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THE EFFECT OF COLLISIONS ON ION CYCLOTRON WAVES .
David Larry Sachs |
Lawrence Radiation Laboratory

University of California e
Berkeley, California ‘ { S

May 1, 1964
ABSTRACT

>The_behavior_of a transversé electiomagnetic wave propagating :
'in the direction of a uniform magnetic field in.a fully ionized piasma

is examined. Linearized kinetic equations with collision terms of the -
Krook-Bhatnager-Gross type extended by Liboff to include ihterspecies
collisional effects are used in the éolution of'g spatial boundary velue : -
problem. The region of ion cyclotron resonance is closely investigated,
and the transition of the dispersion relation from the low-temperature,

. collision-dominated regime to the high-temperature regime is observed.

It is found that moments of the equations are adeqpate'in the collision-
dominated regime, but the kinetic equation for the ions mus% be used at
higher temperatures. At these higher temperatures a éomplete solution of the |
problem requires numerical work near the source plane. Far from the

source, explicit solutions for the fields can be written.



-I. INTRODUCTION .

This péper is concerned with the propagatioﬁ of plane
' transverse electromagnetic waves in plasma'immefsedfinfa unif5r9  
magnetic field. ' The term transverse signifies tﬁat the vector_ _.
- quantities associated with the wave afe per?endicular to the
_.direction éf propegation of the wave. The term plane sig;.
nifies that the perturbed quantities associated with the wave
are uniform in the plane perpendicular to the direction of- pro-
with the wave vanishes.

In order to determine the characteristics of these

weves in a plasma, one must have the constitutive relation

-

J.(E) , where _‘3 is the average current density produced

in the plasma and E 1s the average electric field in the plasma;v‘

-

over dimensions of space and time small éompared to the macfdscopic.

dimensions of the system such as the length and period of the wave =

and large compared to the‘microécopic dimensions of the system,

| "such as the interparticle spacing. The problem is then determined

by the four Maxwell equations:

. pagation. Thus the divergence of all vector quantities associated -

7 and ‘ﬁ are functions of position and time which are averages




- - b >, 1
X = s -— L4
VX B . J(E)‘“cB'E’
b d vt
- = 1 OB
VX E = -
- ->
V*E = 0
- ->
vV*B = 03

along with appropriate boundary conditions. Under the assumption that.

vthe macroscopic properties of the unperturbed plasma are uniform in space - -

and constant in time, Fourier analysis of the wave field reduces the
problem to the examinstion of waves with the simple spatial-temporal
dependence, ei(kz-wt)

In addition, as:the folloning sections will show, there aie waves

which do not have the simple dependence shown above., These waves are

quantitatively unimportant except in 'specilsal circumstances which will be

. exp&ained in the later sections,_ They arise when the perturbation of the

Plasma results from a disturbance at a boundary.
Ignoring these. new waves for the time being, a linear theory suit-
able for small amplitude waves IﬂaCes the constitutive relation into
-> > -> .
the simple form J = “G(w,k) -E where the conductivity tensor, ‘¥,

is dependent on the frequency and wave-number as well as the macroscopic

properties of the unperturbed plasma.

If’one places the direction of a uniform externally produced



vector'of‘the form J = J = (a + 10, R + 1 )e

. . l’3- I . . .
magnetic field along the z -axis. of a right-handed coordinate gystem o
and considers a transverse plane wave propagating in the z -direction;,:'

the conductivity tensor assumes the_form:

o g 0
xxX Xy
- .
0 =| 0 o 0
yx R4
0 0] o
22
where Oy = o&y = oi
and ‘g = -0 = d. 4
xy yx 2
Oy = o&z -0 which shows that there is no coupling between

~ transverse and longitudinal waves.' 0. will not be of importance for -

‘these transverse plane waves. ‘ ' :

The off-diagonal elements vhich' result from the presence of |
the external magnetic fleld give. rise to a Faraday effect, a difference
in the phase velocity of right and left-handed circularly polerized
waves. |

A right-handed circularly polarized wave has an electric -
i(kz-wt)

A

_vector of the form B, = ®+1§) e . Operation with the

: conductivity tensor shows this field to give rise to a current density fﬁ;*:.,(:»

= 1(kz-wt) _ =
. _

3

A
L
i

H




. .
The vectors rotate in the seme sense in which the electrons
of the plasma gyrate about the uniform magnetic field.-

The electric: vector of the left-handed wave has the form
i(kz=wt)

-~

E_  = (R -1%) e
These vectors rotate in the sense in which the'positive ions gyrate.
' The problem is thus reduced to the determination of o, andv
. .N o; . With these known, the Maxwell equations furnish separate dis-
vpersion relations for E+ and E_ . One obtains the wave equation,
[k? - w?/cz).-vhaﬂbo+/c21:§t = O which leads to fhe dispersion

~ relation, o L

X, =. (we/ca) + Uy 1w a.,./02 .

3

which gives rise to J_ = (o; -ia B =0 E s

: : -‘:2?'.1 ol 2 )
This relation is often put in the form ki = =5 B¢ (w, k) -

where ny- =\/& + &Eé o&(ab k+) is the dielectric constant.

The left-handed wave is of interest to the controlled'fusion
programs. At frequencies close to ‘the ion cyclotron frequenc&, this
wave becomes demped and gives its energy to rahdom motion of the

1,2,3

plasma, 1l.e. heats it. Stix has investigated this wave in

high temperature plasma where collisions are infrequent; Engelhardt,

in low temperature plasma where the thermal effects such as viscosity
are unimportant.
This paper will compare various methods of obtaining

;Rdb k) and will discuss their merits and shortcomings., Finally.
: . k

4
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| 5- | |
a completé béundéry velue problem will bé dohe'ﬁsiﬁg é kiﬁeticﬁ'; >“
equation with phenomenological_relaxétion'terﬁs; Cfiteria are
determined for the adequacy of simpler methods. . |

The result of this study will be a continuous dbsefvation".

. of the properties of the waves from low température where collisions

are important and thermal effects unimportaht through intermediate

temperatures where the thermal properties of the plasma become.
important to high temperature where collisions are infrequent -and

thermal effects are responsible for the damping of the wave. This

thermal damping (called qyclotron damping by Stix?) 1s analogous to‘"-v

the Landau damping which occurs for longitudinal waves.

e T . .
Nt o ! . -
- S .




for a particle of the plasma, .

ba
II. COLLISIONLESS COLD PLASMA |
The earliest work5 in the determina‘cic_;n of l't; negiecﬁed two
iﬁp§rtant considerations. These are the correlations of the éartiéies
of the élasma with one another (commonly called collisions), and B
the effects of the thermal motionlof the particles. | |

Neglecting the thermal motion of the particles, the

, éonduct;vity is independent of k . That is, the current density

at a point X 1is a function of the electric field at the pOihp

X salone for a linesr theory. If collisions are also neglecte@; the -

- equation of motion of théaplasma is the same as fhe equation of motion'

i

T -
where BO

the type of particle.

1s the uniform magnetic field and the sﬁbséript J denotes

Jetting.. J = 41 for ions and éi»e for-electrohs; we

have = . o
/
- - - ’ —_ -
J = qn v, ta n v, = eno(vi - V)

e

since q = -q; = -e (assuming singly charged ions) and
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oy = nei = n, '(aséuming‘ the unperturbed plasma to 'be neutral). 1
Astro ° solves these equetions to obtain
' . 2
2 k+2 c2 b wp .
n 4+ = = = l - s - - o C
3 o2 | (ot wic)(t,p '*wec)'v o
: 2 2(1 .1 o .
_ where % = bxne—+ =], the sum of the squares of the -
: | i 0 mi me‘ . S
particle plasma frequencies; '
| . eBO . e . o o
'wic = rEIE ) ) the ion gy'rq frequency;
eBg | .l o
wec = V2 ,_ the e ectro\n gyro frequenc.:_yf

e
\

 Figure 1 is a sketch of the form of ki_(u)) ‘for the two

polarizations. At extremely low w(w << wié) both k and k

‘are given by k = wofv. vwhere v o= 2P / (Ke + '62) and

2 2 ‘

c W o : B )

2 le ec 0 .

A- = = » the square of the Alfven +

_ w:2 T bx no(mi + me) ‘ . |

s T | - .

speed. At extremely high o{w >> N wec) both k  and k_
are given by k = /e, that is, the effects of thé plasms are

negligible. The intermediate ® behavior shows a resonance for ‘

k_ at mic and a cutoff at asl and. e resonance for k+ at »wec

with a cutoff at a;a where

o Y e so 2 24 (.
% = 3 ,\/(wic )T hwp t (e, -
R |

s SN gy er—————_ ¢ T . -

s
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Fig. 1. Dispersion relation for transverse waves in cold
collisionless plasma.
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Between w, = and ; k_.‘ié pure imaginary)'décreésing in magnitude

ic 1
from infinity at ®; to zero at @) .« Similar behévior results
for X, between wec. and @, . Rather than continue the repetitious

remarks about k+, we will henceforth concentrate on -k_, the ion

cyclotron wave.
The behavior at and near the resohanée frequency, <bi€ .
determined by the above model is never.correct. The model shows

e k to be purely real for o < (Dic ~and approéching infinity as

'w - W | signifying an'undamped wéve whose length approaches Zero.

ic

The behavior for ® > w signifies an evanescent disturbance

i

" whose penetrstionlengﬁh increases from zero at w0 to infinity at -

w = . (An evanescent disturbance does not propagate energy. Thus

®1
.a pure imeginary k signifies perfect reflectance of the med ium)
The actual behavior of ,k. in the rescnance r;gion differs i

 greatly from that described abdve because at least §ﬁe of the two .>
‘neglected<eff¢cts becomes importent. For any temperature of the
plasma, the collisional effeéts will be 1mportant at ﬁigh densities .
while the thermal effects will.bé important at .low densitles where ' -
collisions are negligible. | | ‘

. In either case, the results show k. ﬁo.bg‘finite and-comblex '(
in the resonance region, siénifying a wave that is highly,damred for |
a stable plasma. .

Thé next step them is to incorporate the‘theémal ahd col~

-~ 1lisional effects into the plasma model. This may be done using
' p A -
i

i
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équations governing moments of’ the appropriate kinetic equatiéh.' ;‘
A more difficult but more genéral method is to use the 'kiﬁe"tic..-. equation

itself. Both methods will be uséd and the results compared.




~10-
_ III. COLLISIONAL AND THERMAL EFFECTS | .

A. The Kinetic Equation

A kinetic equation is of the form

where '.':fj'(-;, ;, +) > ‘the distribution function of a class of particles,

corresponds to the number of particles at position ’; with velocity

? _v at time +t per'unit volume of phase space, 4 x a v . The left

side of the eqpation represents the conservation of particles in

phase space. The term 5j> corresponds to the change in £ per
éoll

~unit time caused by particle interactions which cannot be accounted

for by the force term on the left side, 7 » which is assumed constant
' |-y ->
over the volume d x d v .

This term represents the collisional effects. When this
term has the particular form derived by Boltzmann, the equation 1s
correctly called the Boltzmann equation. If the form of this term
is unspecified, the equation is in general, called a kinetic equation.

The thermal effects are represented by the term on the left side, ‘-

v .Y £ which corresponds to the change in f per unit time due

to the streaming of particles of velocity ,3 from neighboring regions

of configuration space into the volume 4 x .



i ."::'The density; :

'"h[;fADefihing_the faﬁdo@ véloeity"; |

,ﬁyxf:and so on.v Equationsfor these macroscopic qpantities‘are dbtained;y

nf“;'by taking appropriate moments of the kinetic eqpation. Since we are
. form of the kinetic equation,

L : for t.he unperturbed. pa.rticles of type J is:

| f,ﬁ n(x; t) ivlj'dfsz(i,iz;e§)7;;[i‘

the velocity, e T

fdv v f(x, 3, tl
: n(xJ t)

";~'¥ 73.,e3(§;:p)1ke'~”'

= - the 'pres'Surej'bmsorv'is givexi 'by |

”finterested in a linear treatment, we may immediately simplify the

'Iet fj_.; ;fjo +vf31 where the Maxwell distribution functionj




with a j = \/i——o » the most probable speed of particle J

. where TO‘ is ~ the temperature of the unperturbed plesma in ‘_:

energy units. The linearized kinetic equation is then

' ' | of
<&-+V-V+ch.v><z~§7_;‘ fj +m'j E-vaj = %t
. ‘ SR - “coll.

