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Page 4, line 13: delete" dielectric constant"; insert "index of 

refraction" . 
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C

23 C 12 
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Page 101, top equation: 
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* " THE EFFECT OF COLLISIONS ON ION CYCLOTRON WAVES . 

David Larry Sachs 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

May 1,. 1964 

ABSTRACT 

The behavior of a transverse electromagnetic wave propagating 

in the direction of a uniform magnetic field in a fully ionized plasma 

is examined.. Linearized 'kinetic equations with collision terms of the 

Krook-Bhatnager-Gross type extended by Liboff· to include interspecies 

collisional effects are used in the solution of a spatial boundary value 

problem. The region of ion cyclotron resonance is closely investigated, 

and the transition of the dispersion relation from the low-temperature, 

collision-dominated regime to the high-temperature regime is observed. 

It is found that moments of the equations are adequate in the collision­

dominated regime, but the kinetic equation for the ions must be used at 

/ 

higher temperatures. At these higher temperatures a complete solution of the 

problem requires numerical work near the source plane. Far from the 

source, explicit solutions for the fields can be written. 



(' 

, , 

I. INTRODUCTION 

This paper is concerned with the propagation of plane 

transverse electromagnetic waves in plasma immersed ,in a uniform' 

magnetic field. The term transverse signifies that the vector 

quantities associated with the wave are perpendicular to the 

direction of propagation of the wave.' The term plane sig­

nifies that the perturbed quantities associated with the wave 

are uniform in the plane perpendicular to the direction of: pro-

pagation. Thus the divergence of all vector quantities associated 

with the wave vanishes. 

In order to determine the characteristics of these 

waves in a plasma, one must have the constitutive ,relation 
-+ J (E) , where J is the average current density produced 

-+ 
in the plasma and E is the average electric field in the plasma. 
-+: -+ 
J and E are functions of position and time which are averages 

over dimensions of space and time small compared to the macroscopic 

dimensions of the system such as the length and period of the wave 

and large compared to the microscopic dimensions of the system, 

such as the interparticle' spacing. The problem is then determined 

by the four Maxwell equations: 
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- - 4rr J(i) lOE 
\lX B = + edt'; c 

- ~ loB 
V>(E = - c crt ; 

- - .,. V E = 0; \,~ 

-+ -+ 
.\l·B = 0; 

along with appropriate bpundary conditions. Under the assumption that 

the macroscopic propertie s of the unperturbed plasma are uniform in spice 

and constant in time, Fourier analysis of the wave field reduces the 

problem to the examination of waves with the simple spatial-temporal 

i (kz-c.ot) dependence, e • 

In addition, as 'the following se'ctions will show, there are waves 

which do not have the simple dependence shown above~ These waves are 
~ 

quantitatively unimportant except in 'special circumstances which will be 

explained in the later sections. , They arise when the perturbation of the, 

plasma results from a disturbance at a boundary. 

: .,~. 

Ignoring these. new waves for the time being, a linear theory suit-

able for small amplitude waves places the constitutive relation into 

the simple form J = "(1«(1), k) • E where the coriduct1 vi ty tensor, ? , 

is dependent on the frequency and wave-number as well as the macroscopic 

·properties of the unpertUrbed plasma. 

If one places the direction of a uniform e~ernally produced 

, , 
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magnetic field along the z axis of a right-handed coordinate system 

and considers a transverse plane wave propagating in the zdirection", 

the conductivity 'tensor assumes the form: 

'(1 0 xy 

-'(1 = (1 0 
yy 

0 (1 
zz 

, . 

I " '. 
where (1xx = (1 = (11 yy 

and '(1 = -u = u2 • xy yx 

" fit, 

(1 (1 =' 0 which shows that there is no coupling: between ' xz yz 

transverse and longitudinal ~ves. 

'these transverse plane waves. 

u will not be of importance 1:or zz 

. ~ 

The off~d1agonal'elements which'resul~ from the presence of 

the external magnetic field give "rise to a Faraday effect, a difference 

in the 'phase velocity of right and left-handed circularly polarized, 

waves. 

A right-handed circularly polarized wave has an electric 

t ~ (A iA)' i(kz~) , vec or of the form E + = x + y e • Operation with the 

i' , " 

,conductivity tensor shows this 
~ ~, 

vector of the form J = J = 
I, + 

field to give rise to a current density 

(ul + i(12)(2 +iy)e~(kz~) = ,u+ E+ • 

, '/ 
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The vectors rotate in the same sense in which the electrons 

of the plasma gyrate about the uniform magnetic field.· 

The electric' vector of the left-handed wave has the form -E "") i(kz~) . - ( )- .... (~ - iy e which gives rise to J _ = 0'1-i0'2 E_ =0' E '.' = 

These vectors rotate in the sense in which the positive ions gyrate. 

The problem is thus reduced to the determination of 0'+ and 

0' With these known, the Maxwell equations furnish separate dis-

-persion relations for E+ and 
.... 

. E_ One obtains the wave equation, 

[k2 _ (,,,2/c2) 4 / 21 .... 
UJ n::1/.l.) 0' ± c , Et = 0 which leads to the dispersion 

relation, 

k
2 

·t = 2/2 / 2 (m c ) + 4,r i m 0'+ c 

f,2~'. '~2 2 
This relation is often put .in the form k,± = "'2 n±;;(m, kt) , 

where nt =Jl ~ 4:i O';(m, J.<.±) is the dielectric cons~nt. 
The left-handed wave is of interest to the controlled fusion 

programs. At frequencies close to 'the ion cyclotron frequency, this 

wave becomes damped and gives its energy to rahdom motion of the 

plasma, i.e. heats it. Stixl ,2,3 has investigated this wave in 

4 high temperature plasma where collisions are infrequent; Engelhardt, 

in low temperature plasma where the thermal effects such as viscosity 

are unimportant. 

This paper will c.cmpare various methods of obtaining 

ctm, k) and will disCUSS their merits and shortccm1ngs. Finally. 

\ 
I , 

/ 
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a complete boundary va~ue problem Will be done using a kinetic> 

equation With phenomenological.relaxation' terms. Criteria are . 

determined for the adequacy of simpler methods. 

The result of this study will be a continuous observation 

of the properties of the waves f'rom low temperature where collisions, 

are important and thermal effects unimportant through intermediate, 

temperatures where the thermal properties of the plasma become. 

important to high temperature where collisions are in:f'requent ',and 

thermal effects are responsible for the ~mp1ng of the wave. This 
o , 2 

thermal damping (called c,yclotron damping by Stix ) is analogous to' 

the Landau damping which occurs for longitudinal waves. 
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II. COLLISIONLESS COLD PLASMA 

The earliest work5 in the determination of 
~ 
c neglected two 

important considerations. These are the correlations of the particles 

of the plasma with one another (commonly called collisions), and 

the effects of the thermal motion of the particles. 

Neglecting the thermal motion of the particles, the 

conductivity is independent of k. That is, the current density 
-to 

at a point x is a function of the electric field at the point 
-to 
X alone for a linear theory. If COllisions are also neglected~ the· 

equation of motion of the, plasma is the same as the equation of motion 

for a particle of the plasma, 

= 

-to 
V . ..... .:.it -to 

q.(E+ XBO) , 
J c 

., 
" ... 

'" 

.. -to 

.where BO is the uniform magnetic field and the subscript Jdenotes 

the type ,of particle. 

Letting", j -. i for ions and j = ·e for electrons, we 
. :" .. :-,I~ 

have :~ 
. i 

I 

-to -to -to -to . -; ) J = ~ ni Vi + qe n v = enO(vi 
... 

e e e 

since = -~ = -e (assuming singly charged ions) and 

/ 
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,ni = ne = no '(assuming' the unpertur~ed plasma to be neutral). 

Astrom5 solves -these e::;Luations to obtain 

2 
n:t = 

k 
2 2 

+ c 

(i 

2 :. <.0 

= 1 - (ro:± wi ) ( W ,:~ <.0 " ) , . 
c, ec 

. where = 41! noe
2
(; +; ), the sum of :the squares of the 

i et 
particle plasma frequencies; 

eBo 
<'oic = iilC' i 

eB' 

"" 

the ion gyro frequency; 

<.0 = _0_ the electron gyro frequency. ec m c e ; 
\ 

Figure 1 is a sketch of the form of k±(<.O) for the two 

polarizations. At extremely low <.0(<.0 « <'oic) both k + and k_ 

2 2 2 "'2' 2 ' are given by k = <.O/v.. where .V = A c I (l\. + c) and 

= 
2 c 

speed. At extremely high <.O( <.0 » <.0', <.0 ) both k and k 
, p eC ,+ 

are given by k = <.O/c, that is, the effects of the plasma ,are 

negligible. The intermediate <.0 behavior shows a resonance for 

k at <'oic and a cutoff at ~ and a resonance for k+ at 

with a cutoff at ~ where 

~[J;1c IDicl 2' 4<.0 2 + (<.0 ' "2 = +<.0 )' + ec p - ec 
1 

t 

, , 

<.0 
ec 

I 
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Fig. 1. Dispersion relation for transverse waves in cold 
collisionless plasITla .. 



, , 

,.I 

-8-" 

Between (.l)ic and (.l)l' k _' 'is pure imaginary, decreasing in magnitude' 

from inf{nity,at (.l)ic to zero at (.l)l' Similar behavior results 

for k+ ~etween (.l) 
ec Rather than continue'the repetitious 

remarks about k, we will henceforth concentrate on 'k , the ion + ' 

cyclotron wave. 

The behavior at and near the resonance frequency, (.l) ie!' 

determined by the above model is 'never, correct. 'The model shows 

k to be purely real for (.l) < (.l)ic and approaching infinity, as 

ill 4(.l) signifying an' undamped ~ve whose length approaches zero. , ic 

The behavior for (.l) > (.l)1-c signifies an evanescent disturbance 

whose penetrationleng~h increases, from zero at (.l)ic to infinity at 

(.l) = (.l)l'- (An eVanescent disturbance does not propaga~e energy. ' Thus 

a pure imaginary k signifies perfect reflectance of the medi~) 
" 

The actual behavior of k in the resonance region differs, , . 

, greatly from tha,t described above because at least one of the two 

neglected. effects becomes important. For any temperature of the 

plasma, the collisional effects will be important at high densities" 

While the thermal effec,ts will be important at ,low densities where 

collisions are negligible. 

In either case, the results show k, to be finite and Gomplex 
. 

in the resonance region, signifying a wave that is highly, damped for 

,a stable plasma. 

The next step th~ is to incorporate the thermal and col-

, lisional effects into the plasma model. This may be 'done using 

'\ 

I 
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equations governing moments of the appropriate kineti,c equation. 

A more difficult but more general method is to use the ·lqne'tic .. equation 

itself. Both methods will be use'd and the ,results compared. 
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III ~ COLLISIONAL.AND THERMAL EFFECTS 

A. The Kinetic Equation 

A kinetic equation is of the form 

where ',r(-;, -;, t) , the distribution function of a class of particles, , 

, ... 
corresponds to the number of particles at position x with velocity. 
... ; ...... 
v at time t per' unit volume of "phase" space, d x d v. The left 

side of the equation represents the conservation of particles in 

Of~ phase space. The term 'dt: 
boll 

corresponds to the change in f per 

unit time caused by particle interactions which cannot be accounted ' 

~ 
for by the force term on the left side, F ; which is assumed constant 

...... 
ov~r the volume, d x d v • 

This term represents the collisional effects. When this 

term bas the particular form derived by Boltzmann, the ,equation is 

correctly called the Boltzmann equation. If the form of th.1.s term 

is unspecified, the equation is in general, called a kinetic equation. 

The thermal effects are r~presented by the term on the left side, 
...... 
v • \l f which corresponds to the change in f per unit time due 

... 
to the streaming .of' particles of velocity. v from ne:ighboring regions 

... 
of' configuration space into the volume d x. 
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The dEm'sity, 
' .. ~: .. ' , ." .~ " r-~ ......." =J d v f(x, v,t)· •... ; .. 

