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Abstract 

In typical development, word learning goes from slow and 
laborious to fast and seemingly effortless. Typically 
developing 2-year-olds are so skilled at learning noun 
categories that they seem to intuit the whole range of things in 
the category from hearing a single instance named – they are 
biased learners. This is not the case for children below the 
20th percentile on productive vocabulary (late talkers). This 
paper looks at the individual vocabularies and word-learning 
biases of late- and early-talking toddlers. Experiment 1 shows 
that neural networks trained on the vocabularies of individual 
late talkers learn qualitatively different biases than those 
trained on early talker vocabularies. Experiment 2 confirms 
the novel predictions made by the simulations about word 
learning biases in late- vs. early-talking children. The 
implications for diagnosis and intervention are discussed. 

Keywords: Late talkers; early talkers; computational models; 
neural networks, word learning. 

Introduction 
There is extraordinary variability in the vocabularies of 

very young children. A two-year-old in the lower 10th 
percentile may produce around 10 words whereas a two-
year-old in the top 10th percentile will produce well over 
300 (Fenson, Dale, Reznick, Thal, Bates, Hartung, Pethick, 
& Reilly, 1993). In general, the course of word learning 
proceeds from slow, effortful learning of nouns and of the 
range of things that belong in a category, to very rapid 
learning of object names. Indeed, typically developing 2-
year-olds are so skilled at learning new nouns that they 
seem to intuit the whole range of things in a named category 
from a single naming experience. This is not necessarily the 
case for children below the 15th-20th percentile on 
productive vocabulary, or late talkers. Why do some 
children learn words quickly and early and others learn 
words slowly, maybe even showing effects that persist into 
adolescence? This paper looks at two possible contributing, 
and interrelated, factors: noun vocabulary composition and 
word learning biases 

The evidence suggests that children are skilled noun 
learners because they know about the different kinds of 
properties that are relevant for categorizing different kinds 
of things. Typically-developing children show word 
learning biases that are specific to different kinds of things: 
they generalize names for solid objects by shape and names 

for non-solid substances by material (e.g., Soja, Carey, & 
Spelke, 1991). 

The evidence also suggests that children learn how to 
learn nouns – and learn how different kinds of properties are 
relevant for different kinds of things – as a consequence of 
learning names for things. Each noun the child learns 
appears to teach the child something general about how to 
learn new nouns that name things of that same kind, and 
critically, at the same time, this learned general knowledge 
constrains and facilitates the types of nouns the child will 
learn next. Through computational models and a study with 
toddlers, we show that even before they turn 2, late- and 
early-talker toddlers show different word learning biases.  

Vocabulary composition and word learning biases 
The relationship between vocabulary composition and 

word learning biases has been typically characterized in one 
of two ways: abstract knowledge guides, facilitates and 
indeed allows word learning (e.g., Soja et al, 1991; Gelman 
& Bloom, 2000) or the words that have been learned give 
rise to, create, and in fact constitute generalized knowledge 
about word learning (e.g., Colunga & Smith, 2005, 
Samuelson, 2008). We would like to bypass the debate on 
whether word-learning biases are the egg to the vocabulary 
chicken or the other way around and focus instead on the 
interrelationship between these two factors. 

 In the domain of names for objects and substances, and in 
typical development, vocabulary structure and abstract 
knowledge in the form of kind-specific generalizations 
appear to be tightly coupled. First, the tendency to attend to 
shape in the specific context of naming artifacts emerges as 
children learn nouns, becoming particularly robust around 
the time children have between 50 to 150 nouns in their 
productive vocabulary (Gershkoff-Stowe & Smith, 2004). 
Second, the order of development of these word learning 
biases reflects the statistical structure of early noun 
vocabularies, (Samuelson & Smith, 1999; Colunga & Smith, 
2005). Third, changing 17-month-olds’ vocabulary 
composition by intensively teaching them names for 
artifacts yields an early bias to generalize names for artifacts 
by shape and accelerates learning of object names outside 
of the lab, causing a dramatic increase in vocabulary size for 
children in the experimental training group but not for those 
in the control groups (Smith, Jones, Landau, Gershkoff-
Stowe & Samuelson, 2002). Fourth, computational models 
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trained on the structure of the average 30-month-old 
vocabulary, show word learning biases like those of young 
children when processing new objects (Colunga & Smith, 
2005), and further the structure of the training set affects 
subsequent training, facilitating the learning of some sorts 
of categories but hindering others (Colunga, in prep). 
Altogether, these results suggest a developmental feedback 
loop between learning object names, developing biases to 
attend to the relevant properties for artifacts, and the 
learning of more object names. 