L @)

Q/
cHB
+
]
o
<
B
1
\.\..
[ =TI
<d -
3’] ¥
8\/
2
=
1l
(@}

o | ng My #&- £V . ‘1;3’ + O 'z‘xnO m,
. a . afJ _ -
qJnOE+[dvav,-a-{:— H | _(2)

;41 +<7’ . :’j‘+ PO[$ . GJ‘I-;+§7’EJ +(3 EJ)T]



and so on where’ Fb = nT.. and (A)T.-signifies.the transpbsevdf the . f

070"

matrix A; I 1is the unit temsor. In Eqw (3); it was sufficlent
to use the term, —v?, rather than ;r»w-) to determine the perturbed. -
moment, B.

Disregarding the collision terms for the moment) wé:see

- that Eq. (2) 1is of primery interest for obtaining J (ﬁ) since

I = ny, Z 9y Ej . However, the thermal effect term, v.. Y,

of the kingtic equation has coupled the next higher moment into

the equation of interest through the term, v -'iz . ‘
Upon contémplating_Eq. (3) for E% it is found that the

thermal efféct term has again coupled the next higher moment into tﬁe
eqpation through the term v “aj and so on. Thus,vthe'system of
‘moment equations is not closed. | |

“In order to close the set, the thefmal effect term must be
smaller than the other terms in the kinetlc equation. If this is not.
true, then the moment equations are of no value since the set cannot.
.‘be closed. Let us assume that the thermal term is small and close the
" set by ignoring the term © ‘%' in Eq (2). That is, ve neglect the
thermal effects entirely. Now Eq. (2) will be sufficient for the.
determination of J (E) when the collision term is given. As for
Eq. (1), the right-hand side is zero because the mumber density 6f
particles.is conserved bylcoilisions;Since we are interested in trans--

-

verse plane waves, V - Gﬁ = 0 . Thus Eq. (1) simply tells us that

the dénsity of particles is unperturbed by the wave.




C=lhe |
The determination of the form of the collision term of
the kinetic.: equation is a major and still :-'ihéomple‘tﬁé problem of
plasma physics. This will be discussed more fully later on in this
| section.. o |

At this ~point, howevér, we are concerned with the ternm,

Bf

-
dvm v 'b

of Eq. (2) This is the total momentum transferred to particles of
type J per. unit volume per unit time by collisions with other
'_pa.rticles. Spi'bzer6 states that a reasonable assump‘l:iop here is_ that
the net momentum exchanged by coliisions between two tyfpes of partié;es
should be proportional to their relative flow velo_citj. The above
moﬁentum transfer term is thus replaced by ng m l(u - Tie) for
the case of momentum transfer to electrons by lons where m ié the
reduced mass. Numerical work by Spitzer using the }Boltzmav‘nn equation

leads to the following estimate for the momentum transfe;:' collision

freq_uency:6
Y - 3.7 nor In A sec'l :
R 0, 3/2
» _ 0 _ Ch
1.k . 10t T03/2 . o (3a)

where DA = .

,I v ‘\/no /
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0
is degrees Kelvin. This number is obtained from Spitzer's value

The dimension of n, is cm™ eand the dimension of T,

for the plasma resistivity, n , by comparing his definition of by to

our definition of v This collision frequency is applicable to

l L]

the case of high magnetic fleld, ® > v, , for relative velocities

perpendiculai to the magnetic field, which is owr case of interest.
For relative velocities parallel to the field or if a% << vy s
about half the above value is correct.

With these simplifications, the factor ny is cancelled
and Eq. (2) is now )

for the electrons and -

for the ions. These equations are identical to those previously
'mentioned in the work of Astrom except tbr the. addition of the damping
term. This addition adds no difficulty +to the problem. Using -

again the relation, '3 = eno(ai -;Ge) and Maxwell's equations

A




from Eg. (li.) vhen wp‘?‘ > o v

16~

oné ,ea‘sily.obtains' the hew index of refrac’cion,‘: )

2 XKoo @ <
nx = 2 = 1-GTs )(@; wec)+iwyl ‘v(u)

With this model, k remains finite in the resonance reglon

and for w = wic , We £4nd the.ﬁ the real and imaginary_parts of

'k are comparable, signifying a highly damped wave. This follows

1 which 1s always true in our cases
of interest.  Discussion will always be limited to plasmss where
wp is much larger than all other frequencies of interest.

Fig. 2 is & plot of the real and imaginary parts of k as

a function of w for the left-handed wave around its resonance regiom, -

W, The right-handed wave will have a.na.logbus behavior in the vicinity
of its resonance at mec . A
Fig. 2 shows that Im k 1is negligible for ® << « . and

ic

"Re X: 1s negligible for @ >> o in agreement with the collision-

i
o
less theory of Astrom.

The next question concerns the influence of the thei'mal
term. We can approximate the thermal éffécts by keepihg the ‘Eerm
- > - ;; - o
V « P in Eq. (2) and ignoring the term V - Q 'in Eq. (3). We then

will have to replace the collision term on the 'rig‘ht-hand side of

Eq. (3) by a reasonable and workable form as we did, in the case of
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Fig. 2. Dispersion relation tor 1on cyclotron wave in cold
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plasma.
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AEq. (25 .‘

K'aui‘man7 in his investigation of visédsity_uses the,foruQ-
dvmvvg = -v (P -,fﬁj o

coll'

>

- - ' - -
wvhere P = 1/3 Trace P. Therefore, we can define NN = P - PIL
as the traceless part of the stress tensor. Eqpétion”(B) is then

split into the two equatilons

L sk YT = 0 e
- and
%{c{ + Po[%’ﬁ s+ @DF 25T . ‘ﬁﬂf} + wc(é‘x(ﬁ'- %) =v-v"ff.

The intuitive idea is that the collisions of a specles of particles
with themselves will cause the pressure tensor to appmbach é scalar
pressure Pf*. That 1s, the velocity diStribution of the particles
becomes isotropic.through the collisions, éausing {?f to relax to'ze:q.

If one then chooses the self collision frequency ofi;’.:Spitzer6 for

1 for electrons vwhere VI{

T
Eq.(38). For ions, one has v, =[ — vy .
i m . e '

v one hasg v, = 1.03 v "is given in




Lt

use intultion to determine the form of the collision term in the

_18. e |
Since V. u = O Eq. (5) shows that P = 0. That is,
a transverse wave does not perturb the'pressuré of‘ﬁhe plaéma. Since
P = noT'+ nTO (where quantities without the subseript, zero,

denote first order perturbations), we have T = O ‘since P = n =0.
Thet is, the transverse wave does not perturd the temperaﬁure of

the plasma. Thus the thermal effects are essentially viscous effecté..
Equation (6) will be used later to obtain T 1in terms of _V’ u .
Substitution into the momentum Eq. (2), wili then be used.fq produce
the first thermal correction to the conductivity. The next question '

v &S _
would regard the importance of the second correction, the v . Q term.

‘We would desire an estimate of its importance in order to know when it

can safely be ignored.
Thus intuitive forms would be necessary for the cOllisidnalv
terms of the higher moment equations. Our intuition however, is

lacking for the higher moments. A more reasonable approach is to

kinetic equation itself and then the form of the collision terms of
all the moment equations would simply follow from this term. |
There exist: more precise expressions for this collision term

than the one we shall use. For example, the Fokker-Flanck collision

8 6
~term »? is an integro-differential expresssion .which 1s a good

approximation for w >> Qp and A >> 1., These conditions are
satisfied in our region of interest. waever,‘thezmathematical complex-

ity of the expression necessitates an expansion in small parameters.



-19- .
- One such expansion technique is thelchapman?Enskog method,loiwhichﬂ ,
is used to obtain the transport coefficients of the plasma. 11,12
Here the small parameters are the time and space derivatives of the
distribution function. These arenconsidered small compared to theifh
collision term and tne_force term erising from the presence of the
homogeneous unperturbed magnetic field.

This expansion cannot be used in our regions of interest
since the time and space derivative terns will be of’the_same order o
of magnitude as the collision and magnetic field terms. With no. i
alternative technique at our disposal, the more precise expressions
cannot be used. |

We use collision forms developed by Li‘oof'f‘,l5 which are
extensions of the Krook, Bhatnager and Grosslh model. According
to this model, the collision form is a term vhich woulo cause the

distribution function to relax to a local Maxwellian,

- . . 2
5 n, +nlr, t) —— -m{_v - 3(;:)1:)1
. . L Q[TO +'T(r;t)]

| [—m—(To -+ T(rg t)) h

in the aosence of external forces. Liboff includes terms corresponding
to the tendency of interactions between the ions and electrons to
reduce differences in thelr average velocities and temperatures.v

His expression for the ions is - : .\

¥

e

B s
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The term in curly bracketskin the collision expression is

. L} e ‘ A ’ O
simply footal 'fEM= where an- is expressed.in terms of f

by means of a Taylor expansion in the perturbed quentities.

To obtain the eoliision,termjbr‘the electrons, simply intefchenge

the subseripts "{" and "e". Henceforth, the electron equation

‘wili be omitted. ?i , the ieh collision freqpency; represents the.rate
at which the ion distribution function approaches a local Maxwellian.
Ve has the analogous meaning for electrons. The magnitudes of

1% and ve are those previously given, the self-collision frequencies

i

of Spitzer. vl » the momentum transfer collision frequency, represents
the rate at which the difference of the average velocities of the two
» ->

speciles, vy

Eq. (3a). v2 » the energy transfer collision frequeney, represents

- Gé , approaches zero. Its megnitude is given by

the rate at which the difference of the temperatures of the two

specles , T, - Te approaches zero. Vv, by about .

i 2 1

is smaller then v
the mass ratio of electrons to ions. We will not need its value in

§

our calculations since the perturbations in,tempeféture are Zero.

b
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B. The Moment Equations Method

Having the full linearized kinetic equation, therecessary

moment equations will now be derived. We first derive expressions .

for the pertinent moments of fo

ffod??:no,
[V f2av = 0 , B
-5 > Od_’ nfb Ti]-:-b
[ mvveE dv = Py = ny T, I,
| nyvvfa = o, 5
n, T Ded
and [ myvvvedv = omo W
where
M

wkt T %1y it One Paipd Opp Bak .

In the linear theory, the perturbation in the moments of

.interest are given by
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Therefore

‘ - 1 ‘ L
Qijk =>‘[AV £7 mv, Vy Yy - Eb(ui_ajk +.u'j Sik +w 813)

in the linear theory. It 1s apparent then, that the perturbation in

—>

Q may be obtained by using the form

_ Yo |
Q’i,jk. =[dvf [mviv'j vy

The heat flow vector,

= Tolvy Byp + vy Byy +

3 = [@ e M EE -G,

-

- . .
. L d
is then obtained by a contraction of Q , that is

L
2

9y Uiy -

~

vka;J]

Before obtaining the moment equations we substitute the. col~ .

1ision term into our linearized kinetic equation to obtain the form

we will henceforth use. Since _VL fo

v

-

-p
-2 v

——————

2
)

f?,_ we have




" where
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o0, = 3 RARIPN 1l 0) 2e =, =
<SE+V V+<nciV)(z¢V_’+‘vi>fi> fi{ E-*v
v _ w, &, -
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* "iﬁ AT T.L(%_%)
o] a8y O_é.i
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In the operationsintha.’c follow, we integrate by parts to obtain

v IxE Tt ar = [T v
_vivj-uvn_vxz- ; av = ; VXZ vj_vj Vo [V

1l
S
}...I
o
¥
N>
5&
<4
"
'_“<
d
Cue
d
[ SR |

,jk n 15k

. = ffl d;[(ﬁx;).i ngk"'vn + vy (@) weeov, + weervy vy ('éx?r’),l

This equallty can be written in tensor form as

[ > > —A s o0 fay Py ..v.v LI ] —’
(Z®W"’vv)1jk-e-n=(z )1vjvk vn + v (zxv)dvk~ .v + +vivj (zxv)n..