' .... ' 

Ii (x, t) 
," ",' 

, the velocity,' 

...... . 

u(x,t) J ... -+' ...... 
dv v f(x, 'v, 

, ... ~ '" . t) 

n(~, t). --.' . .-

,Defining the random velocity 

... .... 
'w .. = v -

the pressure tensor is given by 

-.. ' 

"':.'::. 

,-' r' o " 

.. ~ ->, .' 

• t ,~r ",' ':-:, 

" 

. - /. 

. ~ .. -' ~ 

-p. 

the heat flow tensor, 

..... 
f dv; . \. , .' "" 

. '.-.-

.~ ", ... ' . 
. '., 

':.'" 

~' .. 
;'C',. 

'"'' . 

",., 

". ': 

..' '';, . 

. '," . 
. ' ',-

" ", ,-

. ; 'c " :; '"'~' ... 

'. ., ~. 

and so on. Equations for these macroscopic 'quantities: are ,obtained .' 

by taking appropriate moments of the kinetic equation,. Since we are" . 

. interested in a linear treatment, we may iinmediat~lysimplify the 
'-' ,-, -; ,." 

,-. 

. form of the kinetic equation. ," . 
. ~ :' 

Let f j 
0 + f j 

1 
where the Maxwell distribution' fUnction" 

'", .'.: 

for the unperturbed particleso'f type j is 

":.,', 
',' 

.. , . <'" ~ " 

: .' .;. . ~ ... 

~ , 

'·1 

" 
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2; 2 -va. 
e J 

fm
T . 
o = - , the most probable speed of particle j 

mj 
is the temperature of the unperturbed plasma in 

energyun:t ts. The linearized kinetic equation is then 

The corresponding moment equations are: 

on -+ -+ Id~~) (1) dt + nO \1 ·U = = 0 ; 
.".' 

j 
'('~ coli 
'~ ou 

nO mj =it -+ - A -+ 
\!:\. +\1. Pj + CJ.)jC z xno mj Uj 

-+ J -+ -+ Of'j) (2) qj nO E + d v mj v, . = dt , 
coll - . 

~ 
... , 

+ poF~ (9~j)T] -+ - -+ - 9-+ +\1 • Q • u
j 

I + u
j + j 

+ CJ.)jc (~x~ J ... Of'~ - A) = d -; mj -; -; i(- . (3 ) - P/~ z . 
, coil 

• 
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and so on where Po = nOTO and (A)T signifies the transpose of the, 

matrix Aj Y is the unit tensor. In Eq".1, (3), it was sufficient 

-- --to use the term, vv, rather than ,WW to determine the perturbed 

moment, P. 

Disregarding the collision terms for the moment, we see 

that Eq. (2) 
.... -+ 

is of primary interest for obtaining J (E) since 

J = nO !: qj ~j. However, the thermal effect term, V,. Vf, 
j 

of the kinetic equation has coupled the next higher moment into 
-+ ~ 

the equation of interest through the term, 9 • Pj • -Upon contemplatingEq. (3) for P
j 

it is found that the 

thermal effect term has again coupled the next higher moment into the 
-+ 

-+ -equation through the term 9 • Q
j 

and so on. Thus, the system of 

moment equations is not closed. 

In order to close 'the set, the thermal effect term must be 

smaller. than the other terms in the kinetic equation. If this is not 

true, then the moment equations are of no value since the set cannot 

be closed. Let us assume that the thermal term is small and close the 
-+ ~ 

set by ignoring the term 9 • P , in Eq (2). That is, we neglect the 
j 

thermal effects entirely. Now Eq. (2) will be sufficient for the 
.... -+ 

determination of J (E) when the collision term is given. As for 

Eq. (1), the right~hand side is zero because the number density of 

particles is conserved by' ,c6llisions.:Since we are interested in trans-

-+ -+ 
verse plane waves, 9 • u

j 
= O. Thus Eq. (1) simply tells us that 

the density of particles is unperturbed by the wave. 

.' 

f 
! 

! 
I 
! 

f 
.1. , 

1 
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The determination of the form of the collision term of 

the kinetic equation is a major and still :.incomplete problem of 

plasma physics. This will be discussed mare fully later on in this 

section. 

At this' 'p:>int, however, we are concerned with the term, 

d-; mj -; =it ' f · 'af) 
. coll 

of Eq. (2). This is the total momentum transferred to particles of 

type j per,. unit volume per unit time by collisions with other 

particles. 
, 6 

Spitzer states that a reasonable assumption here is that 

the net momentum exchanged by collisions between two types of particles 

should be proportional to their relative flow velocity. The above 

momentum transfer term is thus replaced by nO mie Vl(~i - ~e) for 

the case of momentum transfer to electrons by ions where ,mie- is the 

reduced mass. Numerical work by Spitzer using the.Boltzmann equation 

leads to the following estimate for the momentUm transfer collision 

frequency: 6 

, vl 

where A 

= 
3.7 no .tn A 

3/2 
TO 

-1 sec 

= 1.24. 104 T03/2 

~ 
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The dimension of nO is cm-3 and the dimension of TO 

is degrees Kelvin. This number is obtained from Spitzer's value 

for the plasma resistivity, ~ , by comparing his definition of ~to 

our definition of vl • This collision frequency is applicable to 

the case of high magnetic field, (.l) »vl ' for relative velocities ec 

perpendicular to the magnetic field, which is our case of interest. 

For relative velocities parallel to the field or if 

about half the above value is correct. 

(.l) 
ec 

With these simplifications, the factor nO is cancelled 

and Eq. (2) is now 

for the electrons and 

for the ions. These equations are identical to those previously 
o 

mentioned in the work of Astrom except:tOr, theadd~tion of the damp~ 

term. This addition adds no difficuJ.ty to . the problem. Using 

.I 
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one easily obtains the new index of refraction,: 

2 
n:±- = 

2 . ID, 

= 1 - «(J.) ± (J.)ic)1 (J.) + (J.)ec) + i (J.) VI· ( 4) 

. , 

·Wi th this model, kremains finite in the resonance region 

and for ID = IDic , we find that the real and imaginary parts of 

k are comparable, signifying a highly damped wave. This follows 

from Eq. (4) when IDp2 >~ IDc vI which is always true in our cases 

of interest. l)iscussion will al~,;ays be limited to :plasmas where 

ID is much larger than all other frequencies of interest. :p 

Fig. 2 is a plot of the real and imaginary parts of k as 

a function of ID for the left-handed wave ~round its resonance region" 

\ .. 

IDic • The right- handed wave will have analogous behavior in the vicinity 

of its resonance at ID 
ec 

Fig. 2 shows that Im k is negligible for (J.) « ID
ic 

.and 

, Re K': is negligible for ID » roic in agreement with the collision­
o 

less theory of Astrom. 

The next question concerns the influence of the thermal 

term. We can approximate the thermal effects by keeping the term 
... ~ 

\l • P in Eq. (2) 
... ... - . and ignoring the term \l • Q ,lin Eq •. (3). We then 

will have to replace the collision term on the right-hand side of 
" 

Eq. (3) .by a reasonable and workab~e form as we diq in the case of 
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Eq. (2) • 

Kaufman 7 in his investigation of viscosity uses the form, 

J d -; m -; ~~). = - v (p -. PI) 
coll 

where P = 1/3 - -.... -. -
Trace P. Therefore, we can define n= P - PI 

as the traceless part of the stress tensor. Eq~'C~on (3) is tlien 

split into the two equati~ns 

. oP -+ -+ 
dt + 5 /3 Po \l • u = 0 

. and 

. --v n. 

(6) 

The intuitive idea is that the collisions of a s.pecies of particles 

with themselves will cause the pressure tensor to approach a scalar -pressure PI. That is, the velocity distribution of the particles -becomes isotropic through the collisions, causing in to relax to zero. 
'6 

If one then chooses the self collision frequency of\ (:Spitzer for 

v one MS v 
e = 1.03 vl for electrons where 

Eq. (3:9: ). For ions, one has 
Vi =J:~ v. 

\ , . 
v' i i in 1', s g yen 
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- '-Since 9 ~ u = 0 Eq. (5) shows that p =0. That is, 

a transverse wave does not perturb the pressure of the plasma. Since 

P = noT + nTO (where quantities without the subscript, zero, 

denote first order perturbations), we have T =, 0 since P = n = O. 

That is, the transverse wave does not perturb the temperature of 

the plasma. Thus the thermal effects are essentially viscous effects. 

- -+-+ Equation (6) will be used later to obtain n in terms of 9 u • 

Substitution into the momentum Eq. (2), will then be used to produce 

the first thermal correction to the conductivity. The next question 
_ A 

would regard the importanc,e of the second correction, the 9· Q term. 

We would desire an estimate of its importance in order to know when it 

can safely be ignored. 

Thus intuitive forms would be necessary for the collisional 

terms of the higher moment equations. Our intuitio~however, is 

lacking for the higher moments. A more reasonab1e approach is to 

use intuition to determine the form of the collision term in the 

kinetic equation itself and then the form of the collision terms of 

all the moment equations would simply follow from this term. 

There exist:: more precise expressions for this collision term 

than the one we shall use. For example, the Fokker-Planck collision 
8 ' 

term,9 is an integro-differential expresssionwhich is a good 

approximation for ill » (1) and A» l. 
p 

These conditions are 

satisfied in our region of interest. However, the ',mathematical complex-

ity of the expression necessitates an expansion in small parameters. 

, 
, . 
i , 

I 
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, , 10 

One such expansion technique is the Chapman-Enskog method, which " 

is used to obtain the transport coefficients of the plasma. ll,12 

Here the small parameters are the time and space derivatives of the 

distribution function. These are considered small compared to the 

collision term and the force term arising from the presence of the 

homogeneous unperturbed magnetic field. 

This expansion cannot be used in our regions of interes~ 

since the time and space derivative terms will be of the same order 

of magnitude as ,the collision and magnetic field terms. With no . 

alternative technique at qur disposal, the more precise expressions 

cannot be used. 

We use collision forms developed by LibOff,13 which are 

14 extensions of the Krook, Bhatnager and Gross model. According 

to this model, the collision 'form is a term which would cause the 

distribution function to relax to a local Maxwellian, 

r21C (T tm 0 

in the absence of external forces. Liboff includes terms corresponding 

to the tendency of interactions between the ions and electrons to 

reduce differences in their average velocities and temperatures. 

His expression for the ions is 

/ 

, ' 
" 

I 
! ' 
t: 
! 
f· , 
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The term in curly brackets in the collision expression is 

simply:' f.£6tai ., fIM. where fIM' is expressed in terms of f
O 

by means of a Taylor expansion in the perturbed quantities. 

To obtain the collision,termibr the electrons, simply interchange 

the subscripts "i" and "e". Henceforth, the electron equation 

will be omitted. vi' the ion collision frequency, represents the rate 

at which the ion distribution function approaches a local Maxwellian. 

v has the analogous meaning for electrons. The magnitudes of e 

v are those previously given, the self-collision frequencies e 

of Spitzer. vl ' the momentum transfer collision frequency"represents 

the rate at which the dif~erence of the average velocities of the two 
-+ -+ 

speCies, ui • ue ' approaches zero. Its magnitude is given by 

Eq. (~a). v2 ' the energy transfer collision frequency, represents 

the rate at which the difference of the temperatures of the two 

species, Ti - Te approaches zero. v~ is small~r than Vl by about 

the mass ratio of' electrons to ions. We will not need its value in 

our calculations since the perturbations in,temperature are zero. 
II 
\ . 

t i 

: ! 



