at 4˚C. The extract was 
centrifuged at 15,000 g for 15 min at 4°C. Supernatants were collected and total protein 
was quantified with BCA assay (Thermo Scientific, 23225). Proteins were resolved by 
SDS-PAGE and transferred to nitrocellulose membranes (Bio-Rad), which was incubated 
with specific primary antibodies and horseradish peroxidase-conjugated secondary 
antibodies, and enhanced chemiluminescence substrate (PerkinElmer, NEL103001EA), 
and visualized using ImageQuantTM LAS 4000 (GE Healthcare).   
 
Triglyceride Quantification 
Triglycerides were extracted from liver tissues as described 201. Extracted triglyceride was 
quantified in accordance with the manufacturer’s instruction (Wako Diagnostics). 
 
QUANTIFICATION AND STATISTICAL ANALYSIS  
Statistical analysis was performed with Student’s t test (Excel) unless specified. Wilcoxon 
rank-sum test for single-cell RNA sequencing analysis was performed using the SciPy 
Python package (v.1.4.1). Data are presented as means and error bars represent 
standard errors. In all corresponding figures, * represents p < 0.05. ** represents p < 0.01. 
*** represents p <0.001. ns represents p > 0.05. Replicate information is indicated in the 
figures. 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
p-eIF2α (Ser52) polyclonal 
antibody 

Invitrogen Cat# 44728G, 
RRID:AB_1500038 

eIF2α antibody CST Cat# 9722, 
RRID: AB_2230924 

Phospho-Akt (Ser473) antibody CST Cat# 9271, 
RRID:AB_329825 

Akt antibody CST Cat# 9272, 
RRID:AB_329827 

Actin antibody Sigma Cat# A2066, 
RRID:AB _476693 

GAPDH antibody CST Cat# 5174, 
RRID: 
AB_10622025 

Mouse Growth Hormone R/GHR 
Antibody 

R&D Cat# AF1360, 
RRID:AB_2111403 

Mouse FGF acidic/FGF1 
Antibody 

R&D Cat# AF4686, 
RRID: AB_2924726 

ATF-3 (D2Y5W) Rabbit antibody CST Cat# 33593S 
RRID: AB_2799039 

Normal Rabbit IgG CST Cat# 2729S, 
RRID: AB_1031062 

Purified anti-mouse CD68 
Antibody 

BioLegend Cat#137001, 
RRID: AB_2044003 

Goat anti-Rat IgG (H+L) cross-
absorbed secondary antibody, 
DyLight 488 

ThermoFisher Scientific Cat# SA5-10018. 
RRID: AB_2556598 

FITC anti-mouse Ki-67 Antibody BioLegend Cat# 652409, 
RRID: AB_2562140 

Chemicals, Peptides, and Recombinant Proteins 
78c (CD38 inhibitor) MedChemExpress Cat#: HY-123999 

CAS#:1700637-55-3 
Dimethyl Sulfoxide (DMSO) Sigma Cat# D8418 
Polyethylene glycol 400 
(PEG400) 

Sigma Cat# PX1286B 

Hydroxypropyl-g-cyclodextrin Santa Cruz biotechnology Cat# sc-238090A 
Recombinant human IGF1 PeproTech Cat# 100-11 
Bovine Serum Albumin Sigma Cat# A7906 
Dulbecco’s Modification of 
Eagle’s Medium 

Gibco Cat# 11995065 

Dulbecco’s Modification of 
Eagle’s Medium (low glucose) 

Gibco Cat# 11885-084 

Williams E media Gibco Cat# 12551-032 
Liver Perfusion Medium Gibco Cat# 17701-038 
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Collagenase type IV Worthington Cat# LS004188 
L-Glutamine Gibco Cat# 25030081 
Non-essential amino acid (100X) Gibco Cat# 11140-050 
PercollTM PLSU Cytiva Cat# 17544702 
Fetal Bovine Serum Invitrogen Cat#10437-028 
Tunicamycin Sigma Cat# T7765 
Thapsigargin Sigma Cat# T9033 
RNAiMAX Invitrogen Cat# 13778100 
Sirius Red (Direct Red 80) Sigma Cat# 365548 
Fast green Fisher Chemical Cat# F99-10 
qScript™ cDNA SuperMix Quanta Biosciences Cat# 95048 
qPCR SuperMix kit  BioChain Institute Cat# K5052400 
Penicillin Streptomycin Solution 
(100x) 

Invitrogen Cat# 15140122 

Collagen, type I solution from rat 
tail 

Sigma Cat# C3867-1VL 

Trypsin-EDTA (0.25%) Gibco Cat# 25200056 
TRIzol Reagent Invitrogen Cat# 15596026 
Lipofectamine 2000 Invitrogen Cat# 11668019 
HEPES Gibco Cat# 15630080 
HBSS, calcium, magnesium, no 
phenol red 