TP
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- The derivation ofthé moment equation 1is simplified by ti'xe 4
use of the pfoperties of the Hermite polynomials defined by Grad. o

These are defined as follows:

s (Ey BN Er B A B2)ss
Ty T TRy L T STy 9w Svy T TNT, e T Sv )T

SO

1 . /m .
Ho o= _\/——O vy s
( 2 m_ ' .
H‘ij_ = om VaVy ot By

3 m 5/2 fm | A - |
ik < T?). vivjvk -\/E:‘E(vi 831{ + vj 811: + Vi Si,j

and so on. These have the following useful property:

0~ oy _ |
ff dv:be;.j_"n H‘meo = .0 1f n £ m.
Sinée the velocity dependence of the righ‘b’-hand side of Eq. (7) is .
~ composed of the terms f 030 , T :HL leana f N L operating on the
equation with 1 dv is simplified somewhat since theseé terms do not

| con‘cribute to the higher moment equations. . We also notice that

i e



‘Each higher - polynomial introduces new information. :

Py n Tty T Myt Re Oy

Qoo

introduces the next perturbed momen’c.A } -. LS

.f[#o. £ dv
f ..rij f dv
LS 3/,
3
f ﬂi ka dv
| bv polynomialS°'

1

Equation (8) discloses the following usefu.l property of these .‘;'-' g




Another property of
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the polynomials is

m ' -1 . -1 -
r [ 13 H;zu-mn'l-aikﬂgﬁ

‘The final result is

- 0} 9 +1
av =\[-%.&i‘:h§_ljk...mn

+' °* '+81n Sk .m] .

fld.v

+&—f3¥n fldv+3)-(-k-f Jz...@f dv+-o-4&- Hgl'{]'"mfld;

> = 1
The v VT

term of - the kinetlic equation couples both the

next higher and the next lower moment 'into the equation governing the

moment corresponding to W,

These results are now used to obtain the first three moment -

equations. We operate on Eq. (7) with [ﬂndv for .m = 0,1, and

2 +to obtain

L @
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u - - . s

i V(@ +n. T, I)+T.Vn, + o ZXn.m ou, | :

o™ e T 17 %% 0/ MY e oM L
| 3 @ - %) .  10)
= enyg E-v;m n(u -u , Lo o _'(;0) v

P > o - > —b—OT‘ Ao .
BEKHi + 0y T, D +9 Q + Ib(V u, + v ui) ) + a&c.zébni_u

= -y ni - v2_nO(Ti - Te) I . | | - (11)

i

Equation (9) is the expected result. Equation (10) agrees

"with Eq. (2) when the intuitive collision form isiused in that
' >

. - - - - '
equation. The term, V- P, = V * I +n VT4+ T, Vn since

0 0

P = ny,T+Tyn . Ifve multiply Eq. (9) vy ‘T, and add it to

one third of the trace of Eq. (11) we obtain

9P

~ +

Wi
HJ
<
ok
|
.
<

oS -
]

(@]

P
3

[EY
.
]

S

-This is the extension of Eq. (5) to include the relaxation of
the temperature difference of the two species of particles. The

traceless part of Eq. (11) is

e i e = o
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ai - 3 Deros ) : R e
—§E+V'Q1-3Iv.qi+P(vu +(Vu) :Vu)-w)é_zwn+viﬁi
(114)

which agrees with Eq. (6) , except the next moment is rete.ined here.

Operating on Eq. (7) with J Hidv, we obtain

3 Av"} I To | |
[(&"_.’” Vit O B 1kt * &, e xi(n,j;; + 0y T By)

9

+ 5 (nik +ng T 51k) + a—-—-(nij o T 613) =0 (11v)
-
where
2
F 1 = T0
Ruge = T &y Mﬂi.]k .

Now the usefulness of the Hermite polynomials is apparent.
1f M' is the moment introduced by W sy for n 2 3 , the corres-

ponding moment equation is

3

LM +<7-Mn+l+-—9?-{ '_M“'l_ =0 (11c)

m

T p— -



where B T S

4

_-vBecause of the orthogonality of the Hermite polynomials, none of the V _
":,terms on the right s1de of Eq. (7) are present. The truncation of the B
- series of moment equations can now be formally illustrated treating
vthe operators v of and 7‘( as num'bers.. One- ignores the moment Mtl e

- and obtains




n-1 n

Let

:

- —— (L + n
q = Bl 9

where the number' of terms keptlin the denominator'depénds‘on-thé Qﬁdert
of'thé neglected moment. We now have an equation for.iibin térmsvof
(‘ﬁ’+ n, T?) which along with Eqs.:(9)j (iO) and. (:Ll_) ana-Mame;;'s
equations constihnn 8 closed set of equafions, '

' Thus the truncation of the system of moment eqpations'is equivalent

to an expansion in € . If the parameter € is not small, the truncation

1s incorrect.

.

We estimate € for the transverse plane waves by ignoring R

o e



Bl

in Eq. (11b): The contraction of this equation produces

T™r . .. -
<5%+wi 'z\x+vi>qi'+7£-[$'«ﬁ;+gno—v’!?i}= 0. (12) ,
For transverse waves with the form et (kz _"'v a‘:t)’ u, and: E, are o
zero. Equation (9) and the trace of Eq. (11) show n = T = 0.

Equation (11) then shows the only components of ‘-I? 'prodxiced by the

V% termare I = II. and II = I . Equa.tion (11b)
- 2X Yz ,

s Xz zy .,

. without R then shows the only components of E. producéd by the
T ¢ - and Q .
ermare Q. ., = Yy —":“_szx an Qyzz - Q'zy'z - szy’ :

Since Q’xz_z = 2q gnd Q,yzz = 2qy, Eq. (12) is sufficient to_

determine Q . Equation (12) may be written

> T, .
(&-'ij)qx-micq'y‘ = ‘E{;a'z' Isz
(> To d m .
(3-5+vi)qy+wic % T E % ¥

i

.“'Since the left-handed wave has the form g = gq_(% '-_.ﬁ)ei(szwt), .
ﬁz = IIZ_(Q - 1%) ei(kz-ast), and so on, these two equations are combined
o 1 T.k , : '
— , 0 A
to yield (o - @, +ivi)q_ =o_4q = /0 _. . (122).

e r e mteyoe macre ety e e < o 7 nrsne Aot W e < o




In the same menner, Eq. (1la) yields the equation

o HZ- - 2kq = ‘Po k u, .

Substitution for q_ using Eq. (12a) yields

R , 2T, .2 ] o .
(Di_' - 5_9_ _l{-...;_ HZ- = ‘PO k‘ui_
1w,
A
or
1 - ' |
@, _ (1 - ei-)nz- = Po ku_ | o : (12b)
2T 2 2 : '
. where &. < O, X I is the small parameter...
_ v - m, . 2 . 2 - _ o '
o | | D (a)i_ ) Lo .((Di,,_.) L - . -

It is a measure of the importance of the inclusion of the Rheat flow tensor
in‘the viscosity equation (lla). The criterion then, for neglecting the

- heat flow and therefore all higher moments is

¥ ai‘e
e,.| = ' = << 1.
: (w - W, * ivi) | .

This is satisfied for ® far from o, since @, ~>> ke, .




R

: ‘ a o . . : _
That is, the ion Larmour radius, aTi , is smaller than the wavelength,
k

become important. The wave length must now be larger than the mean

1. 0%

k v, .
E 1
is satisfied, the heat flow may be neglected. However, the viscosity

free path for ion collisions, that is, = > —=". When this criterion .

may still not be negligible. We shall now show that the criterion for
neglecting ion viscosity is more stringent in the resonance region.

For the left-handed wave, Eq. (10) has the form

m
ie Xk - -
mi[w -t i m, Vl] U, _ -‘.r-l.a» IIZ_ i m_ie yl u, .= ieE__ .
| (12¢)
Substitution of Eq. (12b) into Eq.(12¢c) produces
2 .
m X T ¢ ' :
, 1 N
m {w - @ +i-—i-3-—"' 0 u, -im, v.u - = ieE .
i ic m-i Cmo '(1-e ) i- ie le~- -
% 1.7
(13)
" Neglecting €, in Eq. (13) and assuming @ = @, wve have
m 1%°T
L——— v, +
m

= Cv.u. b 1eE. . o
Lt E, mouw = i Mo vl u, . {_igE_ “(132)

L ; for our cé.ses of interest. .In the resonance region, the ion collisions

Lt e o AT St e e ——
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For contrast we rewrite Eq. (12b) for o =~ mic,

21 % T o I
ity T T Rk o (1Y)

e

12 theion electron momentum transfer collision freguency,

i .
is smaller than vi » the lon-ion collision 'frequency.
ie mé
—_—y, = \||=—= v, ,
my 1 \ my i

. , o
' k- T, 1|my X ey 1%y

&. = vymo vt sin = si¥m 1S (w=a>ic) ’
1 e 1 Vi e

U

s tmp ey S T 1 g a e prtes et

e e e e, e e v S o
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Therefore for cases where 'ei;(w = vwic)[ < vl"and heat flow is -

: negligible we may'find—'ei_f‘ 22, 1 indicating_that»ion_viscosity”'

is not negligible and may significantly alter the results of the

cold plasma theory.v

This is not true for the electrons. If we consider the rigﬁt-” i

handed wave, the corresponding equation for the electron motion is

mie k To _ )
me“"‘“ec*i—m: Tt o L+ e ) Yoy m MgV, = -1eE,
: e e+ e+
where
e+ - P "B t 1 Ve
and
k? a 2 ‘
e+ T2
(w,, )

When o = Do the criterion for neglecting heat flow and the other

2 2 L S o
moments is k g - << 1 . The criterion for neglecting vis- -
v _ : E .
cosity is N
k? ae2 :
—_——— K 1,
(Tie 3) -
ViIi—vV
e\ m
e » . )
m ‘ B , - :
~ v_ the criteria are identical. The effect of

s e e,




. -56- .f‘-
‘electron—eiectron ééllisibns is compare.ble.td -tha.‘b bf ‘electron-ion

.collisions. Thus for the electron resonance, viscosity will ha.ve a small

| "effect unless € ,>,;,J 1 in which case, the moment treatment is invalid.‘ '

e+

We will be concerned with the ion resonance, which occurs for

_the left-hand wave. In this case, the equation for the electron motion

is
i m, vl k2 To - -
_'me w + oo + = - —— ' u,_- :i.mi vlu =-1eE_
' e o (1 -¢€ )
i e e- - :
where -
w ' = w+w +1v
e~ ec e y
and
k2 a 2 - '
e = -
e~ 1.2
(w,_)

 In the region of intereét, where the thermal effects méy be im--

por{:ant, w W . T.hervefor'e Iwe_’l ] .l‘”,e_e .+_ i_vel 2 ]vel

ic

in the region of interest and Iee_l. < l—k?-aﬁé-] = l—k-z-?-‘-g?-] = Iei._l .
v,° v
e - i

Therefore, if the moment expension is valid forthe ions, the thermal

effects of the electrons are negligible. The two equations are then

-

i o et




B . resulting in..

ic m l m(a) - o

_and

..i nxie “vl ui_ + »m l.a) + o, +,..i—-——- }ue__;,__

el g

= 1 -

%‘F’f“’m)(‘@éé)*‘iﬁw} - 7T f (@ +0,) + 1oy, v

m m‘q—ﬁ-w 1V ﬂ [(w-cu ) e )+ivlas_l

(lh)

»‘«f._exhibiting the lowest order thermal correction which causes the index of

"refracting to be dependent on k in a.ddition to . The dispersion re--‘ REORN

W'--".'klation, (lh), now yields fou.r solutions k(a)), whereas without the thermal

s term, . there a.re on13r the usual two solutions, k +k (w), corresponding

- -j*to a de.mped wave propagating_ ‘in-the :positive : z direction and k = -k (a)), o

+ )w(cn -, + 1 vi)] :
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corresponding to the same waveApropagating in the‘neéative‘ z direction.
The solution, ko(w), was plotted in Fig. 2 from Eq.'(h), which is the
result of setting the terms containing T, equal to zero in Eq. (1h).
The two extra solutions introduced by the lon viscoslty reéuife tﬁ;t »/
two more spatial boundary conditions be specifj.ed for the total éolution '

to be determined. Prior to the introduction of ion viscosity, the two

conditions
B(z = 0) = 1 | - (15)
and 1 »
Iim B_ = 0 | - (26)
Z—>00

are sufficient to determine the solution

B (Z) eiko(w)z.

amn

R

where B;(z) is the amplitude_éf-the:wave magnetic field. ‘Heﬁce-
forth we will consider the solution for the wave megnetic field,

B = B(§ +18)e™ ™ rather than the electric field in order to
simplify comparison with the following section. Because Eq. (lh)_is even
in X, one of the two extra solutions will have rIm k< O, This

may be discarded by condition (16). We are thenleft with

5_(2) =:Aléikl(w?z+ N eike(w)z




e _the problem of the transmission of a tra.nsverse left-handed circularly

field which is perpendicular to the plane boundary. We choose the condi- g

N ’tion that the particles of the plasma reflect specula.rly from the

| vhers Tk, Taip > 0. Condition (15) determines &y =

One more boundary condition is required for Al If ve take the plane, S

z = O to be a boundary of. the plasma, we are essentially considering

polarized wave incident on a semi infinite plasma in a. constant magnetic

' '-boundary. There is 'therefore no parallel _stress on the wa.ll by the
plasma. That is, .ﬁz is " zero at the we.ll. This' condition then .
determines Al and the waye form in the plasma is determined. R / v

If we: define _

., [(w - as )(w + c) ) + 1 .vl co] {w .-»c_oivc + 1’ vi]
5 : ) O{m (co o, )t i m, vyl]' o - ’

o= . the: wave magnetic fiéld’ 15 ‘.