(' 

-21-

B. The Moment Equations Method 

Having the full linearized kinetic equation, the necessary 

moment equations will now be deri ved'~, We first derive expressions 

o for the pertinent moments of f • 

and 

where 

J 

J 

~ 0 ~ J v f dv =0 1 

~~ 0 ~ J m v v f dv'> = 
~ ~ ~ 0 ~ 

m v v v f dv = 0 1 2 

~ ~ ~ ~ 0 ~ nO TO 
m v v v v f dv = m 

-+-+ 
M 

In the linear theory, the perturbation in the moments of 

,interest are given by 

n = J 
1 ,.. 

f dv; 
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Therefore 

in the linear theory. It is apparent then, that the perturbation in 
~ -Q , may be obtained by using the form 

The heat flow vector, 

-+ -is then obtained by a contraction of Q,.' that is 

Before obtaining the moment equations we substitute the col-

lision term into our linearized kinetic 

we will henceforth use. Since 

equation to. obtain the form ... 
= -2 1 'i!. '- we have 

a 
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-• v 

_ _ V
2 (ui - u ) - -- (Ti e TO 

In the operations:".that follow, we integrate by parts to obtain 

J - ". - 1-v v···v v X z • \l fdv = 
. i j n -

v 

~ ] 1- -" --ff \l 0 lv X z v v ~····v dv 
- i j n v 

Jl - ...... t ] = f dv 2)< v • \l v v ···v ... i j n 
v .' 

! 
I 
t 
! 

( 
[ 
·f 

i, 
! 
! 

?, 't l
' f 

•• ·+v v v. ~ •• (~·X·;-I>,v,) .' i 
i j k '.'. n t 

This equality can be written in tensor form as 

, where 

(" -- -) , (" -) (" -) , \ ' (,,-) z®vv ••• v :: zJCvv v,·' °v + v z1.v V:. o·v +0 .+v v .000 z,cv • 
! ' ijk" on i j k n i j k, n . i j n 
. ~ 

, 
~ 

, f 

I 
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The derivation of the moment equation is simplified by the 

" .. ~ 
use of the properties of the Hermite polynomials defined by Grad. 

·These are defined as follows: 

so 

;}:i'O 
, 

1 
, 

= . , 
Mi 

1 If . = -v 
" TO i 

, 

J:{~ij 
2 m 5

ij = 
TO 

vivj - ; 

and so on. These have the following useful property: 

Since the velocity dependence of the right-hand side of Eq. (7) is 

composed o~ th,e terms fO ';W~O , fa Jtiland "fa J:f:
jj 

2 , operating on the 

equation withJJJ~ d; is SimPlifi~d somewhat since these ternis "do not 

contribute to the higher moment equations. We also notice that 

.i 

r , 
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. . 

jJf fO ~~'. o forn'!l 

. and 

. " .. '. ·'J'!..(O '. 1 -+ 
. <1f f dv - 'n .; 

I ~.TO .••. J. 3i. l 
V Ii" , ,~. 

. , , 

'1 -+ 
f dv· .. = 

, J'lJ 2 1 -+ " 
TO . . <lfij f dv' ',= 'J?ij 

.... T 3/2 ". 
. 0 jll 3f

l
d-+ 

, . , .• , m1 / 2 q"ijk v 

.,. . 
. :.C .• ' .,':" . '.':.'~ 

.~.. .; , 

. ' .. ,' 

,":'.' . -.. . .:.;. 

,-.1 , 

' .... "1': 'i 

. ,,~, .: 
/. ", 

, , 

, ,1 

Each higher polynomial introduces new information., It 
; 

introduce~ the next perturbed moment. 

' .. ' ~ 

" .. 

,', .', " 

Equation (8) discloses the following useful property'of these 

polynomials: 

I Jflk ... n:;· V f- d; = .. ~ Iv; Jflk ... nf-d:; 
i ' 

= a%;~Jl\;; ... n f-d:; + .~ f~i .. ~k .. ·.nfld;J <0 '. 

", ,"'.' 

: ... ' 

,\' , 

";1. '. " . :<;,,,~ ".' . 
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Another pro~erty "of" the polynomials is 

"The finaLresult is 

-+ -+ 1 " 
The v· 9 f term of the kinetic equation couples both the 

next higher and the next lower moment into the equation governing the 

moment corresponding to }f . 

These results are now used to obtain the first three- moment 

equations. We operate on Eq. (7) with ~lfd~ forn = 0,1, and 

2 to obtain 

, " 
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! . 

(10) . 

(11) 

Equation (9) is the expected result. Equation (10) agrees 

. with Eq. (2) when the intui~i ve collision form is used in that 

... - ... - ...... equation. The term, 'V • P, = 'V. n + nO 'V T + TO 'Vn since 

P = nO T + TO n. If we multiply Eq. (9) by . TO and add· it to 

one third of the trace of Eq. (11) we obtain 

... 
• u = i 

This is the extension of Eq. (5) to include the relaxation of 

the temperature difference of the two species of part'icles. The 

traceless part of Eq. (11) is 

;' 
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-dIIi -+ ~ 2 _ -+ -+ -+ -+ -+ -+ T, 2--+ -+ --

ot+\7· Qi - 3"1\7· qi + PO(\l ui + (\lUi) -··3.F\l·ui)-!Wic,~~IIi+v1ni = O. 

which agrees with Eq. (6), except the next moment is retained here. 

~13 -+ Operating on Eq. (7) with J cJ:I; dv, we obtain 

[(~+ vi + "k~ ®frtk; + d~$ Rtijk + :a [d~i (njk+ no T Bjk) 

+ Cl~j (llik + nO T Bilt) + Cl~ (lliJ + nO T B1J J = 0 

where 

R.eijk 

2 r 1 -+ TO 4 
= J f dv m J1.eijk 

(llb) 

Now the usefulness of the Hermite polynomials' is apparent. 

If W is the moment introduced by ~ , for n p 3 i the corres ... 

ponding moment equation is 

T -+ 
. .n+l 0 7\ • .00. +-m 

If'-l = 0 (llc) 
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where 
, > .~, . , ,- . ' 

, ~ ::' .' 

',' 

. , '. 
.:: ,'; 

"·,'.r.' .,' 
, . 

.,'-" 
, .'" 

and .. ' . ..... : 
, " 

Because' of the orthogonal:1 tyof .. the Hermite polynomials, none of the 

terms 'on the right side of Eq. (7) are present. The truncation of the 

series of monient equations can now be formallyillus1;rated treating 
. i . 

the! operators ,,",ot and K as numbers. 
, '1 

One ignores the moment ~+ 

and obtains 

'. 

. ,', . 
The result is. used in the next .lower moment equation to obtain 
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TO . 1 -+ 1 f(-+ - -'" m .;( v 3:.. . 

The continuation of the process 1eads·to the formal expression 
.... , 

TOt( ~ .-
~ = m::.t: (n. + nO T I) 

1 • ":"'€_-
1 - € 

'="1-.-€ 
• H ..... _ .. 

• .. 
'€ 

1 - € 

where the n~ber of terms kept in the denom1natordepends on~he order 
.=,' 

of ,the neglected moment. W~ now have an equation for· Q in terms of - - . (n + nO T I) which along with Eqs.::(9·),: (10) and (11) and Maxwel1 t s 

equations constiUrle a closed set of equations. 

/ 

Thus the truncation of the system of moment equations is equivalent 

to an expansion in e. If the parameter € is not small, the truncation 

is incorrect. -We estimate -€ for the transverse plane waves by ignoring R· 
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in Eq.(llb); The contraction of this equation produces 

o • (12)' 

. i(kz .:. Gilt) 
For t.ransverse waves with the form e . , U z and\!z are 

zero. Equation (9) and the trace of Eq~ (lli) show n = T = O. -. Equation (ll) then shows the only components of II produced by the 
.,.. -+ 

\l u term are II = II: . and II = II Equation (llb) _ / xz ZX yz zy-+ - -without R then shows the only components of Q produced by the 

-+-
\l II term are 

Since Q,xzz 
-.:.. ...-

determine Q. 

Qxzz = Qzxz =',: Qzzx and Qyzz, = Qzyz = Qzzy 

= 2a. and Q = 2~J Eq. (12) is sufficient to 
-x. yzz -y 

Equation (12) may be written 

(i+v~ -TO 0 II <lx - CD ~ = mi dz ic zx 

. (~ + v i) 'ly + CDic <lx' = 
-T 0 II , 0 
m

i 
dz zy 

/ 

" Since the left-handed wave has the form.q = qJ2 _ .1Y)ei (kz..Q)t),. 
. . 

-+n (A .... ) i(kz-c.ot) . .. . ' .' = II x - iy e , and so on, these two equations are combined 
z z- ,'. t T k . ' 

to yield (CD- CDi +iVi)q :=. CDi q =...2... II (12a). 
c - - - mi z-

., 

, 
t 
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In the same manner, Eq. (lla) yields the equation 

(0 f n - 2kq_ 
i- z-

Substitution for q_ using Eq. (12a) yields 

= 

or 

(12b) 

where = 
. 2T o = is the small pa;rameter .. :. 

It is a measure of the importance of the inclusion of the neat flow tensor 

in:,the viscosity equation (lla). The criterion then, for neglecting the, 

heat flow and therefore all higher moments is' 

«1 

This is satisfied for 00 since '" . '> k, ai' ..... ic' ". 
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a
i That is, the,ion Larmour radius, , is smaller than the wavelength, 

coic 
1 . k' for our cases of interest. . In the resonance region, the ion collisions 

become important. Thewa ve length must now be larger than the 'mean 
1 a i free path for ion collisions, that is, k >. When this criterion 

vi 
is satisfied, the heat flow may be neglected. However, the viscosity 

may still not be negligible. We shall now 'show that the criterion for 

neglecting ion viscosity is more stringent in the resonance region. 

For the left-handed wave, Eq. (10) has the form 

+ i mie v ] u' -' ls.. n -i m v u = ieE 
- coic mi 1 i- .nO z- ie . 1 e-

Substitution of Eq. (12b) into Eq.(12c) produces 

Neglecting in Eq. (13) and assuming co ~ en . 
ic 

(12c) 

= ieE 

we have 

• (13a) 
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For contrast we rewrite Eq~ (12b) for ro ~ co • . ic . 

(13b) 

mie . Now - Vl ' theion electron momentum transfer collision frequency, m
i 

is smaller than vi' the ion-ion collision frequency. 

',' 

Therefore the ratio of the. viscous to the collision term in Eq. (13a) is 

~ 

= = -2
1 ~i l €." (ro = roo )\. m , ~- ~c 

e 

The ratio of the heat flow to the collision termia Eq. (13b) is 

= = 

/~. 
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Therefore for cases where I €i- (co = coic ) I « land heat flow is . 
, 

negligible we may find €i- 1 indicating that ion viscosity 

is not negligible and may significantly alter the results of the 

cold plasma theory. 

This is not true for the electrons. If we consider the right-

handed wave, the corresponding equation for the electron motion is 

where 

- co ec 

m 
+ i.2& 

m e 
v -1 

co e+ = co-co +iv 

and 

€ 
e+ 

ec e 

= 

When co ~ co the criterion for 

cosity is 

ec 2 2 I kv ~e 
e 

moments is I « 1. 

« ·1 • 

= -ieE 
+ 

neglecting heat flow and the other.· 
l 

The criterion far neglecting vis- . 

m
i Since ~ v m 1 e 

~ v .the criteria are identical. e The effect of 

I 
! 
i 
l 
f .r 

! 
t 
f 
! 

t 
I 

r 
I 
I , 
I 

I 
! 

i 
l ,. 

r r 
I 



electron-electron collisions is comparable to that of electron-ion 

collisions. Thus for the electron resonance, viscosity will have a small 

effect unless € > 1 in which case, the moment treatme, nt is invalid. e+ ~ 

We will be concerned with the ion resonance, which occurs for 

the left-hand wave. In this case, the equation for the electron motion 

is 

where' 

and 

+(1) 
ec 

, 
\ 

m e 

(1) = (1)+(1) +iv 
e- ec e 

€ 
e-

k
2 

TO ] ' 
u -imi vlui =-ieE 

, ( ) e- e, - -m (1) 1 - €, e e- e- ' 

In the region of interest, where the thermal effects may be im-

portant, (1) ~ (1)ic. Therefore 1(1) 'I e-

in the region of interest and Ie I ~ e-

Therefore, if tne moment expansion is valid forthe ions, the thermal 

effects of the electrons are negligible. The two equations are then 
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, '.1 
exhibiting the lowest order, thermal correction which causes the index of ,." 