Late Talkers 
Children below the 15th-20th percentile on normative 

measures of productive vocabulary size, so-called late 
talkers, are not a homogenous group in terms of their 
developmental outcomes: some catch up, and some show 
persistent delays (Rescorla, 2002, Rescorla, Roberts, & 
Dahlsgaard, 1997). However, Rescorla and colleagues argue 
against considering late talkers and typically developing 
children as distinct groups, and argue instead for 
conceptualizing them in terms of a “language endowment 
spectrum.” Importantly, although there is continuity in 
vocabulary measures at the group level, the outcome for 
individual children cannot be accurately predicted on the 
basis of vocabulary production or comprehension (e.g., 
Desmarais, Meyer, Bairati & Rouleau, 2008). 

The literature briefly reviewed above suggests that, in 
typical development, the words a child knows and what the 
child knows about learning words in general go hand in 
hand, and that learning names for categories of things 
organized by shape speeds up learning nouns. However, this 
may not be the case for all children. Unlike typically 
developing children, late talkers do not systematically 
extend the name of a novel solid object to other objects that 
match it in shape, and in fact, in one study, almost half of 
the late talkers systematically extended the novel name of a 
solid object to others matching in texture rather than shape 
(Jones, 2003). Recent evidence suggests that the 
vocabularies of children of different language abilities may 
be structured differently (Colunga & Sims, 2011; Beckage, 
Smith & Hills, 2011). These findings suggest that late 
talkers may not just limited in their production of object 
names (the measure that defines them as late talkers) but 
also deficient in the processes that subserve the acquisition 
of new words and in their knowledge about those categories. 
The crucial question, then, is whether these differences in 
vocabulary composition are differences that matter. Do the 
different nouns late- and early-talkers know yield different 
word learning biases? In two experiments we test the 
relationship between vocabulary composition and word 
learning biases, first in neural networks (Experiment 1) and 
then with 1-year-old toddlers in the lab (Experiment 2). For 
the purposes of this paper we will focus on contrasting the 
vocabularies of children on the two opposite ends of the 
spectrum, late talkers and early talkers. 

If the differences in vocabulary structure can, to some 
extent, explain the differences in language ability, we would 
expect late talker vocabularies to yield different word 

learning biases than early talker vocabularies. More 
specifically, we would expect early talker vocabularies to 
yield word learning biases that would facilitate the learning 
of a vocabulary structured like the MCDI – highlighting 
shape similarities for solids and material similarities for 
non-solids. In contrast, we would expect networks trained 
on late talkers’ vocabularies to generalize more variable 
word learning biases, and perhaps even biases that would be 
unhelpful in learning early vocabularies. 

Experiment 1 

Method 
Materials. The vocabulary measure used was the Bates-

MacArthur Communicative Developmental Inventory 
toddler version (MCDI) both to select children and to 
measure vocabulary composition.  This is a parent checklist 
that asks parents to indicate the words that their child 
produces and although it is imperfect as a measurement 
instrument (Fenson, et al, 1994) it appears to be reliable and 
to be systematically related to children’s performances in a 
variety laboratory measures of word learning, including 
especially their word-learning biases in the Novel Noun 
Generalization (NNG) task (e.g., Landau, et al, 1988). 

Participants. The vocabularies of 15 late talkers and of 
15 early talkers were selected out of a pool of 148 parent-
filled MCDI forms for children between 18-30 months of 
age. The criterion for inclusion was that there existed a 
vocabulary form from a child matching in age to within 5 
days in both the late talker and the early talker groups. Late 
talkers fell under the 25th percentile; early talkers were 
above the 75th percentile according to the MDCI norms. 

The ages for the two language groups ranged from 18.49 
months to 28.26 months (M=23.14 and 23.15 for late and 
early talkers respectively. Vocabulary sizes for the late 
talker group ranged between 15 and 425 words (M=132.53); 
for the early talker group vocabulary size was between 158 
and 664 words (M=457). 