5t Thet s, we £1nd - o L
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a.nd

(6 -x2)

A= 1-a = K212

. In order to displg.y the relative effects of collisions and
viscosity, we choose values of density and magnetic field re;presentatiw}e
of a wave experimentl6 conducted at the lawrence Radistion Lgboratory,
Berkeley. These are |

3.5 +10"* cn™

1

By
; ,and . - . . - " \, - ) R . ‘L . R

B, = 1.09 ° th gauss.

We then have the following values for a Deuterium pia.sma.: .

12 =1

@, = 2.06 + 1077 sec
11 -1

Oee =' 1.92 » 107 sec ;

w, = 5.24 . 107 sec'l.‘:

ic



. ‘ -hl- ‘ P
If we choose‘To'=_2 %:lQ#_%; we have v =‘13.45 ',lQ9 secml
| T cee. "L

“and Vi = 5.9 +'10 .

N :

Figure 3 is a plot of the trajectories of kl and ké in the

complex k plane for this case; ko in the figure is the result obtainedr =

when viscosity is neglected It is a polar plot of Fig. 2. Let Q= wic.
. The quantities ko and k1 are plotted for R values between |
; { = 0.5 and Q. = 2, 0, while ké is plotted for 0.95 .g 2 L 1.05.
Beyond this region, ké becomes too large to neglect heat flow and oigher

moments. That is,

2 2

% 8y
i R 2
(@ - @, +1 vi)

becomes comparable to unity nullifying the moment approach. Where this is
80, the coefficient of the k2 wave, A2 » becomee'negligibly‘small..

(|Aé| is plotted as a function of £ in the lower left. section of Fig. 3.)

Therefore, the behavior of k2 is not known Vhere it ie not needed. At ]
'Q = 1.015 , however, IAzl = 0.35. At T, = EIJIOA;,A therefore, ‘ 3
the viscosity is at the threshold of importance. | ,.
.So for 0.5 € 2 < 1.05, the expression (18) is necessary.
Beyond this regionj expression (17) will suffice. - | |
| For order of magnitude estimates of damping, the viscosity may

be ignored and expression (17) used. S o .‘. ,

e ~ - A TR SR - s o
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MU-34057
Fig. 3. Trajectories of k;, and k,. Ty =2 X 10%°x.
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At lower temperatures, it is found that the k, wave may be
entirely ignored. The coefficient, A1 s remains essentially unity,

kl =~ ko and k2 recedes to infinity corresponding to zero damping

length. 4 : ' ) iy

Since the viséosity is most important when o = mic we use
~ this point to derive the criterion for neglecting viscosity. As before;

- we have the ratio of the viscous to the collision term,

We choose for k? the value which is obtained from the non-viscous

dispersion relation, (4), when ® =~ w, . We have

ic
2 2
k 2(60) _ ic - id)icﬂ)
0 “Yic’ 2 2 °
. " e v, c N

The first term on the right, which corresponds to the displacement current

may be ignored in our region of interest where
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Lo

Substitution produces the criterion

o o2 T faede 0 11/2 o o - o
ic p 0 _ 70 70 e 1. . e | V
vy c? Vi V1 Pye no2 (4n A)j T ; R

' Inserting the valﬁevfor parametérs pertainihg‘to Fig. 3, we -
" ‘obtain the value 0.28 <. 1. Fig. 3 then represents a case where the

criterion is barely satisfied. Noticing that the criterioniis heavily'
4

il
i?
.
i
[
i
;-
¥
;

. . o o
temperature dependent, we examine the case when: TO = 310 KX .

We theh obtain the value 2.1 > 1 . Now the viscosity must be kept.
Figure L is a plot of the trajectories of k, and k, for this case.

The trajectory of k. 1is included for comparison and 1A2|V is plotted

0
as before. The coefficient |A1| -is'approximaéely 14|A2| and is
therefore not plotted in Figs. 3 and L, . _

Now it is found that for 0.9 £ 2 < 1.1, e#pression (18)
is necessary. It is also found that the wave ‘kl no longer ddentifies ,. , ' %
with kb. k= ko' a_t s)z = 0.9 but k, ~ k, at 2 = 1.1. | |
A2 varies from negligibly small values near 2 = 0.9 to_hearly unity L ‘ i
at Q V= 1.95,. A1 and A2 are about'equal at 19 = .l.Oi . Now,. |
no order of magnitude estimates can be méde for the damping at resonénce o /f
5y considering one wave alone; The disturbance is expresged in termé of

_two wave fqrms‘which are not independent in this geometry. That is, the -

two wave forms cennot be independently excited. This is bécause of thé

unecessity of maintaining ﬁ; zerb at the boundary..r
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Fig. 4.

_—kiﬂkz; _—_k-

Trajectories of k
0

1

and k2'

MU.34058

T, = 3 X 10% °K.
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We illustrate the wave form of' B (z) at resonance on

Fig. 5 for the temperature;

P—

: o
T = 3+10 XK.

ik'lz) s the contribution of k1 to the

ik z,
total solution. The middle plot is Real (A2 e ké ) . The lower plot
ik z ik, z
is Real (Al e g + Ay e, 2 ) 5 the complete solution as given by
: ik .z
(18) . For comparison,-we include Real (e ° ) , the solution

" The upper plot is Real (Al'e

without viscosity. Since

o= B (2)§ +1R)e

~

we are plotting the component'of B in the'directiCnv(? cos wt + % sin at)

at time t as e function of =z ..’ Referring to the lower plot, we
find that both waves are severely damped but the wave that includes

the viscosity effects does not decrease as abruptly as the‘other wave.
Thg viscosity acts to reduce the shear caused by the spatial variation

of the wave field.’ _ ' :
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Fig. 5. Wave forms of B at resonance. T,= 3 X 104 °K.
For lowest drawing only, — Re (A,lelk'lZ + Azelkzz);
ik .z
———Ree 0. :
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The question arises as to the effect of'heat flow on these'solntionsQ,>;

Will a third nave form arise? Including heat flow necessitates solving a

- cubie equation for e &n) Since heat flow is unimportant unless

€, %; 1, in which case the moment expansion is invalid nothing is gained

1=

. by its inclusion. Instead, the moment expansion is abandoned. In the

next section, the problem is done using the kinetic equation (7) itself.

This method 1s correct at all temperatures where classical non-relativistic

:physics is adequate. This method is necesSaryrwhen ei_ % 1. Solution

of Eq. (14) shows that €, ' =® 1 in the resonance iegion for T, = 10° ° K

{-
Therefore, for temperatures of this order and higher and the previously -

mentioned values of density and magnetic field, the kinetic equation method.

must be used..

No simple criterion exists for the determination of € in

general. A coarse criterion is obtained by again using koe(a&c) in the

expression for ei_ . At o = 'wic s We have
o, w2 a2 1P B, T/
e 0 _ Tic 'y i 0 "0
- 2 2 , 5
v, ¢© vy n.“(4n A)
_’TO = lO"-5 corresponds .to ei? = 28 . The'coarse cgiterion is too

pessimistic. Fig. 4 shows that ke @, )] < i@y, )] Tacking a simple

expression for the pertinent values of .kl 'or. kaj, 'ei_o <Y owill

[ES PRSI

S Apam e s rore




-h6-

be considered a sufficient'condition for using the moment equations

0]
i=

worthwhile to negléct heat flow and check the value of ei_ pertaining

and neglecting heat flow. ‘If € > 1 but not by much, it would be

and k2 where they are importanf.

to the solutions kl

C. The Kinetlic Equation Method

The starting point is Eq. (7) for the ions and the corresponding = .

equation for electrons. Chbosing cylindrical coordinates for the velo-

city vector, the magnetic fileld term simplifies. For

we have

<4
~
N
R
H
n
[]

-

The macroscopic vectors, E, and E', appeafing on_thé'right"side

of Eq. (7) are put in the form
E o= E+(2 +1F)+E(R-1F) + E, g .
Assuming nospatial variation in the x-y plane, we have

5% + v, 5%-- @, 3% +vy) £, = D e1¢ +D, e-;¢ + Di-(l9) '




7 where

:fand‘=ZV\r.

T p, e *f(Vi Ty Vl)uiz V1w
g ke T i”. e

: A similar eqpation results for the electrons. g{,

The form of the. right side of Eq. (19) sUgges’,c’s a ?'separa"cia'iff’? S
1 | T o R

,~i'of fi" into the form .

T R RrY S II RE C ARNEr L R U s
o= 5,0 b v, e vy (208 vy v e e (2 by, V)

:7 ;quﬁaﬁ1ng chffigiéﬁtérbf}like exponentiais in EQ,*(iQ)_?rbdﬁceéi"] fﬁ;i“

[
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and
<£. TV % ™ v1> in B 'Dé - - : - (20b)

To complete the equations, expressions for -ﬁ, '_u:, n and T are |

__ needed:

-
=ff1dv = Enff\ld\i dvz fov".
P o nT -
"since T = __O_____C_)_,
o

.a

Maxwell's equations furnish E in terms of T

e




. -h9- el

 For E, ;_the_eqﬁatichsf?a

Cend

are sufficient

The equatlons uncouple into three sets of equations for the three in- o @
depen&uﬂi sets of” quantities' ’ %

T B ?+_.

‘oo

The first set corresponds to the electron cyclotron wave. This waved_;~;,f}'{;ftg

’l_has been studied by Shza.franov17

neglecting collisions and the effect ofif_fif;hé'ﬁf-g
vion motion. Platzman and Buchsbaum}s extendedrrhis“work to includer _ﬁltv:ff::;ﬂrf
collisions: but considered ‘the unperturbed distribution function to be EERESE g

iiof the form




o

rather than.Maxwe;lian for simplicity in the numerical work. 'Thev

i quantities N and « are norﬁ#lization factors chosen to give riée
to a specified density and temperatu:e} The:collision form used

by Platzman and Buchsbaum is simply

of
e

‘ =-Vf .
ot coll e

The neglect of ion motion reduces the Liboff collision term %o

. . -
of 1 2f : m
e e - ie
ot = ° Ye feI + =3 (“e ‘.v)(ve - Yl m ).
coll. S €
since n,6 = Te = 0O for the transverse electroﬁ cyclotron wave,
. m o ‘ '
Since Ve ~ vy EEE » the second term on the right-hand side is
e ) ‘

negligible and we see that the collision form used by Platzman and .
~Buchsbaum is adequate for their case of interest. However, their form - .
-is completely inadequate for a:treatment of the ion cyclotron wave because

of the importance of the electron motion and the fact that

The Liboff expression is necessary for an adequate treatmentlof a two-

species plasme when both species are perturbed. Wha hhlod et rowracnomdn

L. iThe’third set.:corresponds to the longitudinal wéve.' This problem

19

was first considered by Landau neglécting-collisiéps and ion motion

e e e Ayt et em e
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and has since been the subject of many papers. We are inﬁerestéd in the .
second set which corrésponds to the ion éyclo’cron waire . Dropping. the

minus sign subscripts, we have the following set of equatidns: '

' ' 2f, " v, L m . m
) d i Wle e , ie _
(5{_: + v, 57t V-:L + 1_cnic fi = ~ 5 {E; E + v:L - _E‘; v ui+ -—!E;- vlue ;
. . i 4 : . .
8"_,_v 0 + Vv -vim‘. "f. —?—f:?—(-)—-\;-":sg-: +.v‘“-lf-i—9-v uf+31§v. u, ;
Wt T 23z 7 e Tecfle T T2 m, \e m 1/t m, 171if’
. : e . v T : '
i
rf 0 ;
' P { . ¥
Ny ui,e :rjj V.L dv, dv fi,e 3 :
.93__1_.9."’_)E it - (5, - )
8z2 ¢® 51:2 ? ot \1 ‘.

iwt

Assuming & time dependence of the form e~ = with @ real we

consider the problem of = vave propagating in a plasm-a.' whig:h__fillé the
semi-infinite space 'z > 0. There is a uniform inagﬁetiq"field in the .~
plasma.. perpendicular to the plane bouhdary z =l 0. | The magnetic

field of the wave is given as a boundary cohd.itibn at zi' =‘ 0 . Be- : %
cause of the existence of damping there-is no disfurbancé at z = o .

iwt

For any perturbed quantity, P(z, t) = P(z) e~ ,. we have the o ;
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mathematical condition

P(z) # © for -z 3 O

P(z) = 0o for z < O

since we are interested in the determination of the disturbance in the

regibn z > 0 in terms of its value at z = 0 » The appropriate"

transform is the one-sided Fourier transform which 1s identical in

theory to the Laplace.transform.ag Define

00\

\

P(k) = p(z) e az .