, . ~ 

'.refracting to be, dependent on k in addition to en. ' The dispersion re-' .. 
lation, (14), now yields four solutions 

.. ",., 

k(en),whereas without the thermal.', 

, . term, ,there are only the usual two solutions, k .. ' = ' ~ko(en), . corresponding > 

, to a d.8.mped wave propagating in the positive , z ·direction and k = -kO(en), 
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corresponding to the same wave propagating in the negative z direction. 

The solution, kO(ro), was plotted in Fig. 2 from E~. (4), which is the 

result of setting the terms containing TO equal to zero in Eq. (14). 

The two extra solutions introduced by the ion viscosity require that 

two more spatial boundary conditions be specified for the total solution 

to be determined •. Prior to the introduction of ion viscosity, the two 

conditions 

(15 ) 

and 

Lim B = 0 (16) 

are sufficient to determine the solution 

BJz) = 

where B _(z) is the amplitude of the wave magnetic field. 'Hence­

forth we will consider the solution for the wave magnetic field, 

~ ('" "') -irot ' B = B_ Y + ix e rather than the electric field in order to 

simplify comparison with the following section. Because Eq. (14),is even 

in k, one of the two extra solutions will have Im k < O. This 

may be discarded by condition (16). We are then left with 
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where Im ~"" . Im '~'. > O. Condition (15) determines ~ .' ='F;-: '~ .. 
One more boundary condition is required for . ~: If we take the ,plane,. '. C,' • 

.' , ' 

z = 0, to be a boundary of· the plasma,weare ~ssentially .. considering :' •. ' 

. the problem of the transmission of a' transverse left-handed .circularly ":. ." / 

. polarized wave incident on a semi-infinite plasma in a constant magnetic'.: 

field which is perpendicular to the plane boundary. We choose the condi~' -: .' 

tion that the particles of the plasma reflect specularly from the .~. . " 

. boundary • There is therefore no parallel stress on the wall by the 

plas~. That is, 
-+ n z is zero at the wall. This condition then 

determines .~ and thewaye form in the plasma. is determined. 

If we define 

. \ .. ~'. ,:' 
.', ' < 

, .. 
+ i Vi] . ..1 .... . '."', - . 

the'wave magnetic field is 

B (z)· 
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Al 

82 _ ~2 

= 
~2 _ ~2 

and 

,~ l - ~ 

(82 _ ~ 2) 
= = 

~2_ ~2 

,In order to displ~y the relative effects 'of collisions arid 

viscosity, we choose values of density and magnetic field representative 

l6 
of a wave experiment conducted at the Lawrence Radiation Laboratory, 

Berkeley. These are 

no = 3.5 
l4 -3 ·lO cm 

·--and 

BO 1.09 · 4 
= 10 gauss. 

We then have the following values for a Deuterium plasma: 

:,l~06 lO12 -1 
cop = · sec . 

~ 

1.92 co = · ec 
lOll -1 sec ; 

co ic = 5.24 l07 -1 sec - I 
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4 0 
If we choose TO,= 2 .': 10' , K, we have 

"and , ,7-1 
vi = 5·9' 10 sec. • 

-1 sec 

Figure 3 is a plot of the trajectories of " 'lS. 'and ~ in the 

complex k plane for this case,; kO in the figure is the result obtained> 

when viscosity is neglected. It is a polar plot of Fig. 2. Let 

The quantities kO and kl are plotted for n values between 

n = 0.5 and n = 2.0, while ~ is plotted for 0.95 ~ n ~ 1~05. 

Beyond this region, ~ becomes too large to neglect heat flow and higher 

moments. That is, 

. (co - co + i v )2 
ic i 

becomes comparable to unity nullifying the moment approach. Where this is 

so, the coefficient of the ~ wave, ~,becomes negligibly 'small. 

(I~ I is plotted as a function of n in the ];9Wer lett. section of Fig. 3.) 

Therefore, the behavior of ~ 

n = 1.015, however, I~I = 

is not known where it is not needed. At 

0.35. At TO = 2 :'10
4
;, therefore, 

the viscosity is at the threshold of importance. 

So for 0.95 ~ n ~ 1.05, the expression (18) is necessaFY. 

Beyond this region,~ expression (17) will suffice. 

For order of magnitude estimates of damping, the viscosity may 

be ignored and expression (17) used. 
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5 .a= 1.01 

-5 o 5 10 
Re k (em-I) 

MU .34057 

Fig. 3. Trajectorie.s of k1 and k Z' To = Z X 104o K. 
--k1,kZ; --- kO' 
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At lower temperatures, it is found that the ~ wave may be 

entirely ignored. 'The coefficient, ~ "remains essentially unity, 

kl ~ kO and k2 recedes to infinity corresponding to zero damping 

length. 

Since the viscosity is most important when' co '~co we use , ' ic 

this point to derive the criterion for neglecting viscosity. As before, 

we have the ratio of the viscous to the collision term, 

« 1 

We choose for k2 the value which is obtained from the non-viscous 

dispersion relation, (4), when co ~ coic ' We have 

, +. 

The, first term on the right, which corresponds to the displacement current 

may be ignored in our region of interest where 

2 
co :e » 1 . 
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Substitution produces the criterion 

2 co. co 
~c P 

2 v
l 

c 

,\ 

" '3. • Jd'BT 11/2 
, 0 0 

= « 1 ~ 

Inserting the value for parameters perta~ing to Fig. 3, we 

'obtain the value 0.28 <, 1. Fig. 3 then represents a case where the 

criterion .is barely satisfied. Noticing that the criterion is heavily 

4 0 

temperature dependent, we examine the case when::'. TO = ,,··10 K. 

We then obtain the value 2.1 > 1. Now the viscosity must be kept. 

Figure 4 is a plot of the trajectories of ~ and ~ for this case. 

The trajectory of kO is included for comparison and .I~ I is plotted 

as before. The coefficient IAll is approximately 1~1~1 and is 

therefore not plotted in Figs. 3 and 4. 

Now it is found that f'or 0.9 ~ S2 ~ 1.1., expression (18) 

is necessary. It is also found that the wave 

S2 = 
) 

~ varies :from negligibly small values near 

~ 
k' 

0 

~ = 

no longer ~dentif'ies 

at ~ = 1.1. 

0·9 to nearly unity 

at S2 = 1.05. ~ and ~ are about equal at S2 = 1.01. Now, 

no order of' magnitude estimates can be made far the damping at resonance 

" 

by considering one wave alone. The disturbance is expressed in terms of, 

, two wave forms which are not independent in this geometry. That is, the 

two wave forms cannot be independently excited. This is because of' the 
... 

pec~ssity of' maintaining TI
z 

zero at the boundary., 
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1m k (cm- I ) 

10 

-10 -5 o 5 10 

Re k (cm-1 ) 

MU .34058 

Fig. 4. Trajectories of k1 and k
Z

. To = 3 X 104 oK. 
--k1,kZ; ---k
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We illustrate the wave form of B (z) at resonance on 

Fig. 5 for the temperature, 

. ( iklZ) The upper plot is Real ~e , the contribution of ~ 
. . i~Z. 

total solution. The middle plot is Real (~e. ). The 
i~z i~z 

is Real (~ e + ~ e; ), the complete solution as 
., ik z 

Eq. (18) • For comparison, we include Real (e· 0 ) , the 

to the 

lower plot 

given by 

solution 

without viscosity. Since 

we are plotting the component of B in the direction (ycos wt + 2 sin wt) 

at time t as a function of z Referring to the lower plot, we· 

find that both waves are severely damped but the wave that includes 

the viscosity effects .does not decrease as abruptly as the other wave. 

The viscosity acts to reduce the shear caused by the spatial variation 

of the wave field • 
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Fig. 5. Wave forms of B at resonance. To = 3 X 10
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oK. 
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The ciuestion arises ~s to the effect of heat flow on these 'solutions. 

Will a third wave form arise? Including heat flow necessitates solving a 

'cubic equation for 2 
k (ro) • Since heat flow is unimportant unless 

€i- $ 1 , in which case the moment expansion is invalid, nothing is gained 

by its inclusion. Instead, the moment expansion is abandoned. In the 

next section, the problem is done using the kinetic equation (7) itself. 

This method is correct at all temPeratures where classical non-relativistic 

physics is adequate. This method is necessary when Solution 

of Eq. (14) shows that €i-:", ~ 1 in the resonance region for TO = leY OK. 

Therefore, for temperatures of this order and higher and the previously 

mentioned values of density and magnetic field, the kinetic equation method 

must be used. 

general. 

No simple criterion exists for the determination of '€i-

2 A coarse criterion is obtained by again using kO (roic ) 

expression for €i-', At ro = ,roic ' we have 

= 
CD

i 
ro 2 

c P 
2 

VI c 

102 B T 11/2 
o 0 

in 

in the 

= ~o$ corresponds ,to = 28 .' The coarse ~i1:;erion is too 

pessimistic. Fig. 4 shows that IlL (ro )1 
-:J. ic 

expression far the pertinent values of ~ 

< J kO (CDic ) I. racking a simple 

o 
or ~, €i- ,<,~ Will. 
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be considered a sufficient condition for using the moment equations 

and neglecting heat flow. If o 
€i- > 1 but not by much, it would be 

worthwhile to negle'ct heat flow and check the value of 

to the solutions kl and ~ where they are important. 

C. The Kinetic Equation Method 

€. pertaining 
~-

The starting point is Eq. (7) for the ions and th~ corresponding 

equation for electrons. Choosing cylindrical coordinates for the velo-

city vector, the magnetic field term simplifies. For 

we have 

-v = 

- '" 

v 
-L 

v '!i.. z • 

cos ¢ 5C + v 
J. 

"."' -\l f -v 

df 
=-.~ 

sin ¢ 9 + v ~. 
·z 

-+ 
The macrosl:!opiC vectors, E. and. 

-+. 
u , appearing on the right side 

of Eq. (7) are put in the form 

-E = E (5C + i 9) + E-(5C - i9) + E ~ 
+ - z 

Assuming no spatial w.riation in the .x-y plane, we have 

11 
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A similar equation results for the. elect~ons. 
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The form of the right.side of Eq. (19) suggests a se:pa.raticn 

of f 1 into the form 
i 

fl 
i = 

. Equating coefficients of like exponentials in Eq.· (i9). prOduces 
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and 

Te complete the equatiens, expressiens fer -+ -+ 
E, u, nand T are 

needed: 

since T = 
P - nT o 0 , 

, 
-+ -+ 

MaxWell t s equatILons furnish E in terms 'Of u. 

4,r dJ± 
= 2dt = 

c 



.. 

.. .--~.--.. 

For E , the equations'· .' 
z 

dE 

..... -49-'; 

Tz =. 4:rr e(n:t. ~ ne) 

and 

= o 

are. sufficient. 

'!" 

'''-: 

", ,,'. .' 

The equations uncouple into thi'eesets· of equations for the three in-

depellderit.: sets of quantiti~s: 

f E+, u+ 
. 

+1 
, , 

f E u . 
-1 

, -, - , 

fO , 'E u , n, T . 'z' z :' ' 

,',. , 

." 
"'. ; . .', ,." 

.,<, •• 

The, first set corresponds to the electroncycl.otronwave.,' This wave 

has been studied by Shafranov17 neglecting collisions . and the effect of .. 

.ion motion. 
18 .' 

Platzman and Buchsbaum extended: ,hi:s.' work to include 

col.lisions but· considered the unperturbed distribution functi'<mto be 

• of the form 

N 
-'\ .", .~, . 

" .. 
, ,.".,. 

• .", -~ < 

. -~ ~'". " 

,", : 
.; " .1', 

.:,.:.." 