Gibco Cat# 14025092 

HBSS, no calcium, no 
magnesium, no phenol red 

Gibco Cat# 14175095 

Western (blotting) Lightning 
Plus-ECL substrate 

Perkin Elmer Cat# 
NEL103E001EA 

DAPI (4’,6-diamidino-2-
phenylindole, dihydrochloride) 

Thermo Fisher Scientific Cat#62247 

Propidium Iodide Solution Biolegend Cat#421301 
FITC Annexin V BioLegend Cat# 640906 
Formaldehyde Thermo Fisher Scientific Cat# F79-500 
Critical Commercial Assays 
QIAprep Spin Miniprep kit Qiagen Cat# 27106X4 
10x Genomics Single Cell 3’ 
reagent kits v3 

10x Genomics Cat# PN-1000075  
 

IGF-1 Mouse ELISA Kit Invitrogen Cat# EMIGF1 
Apo-Brdu in situ DNA 
fragmentation assay kit 

Biovision Cat# K401 

Pierce™ BCA Protein Assay Kit Thermo Scientific Cat# 23225 
L-Type Triglyceride M Enzyme 
Color A 

FUJIFILM Wako 
Diagnostics 

Cat# 996-02895 

L-Type Triglyceride M Enzyme 
Color B 

FUJIFILM Wako 
Diagnostics 

Cat# 992-02995 

Deposited Data 
SIRT7liver  GEO: GSE216996 
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Experimental Models: Cell Lines 
Hepa 1-6 UC Berkeley Cell Culture 

Facility 
 

HEK293T  ATCC CRL-3216 
Experimental Models: Organisms/Strains 
Mouse: SIRT7 KO 73  
Mouse: C57BL/6J National Institute on Aging  
Oligonucleotides 
Primer GAPDH 
Forward: 
ACCCAGAAGACTGTGGATGG 
Reverse: 
ACACATTGGGGGTAGGAACA 

IDT (integrated DNA 
technologies) 

N/A 

Primer GHR 
Forward: 
ATTCACCAAGTGTCGTTCC  
Reverse: 
TCCATTCCTGGGTCCATTCA 

IDT (integrated DNA 
technologies) 

N/A 

Primer FGF1 
Forward: 
GGCCAGAAAGCCATCTCGTT
T  
Reverse: 
TAGCGCAGCCAATGGTCAA 

IDT (integrated DNA 
technologies) 

N/A 

Primer EGFR 
Forward: 
GGAAACCGAAATTTGTGCTAC
G  
Reverse: 
GCCTTGCAGTCTTTCTCAGCT
C 

IDT (integrated DNA 
technologies) 

N/A 

Primer FGFR4 
Forward: 
GGCTATGCTGTGGCCGCACT 
Reverse: 
GGTCTGAGGGCACCACGCTC 

IDT (integrated DNA 
technologies) 

N/A 

Primer IGFBP1 
Forward: 
TCGCCGACCTCAAGAAATGG 
Reverse: 
GGATGTCTCACACTGTTTGCT 

IDT (integrated DNA 
technologies) 

N/A 

Primer IGF-1 
Forward: 
TGCTTGCTCACCTTCACCA  
Reverse: 
CAACACTCATCCACAATGCC 

IDT (integrated DNA 
technologies) 

N/A 
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Primer IGFBP3 
Forward: 
AACATCAGTGAGTCCGAGG  
Reverse: 
AACTTTGTAGCGCTGGCTG 

IDT (integrated DNA 
technologies) 

N/A 

Primer IGF-1R 
Forward: 
ACGACAACACAACCTGCGT 
Reverse: 
AACGAAGCCATCCGAGTCA 

IDT (integrated DNA 
technologies) 

N/A 

Primer ATF3 
Forward: 
AGCCTGGAGCAAAATGATGC
TT Reverse: 
AGGTTAGCAAAATCCTCAAAC
AC 

IDT (integrated DNA 
technologies) 

N/A 

Primer TNFa 
Forward: 
CTATGGCCCAGACCCTCACA
CTC Reverse: 
GCTGGCACCACTAGTTGGTT
GTCTT 

IDT (integrated DNA 
technologies) 

N/A 

Primer CD68 
Forward: 
AGGTTGTGACGGTACCCATC 
Reverse: 
TTGCATTTCCACAGCAGAAG 

IDT (integrated DNA 
technologies) 

N/A 

Primer IGFBP3 ChIP 
Forward: 
GTTCTCGCTGGGAAATGCCT 
Reverse: 
TCAGCGCCTGTGTACTTTGT 

IDT (integrated DNA 
technologies) 

N/A 

Primer IGF-1R ChIP 
Forward: 
GGGAATTTCGTCCCAAATAAA
AGGA Reverse: 
GAGAGAAACACGAGCCCCC 

IDT (integrated DNA 
technologies) 

N/A 

Primer Tubulin ChIP 
Forward: 
AGACGGAAGAGAACACTGCG 
Reverse: 
CTTCATCGGGCTTCAGTCGT 

IDT (integrated DNA 
technologies) 