The noun vocabularies for each individual child were 
characterized by looking at the proportion of nouns they 
knew for each of the following categories: 1) solid things 
alike in shape (e.g., spoon), 2) solid things alike in material 
(e.g., chalk), 3) solid things alike in both shape and material 
(e.g., penny), 4) non-solid things alike in shape (e.g., 
bubble), 5) non-solid things alike in material (e.g., milk), 6) 
non-solid things alike in both (e.g., jeans). Nouns in 
children’s vocabularies were classified as falling in each of 
these categories according to adult judgments made for each 
of the nouns in the MCDI reported in Samuelson & Smith, 
1999. The training sets were then constructed to mimic the 
vocabulary composition of each child (see below). 

Architecture. The computational models are a modified 
version of the ones Colunga & Smith, 2005. The main 
difference is that these networks were trained using the 
Leabra algorithm, an algorithm that combines Hebbian and 
error driven learning (O’Reilly, 1996), instead of 
Contrastive Hebbian Learning as in the original simulations. 
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The networks are organized as follows: Words are 
represented discretely (as single units) and are input on the 
Word Layer (Figure 1). Referents are represented as 
distributed patterns over several dimensions on the 
Perception Layer. For example, the shape and material of an 
object (say the roundness of a particular ball and its yellow 
rubbery material) are represented by an activation pattern 
along the Perception layer. Solidity and Non-solidity are 
represented discretely; one unit stands for Solid and another 
for Non-Solid. Finally, there is a hidden layer that is 
connected to all the other layers and to itself. These 
networks have been shown to model performance in an 
analog of the NNG Task when trained on vocabularies 
structured as those of the average 30-month-old.  

  Figure 1: Architecture of the network and example 
input patterns. 

 
Training. The networks are trained with categories 

presenting the same correlational structure as each 
individual child’s noun vocabulary.  On each training trial, a 
word is paired with a referent. The patterns associated with 
each word are determined by adult judgments of the early 
noun corpus.  For example, adults judged balls to be similar 
in shape but different in material.  To simulate this, we 
randomly selected an input vector to represent ball shape.  
Then on individual training trials, we paired that pattern 
with the label ball and a randomly selected material pattern 
(Figure 1). We do this for each noun in the training set. 
Each network was trained in this way for its simulated 
vocabulary until they reached asymptotic (and near perfect) 
performance.  This part of the simulation is intended to put 
into the networks the lexical knowledge that the individual 
child would bring to the laboratory NNG task. 

Because we are interested in the consequences of different 
vocabulary structures regardless of their size, all networks 
were trained to learn 24 nouns, proportionally structured 
like their corresponding child’s vocabulary. Thus, the only 
difference between networks were the differences in 
vocabulary composition for each individual child. 

Testing. The question is what sort of word learning bias 
will the networks learn given different vocabulary 
structures. We address this question in a virtual version of 
the NNG task.  On each test trial of the virtual NNG task, 
we presented the network with three novel entities (one at a 
time) on the perception layer – an exemplar, and two choice 
items, one matching the exemplar in shape only and one 
matching in material only.  For each of these three inputs, 
we recorded the resulting pattern of activation on the hidden 
layer.  This is a measure of how the network represents 
these items.  If the network emphasizes the shape of the 
item then the similarities of the internal representations for 
the exemplar and its shape matching choice should be 
greater than the similarity of the internal representations for 

the exemplar and the material matching choice. If, 
however, the internal representations highlight the 
material of the items, then the similarity of the internal 
representations for the exemplar and the shape matching 
choice should be less than the corresponding similarity of 
the exemplar and the material matching choice.  We used 
these similarities along with Luce’s choice rule to 
calculate probability of choice using these similarity 
measures in order to predict performance in the novel 
noun generalization task. 

In previous work these models have been used to 
demonstrate the plausibility of the idea that the 
correlations in the early noun lexicon are sufficient to 
create second order generalizations – knowledge that any 
solid thing should be named by shape, and any non-solid 
thing should be named by material. The present 
simulations extend this work to variable vocabularies of 
individual children in the bottom and top ends of the 
language endowment spectrum. 