:,: .. 
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rather than Maxwellian for simplicity in the numerical work. The , 

~uantities N and a are normalization factors chosen to give rise 

toa specified density and temperature. The ,collision form used 

by Platzman and Buchsbaum is simply 

df.\ ' 
at e/

COll 
= - v f 1 

e 

, The neglect of ion motion reduces the Liboff collision term to 

o£ ) fl 
: 2f 0 

(li .. ~)(v -
mie e ' e ) , dt = - V +'- V -e e 2 e ' e 1 m 

colI a 'e, e 

since n = T = 0 for the transverse electron cyclotron. wave. e e 
~ mie Since ve vI m' the second term on the right-hand side is 

e 
negligible and we see that the collision form used by Platzman and 

,Buchsbaum is ade~uate for their case, of interest. However, their form 

is completely inade~uate for a treatment of the ion cyclotron wave because 

of the importance of the electron motion and the fact that 

The Liboff expression is necessary for an ade~uate treatment of a two-

species plasma when both species are perturbed. 'l';;~~ ':;,~!~:.~!.'(' ",.'; ::::",,::",,' :,;',)l.\': :,; 

': .. :;:,,' :;,The:'third,set.:,corresponds to the longitudinal wave. This problem 

was first considered by Landau19 neglecting collisi~S and ion motion . I 
t 
I 
t , 
I 
~ 

I 
I 
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and has since been the subject of many pa.pers. We are interested in the ' 

second set which corresponds to the ion cyclotron wave. Dropping· the 

minus sign subscripts, we have the following set of eq"llB,tions: 

1:CD ) 'f ec 'e 

o 
= 2fe ~ [-eE 

2 m a e e 

m1 ~ mi ] ,e e 
- --- vu + --- vu ; m

i 
i m

i 
1 e . 

, ' 

As suming a time dependence of the form e -1c.Dt, With CD real we 

consider the :problem of a way~ :propagating in a plasma. which fills the 

.semi-infinite spa.c~ z > o. There is a uniform magnetic field in the, 

plasma perpendicular to the plane boundary z = o. The magnetic 

field of the wave is gi~n as a boundary condition at z = o. Be-

cause of the exist'ence of damping there ,is no disturbance at Z= CD 

For any perturbed quantity, p(z, t) = p(z) e -1c.Dt , we have the 

--_._--- '-, '-~---""'" ._-'-' -"':. ~ ...... 

, I 

f! , . 
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; i . l; 
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• , . ., I 
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mathematical condition 

p(z) " 0 

p(z) = 0 

-52-

for· z ~ 0 

for z < 0 

since we are interested in the determination of the disturbance in the 

region z> 0 in terms of its value at z = o. The appropriate 

transform is the one-sided Fo~ier transform which is identical in 

20 theory to the Laplace .transform. ';' Define 

00' .. 

P(k) = 2~ J ' p(z) e -ikz dz . 

o 

The inverse transform is 

oo-i,-

. p(z) = j- dk e ikz p(k) 

-oo-i,-

where '1 is chosen so that the contour in the kplane is below all 

singularities of the integrand. This insures that P(k) exists and 

p(z) = 0 for z < O. The requirement that no disturbance exist 

in the limit of infinite distance from the boundary means that P(k) 

is regular in the. lower half k plane including the real k axis 

because of «'ol:t.fs1,onal dampipg .• ·.We-:.~heref'ore- C!lI3iY-" take' , XI ,to be zero. 

Taking the transform of the equations, we ~ve 
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Now all perturbed quantities' are, the . Foui-1ertrimsf6~s~:nd'Je; <' 

, , , 

functions of k. The quantities with subscript .. bare the boundary ,; 

.,. ,'. 

values. 

fb = f{z = 0) . ,'. . ."1.':' . 

.~. = E(z = 0) 

and. ~t lim o~~z) = E'(z .= OJ, •• 
.. , 

z-+O ...••. ,- . 
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U = i· 

where 

'G 
i 

and' 

i of 
2noo 

Similar results obtain for ue 

U -u ie 

-5'4-
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Solving for 0 U
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In the def~nition of the transforms, we have k real. Therefore, 

if k > 0, then 1m ~ > 0 and the integral in, the t plane is 

defined. Upon evaluating the inverse transformations later, G(k) will 

be analytically continued off the real k axis. For the positive real k '/ ' 

axis, this analytic continuation is effected by moving the path of integra-

tion of the above integral in the t plane so as·to always be below the 

pole at t = ~ • When k < 0, then 1m ~ < 0 and the reverse. 

definition obtains.. That is, the path of integration must now remain 

above the pole at t = I;. in the analytic continuation of G(k) from 

the negative real axis. The t plane contours are illustrated in Fig. 6. 

Although G(k) has different definitions depending on the sign of k, 

it is continuous at k = 0 and k = 00. 

-1 = Lim Gi(k) = Gi(O) = 
k+0+ 

(co -co + i v ) ic ' i 

Lim G1 (k) = Lim Gi(k) = G1 (00 )=" 0 .' 
ki-oo:t" k+oo 

The integral defined this Way for k> 0 is called Z~, the 
. " . 21 

Plasma Dispersion Function and is tabulated in Fried and Conte; So 

with the above definition, set 

\ . " 

t 
1 

. i 

, I 
! ' 

! ' , , . ' 

~ 
I' 

. ~ i ' 
t I 

I! 

Ii 
'.' !, 

_ '. i 

" 
I, 
i' 
; 
! , 

I 
i 
I, 
1I 



k < 0 

• 
<t> 

t plane 

.<t> 

t pia ne 

-56a-

Defi n ition of G for k real 

t plane 

t plan e 

Ana I yti c continuations 

for k com plex 

MU -34060 

Fig. 6. Relation of contour and pole m t plane. 
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when the contour is below the pole .. Wethenha ve '. 

Gi 
1 z<§1) = kai 

where· 

'CD - CD· + i Vi 
L ic - kai · i 

and similarly, 

.'. '.' 

G 
1 z(i:) = -e ka ' e . 

e 

. where 

CD + CD + iv ec e 
= 

\ 

. , 

.. ' 

.',' 

~'" ' '.'. 

..... 

:',;' .. :':.'," 

:',. 

..:, . 

..... 

'- .. ' , 

..... :.' 
"", 

. ',.' '.',' 

::. 

, '~.-. 

..... ,1.: 

,:: '. ..~ 

.. ; ,". 

',' ,0' 

" 

'. 

.''; '. ~, 

.' .... 

.. .t, 
}" 

I 
I 

.( 
l 
) 
/. 
t.-

. r 
! . 

'. ~ .. 

'" i 
., .. '. t· 

r 
.. f· 

J 
t ,., I 
r . .... ' .. r 
i. 

'[ 
. , .'~ ~ 

,,~.; . 

r r r 
!: 
! 
t 
t 

f 

r 
I 
r. .! 
i 
i; 
I. 
\, 
I 
L 

!. 

I r 
r 

for > o. For k . < .' 0 , the . integral is not· that tabulated 1xi .:Fried ''''', .... 
'. 

1

,'-

and Conte but is easily· expressed in terms 'ot 'zOO.. .Ifw~ define 

, 
.~ ' .. 
i .. 

"",::; 

',. 

':.',.: ' 

...... 

'. .~' '. : . 

!,', .;.\, .... 

f 
I', ,'. 

f 
t' 

" 
r. 
!-: 
l­
f 

t 



I 

, 

r 

. ~ .. --

] 
-0) 

'2 
dt e-t 

t - ~ = 

when the contour is above the pole, we see from Fig. 6 that 

For k <.0 we then have i'. 

and 

1 
= ka
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Since 

from Eq. (2le) we ba.v~ 
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We thus have' 

{: 
f 

The term, J, represents the effects of the boundary. If this term 1 

were not present, it is easily shown that the conductivity kernel would' be 

a function of relative distance alone. That is 

J(Z) = Jd~' a(z - z') E (z'). (22) 

17 ' 
Shavranov in his work on theeleetron cyclotron wave, 

. , , 

believed (122) to be equivalemt to the assumption of specular reflection of 
'1' . • 

particles,at the bopndary. That is, he believed the specular reflection 

condition, 

\ 
\ 

\ 

I 

.. 
i 

\ 

/' 
i 
i 
I , . 

I 
i 
! 
! 
l 
l 

r. 

r t 

!' 



'.-' .. 

- ::' 'I" 

.. ,' 

J' 
,i 

-'.' ", 

"f'(vO} 
b z 

will lead to ' 

'JOO 
, ' 

-00, 

ikz 
dke 

, , 

We now test this hypothesis. 
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We evaluate ,'ui~,from·Eq)(2ld). 
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The 

specularreflection.condition (22a) shows that the integrand of (2ld) is' 

even in 
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This term is not necessarily .zero. It is therefore not generally tr~e . 

that the assumption of specular reflection at the boundary gives rise to 

Eq. (22). That is, this assumption does not necessarily remOV!3 the 

effects of the boundary. 

We have shown, however, that :If'.: G(k) is an even function of 

k , then 'J(k) is an odd function of k. This fact does not cause 

Eq. (22b) to be satisfied, but it will be of use to us as will be 

seen later. We assUme specular reflection as a boundary condition. of. f 

and therefore use Eq. (22c) for J: 
Substituting the e~ession forJ(k) . into Eq. (21a) we 

obtain an expression for E(k) in terms of the boundary conditions. 

-i k E. - E. ' . 
2~ ~ + 4~ ~J(k) 

E(k) = c 

. where 

= . 1 + 4sci a(k) 
CD 

Finally, E(z) is given by the inverse transform 
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! 

+00 dkeikZ[-i~ - Eb' 
, 

41t i (l) 
J(k) J 

J 
+ 2 

E(z) , c = 2 2 
k2 

- ill2 n (k) 
-00 c 

It appears that in addition to ~ and ~f ,J(k) must be 

given to specify the solution. The expression for J(k) , to be used 

is not known since it depends on the unknown quantities, 

f b • e 
Shafranov essentially ignored J(k) in his work by his 

and 

assumption, Eq. (22) .• He:,abandoned the semi-infinite problem for the 

problem of finding the field in an infinite medium excited by a 
, . 

surface current in the plane, z = o. Then the tangential component 

of the wave magnetic field is an odd function of z and discontinuous 

at z = o. In the problem of interest, the wave magnetic fiel~ 

has only a tangential component which is simply related to the spatial 

derivative of the electric field,by one of the Maxwell equations. 

we write 

we have 
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Hence, 

-ic oE 
B = IDdz' (24) 

Shafranovprescribed the fictitious surface current in terms of the 

boundary value of B in such a way that the res~ting electric field 

t· 
.' had a spatial derivative that corresponded to ~ at the boundary • 

... -.'~ .,-' . 

His resulting expression expressed in our form was· 

co '. ikz 

J dke ~' 
E(z)= 

-1 . 
:rc ~ _ ~ n2 (k) 

2 
-co c 

The identical expression will new be obtained in our case witllout 

the use of a fictitious current or relation (22)~ 

We ~ssume that the value·of ~t .. is known. This is one boundary 

condition. The second boundary condition is E(z CD) = -0 • This 

sec.ond condition is equivalent to the requirement that E(k) be regular 

in the lower half plane. With k on the real axiS, the requirement 

is equivalent to the statement that E(z) = 0 for z < 0 

This, of course, was part of the original definition of E(z) 

Returnirig to the definition of G, we see that G(k) = G(-k) 
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The part of ,G1 that is odd in k is also odd in t and is therefore 

zero. Therefore, by inspection of their definitions, 

2 
= n (-k) ~,.;·I 

and 

J(k) = - J( -k) 

Using the:se properties of n2(k) and J(k) and evaluating Eq. (23) 

for z < 0, we have 

J 
-1.kl z I f~1~~i\I. 4,c 1co 

dke 21t - 2 
0. c = 2 

k2 co 2 
-00 -2" n (-k) 

c 

J(~J 
• 

\ . 
1 . 

i 

I 
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Replacing the-dummy variable k by -k we have 

00 dkeiklzl[i~2: Eb' .. 4:rr iO) J(k l] 

J 
2 

0 
c _ 

= 

-(X) 

Therefore 

J 
-00 

2 
k
2 0) 
-2 

c 

2 
k

2 0) 2 
- 2 n 

c 

2 
(k) n 

(k) 

- , 

f
oo ~ dke1klzl 

= ...;2;;;.;.:rr~,""!:!,,,"" __ 
2 0)2 2 -­

-(X) k - 2 n (k) 
c 

/ 

Now for z > 0, I z I = z and 

E(z) = J dkeik1z{ikEb + lmwolJ-(k) -~ tJ co I I [ E.. t E.. ., 
- - 2:rr. 2 - 2:rr f dke 1k z. ~ - .... :J?..J 
______ ~~ __ ~c---------- 2:rr . 2:rr j 

222 =. 22 .• 
k - 0)2 n (k) -00 k - 0)2 n

2 
(k) 

c c -00 

The.result is 
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t 
00 

E(z) 
-E1, J dke

ikz 
for .~ 0 = -- Z re 

k2 _ i!n2(k) 
-00 2 c 

E(z) = 0 for Z < 0 (26) 

which agrees With the result of Shafranov. 