=y
2x

0
The inverse transform is

o0 -1y : _
P(z) = [ ot P(k)
’ . -c0-iy

~

| where ¥ 1s chosen so that the contour in the k Pplene 1is below_all

singulerities of the integrand. This insures tha.f P(x) exists and
P(z) = O for z < O . The requirement that no disturbance exist
in the 1limit of infinite distance from thelboundary means that P(k)
is regular in the lower half k plane including the real k akié-
because qfcbllfsioﬁal damping,i'Wéathéréforefmay:takea.xnetc betzero.

Taking the transform of the equations, we hgve
. , \

i
1




e i ( -iw+1kvz+ 1w, A .i)fi = -
e ("i“”-ﬂf”z R +Ve)fe

ifi' fupétions of k. The'quantities‘with'subScfiptj[brmﬁféltﬁe béghdafyzfj

- values., -

T 1
A .
N

o foY,e T ?F'-ffvi.,d’vj._._dvz'.fi,e,;'.'n“’ el

Now ail-pertﬁrbed Quanti§1e$7a?elthéngﬁfigi;trénéférﬁsféthafé:

~ s

1}
-
~~
N

[}

(@]
Nis”

1
i
~
[
"
o
S
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i
¥
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Solving for Uy we have

0

v

by

°f, v, [ (., W m,
L LIeE L (3: o ey Ju, + 28y u |+ 21D
. 2 m i mil/j4 m, 1 e 2n
a i i v i .
u :riﬁ, dv,dv 4
i OJJ' 4 w-@ic+ivi-};yz
m m
eE 1e e -
SN ORI ISP BT
..i.mi i m__.L i mi 1l 7e i
" where " :
. o
. - dv v, d\ﬁ_f
i n a w-wi +ivi-kv
and )
d.v dv v2 f : ‘
T, = 2—1 | 2. :ivv_kvib . (214)
@ c .1 VA

Similar results obtain for u, . Solving for - -“1'; u, 5. ve find

(_ G,eB )( e) (__ GeeE)( , 1)
oy - :ui._,-i o 1+1veG - ue+i e 1+ i vi,G

i e
_(1
. ¢
"
f

- G
N e
+v,G l+iveG;~ 1\{1%[;; (lﬂveG‘}Fe- (J.fiv 4G 1)]

L]

| (21e)

-




e
A
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In the definitién of the transforms, webhave k real. Therefore,
1f k > 0, then Im,@; > 0 and the integral in the t piane is

defined. Upon evaluating the inVerse transformations later, G(k) will -

be analyticélly continued off the real k axis. For the positive real Xk

axls, this analytic continuation is effected by moving the path of integra-_‘

tion of the above integral in the t plane so as'to'always be below the
pole at t = _ﬁ; . When k < O, then Im_@l < 0 and the reverse .

definition obtains. That is, the path of integration must now remain

above the pole at t = _@; in the analytic continuation of G(k) from

the negative real axis. The t plane contours are 1llustrated in Fig. 6.

Although G(k) has different definitions depending on the sign of k,

it is continuous at kX = 0 and kX = o0.
L‘im- Gi(k) = Lim+ Gi(k) = Gi(O) @ o, 71 vy
k0" k0 S o
Lim Gi(k) = Linm Gi'(k) = Gi(oo);-‘-' 0.

The integral defined this way for k > O 4s called Z(§) , the

Plasma Dispersion Function and is tabulated in Fried aﬁd.Conteéel So

with the above definition, set
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t plane t plane
k>0 0
> y
o) d

k<O t plane : q,g? t plane

.
¢

Definition of G for k real Analytic continuations
for k complex

MU-34060

Fig. 6. Relation of contour and pole in t plane.



' when the contour is below the pole. ~We then have.

. where.

" where -

L« ec
j;= ~ ka

fdr k .> 0 . For k - < O E the integral is not that tabulated in Fried

' and Conte but is easily expressed 1n terms of Z(Z)

: If we define




o) , '
_t2
1 dt e -
2 | EEa - @
'\{; t"
~-00

when the contour is above the pole, we see from Fig._SIthat‘
2 (@) = z(d) -21 =« e'j2 .
For k¥ < 0O we then havei

6 = 'ki"' 2°(¢;)

i
and )
. l - ’
Ce = %a_ 2 (d;) ‘
e
Since
J = eno(ui.~ ue)
from Eq. (2le) we have
o




where
| Gi G, . '
D = (1+ ivy Gi)(l +1v, Ge), -iv) “fie I-n-;(l + 1vege)+E;(1+1viG1) .
We thus have’

) = o) BG) + Tk, fib,.'_f‘eb) .

R

The term, J ; represents the effects of the boundary. If this term

~

a function of relative distance salone. That is

17

Shavranov: ' in his work on théelectron cyclotron wave,

believed (@2) to be_eqpivalént'to the aésumption of §pecularAiéf;ection of

conditioﬁ,

. o
P |
- - |

- were not present, it is easily shown that the conductivity kernel wouli'bel

S - e de-dhEEY. @

particles at the boundéry. That is, he believed thé specular reflection"




H
: < - - . . - - N .
|

i leadto

We ‘now ’cest this hypothesis., We evaluate u f‘rom Eq._:.‘(21d)
specular reflection condltion (22a) shows that the integrand of (216.) is

K even in vz

o

d.v dv vJ'.Y. (a) ic+ivi+kv)f N
' R
WS 7 ) _

'j L
2n0_ L fh(CD o

Y -~Z— e

Y U T
d.-vZ vz dv vy fib.'
2 2 2

2

R
2n0 (“’"”1 +1v, )~

' Thus

fiBKL.%'ivev*eé-;_,
| w-wic+ivi) kV | (CO-KD ‘ +iv )

2'22'
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This term is not necesserily.zero. ‘It is therefore not geherally true }

that the a5sumption of spechlar reflection at the boundary gives fise to‘

(22). That is, this assumption does not necessarily remove the
effects ‘of the boundary. , -
We-have shown, however, that if: G(k) isban-even function of
k , then J(k) is an odd function of k . This fact does not cause
(22b) to be satisfled, but it will be of use to us as will be
seen later. We assume specular-reflection as a boundary conditionfof‘_f
and therefore use Eq. (22¢) for J.
Substituting the expression for 'J(k)._iﬁtc Ec. (212) we

obtain an expression for E(k) in terms of the boundary conditions.

t
1kE -E Ly 1o
. +
2%

5 J(k)
CB(x) = g
‘where )
02(k) = 1+ 2 (k)
2 g 2 :
o » o
= 1+ _c%f' Gi(l+iveGe)+ —%)DG (L +1 v )

Finally, E(z) is given by the inverse transform

~
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Py s . -
@ dkeikz[ TRE, Eb' , b .;L ® E(k)J, -
E(z) = = ' . (23)
2 a? 2 R
k™ - —-2-n (k)

=-Q0

It appeérs that in addition to Eb and Eb", E(k) must;be
given to specify the solution. The expression for - J(k) to be used
is not known since it depends on the unknown quantitiles, fib and
feb . Shafranov essentially ignored J(k) in his work by his
assumption, Eq. (22).. He\abandoned the sémi-infinite problem for the

problem of finding the field in an infinite medium excited by a

surface current in the plane, z = O . Then the tangential combonent

of the wave magnetic field is an odd function of 2z and discontinuous
at z = 0 . In the problem of interest, the wave magnetic field
has only a tangential component which is simply related to thé spatial

" derivative of the electric field.by one of the Maxwell eéuations, ir

~

we write
B o= B(§ +1R)eWC
we nave

v y

e e e 7o e e - R e
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Hence,

zie &8 - AR o | ey

Shafranov prescribed the ficﬁitious_surfacé'current:1n terms of the

boundary value of B 1in such a way that the resulting electric field

- had a spatial derivative that corresponded to Eb" at the boundary.

His resulting expression expressed in our form was-

e

E(z)= - '

°

ikz 1

ax
2

n? (k)

88

ol

The identical expression will nov be obtained in our case without

the use of a fictitious current or relation (22).

We assume that the value .of Eb' is known. This is one boundary

condition. The second boundary condition is E(z = o) = 0. This

. second condition is equivalent to the requirement that E(k) be regular

in +the lower half plane. With Xk ‘on the real axis, the requirement

is equivalent to the statement that E(z) = 0 for z < 0.

" This, of course, was part of the original definition of . E(z) .

Returning to the definition of G, we see that G(k) = G(-k) .

o vy iyt e o




e T

-6l

2 W=D +iv
© dt et [kt + ic_ } ..‘2
o= —L (“"“’ ”“’1) Cat e ¥
I Lo b - a a)-w +iv
i 2.2 2 2
-0 k't - a

The part of .G, that is odd in k dis also odd in t and is therefore

i
zero. Therefore, by inspection of theilr definitionms,

n2(k) = no(-k)
and ' : _ ‘
J(k) = - J(-k) .

-~

Using these properties of n2'(k) end J(k) and evaluating"Eq. (23)

for z < 0, we have

e

-
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- ' Replacing the dummy varisble k by -k we have |
c | o aula iR - ET
R 0 ik|{z Lo b de =
, ) 2o g
0 = . c .
2 w2
. 2o kK" - = n (x)
c
-~ Therefore
1k o r
00 ik|z] By i = o E. ,
dke 5 - — % J(x) By d.keiklzl
. _ 21
2 B 2
2w 2 2 o _2
Zoo -5 07 (k) Jy ¥ -5Hnt(x)
c ' c
Now for z > O, |z| = z and
. ' ot
(o) dkeiklzl!-lkEb . hwrimT:T-(k) By @ 1k|
T L21r . 2" - 2% dke
E(Z) = ) < =
2 o 2 . 2
-00 L =) n (k) oo k
c :
The .résult is
i %‘x
11;' : ‘,
i L
t H

ez



E(z)

E(z)
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t 0 .
B, dke K2
k1
2 o 2
2o ¥ - = (k)
[od
0

which agrees with the result of Shafranov.

for z < o} -‘(26)'

We have,eséentially{chosen the boundary values; Eb and

E(f1b , feb) so as to eliminate the solutions that grow rather than

damp with
We

and (26) ,

B(z)

B(z)

it

Z .

are interested in the wave magnetic field. Using Eq. (2h).

we obtain the equations

?E kdkeikz
ri 2 .

-C0

for z 2. 0O

| fof- z (_vd (27)

To obtain B(z) by contourfintegration, we must anslytically

continue n2(k) Off the real k axis. Now G(k) for 'k > O agrees .

. y .
Lb

e s e 8
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with the fuhction described in Fried and (}onLte_.al ‘Call this

¢™(k) . G(k) for X < O is defined with the pole in the t-plane below =i

the contour. Call this G (k).

i

R et

- and

I

o' e

¢ (k) + 2l ‘/’Te"ée. T (28v)
from the definition of 7 (f) .

Since the integrand of Eq. (27).contains both G; and G_,

i
there are two branch cuts in the upper half k. plane:_'éneiseparating |
' the functions 'Gi+ and Gi° s the other separating the fuﬁctions Gé+
.and Ge- . These cuts separate the upper k plene into three regioné.
Both cuts extend from 1':A= 0 to k = o . G+(k)- is the analytic
continuation of G(k) from the positive real "k axis into the complex: k
plane. G (k) in the analytic continuation of ,G(k) from ‘the neéative |
real k axis into the complex k plane. To maintain G(k) single
v va;ued in the Xk oplane, wve ﬁustﬂcut the .k. plane aiong some path
between k = O and k = oo .

We therefore see that eachfcut in the k. 'plane separaﬁes-tﬁe
- region of the k- ﬁlane,where Wwe use G+(g) ;frdm-thehnegionuofzﬁpei:f*)
k plane Wherexwé;usefoT”:-(k)&x.im'Eh&tfisg§:onaqne éidé.dfitheaw.v

cut, k is such that the pole in the t plane is above the con-~
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tour and on the other side, k 1is such that the.pole in the f.
| plane is below fhe'contour. . |

Since G(k = o) = 0, n2(k = ) = 1 and ve find that the
integrand in Eq. (27) vanishes on a semicircle at infinite k, because of
the eikz term. We may therefore add this semicircle to our original
contour of integration, the real k' axis, without changing thevresult.
We then shrink the resultant closed contbur to as émall an area as
possible, being careful not to cross any singularities of the integrand or
the branch cuts. A typical situation is showniin Fig. 7 . The
determination of the posiﬁions of singularities and cuts will be explained
later. 2

Denoting fhe three regions by the numbersl, 2 and 3, we have three
corresponding different functions nlg(k) s n22(k) and n32(k) in the

integrand. .Corresponding to Fig. T, we have .