N/A 

ATF3 siRNA 
TGCTGCCAAGTGTCGAAACA
A 

Qiagen Cat# GS11910 

Control siRNA Qiagen Cat# 1027281 
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Myc siRNA 
CCCAAGGTAGTGATCCTCAA
A 

73  

Recombinant DNA 
pCMV-dR8.2 dvpr Addgene Plasmid: #8455 
pCMV-VSV-G Addgene Plasmid: #8454 
pLKO.1-ATF3  Sigma TRCN0000082129 

TRCN0000082132 
dsAAV-RSVeGFP-U6 73  
dsAAV-RSVShMyc 73  
Ad-m-ATF3-shRNA Vector Biolabs Cat# shADV-253206 
Software and algorithms 
Cell Ranger (v.6.0.0) 10X Genomics  
Scanpy Python package 
(v.1.6.0) 

198 https://github.com/sc
verse/scanpy 

Bbknn batch-alignment 
algorithm 

 https://github.com/T
eichlab/bbknn 

Leiden algorithm 199 https://github.com/vt
raag/leidenalg 

MAST R package (v.1.12.0) 200 https://github.com/R
GLab/MAST 

Seaborn Python package 
(v.0.9.0) 

 https://seaborn.pyda
ta.org/citing.html 

GSEAPY Python package 
(v.0.10.3) 

 https://github.com/z
qfang/GSEApy/relea
ses 

ImageJ 202 https://imagej.nih.go
v/ij/ 

iVision (v.4.5.6 r4) BioVision Technologies https://www.biovis.c
om 

GraphPad Prism GraphPad https://www.graphpa
d.com/ 

Other 
Choline-deficient high fat diet Research Diet Cat# A06071302 
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Chapter 3: Concluding Remarks and Future Directions 
 
This dissertation aimed to advance our understanding of the biology of fatty liver disease 
and to develop a new therapeutic approach. Nonalcoholic fatty liver disease (NAFLD) is 
a metabolic disorder that is closely associated with obesity and abnormal nutrient sensing. 
Through the use of cutting-edge technologies, including next-generation sequencing, we 
elucidated the interaction between ER stress and the somatotroph axis in liver damage 
during the progression of NAFLD in both genetic and diet-induced fatty liver mouse 
models. Our findings provide important new insights into the pathogenesis of NAFLD and 
may lead to the development of novel therapeutic strategies. 
 
In Chapter 1, we critically reviewed and summarized the current understanding of nutrient 
sensing and oxidative stress. We explored the implications of preventing tissue 
dysfunction and stem cell deterioration in the context of aging and metabolic diseases, 
emphasizing the importance of nutrient sensors in disease manifestation. By highlighting 
the key role of nutrient sensing in disease pathology, this chapter sets the foundation for 
the next chapter, which will delve into a new mechanism by which the nutrient-sensing 
pathway and the integrated stress response contribute to liver damage during the 
progression of NAFLD. 
 
In Chapter 2, we reported a novel regulatory pathway that controls liver inflammation and 
fibrosis during the progression of NAFLD. Our study focused on the nutrient sensor SIRT7, 
which inhibits ER stress and prevents the progression of fatty liver disease. We began by 
conducting single-cell RNA-seq analysis on livers from SIRT7 KO mice, which revealed 
reduced Igf1 expression in hepatocytes. Further examination of SIRT7 KO livers showed 
that the somatotroph axis and downstream signaling were suppressed, which we also 
observed in a diet-induced NAFLD mouse model. Mechanistically, we found that elevated 
ER stress in NAFLD activates ATF3, a stress-induced transcription factor, which binds to 
the regulatory regions of IGF-related genes and suppresses somatotroph gene 
expression in hepatocytes. This suppression of the somatotroph axis prevents NAFLD-
associated cell proliferation and cell death in the liver. To further investigate this 
mechanism, we infused human recombinant IGF-1 and found that it directly impacted liver 
damage by reducing liver fibrosis but enhancing inflammation. Most importantly, we found 
that pharmacological activation of SIRT7 via NAD+ boosting using 78c reversed the 
suppressed somatotroph axis and ameliorated liver damage in the diet-induced NAFLD 
mouse model. These findings provide crucial insights into a potential therapeutic strategy 
for treating NAFLD. 
 
This work has revealed the therapeutic potential of activating SIRT7 through NAD+ 
boosting in the prevention of liver damage in the context of NAFLD. NMN 
supplementation, which boosts NAD+ levels, has been shown to improve muscle insulin 
sensitivity in prediabetic women 124. We are excited to take the next steps and explore 
the possibility of using NAD+ boosting to ameliorate liver damage in NAFLD patients. 
Currently, there is no effective pharmacological treatment for NAFLD, with lifestyle 
changes being the only recommended approach. NAD+ supplementation has the potential 
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to be the first pharmacological intervention capable of effectively preventing disease 
progression. This highlights the importance of our work, which provides crucial insights 
into the potential for NAD+ boosting as a novel therapeutic strategy for NAFLD. 
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