We have, essentiallYI\chosen the boundary values, ~ and 

J(fib ' feb) so as to eliminate the solutions that grow rather than 

damp with Z 

We are interested in the wave magnetic field. Using Eq. (24) 

and (26) , we obtain the equations 

11, 
B(z) = rei ] for z ~ 0 

-00 

B(z) = 0 for' z < 0 (27) 

To obtain B(z) by contour, integration, we must analytically 

continue n2 (k) off the real k axis. Now G(k) fork> 0 agrees 
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. .. 21 

with the function described in Fried and Conte. Call this 

G+(k). G(k) fork < 0 is defined with the pole in the t-plane below"':;· 

the contour. Call this G-(k) . 

(28a) 

and 

from the definition of.Z- (§) 

Since the integrand of E~. (27) contains both ... Gi and. Ge ., 

there are two branch cuts in the upper half k plane: . one separating 

+ - '. + the functions G. and G', ; the other separating the functions G 
~ ~ e 

and G e These cuts separate the upper k plane into three regions. 

Both cuts extend from k = 0 tok = 00 • G+(k)· is the analytic 

continuation of G(k) from the positive real' k axis into the complex· k 

plane. G-(k) in the analytic continuation of G(k) from the negative 

real k axis into the complex k plane. To maintain G(k) single 

valued in the k plane, we must.cut the k plane along some path 

between k = 0 and k = 00 • 

We therefore see that each cut in the kplane separates the 

region of the k plane vThere we use G+(k) . from . the: :~.egiorrmf ,the' '~'''J 
~ -' 

k plane where' we. use· .G.:"': '.(~)."-'''<' i:· .. ; 'That ·:1s,:.,:~_:on· one side. df'the··~.·· 

cut, k is such that the pole in the t plane is above the con-

.! 
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tour and on the other side, k is such that the pole in the t 

plane is below the contour. 

Since G(k = (0) = 2 o , n (k = 00 ) = 1 and we find that the 

integrand in E~. (27) vanishes on a semicircle at infinite k, because of 

ikz the e term. We may therefore add this semicircle to our original 

contour of integration, the real k axis, without changing the result. 

We then shrink the" resultant closed contour to as small an area as 

possible, being careful not to cross any singularities of the integrand or 

the branch cuts. A typical situation is shown::in Fig. 7. The 

determination of the positions of singularities and cuts will be explained 

later. 

Denoting the three regions by the numbersl, ,2 and 3, ,we have three 

corresponding different functions 2 
and n3 (k) in the 

integrand • 'Corresponding to Fig. 7, we have 

2 2( + G
e 
-), nl = n G:1 , 

n 2 2 " 
G

e 
-), 

2 = .n (G:1- 1 

and 

2 2( + G +) n3 = n G'l·' . e 

Assume that there are Nl singularities of the function 
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k plane 

2 

---

MU-34061 

Fig. 7. Integration contour in k plane. 
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in region l, N2 singularities of H2(k) in region 2 and N
3 , singular­

ities of ~(k)inregiOn 3 ~here ~ and'.~ are defined as in 

E~. (29) in terms of n2
2 (k) and n

3
2 (k). Let 

N 
1 

BI = 2~ l-~ [Res HI (k) " Ko:] " _ ...... 
OF1 : 

where 

when ko: is a simple zero of the denominator of IS. (k). B2 and 

B
3

· have similar definitions for regions 2 and 3. The general solution 

is then 

The contribution B12 arises from the integral along the 



-70-

branch cut separating regions 1 and 2 It is expressible in terms . 

of the difference of . IS. (k)andE2 (k) • We then have 

.I 

where the contour C12 is ~long the cut between regions 1 and 2 

from k = 0 to k = 00 • B3l has a similar definition. Upon evaluating 

2 n 
1 

2 
- n 2 

2 
~copi co 

B12 2 
:rt' ic 

we have the following integral for B12 • 

where as before, 

.. 

(30a) 

. , 
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From, (28b Y; ,the dominant 'kdependence of the ,integrand at small 

andlarge,~,,'k"comes from" 
,','. " 
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F~ ~jDi~;ivitl.' •• ", ., " . .:", 
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" 'ikz 
The' factor" e ,~rie6 rapidly: at' la;.se ',kwhile 
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, .' _ ~CO-cDic+i Vi)'" \, 
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which comes from (G
1 

+ - G
i 
-) varies rapidly at small k. The integral is" 

put into the form 
. "'. 

, ' 

~_(~c+iV1 Yl 
dke, i 
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'" 

where thep:rrt of the integrand that is a relatively ,'weak function of k1s '> 
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Since the exponential part of the integrand drops sharply 

to zero at both end points of the contour, the integral can be 

'20 
approximated by the method of steepest descents. This procedure 

is outlined in Appendix I. The result is 

where 

dk 
dO' 

,f(k) 

= r1; dk 
V" dO' 

e f(ksi) 

~
;\ 1./2 " ( . -f k 

2 = 

= 
~_---:CD __ +_i_V_!.) 2 

ikZ-\ ~: + .en g(k) 

and ksi ' the saddle pOint,is determined by the equation 

2 

, _2-:(00'- CDic + iVi)' 
f (k .)=:iz+',- ..... ~....;;;..;--.;;. 

s~ k . k. a
i SJ. sJ. 

= o • 

The steepest descent approximation requires that the contour, 

~12 ' be along a specified path from' k = 0 through the saddle point, 

~si to k = 00. Thus the position of the branch cut in the k plane 

I 
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is chosen so .that the resulting integral for B12 (Eq ... (3l})caribe e'VB:l~ 
", .... 

uatedby the method of steepest .descent., " Since g (k) . isrelati vely' 

slowly varying, an approximation to 

, ' 

to obtain 

g t (k
si

) " 

g (ksi ) , 

k' " s1 

, 
k ' is obtained by ignoring the term si 

.. ~ . .... -

.. 

Again ignoring the dependence of g(k) we obtain 

t " .. 

iv ); 2 
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leads to the !e~uirement 

« 1 .. . (33) I 

Using E~. (32), it is found that the method of steepest descent is ade~uate 

at large distances from the boundary. The criterion is 

z » 

dk The term, dO' is approximated by the formula 

dk ~ 
= dO' 

We also find 

The result is then 
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A similar result is obtained for 

where 

k se 
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k=k se 

"These results are correct when the requirement . (33) and its analog for the 

electrons are satisfied. The exponential parts of the expression far 

B31 and lB12 are then very small. The:' term, B31' for the electron 

I 

I 
! 
I , 
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branch cut is much smaller than the:.'term, B12 ' for the ion branch cut 

for frequencies satisfying the criterion 

This criterion is satisfied by the frequencies in our range of interest. 

B31 may therefore be neglected. TJie', electron thermal effects which 

occur in Bl2 and 2 
n are also negligible for the frequencies and 

wavelengths of interest. This can be explicitly sho¥m by consideration 

of the function Ge which contains these effects. 

CX) 
2 ( .... 

G 
1 j e-t dt 

= - Ie e kaY; (, t 
) e 
-00 

where 

co+co + i v 

Ie ec e = ka e 

. The integral is defined for, ie below the ~tegration path 

in the t, plane. Since the wave numbers of interest are such that 
\ 

, 
\ 
I 

t 

i 
! 

I 
! 

I 
- I 

l 
\ , 



-77- " 

Im ie < .0, the integral has the asymptotic expansion for large argUment 

G e 

"I, 

:::: -1 [1 + ~ + 3 + ~ + ... J . 
CD+C.D +iv 2/. 2 4J. :4 81.· ec e e e e 

21 This expansion differs:;from that found in Fried and Conte 

(35) 

+ which is applicable to G It is easily obtained from their expansion 
e 

and the use of Eq. (28b). Since the wavelengths of interest are such that 

1 
€ 
e-

= ItT 12 p, »1 , e 

the first term of the expansion is kept and the rest discarded. 

This criterion is identical to that used in the section on the 

moment equations to neglect the.electron viscosity and higher moments. 

Replacing Ge - by the first term in the. asymptotic expansion and 

neglecting· the electron branch· cut is equivalent to using the mone nt 

equation for the electron flow velocity and neglecting electron viscosity 

and the higher moments. Since 

.ex:. 

I·· 

/ 
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where 

the contribution of the electron branch cut is not expandable in terms 

of f. and is therefore unobtainable from the truncated moment equations. 

With the electron thermal effects ignored we have 

There is now no electron branch cut and therefore no region 3. ~3l=B3=O. 

Region 1 now includes what was .region 3 

D. Comparison of Kinetic Equation Result to Moment Equation Result 

In view of the form of Eq. (35) we define 

so that a similar expansion of Gi reduces Y to zero when only the 

first term of the expansion is retained. Expressing n2 (k) in terms of 

Y leads to the equation 

/ 
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Equation (37) agrees· with Eq. (4) ·whenY '=. 0 • An expansion of .. 

G. as in Eq. (35 ) 
~ 

and the retention of the 

_k2 2 
1 a. 

Y .~ .tI"/-' __ = 
-. 2~2 2 . 2 (co -co + iVi

} 
·i ' . ic 

. . 

. Substitution into ·:Eq'.::'(37,) .. y1elds 

first two terms yields 
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which.agrees .wi th Eq. (14) when the numerator or de~omina.toris expanded 
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1 
in the small parameter, ItT 2 ' and terms of order 

2.1'i 

A correspondence is thus seen between the asymptotic expansion 

of the function, G, and the use of moment e~uations. 

/' 
We show in Appendix II that the moment e~uation approach with 

electron thermal ~effects ignored, leads to the same dielectric (constant 

that appears in E~. (36) whenGi of E~. (39) is replaced by its asymp-

totic expansion and the cut in the k.plane is chosen at arg k = arg(ro~ic+iVi)' 

For k not on this cut, the asymptotic expansion is 

G t:::!. 
i 

. 1 \ 

Keeping higher moments in the moment approach is e~uivalent to keeping 

higher terms in this expansion. However, the use of the truncated moment 

e~uation precludes any knowledge of the existence of the branch cut, since 

these e~uations lead to the expression (37a) for Gi(k) for all k. 

Since Gi(k) appears to be single valued, no cut appears andB12 is 

non-existent. 

We wi11 now show that the evaluation of B(z) by the expression 

(27) using the first two terms of the expansion of G
i 

(that is, using 

E~. (14) for n2 ) leads to the previous result, E~. (18) • 
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= 

= 

using Eq. (38). Therefore ..... 

B(z) 

which agrees with Eq. (18) • .... 
. The boundary condition n(z = 0) = 0, that::.led to Eq. (18) 

when'the moment equations were used follows from the assumption of 

specular reflection. 

Thus our expression (27) for B(z) contains the boundary conditions 

for all moments since it includes the assumptions: 1. specular reflection 

at the boundary; 2. -no spatially growing solutions. 

If one solved the problemusingeqtiations for the moments ... 
... -.... ..Il 
u, P, Q,,···M , one would find 2n solutions to thet~quat1on 
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k2 _ ~ n2 (k) 
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O. Condition:": (2) would remove n solutions and 

condition (1), along with the requirement B(z = 0) = ~ would _'_'. 