2 2, + -
n" = n (Gl s Gg )s
2 2,., - -
n2 =1 (Gi. ’ Ge )’
and '
2 2., + +
ng = n (Gi -5 Gy ) .

]

Assume that there are. Nl singularities of the'fﬁhction
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Fig. 7. Integration contour in k plane.
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. (29)
k? _w 2(k) -

in region 1, Ng 3

singularities of Hé(k) in régidﬁ 2 and N
1ties of Hz(k)ﬂ,in‘region 3 &here Hé and-'Hé .are défined as in

singular-

" Eq. (29) in terms of n,°(k) end n52(k) . Let

e ey

B = éBb ) [Res ', (k) ; Ka]

o=1:

where

[ResH__L(k);k]; -

2
BB»'have similar definitions for regions 2 .and 3 . The general solution

‘when ka is a simple zero of the denominator of Hi(k) . B, and

is then

B(z) = B, + B, + B3 + By, + B31 .

The contribution B ,

1p 8&rises from the integral along the

_-g'nl SR o h

L e o i b gty grams
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brahch cﬁt separatiﬁg regions 1. and 2. It is ekpressible in terms

of the difference of  Hi(k).and'Hé(k) . We then.havé”{»

where the contour 012 is along the cut. between régions 1l and 2

from k = O to k = oo . B, bhas e similar definition. Upon eveluating

31
o o
n, -mn, we have thg following integral for B12 .
2 ikz . - 2 + -
7 Bw o kdke™ (l+iv G ")(e - G,7)
. pi , e’e i i
I e (302)
w ie n(e,t,6 )" o, 2(x) e, ”,e ") ke-“ie-z{e(k) . -
C i’7e AT T2 i%7% 272 ~
23 c ¢ v
where as before,
' o Gi Ge |
J_)(Gi, Ge) = (J.+1vic;i)(;+1vece)-1ylmie-E;—(hiyeee)+ El-e-(lﬂvi(}) . (30Dp)



H ""_-and ZLarge i k comes from

e e e

N
i
-
-k
i
3

[

e ‘The’ i%ag:tor;. e, varlesrapidly at la.rge k while

- . ‘:Which fCOmeS f‘rom (Gi+ - Gi-) . _va.ri'es ra.pidly a.'t smé,ll N The ‘v integralbvi-s‘;fi, :

. put into the form

. where the pert of the integrand that is & relatively weak function of kiis: ' = .

' 2B ool +dv G ) T R
RIRRC v’? c"’ @ D<Gi 0 >( % <k>)n<ei < >(2 & 5,2 00)
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Sinée the éxpone_ntial part of the in‘cegrand drops sharply '
to zero at both enci poinﬁs_ of fhe contour, the inteéral can be. : |
approximated by the method of steepest descents.'ap This procedure'

is outlined in Appendix I. The result is

dk f(kgt)
12 = " e €

where

|

| " 1/2'
dk  _ [}f (kg3 )l
do 2

’ -0ty =
£(x) = ikz - + 4n g(k)

kai .

and ks i the saddle point, is determined by the equatipn

2-(® wic + .ivi> + g (ksi)

4
£ (k J=-1z+. .
si ksi\ ksi a'i

The steepest descent appfoximation requireé that the contour,

lgs 1 to k = o0 . Thus the position of the branch éut in the k plané

012 s be along a specified path from k = 0 through the saddle point, ,
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:~-f._' - is chosen s0 that’ the resultlng integral for B (Eq. (31)) can be eval-ﬁ.f

uated by the method of steepest descent., Since g(k) is relatively

"slowly varying, anvapproximation,to 'ksi' is dbtained by ignoring the term
g'(.ks:i.)‘

' g (k..sijz '

4o obtain i

e o 2io - @, wLv) o T

e

[f (k- )]:

<< l ,




._7)_'__ .

leads to the requifement

ksi ai

~-w, + iV
@ ic i

L

Ve

Using Eq. (32), it is found that the method-of_steepest descent 1s adequate

at large distances from the boundary. The criterion is

8-7\ ai
z > lw -, + 1iv
ic

1l

The term, %% , 1s approximated by the formula

A 2
%v _ . a‘i ksi . B - . . L - Lo
de _ o
: V3 (o=, +1vy) IR
We also find
2
- 23 -
‘ : . +1v, ) {® =@ 1V,
£kgt) _ [2lemoy 4y J glk_,) = exp -3( glk_,) .
e -7 = exp "JL Qiai | si kSi ai- ' si B

The result is then

«< 1. - : L (33) .




PBo; Oy eXPID ko /. ﬁ&-iv G~ -

e e
B — ’,/
12 - 2 2 : 2
: V3 ¢ (w-~-w, +1iv,) +o =2 @ 2 - 2w 2
\/_ e 1 1p(e, 56, ) 21 D(Gy,C N 5 1y |
S o k=k
A similar result is obtained for B31 .
z 2 . S
5 wﬂnéc+ive - . o -
2 2 kseae ' + 2
2B Suk e @+1v67)
%r‘ﬁ—£@+w +iv) +-2£22 + 2& 2
ee ¢ D(Cy ,C ) "(:_2’?1 D(,Gi’Geq ';‘5"3 -
. B AR .
se
where
> /3
2ilw+w _+1iv) :
_ ec e _
se 2 ‘
aé Z .

.These results are correct when the requirement. (33) and its'analog for the -
electrons are satisfied. The exponentidl parts of the expression for |

B51 an§ Bl2 are then very small. The. term, B3lf’ for the e;ectron
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branch cut is much'smaller than thexterm, B12 s for the ion branch cut

for frequencies satisfying the criterion

® < \/;;C<Dec ¢

This criterion is satisfied by the frequencies in our range of interest.

B may therefore be neglected. ThHe: electron thermal effects which

31

occur in 312 and n2 are also negligible for the frequencies and

wavelengths of interest. This can be explicitly shown by consideration

of the function Ge- which contains these effects.

T2
¢~ o L __ ] elat
€ ka V= j t - Ee
e -~
. -0 . ‘
where
W+ o + 1 v :
gr - ec e :
e ka, T

‘The integral is defined for J_ below the integration path

in the t plane. Since the wave numbers of interest are such tlat
; ’ L .
|

{
b
|
i
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Im_@é' < -0, the integral_has the asymptoticvekpansion for large argument

G~ N -1
e

1 p)
—— ]+ + = +
: (.l)—i-(.l.)ec+1ve ejer )_@eh 8¢re

This expansion differs.from that found in Fried and_Conteel
which is applicable to Ge+ . It is easlly obtained from their expansion

and the use of Eq. (28b) . Since the wavelengths of interest are such that
-l 2
e = Ije ’ > 1,

the first term of the expansion is kept and the rest discarded.

' " This criterion is identical to that used in the sectiqn on the

~

moment equations to neglect théélectron viscosity and higher moments.

Replacing Ge- by the first term in the‘asymptotic expansion énd‘

- neglecting the electron branch cut is equivalent to using the moment

equation for the electron flow velogity and.neglecting electron viscoéity _Y

and the higher moments. Since

B.. o

'-31562
31 &

2 2_+ vl . :v‘ C(35) v

R
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where
-2 |
Re §° > 0,

the contribution of the electron branch cut is not expandable in térms

of -éL and 1is therefore unobtainable from the truncated moment equations.
e

With the electron thermal effects ignored we have

© i2 . o 2
-ﬁ}—-&uﬂnec)G - 429— (l-+ i vy
22 (x)e14= o 09

@.-%—11/ GJ)((DHD 3 -ivym, i;_.l_ » ‘—rh‘;'"'

G)

There is now no electron branch cut and therefore no region 3. B,.=B,=0.

3173

Region 1 now includes what was .region 3 .

"~ D. Comparison of Kinetic Equation Result to Moment Equation Result '

In view of the form of Eq. (35) we define

Y = 1+ (@-o +1v)G

so that a similar expansion of G, reduces Y %o zero when only the

i
first term of the expansion is retained. Expressing hg(k) in terms of

Y leads to the equation




(w-a) )(cn—m) )+ivla)+iY I.(v --%C:v )(amo )+iv vlmie]_:_',

Equation (37) e.grees with Eq. (lt) when Y = 0 “An expansion of; .

. Gl as in Eq. (35) and the retention of the first two terms yields G

' Substitution into “Eqi-(37) ylelds .

N p v (mi+m)a>(a>-a>i +iv) ; g'ig"'

R J

R T e . KT (m [a}m) ]+i AN oy
: [(w'mic?(Mec)+ivl [1 m,m (a)-w +1v )(la}fm Ha)-a) ]+iv w) 2@'2_ |

“ which agrees with Eq. (1l) ZWhén,t_':hve numerator or dénpr_hiﬁatorf-is" expanded
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in the small parameﬁer, -455-,-and-terms of order —-—£4——' neglegted,'.

21 | 2@)
A correspondence is thus seen between the asymptotic expansion
of the functlon, G, and the use of moment equations. -
We show in Appendix II  that the moment equation approach_with

electron thermal effects ignored, leads to the same dielectric constant

that appears in Eq. (36) when ‘G, of Eq. (36) is replaced by its asymp-

totic expansion and the cut in the k plane is chosen at arg k = arg&nﬁbic+ivi).

For X not on this cut, the asymptotic expansion is

| - 1 31 ”Hggm-l)(gmq)... !
G = (w«mi +1v, ) 14 2¢-2 + ¥¢-4 + hee
1 1 (2gfi )

(372.)

Kbeping higher_moments_ig the moment approach is equivalent to keebing
higher terms in this expansioﬁ° ‘Howevef; thé ﬁ;e of thé tfﬁncétedvmomént -
eqtétion precludes any knowledge of the existence of the branch cut, since
these equations lead to_fhé egpression (372) for Gi(k) for all"k.
Since Gi(k) ‘armearsvtévbe single valued, no gutiappears and B, 1is
non-eﬁistent. : |
We will now show that the evaluation of B(z) by the expression
(27) using the first two terms of the expansion of G (that is, using

Eq. (14) for n ) leads to the prev1ous result, Eq. (18)



" . Using the definition of & - above Eq. (18)'we have "

% [1 (m T >w(m-cn v ) T
n (k)—n (k) 1

_I‘_(a)-co )(w—w.o )+ivla3] fl . k /5 ]

e i U B e

¢~ Therefore -~ - .

B ~‘, o

k—kl

. where. kl v'a.nd' k, R
- equation k2 - a_fé_ ‘2 (k) = 0 |

Now

| 'vka‘.v.meria(‘k) = ’l-‘k/S) 1» k./aﬁ)(kweiw .
- Tl e S it ,- i /c? )+§(lk-r)w/c

e

o here

: o T (@ "'q?ic';)-(w:*' me¢,.) + ivlw L
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“I‘hevref'oﬁx;e' '
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el
+
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_ Therefore

(<& + 8 )8
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e AV

» [5 + (1 - 8 g T)a) /c 1 -+ &2 (1 -g)m /c .
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S

acjxIE G{e - % n2(k> : _____%_I_c__e_ <5h-2k282+k)+-8h§ . (a? /cg)’_aggwg /02)
: (62-x2) o o

2k

(8 - ¥*)°

1]

kh_klekge ; 6’2‘[?]&2 - 4(312 N k22)1

using Eq. (38). Therefore

_ iklz
(82 - kle)e '
B(z) =
: RN S

which agrees with Eq. (18).
‘The boundary condition I(z = 0) = O, thatiled to Eq. (18)

when’ the moment equations were used follows from the assumption of

specular reflection.

Thus our expression (27) for B(z) contains the boundary conditions
for all moments since it includes the assumptions: 1. specular reflection
at the boundary; 2. -no gspatially growing solutions.