Results 
The networks’ predictions for each of the fifteen 

vocabularies of early talkers and late talkers are shown in 
Figure 2. In short, using a cut-off of at least two standard 
deviations above or below the 50% chance level mark, all 
networks in the early talker group show a shape bias for 
solids, and 12/15 early talker networks show a material bias 
for non-solids as well. In contrast, 12/15 late talker 
networks show a shape bias for solids and only 3/15 show a 
material bias for non-solids. Interestingly, 6/15 late-talker 
networks show a shape bias for non-solids, a novel 
prediction that has not been empirically tested so far. To 
further analyze the networks’ performance, networks were 
classified according to the observed generalization patterns: 
correct if they showed a shape bias for solids and a material 
bias for non-solids, half-right if they showed the appropriate 
shape bias for solids but no consistent bias for material, or 
wrong, if they showed an incorrect overgeneralized shape 
biased to non-solids. A chi-square test showed these types 
of word learning biases were distributed differently in late 
talker and early talker networks, X2(2,15)=14.743, p=.0006 
(Yates’ p=0.004). 
 

Solidity Material Shape 

Word Layer 

Hidden Layer 

Perceptual Layer 

                          
Shape Material Solidity 

                          
                          

ball 

ball 

ball 
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Figure 2. Predicted proportion of shape choices for each 
of the early talker and late talker networks 

Discussion. 
The results of the simulations suggest that the differences 

in noun vocabulary composition between late- and early-
talking children may result in differences in word learning 
biases. The word learning biases learned by these networks 
can be interpreted as predictions at the group level. First, the 
networks make a novel prediction about early talkers. A 
majority of the early talker networks show material biases 
for non-solids. Previous findings have shown that children 
at this age  (18- to 30-month-olds) show a material bias for 
non-solids only when offered extra cues. For example, Soja 
(1992) showed older 2-year-olds have a material bias when 
offered supporting syntactic and visual cues, and Colunga & 
Smith (2005) showed an early material bias for non-solids 
that were presented in simple shapes for older 1-year-olds. 
However, children in general do not show a robust material 
bias for non-solids until around age 3 (Samuelson & Smith, 
1999). Thus, this is a novel prediction that warrants testing: 
the networks predict that early talkers, unlike the general 
population, will show an early material bias for non-solids 
even without supporting cues.  

The networks also make predictions about the patterns of 
novel noun generalizations one should expect to see in late 
talkers between 18 and 30 months of age. As a group, late 
talkers should show a shape bias for solids, with about half 
of them overgeneralizing this shape bias to non-solids as 
well. In Experiment 2 we test these predictions with late- 
and early-talker toddlers in the lab. Additionally, we run 
neural network simulations based on the composition of the 

individual vocabularies of these children to replicate the 
pattern found in Experiment 1. 

 
Experiment 2 

Method 
Participants. Nine late talkers (5 girls) and 8 early talkers 

(4 girls) between the ages of 18 and 22 months (M=19.4) 
were selected out of 32 children recruited as part of a larger 
study. As in Experiment 1, the criterion for inclusion was 
scoring at or below the 25th percentile for late talkers and at 
or above the 75th percentile for early talkers.  MCDI scores 
ranged from 5th to 20th percentile (M=8.9) for the late talkers 
and between 75th and 99th percentile for early talkers 
(M=91).  Vocabulary sizes for the late-talker group ranged 
between 9 and 82 words (M=33) and between 151 and 526 
words (M=376.3) for the early-talker group. 

Stimuli. The stimuli consisted of a warm up set, a solid 
set and a non-solid set. The warm up set had an exemplar, a 
red plastic ball, two other balls (a tennis ball and a green and 
blue rubber ball), a plastic spoon, a toy carrot, and a toy cat.  

The solid set consisted of an exemplar, an orange fuzzy 
round container, and 5 test items: two items matching the 
exemplar in shape alone (iridescent green bumpy round 
container and golden glittery round container), two items 
matching the exemplar in material (fuzzy blue irregular ring 
and fuzzy orange hook-like shape, and one matching in 
color (orange mesh polyhedron). The non-solid set was 
similarly structured and consisted of an exemplar (purple 
craft sand mixed into Noxzema in a rounded elongated x-
like shape), two material matches (green sand + Noxzema in 
an asymmetric s-like shape and red sand + Noxzema in a 
lollypop-like shape), two shape matches (elongated x-like 
shapes made out of sawdust or purple shaving cream), and a 
color match (purple hair gel in an hourglass shape. All non-
solids were presented on flat, square, plastic foam boards. 