. determine the n coefficlents of the remaining solutions. The 

result would be identical to that obtained by using expression (27) with 

Gi replaced by the first n terms of the expansion (37a). 

The moment equations, then, may be incorrect for two reasons: 

First, B12, the branch cut contribution which is unobtainable from 

the moment equations may be significant. Second, the expansion (37a) 

diverges for any finite ii'" According to the theory of asymptotic ex-· 
, 22 

pansions, the best numerical approximation to Gi is obtained by the use 

of a finite number of terms of the expansion. The error is of the 

order of magnitude of· the last term used. Therefore, the number of moments 

that should be retained for a quantitatively accurate result depends on the 

magnitude of 

ro - roic + i v. 
Pi ~ = ~~ 

""""i 

which is not known until the problem is solved, that is, k(l)) is 

found. The retention of too many moments leads to inaccurate results. 

E. Solution 

w~ shall solve the problem without expanding the function, Gi • 

'-



r 
i 

i 
I 

This necessitates a numerical solution for the wave fields in the·· 

following sense. The full solution is 

where Bl and B2 arise from singul~ities and B1.2 is the branch 

cut contribution. With the function, Gi ' programmed for a computer, it 

is possible to use the computer to point out the position of the steepest 

descent contour and the existence and positions of singularities. The 

computer is then used to eyaluate the residue of the integrand at the 

singularities and the value of B12 • We are then able to find the 

relative importance of the branch cut and the various singularities. 

With the electron thermal effects ignored and ustng the function 

where 

x(y) = «(0..0)1 ) (IDKO )+i Vl C1>f.iY rVi (IDKO ) -mi vl((J.)f(l)ec - ime
V
. i)'] 

c ec ,[ ec e' mi 
(40) 

\ . . , 

I 
I 
! 
\ 

I 
! 
! 
I ., 
I 
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" . (. 

and 

= -"(41) 

The "i" subscript' on k has been dropped. We use r+ in region 
s 

1 and Y- in region 2 when looking for zeros of the function 

. which correspond to the singularities of the integrand of Eq. (27) • 

Since the boundary between regions 1 and 2 is the steepest descent 

contoUr, the contour's position ~n the-k plane must be ~own in relation 

to the singularities. A singularity of the function 

\ 

k e ikz 

makes no contribution to the- solution if it occurs to the left of the 

contour in the k plane. Similarly, a singularity of the function 



.. -' ....... 

makes no contribution to the solution if it occurs to the right of the 

contour. A preliminary approximation to the contour path is obtained by 

ignoring the effect of the relative~y slowly varying g(k) in Eq. (31). 

The contour is then defined by 

where 

-t: - 2 

f(k) ikz 
Olie + i vi ) 

= k a i 

and 

r~ k = 
[21 «(J) - (J)~e + i v

i
)2 

s \ z a i 

Hence 

z = 



and 

Let 

and 

f(k) = 

(~ro. +iV
i

) = A eia 
~c 

k = i8 
pe 

The contour is then defined by 
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Vi\2( 2k 1) 
). k 3 +:k2 

s 

sin(2a - 28) 
2' 

P 

+ 2p sin(2a +.8 .. 
p 3 

s 

39 ) s 
= 3

2 
sin(2a - 29

s
) 

ps 

where 

k;;: 
s 

Now 

p e 
s 

i9 
s 



'- so we have 

sin 2(0: - e) 
2 

p 
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+ 2p sin(e _ ~) ., 2 
ps· 

As p goes to zero, the first term dominates. To keep'it finite we must 

have e· approach 0:.. As p becomes infinite, the second term dominates. 
. 1t 

To keep it finite we must have e approach 2' In the limit of infinite 

p, p cos e , the real part ,of k, remains finite. We have , 

P cos e -_ -' p sin (! _ 20:) 'p in (1t e) 
2s ,,=2s s 2"-s 

or 

p cos e = L P':; cos e . 
2 s' s 

The contour has an asymptote at k = ~ Re ks ' •.. An' example of the con~our was 

sketched in Fig. 7. 

Using·the computer, the funct+on g{k) is included in the deter­

mination of k and the contour. It is found that· g(k) has no effect s 

on the angular limits. That is 

i 
J 

" 
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Lim e = 0: 

p-t{) 

and I 

Lim e 1r 
= 2" 

p-+oo 

However, the asymptote and the contour are affected by g(k) • We define 

z = near . -ill - illic + i vi 

At this value of z, we find that the contour path and asymptote 

are radically changed by the addition of g(k) when the path passes close to 

a singularity_ This is precisely the situation for which the path must 

be accurate and hence g(k) must be retained. As z increases, the re-

lative effect of g(k) decreases. 

For z < z , the steepest descent approximation becomes near 

inaccurate. z is then the smallest distance from the boundary for near 

which the steepest descent contour and the value of B12 are known to 

a reasonable degree of accuracy (about 10%) • 

F. ResUlts 

For the parameters 



r 
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1014 -3 • cm 
4 -

BO ~ 1.09 ·10 gauss 

and 

previously used, the results are very nearly identical to those 

obtained from the truncated moment eQuations. We find only two 

singularities, whose trajectorie's follow those outlined in Figs. 3 and 4. 

Defining 

Bl ~ al~ e 
i~z 

B2. a2Bb 

i~z 
~ e 

and 

we find that the coefficients, a1 and a2 , agree to 1% with those 

found from EQ. (18). The sum, a1 + a2, is unity to a good approximation. 

This means that B12 is negligible at z - = 0 since 

reQuires 

-a-a .' 1 2 (42) 

At z , a
12 

~ 10 -20 ; z is quite small. Its -
near near 

/ 
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maximum value is about 3 cm at (l) = (l)ic Thus B12 is completely 

negligible and the truncated moment equations (electron viscosity and ion 

heat flow neglected ) previously used are adeq~te for these low 

temperature s • 

The next case we consider is 

where we found the criterion for validity of the truncated moment equations 

to be violated. At this temperature we still find two singularities, 

k1 and ~. However, their trajectories, which appear in Fig. 8, show 

that their magnitudes are smaller than in the lower temperature case of 

Fig. 4. A third singularity, labeled ~, also appears when n > 1.1. 

Its trajectory is shown in Fig. 8 for 1.1 ~ n ~ 1.2. The trajectory 

is not carried to higher n because this singularity does not contribute 

to the solution. ~ is a singularity of the function 

keikz 

and it occurs to the left of the steepest descent contours for 

I 

z near 

and = 2z ,which are sketched in Fig. 8 for n = 1.2. near 

Only singularities of this function which lie to the right of the contour 

'. 
- " i' 

I 

I 
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MU-34062 

Fig. 8. Trajectories of k1 and k2 and sample branch cuts. 
T = 10 5 oK o • 
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contribute to B(z) • Notice that the contour approaches the imaginary axis 

with increasing z At some 

will be on the other side of 

z » zfar' the steepest descent contour 

at n = 1.2. Then ~ will be p:trt 

of the complete solution. However, at this distance (~10 meters) the 

contribution of this singularity to the solution is infinitesimal since 

its damping length is 1 em. 

We therefore have only two distinct waves from the singularities 

with exponential spatial dependence The branch cut contribution,' 

B12 ' which was negligible at lower temperatures, is new on the threshold 

of importance. al and a2 : .. are plotted in Fig. 8 along with a12 ( 0) • 

The maximum value of a12 (O) occurs near resonance where a12 (0) ~ 0.2. 

Thus B(z) may still be approximated by the two exponential solutions. 

However, the moment equations incorrectly describe these solutions. They 

must be obtained by the kinetic treatment. 

The final case we consider is 

This case is representative of the low collision frequency regime where 

B12 is significant. We again find two singularities. Their trajectories 

are plotted in Fig. 9. A check of the results using a collis'ionless 

theorY shows essentially the same results for ~,~, a~a2 and therefore 

a12 (z = 0). At TO = 5 • 105°K , we have 

.. ' .. ! 
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MU-34063 

Fig. 9. Trajectories of k1 and k 2. To = 5 X 1050 K. 
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~ 5-1 vi. 7.7· 10 sec «(j)ic 

Thus collisions are negligible when (j) I (j)ic • At'resonance the function; 

Gi in the index of refraction has the argument 

" 

Since l1mi l '1. 7 • 107 sec -1 for both kl and ~ = near resonance 

we have Ifil = 0.045 « 1 • Now for small~, 

The leading term is independent of Vi. So if Vi « (j)ic ' 

or if vi « lai ~esonance I , the dielectric c~~stant; Eq,. (36), 

may be replaced by the simpler result obtained in a collisionless theory, 

2 



r 
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with very little change in the solution Bl and B2 • The criterion 

for neglecting collisions at resonance is . 

Vi 
k a, 
. ~ 

« 1. 

We now obtain the value of kat resonance. 'Replacing G by 

the first term of the small! expansion we have 

2 
n 

Ignoring (J.)ic 

since 

2 (J.) 

= 

~ = (J.) 
ec 

= 

« 

1 

(J.) 
ec 

, 
\ 2 

+ i y;- apl (J.)pe 
- (J.)ic k a i - "(J.)i ((J.), + (J.) ) c ~c ec 

in the third term we have 

Since (J.)pi » roic ' the fi~st term is negligible compared to the 

.' 
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third. The third term is not negligible compared to the second. It is 

about half the magnitude of the second termjn .this case. This indicates 

that the contribution of the electron current to the dielectric constant 

which produces this term should be kept even at ion cyclotron resonance. 

For the purpose of obtaining an order of magnitude approximation to k, 

we ignore it here and obtain 

= 

so 

i. 

o~ criterion is then 

3 

= « I (44) 

for ignoring "collisions in obtaining BI and B2 • 

This criterion is of no use for" B12 • The branch cut contribution 

is heaviJ.jy dependent on collisions. . Near resonance 'we have 
I 
! 
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z = 
near vi 

and 

= 

Therefore 

at resonance. We then have 0i (!Ii) replaced by its asymptotic value ;for 

large argument to obtain 

+ -1 G - ~ 
i . i vi 

In contrast to the case of the singularities where I~\ «1 k a
i 

and Gi is independent of vi' we· have Ik:~J > 1 and Gi is now 

dependent on Vi' 

Thus at higher temperatures, wh:erethe criterion (44). is satis-



r 
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fied, the collisions must still be kept for the investigation ()f the 

branch cut contribution when this contribution is evaluated by the method 

of steepest descent. 

For this low collision regime, the significance of the branch cut 

is further illustrated by, the following occurrence. Referring to 

Fig. 9, we see that the trajectory of ~ now remains near the imaginary 

axis throughout the frequency range of interest. 

When ro < roo , the branch cut is in the upper left quarter plane 
~c 

for all z and k8 is on another sheet,_ :', k2' '; therefore makes no 

contribution to the solution. When ro > roo ,the branch cut is in the 
~c 

upper right quarter plane for all z and ~ contributes to the solution. 

Of course, the total solution varies continuously through this apparently 

discontinuous change in the results. Since B12 is evaluated at z near' 

a distance at which the contribution of ~ to the solution is less than 

-38 10 for ill ~ roi~t~e presence or absence of ~ is imperceptible. 

At' z = o , the presence or absence of ~ is important since it has 

a coefficient, a2 
~ 0.7 for ro ~ roic . Since al 

~ 0.65 for 

ro ~ 

roic ' by Eq. (42 ) we must have a12 (0) = 0.35 for ro < ro
ic 

and a12 (0) = - 0·35 for (1) > roo 
~c 

This illustrates the futility 

of attempting to attribute independence to each of the three terms Bl , 

B2 and B12 • The existence of Bl and B2 as solutions and the 

value of B12 are wholly dependent on the choice of the position of the 

branch cut in the k plane. 

is signif~cant near resonance in t~ low collision 
\ 

'. 