If one solved the problem using -equations for the momehts

- -y

u, P, Q,“‘Mp » one would find 2n solutions to theﬂgquation>

4
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K - gEé-ne(k) = 0 . Condition: (2) would remove n solutions and
C S ' : o '
condition (1), along with the requirement Bz = 0) = B, would

. determine the n coefficients of the remaining solutions. The
result would be identical to that obtained by using expression (27) with

G, replaced by the first n terms of the expansion (37a).

i

. ]
The moment equations, then, may be incorrect for two reasons:

Firsﬁ, B12’ the branch cut contribution which is unocbtainable from
the moment equations may be significant. Second, the.expanSion (372)
diverges for any finite _@;‘. According to the theory of'asymptotic eXe -

pansions,22 the best numerical approximation to G, is obtained by the use

i
of a finite number of terms of the expansion. The error is of the
order of magnitude of- the last term used. Therefore, the number of moments

that should be retained for a quantitatively accuraté result depends on the

magnitude of

which is not known until the problem 1s solved, that is, k(w) is
found., The retention of too many moments leads to inaccurate results. _. 
E. Solution

We shall solve the problem without.expanding the function, G1 .

D e



s SO
“

g
This necessitates a numerical solution for the wave fields in the

following sense. The full solution is
B(z) = B, + B, + B

where B, and B, arise from singularities and B,, 1is thélbranch'

cut contribution. With the function, G programmed for a computer, it ;'

. i’
is possible to use the computer to point out the'pﬁsitipn of theAsteepest'
desceﬁt'contour and the existence and positions of singularities.  The

~computer is then used to evaluate the resiaue of the integrand at the
singularities and the value of B, . We are then able to find the
vrelative importancé of the branch cut and the Qérious'singularities.
With the electron thermal effects ignofed and usihg.the function

o - , *
Y = l+(w-wic+ivi)Gi we have

v _ : mty, +1V
2 \2, 2 . de 1
eBbei axa»a&c+ivi)(u»4gc) kg exP{ 5(__E;az_f{> }

B

12 (39)

. ' 2 . 2, .
B 2 Xt e ) [, 2- 5 22t e e e D 2-SeP v ()]

where

X(Y) = (00, )(oro. )eiv myE (m 'v)-m v <Me°'§ ; Vi)] (w0
: ic - ec] 1 1i ec’ “ie-l me S
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-and -
5 Y( 5, - s | .
®0° - = “(w+ow )-1o v]
n2(y) = 1 - -2 @Lpt se pe 1 (41)

X(T) o

The "i" subscript on k has been dropped. We use Y* in region

LTand Y  in region 2 when 1ooking for zeros of the function -

' 2
(]

which correspmd to the singularities of the integrand of Eq. 27 .,'
Since the boundary between regions 1 and 2 is the steepest descent
contour, the contour's position in the k plane must be known in relation

to the singularities. A singularity of the function N

k eikz
K e 22 (v
. .

makes no contribution to the solution if it occurs to the left of the

contour in the k plane. Similarly, a singularity of thé.function
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X eikz

k2-‘. %—nz(Y-) o . . .,
c o

makes no contribution to the solution if :it occurs to the i‘ight of the
contour. A preliminary approximation to the contour path is obtained by
ignoring the effect of the relatively slowly verying g(k) in Eq. (31).

The contour is then defined by

In f(k)s Im f,(‘ké‘)ji\; : (See Appéndix 1)

where
2
W -, +1iv
£(k) = 1kz -( ic i>
_ a
i
and ‘ ‘ ’ ‘ : -
/3
2i(w - w, + 1 v )2
= ic i '
k = .
8 z a e ' )
i
Hence
2i(w -, +1iv )2'
ict -4




and
\ 2
D= I VN ok 2
(k) = - = , 5+ ) ¢
i k K
_ s
Let
. iozv
(w—-a)ic+ivi) = Ae

and

k = peie .
The contour is then defined by

Sm(g"‘é"_ 28) 2? sin(ea +.6 = 36_) = -2+ sin(ea - 26 ).

P Pq P :

where
\
ies-

Now .

_ T, 20

% = 5*3 ,



A

8o~

sowe have = . - B

sin 2(x - ) 3 20wy A

o6 N |
+ sin(@ - =) = == sin(S=-3%) . . o .
p Ik o5 2

s ' S

- As p goes to zerp,'the first'term dominates. To keep‘it'finite e ﬁust

""" have © approach «-. As p becomes infinite, the second term dominates.

To keep it finite we must have © approach g- . In the limit of infinite

p, p cos e', the real partzof k, remains finite. We have

3

) T_2% _ 3, sn(E-e
pcos ® = £p_ sin (3 3 ) = 5 pg sin (2 es)
or
3 2 I." N ’ . .l .o . . R
pcos O = 5 pg‘cos es . | . “ | _
The contour has an asymptote at k = % Re ks + _An example of the contoﬁr was

sketched in Fig; 7. v
Using the computer, the function g(k) is included in the deter-
mination of ks and the contour. It is found that g(k) has no effect

on the angular limits. That is
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Iim® = «
o0

and ‘
Lime = % .

fogace.

. However, the asymptote and the contour are affected by g(k) . We define

50 ai
Z = .
near w -~ a&c + i.Yi

At this value of z, we fiﬁdlthat the'contour.path and asypptote'
are radically changed‘by the addition of g(k) when the path passés close to
a singularity; This is precisely the situationlfor_which the path mﬁst
be accurate and hence g(k) must be retained. As z increases, the re-
lative effect of g(k) decreases. |

For z < z s the steépest aescent approximation becomes

neaxr

inaccurate. znear is then the smallest distance from the bouniafy for

which the steepest descent contour and the value of B

1o aTe knownvto

a reasonable degree of accuracy (about 10%) .
F. Resilts

For the parameters



o1-

1k

‘ny = 3.5 « 104 en™>
BO = 1.09 -th _gausg
and. | v a
7 = 2.0"% ana 3 - 10" %

previously used, the results are very'nearly identical to those
obtained from the truncated moment equations. We find ohly two

singularities, whose trajectoried follow those outlined in Figs. 3'and h,

Defining - '
_' ikli
By = 8B e
ikQZ
Bz = geBb e
‘and :
Bip = 85(2) By »

~

we find that the coéfficients; a, and a, , agree td" 1% with those

found from Eq. (18). The sum, a, + 2y, 1s unity to a good approximation.

This means that B,, is negligible at z = O since ;

12

B, = B(0) +B,(0) + B,(0)

requires

I B )

-20 C
Y 2 ear ? P12 ¥ 105 Zpeay 1S‘Qp1te_sma;1, ;ts o
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maximum value is about 3 emat @ = “ﬁé . Thus Blzv'is eompletely’

'negligibie and the truncated moment eqpetieﬁs (electren viscoeityvand ion
heat flow neglected ) freviously used are adeqﬁete for theee low
.temperatures. -

| The next case we consider is

.

T, = 107 %,
wﬁefe we found the criterion for validity of the truncated moment eépations
to be violated. At fhis temperature we still:find two singularities,

kl and k, . However, their trajectories, vhich appeer in Fig. 8, show
thet their magnitudes are smaller than in the lower temperature case of
Fig..h. A third singularity, labeled k3, also appears when £ > l.i.

Tts trajectory is shown in Fig. 8 for 1.1 < & < 1.2. The trajectory

~

is not carried to higher 2 because this singularity does not contribute -

to the solution. ké is & singularity of the function .

keikz
-2
2 .
kW - %— n2(Y+)

c

and it occurs to the left of the steepest descent contours for - Zear

~and z, . = 2z ., vhich are sketched in Fig. 8 for = 1.2.

Only singularities of this function which lie to the right of the contour
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Im(k) CUt\Q«=|-2
. _ a- Zflor 'Znear
' | 0=1.15
| |
I Q=14
la,| |l
a
2 |/ Ky
i
. \ 1.0
|a, | o
£1-0.8
i N
1 2 3 4
Re (k) cm-!
MU-34062

Fig. 8. Trajectories of k1 and k2 and sample branch cuts.
T, = 10°°K.
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contribute to B(z)'.’ Notice that the contour approaches the imaginary axis‘
with increasing z k. At some z >> Zoor ? the steepest descent contour
will be on the other side of k3 at Q = l 2 Then k3 w1ll be part
of the complete solution.: However, at this distance (%10 meters) the
contribution of this singularity to the solution is infinitesimal since
its damping length is l_cmf | |

We therefore have only two distinct waves from the singularities

 with exponential spatial dependence . The branch cut contribution,

312 » Which was negligible at lower temperatures, is nov oh the threshold

of importance. al and aeg‘are plotted in Fig. 8 along'with‘ ale(o).
The maximum value of alé(o) occurs near resonance where alg(O) ~ 0.2.
Thus B(z) may still be approximated By the two exponential solutions.

However, the moment equations incorrectiy describe these solutions. They

must be obtained by the kinetic treatment.

The final case we consider is

'.o N . - R
o= 5:100K . | S

-~

'This case is representative of the low collision frequency regime where )

B is significant We again find two singularities. -Their trajectories'

12
are plotted in Fig. 9 A check of the results using a collisionless

theory shows essentially the same results for kl, k2, l,a and therefore

. o]
12(Z = 0). At T = 5 . 10° X , we have o \
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MU-34063

5

Fig. 9. Trajectories of k, and k T,=5X107 °K.
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v, = T.T° lO5 sec-l <<_(bi¢' = 5.24 - lO7 seé-lf.

Thﬁs collisions are negligible when o ¥ Wyg At‘resonance‘the_function/"

Gi in the index of refraction has the argument

Adv,

7 i
Jdi"ka. ‘
1

1.7 - 107 se'c-l for both kl and . k2_ near resonance

0.045 << 1 . Now for small fi, :

.Since lkail

we have lj&l

Gf’ t%“i’%{ [ji"o@i)e} °

g+ Soif v, K a,

The leading term is independent of v )
or if v, << J|a, k - | , the dielectric constant; Eq. (36),

i i1 "resonance

may be replaced by the simpler result obtained in a collisionless theory,

) = 1+ 2 6, () "a‘KaT{%a;T S (43)
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r with very little change in the solution‘ Bl and 32 . Thé.criterion

- for neglecting collisions at resonance is

< 1.

k a,
: 1

o

We now obtain the value of k_'at resonancé.:'Replacing G by

the first term of the small_ﬁ-expansion we have

Ignoring a, K o c in the third term we have

- 2 2 ‘
Y I U e t1Ve 2 .
) A 2 k a w R
c c i ic
since
w 2 w 2
Pe _ _pi
ec O')ic

; o Since wbi >> wic ; the first term 1s negligible éompared to the

et e
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third. The third term is not negligible compared to the second. It is

about half the magnitude of the second termin this case. This indicates

that the contribution of the electron current to the dielectric consﬁant ”
which produces this term should be kept even at ion cyclotron résonance.7
For the purpose of obtaining an order of magnitude approximation to k,

we ignore it here and obtain

SO

I ML o
k,2 5 :
C ai

Qur criterion is then

'vi 5 c2 vi5 ' noa(Zn A)3 v S . '
¥ a = Tr . N ~ B R < 1 (hh)
i “dic “pi _ 0 -0 ' o |

for ignoring-collisions in obtaining Bl and 52 .
This criterion is of no use for ‘Bi2 . Thé branch cut contribution

is heavily dependent on collisions. Near resonance 'we have
. 3 ' . Y
‘ ' :
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50 a

Z = 1
near v,
and
| v ")
x (z. ) = e PO
s ' near 1 3 ay
' 3
ay (25)
Therefore ' . L
) = 3

(15)

e

at resonance. We ﬁhen have --Gi@-i) . replaced by its asymptotic value for

large argument to obtain

v

In contrast to the case of the singularities where. n i < 1
: i
_ v
and G, 1s independent of v, , we have ! > 1 and G is now
i . i ka 1 ) i

‘dependent on v K '

Thus at higher temperatures, whenethe criterion (44) is satis- ;
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fied, the collisi_oﬁs must 's’till'be_ke_pt for the .i‘n_vevstivgation of the
branch cut contribution when fhiévcontribufion ié eﬁaiuated by the method
‘of steepest deécent.v_ .' |

For this low collision reg;me; the significaﬁce of the brénéﬂ_cut
is further illustrated by;the following occurfence. Referring to
Fig. 9, we .see that the tfajectory of .ké' now remgins near the imaginary
axis throughoﬁt fhe_ffequency range of interest.

When wv < (Dic’ the branch cut is in the ppper left éuﬁrter plane
fér all z and kE ié on -another sheet; ﬁ”kz;w thefefore makes no
contribution to the solutioy. Wheﬁ w >-'wic',.the branch cut is in the
upper right quarter plane for all z and ,k2 contributes to the solutipn.
Of.course, the total solution véries continuously through this apparently‘
discontinuous change in the results; Since B12 is evalugted at =z

a distance at which the contribution of k2 to the solution is less than
38 |

near ’

10° for w = wicxhe'presence or absence of 'k2 is imperceptible.