• 

.. 



r 

-99-·", 

frequency regime. HoweverJ the steepest descent approximation we have 

used does not give us the form of B12 at small z. z is of the order near 

of meters for 

are less than 

and ill ~ ill. 
~c 

-38 
10 ~. and B12 ~ 

At this distance 

10-16 ~ The 

steepest descent approximation determines B 12 accurately only where 

it is small. This result has been useful at low temperatures 

(To ~ 105 OK) where it demonstrated that B12 could be neglected, 

A~ these higher temperatures hcweverJit will 

be necessary to abandon the steepest descent approximation near resonance 

:in order to study the behavior ofB12 at reasonable distances from the 

boundary. A numerical integration of the complex integral in Eq.(30a) 

would have to be performed. We have not attempted this numerical analysis. 

In this low. collision regime where Vi « illic ? the effects of collisions 

may not be adequately represented by the Liboff collision model we have 

used. The reasons for this are given in the concluding section. 

1 
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IV. SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

We have shown that collisional effects on the ion cyclotron 

wave allow the wave to be described in terms of a cold plasma theovy 

(that is} via the moment equations with zero pressure tensor) when-' 

the criterion 

. 00 
E = 

is satisfied. The dimensions are: 

o 
Kelvin 

cm-3 

-- -- -_._ .. -
BO ' gauss. 

< 1, 

i 

The thermal effects may be included solely through the components 

of the ion pressure tensor that lead to viscosity'· if the resultant waves 

have 

lk ail 
v < 1 

i 

at;t"esonance~ . A.coarse and pessimistic criterion for 

< 1 

is 

. ' 
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Ik ail 2(.0. 2 102 B T il/2 (.0 TO 
0 ~c ;e o 0 

~ 1 ~ EO = ~ 

vi ·2 2 2 (tn A)3 
. 

"" vl v. c m. nO -.~. 

~ ~ 

If 
o 

EO ~ 1, the resultant waves might still have 

< 1 . 

If, on the other hand, the resultant waves have 

~ 1, 
,.; 

the moment e~uation approach must be abandoned. We have shown that under 

these conditions, the use of even higher moments than the pressure tensor 

is of no help. We proved that the addition of each higher moment is e~ui-

valent to keeping another term in an asymptotic expansion of the plasma 

dispersion function. Since the asymptotic expansion is invalid for 

we know that the moment expansion will be incorrect when 

~ 1 . 

., 

, , 



. Using the kinetic approach we showed that the solution of a boundary 

value problem for the waves contains a new term which can be important near 

resonance at low collision fre~uencies. This term has the exponential 

dependence 

r ~. -. ! 
expl-3 

I 
'-

(.l) + i v )2/3J .. 
ic i 2/3 

2i a
i 

. Z 

at large 
17 ... . 

z, which led Shafranov,., ,; who discovered a similar term using 

a collisionless theory for·the electron cyclotron wave, to call it the 

dominant term nearresonance . We have shown that this term is neither 

dominant nor negligible near resonance for low collision fre~uencies and 

that its value is negligibly small and strongly dependent on collisions 

at lar~e z, where the 

dependence is valid. 

According to our kinetic model, collisions have no effect on waves 

ikz . I I with dependence e near resonance if vi «. k ai Us'ing the 

·collisionless theory to estimate k .at resonance we find the criterion for 

.; 
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neglecting collisions to be 

« 1 .. 

Fig. 10 00 is a logarithmic plot of the lines . € =1, '0 
€ = 1, 

, 
€ = 1 as a function of density and temperature for the case 

! 

The four cases we have treated are marked by circles. 
00 

and 
'. 4 

BO=lO gauss. 

The region below the line' € = 1 consists of the values of 

no and TO for which the thermal effects may be ~gnored. Between 

this line and the line 
o 

€ = 1, the thermal effects may be introduced 

by ion viscosity alone. Thus below 
o 

€ = 1, the moment equation approach with 

heat flow neglected is valid. Above the line 
o 

€ = 1, the kinetic treat-

ment must be used. Above the line €t = 1, the collisions have no effect 

on the waves with ikz 
e dependence according to the collisional mode'l we 

'. 

use. In this region, the new term becomes important but is inadequately 

described without numerical analysis. 

Further work will be necessary for the region above the line 

€t = 1. This region where numerical analysis will be necessary is also 

the region where the relaxation collision model of Libof~13 which we have 

used, may be insufficient for the description of collisional effects.' 

J. P. Dougherty23 has recently introduced a model Fokker-Planck equation 

for the collisions of a single species of particle •. His model, though 



-
~ 
o 

o 
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MU·34064 

Fig. 10. Regions of validity for ITlethods of solution. 

I~ 
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simplertnan the i~tegro-differential Fokker-P1anck
8,9 equation previously 

mentioned, still'requires numerical analysis. He shows that if 

« his model predicts,larger effects of ion-ion collisions 

when applied, to ionospheric radar scattering than does a simpler model of 

the form we use. When ~ (Oi' , /'-' c both models give similar results. 

\ 
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APPENDICES 

Appendix Ie Steepest Descent Method 

Given the contour integral 

I = f dke~(k) 
c 

where the integrand vanishes at the end points of the contour, we first 

find a saddle point, k , of the function defined by s . 

df), dk 
k=k s 

= o 

We then expand the function in a Taylor series about the 

saddle point. 

I = 
f(k ) 

e s 
fnt (k ) 

(k _ k )2 +. s (k 
s 3.! 

c 

We deform the contour,· c, to lie along the: line of steepest descent through 

the saddle point •. If the function is analytic along this line, the line 

I 
I. 
I 

i 
! 
! 
I 

I 
I 
I 
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is defined by the equation 

1m f(k) = 1m f(k ) s 

The Cauchy-Riemann equations for an analytic function show 

that the gradient of the real part of f(k) lies along this line. 

Thus Re f(k) rises from a negative large value at the start of the 

contour to a maximum value at' k = k and then drops to a negative 
s 

large value at the end of the contour. Let 

2 cr 

Then 

= 

1 = 

2 r 'u 
(k ) 

(k - k) + 3' s s . 

f(k ) . 
e s f 

2 -cr 
e 

dk dcr' dcr • 

The series expression for 
2 cr 

. dk 
can be inverted to obtain dcr' 

The result is useful when the first term is dominant. The validity cri-

terion then is \ ' 

r , 
'1., 

I 

l' . 
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f~n (k ) 
s "« 1 . 

Neglecting fttf(k ) and higher terms, we find dk independent s dcr 

of cr and the final result is 

f(k ) s 
I = e 

dk" 
dcr f 

2 
-cr edcr 

where the limits of integration have been extended to plus and minus in-

finity which is consistent with the approximation. 
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APPENDIX II 

The Moment Equation Approach 

We ,obtain an expression for the dielectric constant using the 

moment equations for the case of the left-handed circularly polarized wave./ 

Since the left-handed circularly polarized wave gives rise to'a 

perturbed distribution of the form 

, 

the general moment" ~jk .•• ~ , will have all components zero except 

those with one x or y subscript and the rest z<. t Since the moments 

are;;symmetric we may consider simply MP ' and NP • These 
zz···zx zz···zy 

two are not independent since MP = i MP .t Thus the in-zz···zx zz···zy 
~ 

formation is contained in Mn '" "'y, )ei(kz-at) = M (x - i n, 

moment is then " 
.: ~ 

-
= 

, , 

"'A ~""'; """ ~ '" 
ZZ···ZlVl + zz···M z 

n n 
+ ••• ... """ + M zz n 

. . . 

The full 

'" z • 

The subscript "n" on Mn denotes the rank of the moment. Using the 

Hermite polynomials we have the general moment equation for n ~ 3, 

Eq. (llc) , 

t 
This is a result of the ¢' dependence of 

l' 
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[ 
d '" j~:1:~ J d [f~+J~. ""'"t + V. -1<.0. z~ + "'\:" ~. 
OT. ~ ~c .. oz 

. .. ZZ, ••• (x-iy) zzz ••. (x-iy) 

-;> 

, + = 0 

which yields 

. d-+ 
(n- 1) dZMn_l = 

or 

k T (n,·- 1) 
= k M + 0 M. 

n+l mi n-l 

Ignoring the moment, Ms+l ' we, have 

or 

k r·(s - 1) 
Ms =0 M . 

mi (GO-(I)ic +i v i) s-l' 

M = s-l 

kMs k To(s - 2) M' 

(GO - GOic + i Vi) + mi (GO - GOic + i v 1 ) .. 8-2 

., 
\ 

o 

, , 
l 

l 



"-- M 
s-l 

then 

or 

M s-2 

M s-2 

= 

and finally 

k TO 
M m. (W-(l). +iV

i
) s-2 

l lC 

k
2 

T (s - 1) 
1 -

0 
2 

m. (W-(l). +iV
i

) 
l lC 

, i 

\ 
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k TO(S - 2) 
M 

m. (W - wi + i V.) 
l C l 

= (8 - II 1 -
21i

2 

k To(s- 3) 

+ m(w-(l). +iV.) Ms - 3 
lC l 

k TO(s - 3) 

m(w - w. + i v.) Ms - 3 
lC l 

S - 2 
I 

"I 
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m. (W-(J.)i +iv.) 
~ c ~ 

= ---::-----
1 _ 3 

2}.2 
~ 

1 5 
-~ 

1 - . 

, 

\ 

All the moments are retained in the limit of infinite s. 

We replace the continued fraction by the quantity a. That is 

where 

1 , a = 

i\ 

1 
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Now .~ We thus have an e~uation for = :rr 
z-

E~uation (13) is then 

r 
m. 

. ~e m. -(1). +~-- v
1 ~ ~c m. 

~ 

If we define 

G = (ro 
- f3 

- (..0. 
~c 

+ i Vi) 

where 

1 
k2 T 

1 -
0 

= f3 mi(ro.-- roic + i Vi)2~ 

that is 

1 

1 _ 2 

2~2 

, <X) - --:2 -
Ii 

in terms of rc z-

= ieE 
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we'have 

r_ mGi ' - iv..m.+ivlm. J u. -im. vI U· = ie E 
[ . 1 1 1e 1- 1e· e-

The electron equation 

~imi' vI ui _ + m (m + ro ) u = -1 e E e e ec e-

then completes the problem ~o yield 

., 
" 

1 + ro. ec [ro (1 + i vi G) J 
(l+iv.G)((J)-f-(J) )-ivlm. Q.. (ro + ro ) - -----1 ec 1e mi ec me 

which agrees with Eq. (36) if G = Gi 

The question of the equality of G and Gi is a proble~ of the 

theory of continued fractions. The point here is that the approximate 

evaluation of the continued fraction by truncation' of the series of 

moment equations can be related to the asymptotic expansion of the function 

Neglecting the moment Ms+2 ' stops the continued fraction at the 
i. 

I 



term, 

1 _ s 
,i'·2 • 

21:,' 
~ 

We then have 

1 = 
1 1 
-~ 

1 _ 2 

21.2, 
~ 

Using the expansion, 

1 
1 - x 

we obtain by induction, 

-114- ." 

I' 

" 

. I 
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1 

or higher are kept since the coefficient of these terms would be incorrect 

without the inclusion of the higher moments. The asymptotic expansion 

of Gi is21 

± iV; ± -/i
2 

:1 r· 1 3 (2s-1)(2s-3)"'3'1 
G .-v - 'Y e - 11 + ---r. + ••• +/.-;;.;;;.....;;.;;.-'--~;.....:::~--.....::.....;.;. + •• ',J i - kai «(J.)-(J). +iVi ) 2rt 2 4 .;[ ..T Lf .. 2 s 

J.c 1'i ~i (2~ ) 

where 

+ 
2, 'Y = 'Y = ·0 for Im!i < 0 

+ 
1, -1 for . Im!i 0 'Y = 'Y = = 

+ 
0, ... 2 for Im!i ,> 0 'Y = 'Y = 

The series terms agree with the exPansion of ~ The first term . 

on the right-hand side of the expansion is non-zero if Gi is analytically 

continued across the real axis in the t plane. If we cut the k plane 

at arg k = arg«(J.) - (J.)ic + iVi ), G
i 

is not continued past the real axis 

and this term vanishes. Then 

-1 
Gi ":::! e(J.) - (J.) + i v ) 

ic i 
~ .' . 

00 
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