Az = O 3 therprééénce or absence of ké is important since it has

a coefficiént, a, ~ O0.7for  ~ w, . Since a, = 0.65 for

© o~ by Eq. (42) we must have alg(Q)_ = 0.35 for © < @

and al2(0) = = 0.35 for o > @;, + This illustrates the futility.

of attempting to attribute independenée to each of the three terms Bl;
B, and B12 . The existence of By and B, as solutions and the

value of Bl2- are wholly dependent on the choice of the position of the
branch cut in the Xk plane.

Thus B

1o is significant near resonance in the low collision

5



-99- .

frequency regime. Howevef, the steepest descent approximation we have

used does not give us the form of B.. at small z. =z is of the order
4 : 12 T - near .
. e
of meters for TO = 5 ¢ 10?‘ XK and w = wic'. At thils distance
-38 ~ -16 -
| Bl and 32 are less than 10 Bb‘ and 312 10 Bb . The

steepest descent approximation determines Bie accurately only where
it is small. This result has been useful at low temperatures

‘o .
(TO £ lO5 X) where it demonstrated that B could be neglected -

12
- compared to Bl N 32 ; ‘Aé these higher temperatures hovever, it willf
be necessary to abandon the steepest descent approXimatioﬁ near resoﬁéncé

In order to study ﬁhe behavigr of vBlE at reasonable distances from the
boundary. A nﬁmerical integration of the complex integral in Eq. (30a) B
would have to be performed.' Wé.have not attempted this numerical analysis.
In this low.collision regime where vi << W, > the effects of collisions
may not be adequately représented by the Liboff collision model we have ‘

used. The reasons for this are given in the concluding section.
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IV. SUMMARY, CONCLUSIONS>AND SUGGESTIONS‘FOR FURTHER WORK.
We have shown that collisional effects on the ion cyclotron
wave allow the wave to be déséribed in terms éf 8 cold plasma_theory‘,
(thgt is, via the momentlequatidné with zero pressure tenéor) whehi

the criterion

is satisfied. The dimensions are:

o]
TO 5 Kelvin
Ny s cm-3
B V,*vﬁigmjvmééagémlmm___é

The thermal effects may be included solely through the components
of the ion pressure tensor that lead to viscosity if the resultant waves
have

|k a, |

’Vi.

at resonance:. ' A:coarse and jeséimistic criterion for

<1

% o, |

vy

< 1

is
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11/2

. | . .
EXW . o 2a,, @ Ty 107 By T o
Vi K v, v.2 Pm n 2 (4n A)3 . SRR

1 i i 0

1r €°~ 1, the resultant waves might still have |

x a| -
A
i .

If, on the other hand, the resultant waves have -

oyl

v, 7=
i

.thé momént equation approach must 5e abandoned. We_haQé shown that»undér
these_conditions, the use of even higher moments than the pressufe ﬁensor
is of'no help. We proved that the addition of each higher moment is equi- -
valent to keeping another term in an asymptotié éxpansion of the plasma
dispersion function. Since the asymptotic expansion is invalid for

Ix s, | | - |
1 1, | o

R\

vy

we know that the moment expansion will be incorrect when

ke,

1.
v, B
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' Using the kinetic approach we showed that the solution of a_bouniary '

value problém for the waves qontains 8 new.term which can be important neaf
- resonance at low collision frequencies. This terﬁ has the -exponential

dependence | ; ' _ p

. r b‘)’w-'.'».'l'ivi 2/3 -
eXP§'5<\ — z2/5'

21 ai

at large z, which led Shaf;anov;%?, who discoieréd a similar tefm using
a collisionless theory fqr.the electrén cyclotron wave, to call it the
dominant term nearresonance . We have shown that this term is ngither»
dominant nor negligible near resonance for low collision frequencies and
that its value is negligibly small and strongly dependeﬁt on collisions

' at large 2z, where the

1]
s
ey
Y
aE
H
g MR
]
+
Ho
HF
N
n
>
| S |
NI\)
o

e

dependence is valid.

According to our kinetic model, collisions have no effect on waves

Y

with dependence elkz ‘near resonance if v, < .[k ail . Using the

i .

‘collisionless theory to estimate X .at resonance we find the criterion for
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neglecting collisions to be

m, 2 v, B noe(zn A)B 3 s _. o

1 i i o
e = e <L 1.
- o2 : 11/2. T
2/ TOwicwpi | 3 By T, ‘
‘Fig. 10 is a logarithmic plot of the lines €= 1, € = 1, and
¢’ = 1 as a function of density and temperature for the case Bo=th gauss. -

Tﬁe four cases we have treated ére marked by circles.
The region below the line: éx>: 1 consiéts of the valués‘of
ho and TO for which the thermal effects may be ignored. Between
this line.and the line eo = 1, the thermal effects may be introduced

by ion Viscosity alone. Thus below éo = 1, the moment equation apprdach with |

heat flow neglected is valid. Above the line e = 1, the kinetic treat-
 ment must be used. Above the line &' = 1, the collisions have no effect
on the waves with elkz dependence according to the collisional model we |

use. In this region, the new term becomes important but is iﬁédeqpately
described without numerical analysis.

Further work will be necessary for the region above the line
€' = 1. This region where numerical analysis willl be necessary is also
the regiﬁn where the relaxation collision model of Li‘boff;13 which we have
used, may be insufficient for the description of cpllisionalveffects;‘.
J. P. Dougherty25 .has‘recently'introduced a model Fokker-f&anck equatién

for the collisions of a single species of particle. His model, though
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simpler than the integro-differential Fokker-FPlanck ’9'equation previously
mentioned, still requires numerical analysis. He shows that if -

vy << d&c his model predicts larger effects of ion-ion collisions

when applied to ionospheric radar scattering than does a simpler model of .

the form we use. When vy u&é s both models give similar results.

Y
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APPENDICES

Appendix I.A Steepest Descent Method.

Given the contour integral

(k)

whére the integrand yanishés at the end points of the contour, we fifst

find a saddle point, ks , of the function defined by
ac\ : o
a-g) | = 0 ., v . o
X . .
. s ‘ : ,

We then expand the function in a Taylor series about the

saddle point.

N , the saddle point. If the function is analytic along this line, the line

S, L

We deform the contour, ¢, to lie alohg the line of steepest descent through'
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is defined by the equation
Im £(x) = Imf£(k) .

The Cauchy-Riemann equations.for an anélytié function'Show
that the gradient of the real part of f(k) lies along this line.
Thus Re f(k) rises from a negative large value at the start of the
contour to a maximum value gt k = ks and then droés to a negative

iarge value at the end of the contour. Let

14 7"t '
£(x ) £ (k)
2 s 2 s 3
0" = =57 (x ks) * =353 (x - ks) Fooe .
Then
£k ) 2
s -0 dk
I = e e a‘a-dd.

The series expression for 02 can be inverted to obtain ek

The result is useful when the first term is dominant. The validity cfi-

]

terion then is : : : s

.
s
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Neglecting f"'(ks) and higher terms, we find %% independent

of ¢ and the final result is B

dk’ , ¢ S dk
E fe «‘L.dO' = \/? a.—o;e

where the limits of integration have been extended to plus and minus in-

finity which is consistent with the approkimation.

. &

E——
e o,
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© The Moment.Equation Approach'” 

Weﬂobtaih an expression for the dielectrié cohstant using the

moment equations for the case of the left-handed circularly polarized wave.,

Since the left-handed circularly polarized wave gives rise to a

perturbed distribution of the form

i i(kz-wt
£,7 = f(YL’ vz) e ? ei( z-0k)

‘
§

1jk-';£ s will have all components zero except

those with one x or y subscript and the rest z{.T_ Sinceithe moments

are;symmetric we may consider simply Mzz-»~zx and Mgz'Qozy . These
. - + .
two are not independent since M§z~--zx = 1 Mzz--ozy . Thus ﬁhe.ln-
formation is contained in ﬁ£ = Mh(? -1 ?)ei(kz-am)" The full
‘moment is then | » ) i )
- .
MY = B5eceBM 4+ 8B M2+ ot 4 M B2 ee. 2.
n : n- , n :

The subscript "n" on M, denotes the rank of the moment. Using the

Hermite polynomials we have the general moment equation for h > 3,

Eq. (1le) ,

T This is a result of the ¢ dependence of fil‘.
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e A e A 1 e e

g - e

, .
<P e
- STt VT 20 + 5 ,
2 2z (R-1F) 222+ . (R~1
N rd
T 23
e 2 - 1) g_rmn-j
m z
1 L \
2.+ (%-15)
vhich yields
A‘. ’ T
STVt O .’z‘x)Mn tse Mt (n -
’ i
/
ar
: o k To(n.'- 1)
(o ~ o/, +1 vi)Mn = kM .+ a
Ignoring the moment, MS 417 we have
X T4(s - 1)
M, = —M L,
s mi(a)—coicﬂvi) s5-1
. g k M kT (s -2)
3 M = . + -
s-1 (o - @, +.i vi) mi(w -wy, +i V_i)

, ' or
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and finally

kT _ ¥k T.(s = 2)
0 M 0
- v - vmi(a)-wic-i-lviT s=2 ) mi(w -, 1 vi)
s=-1 k2 TO (S - l) 1 - (S -21)
1 - - 2f
m, (w-w, +iv )2 i
i ic i
then
(S -2) M
g s -2 . .
- = - . . -
g2 1 - (s %) mzw—a)lc+ivl) s -3
20, '
<1 ,
or
k Ty(s - 3) | -
y —m(w~wic+1vi) 5 - 3
s=2 s - 2)
1->7
eﬁi
- 2
2,

»,
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2k TO Mé |
miﬂm-wic+1v;7‘

My =B =T

1 -

A1l the moments are retained in the 1limit of infinite s .

We replace the contihued fraction by the quantity o . That is

. - ok T, M,
- T m{w-m, iV,
u&w-mlc+1vi)

where

a = 1
.—.l..—._é_ il
o
2
.i' . .
] —
1_.____._._(5_15»
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Now M2 = T . We thus have an equation for q in terms

Equation (13) is then

- Tie a To | J :
oy %-wic’u m. V1 " W (omm, Fiv )(1-%_) Uy simgeVaue
_ i i ic i _@r .

If we define

G = =B
(w = wy + 1 vif
where
. 2
1 N x T
. - ,
P m{w -, +31vV )QQ. - —9-‘-)
i ic 1 ge -
. i
that is
1
B = il
1-—=5
g,
2
1 -
2
1 -

»
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we" have
m, S N
- == -1iym+ivm, { v, -im, v . u = ieE . ’ - i
G 11T liel i~ Tiel e~ T R
The electron equation
T dm, vou, +mwtw )u = -ieE
Mie Y1 M- e(w wéc) e- S

then completes the problem to yield

o 12 H_ w 2 o
2w+ Yo - (14+1v, G)
W ec w i

2 :
To= 14 ' 5 T +1v, G
(l+1viG)(aﬁméc)—ivlmie az-(w + wéc) - ——-jigf-___
which agrees with Eq. (36) if ¢ = G -

The'question of the equality of G and Gi is & problem of the

theory of continued fractions. The point here is that the approximate
evaluation of the continued fraction by truncation of the serieé of

moment equations can be related to the asymptotic expansion of the function

G, .
l .

Neglecting the moment M_,, , stops the continued fraction at the

[
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term,
S

1 - .
2
2f.

We then have
_ _ 1
ﬁ BS - l _ l

Using the expansion,

1 2 3

= 1 +X+ X 4+ X 4 v

we'lkobt'a.in by induction;

L - +—3-—H+....(2S'l)(25'3)'“ ' .lv+, :Ov’_
- 2@1 uji . (2%.)

4

v e s e, < < e
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No terms in

1
1

S+ _ ) | o
(2@’12) o » : o - e

or higher are kept since the poéfficie_nt of these terms would be tincorrect_

without the inclusion of the higher moments. The. aéymptotic expansion

21
of Gi is
' 2 : - v .
t 1Ve -gi 1 1 3 (2s-1)(25=3):++3-1
G, ——7e - 1+ + FIPIPPR A S cen
17 kag (qa-a)icﬂvi) 2&52 ug N .S
- 1 1 (24,%)
" Where 4
_7+ = 2, Yy~ =0 ' for Im _@'i < 0
7+_= L, . oy =1 ' - for. Im_gi = 0
7= o 7 =2 . for Im@i > 0 .

The series terms agree with the expansim of B . The first term
on the right-hand side of the expansion is non-zero if Gi is analytically
continued across the real axis in the t plane. If we cut thé k plane

at arg ¥ = arg(w - @, + ivi), G, is not continued past the real axis

and this term vanishes. Then

i

-1 '
G, - B .
i (o - o, . ‘+. i vi) lo's)
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