Procedure. In the warm-up phase, the experimenter 
presented all six toys to the child and allowed him or her to 
look at them and handle them for 30 seconds. Then the 
objects were removed and immediately placed back on the 
table outside of the child’s reach. The child was then shown 
the exemplar ball and told, “look at this ball.” Then they 
were asked to “get a ball” or get “another ball.” If the child 
failed to retrieve a ball, the child was asked one more time, 
and finally was told “here’s another ball,” handed the ball, 
and allowed to get it one more time on request. If the child 
got one of the non-ball distracter items, they were told, 
“that’s not a ball, that’s a ____” , then the distracter was 
replaced on the table, and the child was asked again for it. 

The procedure during the test phase with the solid and 
non-solid novel sets was the same, except that no feedback 
was offered. Children were shown the exemplar and told, 
“Look at this dax” and then asked to “get a dax” or “get 
another dax” for the solid set or “get more dax” or “get 
some dax” in the non-solid set. Children were asked to get 
another (or more) until they indicated that there were no 
more. Thus, solids were presented with count syntax 
supporting an object construal and non-solids were 

Early Talker Networks

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p
r
o

p
o

r
ti

o
n

 s
h

a
p

e
 c

h
o

ic
e
s

Solid

Non-solid

Late Talker Networks

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p
r
o

p
o

r
ti

o
n

 s
h

a
p

e
 c

h
o

ic
e
s

Solid

Non-solid

249



presented with mass syntax supporting a substance construal 
(Soja, 1992). The solid set was always presented before the 
non-solid set, and there was a 5-minute break and a change 
in testing rooms in between the two test sets. 

Coding. To incorporate order information into children’s 
choices, and because all children made at least three choices 
for each test set, their choices were coded as follows: 3 
points for the item that was 1st choice, 2 points for the 2nd 
choice, 1 point for the 3rd choice, and 0 points for other. 

Results 
Simulations. The simulations based on individual 

children’s vocabularies showed patterns comparable to the 
ones in Experiment 1. For the early talker networks, 6/8 
showed shape and material biases, and the other two showed 
only a shape bias and no robust material bias. None of the 
early talker networks showed incorrect biases. For the late 
talker networks, all eight networks showed a shape bias for 
solids, but only one showed a material bias for non-solids1. 
In addition, 4/8 late talker networks showed an 
overgeneralized shape bias for non-solids. A chi-square test 
showed these types of word learning biases were distributed 
differently in late talker and early talker networks, 
X2(2,8)=7.77,  p=.02 (Yates’ X2= 4.54, p=0.103). 

 
Figure 3. Scores for shape and material matches for 

solids and nonsolids for early- and late-talking toddlers. 
 
Word learning biases. The simulations in Experiment 1 

predicted that early and late talkers would show different 
word learning biases, and predict specific patterns of novel 
noun generalizations for solids and non-solids for these two 
groups of children. We first look at the data of all children 
together and then evaluate the predictions for each language 
group. We submitted both groups of children’s scores for 
the shape and material test items for the solids and non-solid 
sets to a 2 (language group: early, late) x 2 (solidity: solid, 
nonsolid) x 2 (dimension: shape, material) mixed ANOVA. 
Figure 3 shows the average score for the items that matched 
the exemplar in shape or material for the solid and nonsolid 
sets for both language groups. There was a main effect of 
dimension, F(1,29) = 4.77, p = .045, η2 = .24; overall shape 
matches had higher scores than material matches. There was 

                                                             
1 One late talker child had no nouns, so no network was ran for 

that child. Thus, only 8 late talker networks were ran. 

also a significant interaction between solidity and 
dimension, F(1,15) = 15.6, p=.001, η2 = .51. Post-hoc tests 
showed that across both language groups, children were 
more likely to choose the shape over the material match for 
the solid set, t(16) = 4.03, p=.001, but not for the nonsolid 
set, t(16) = -.613, n.s. The three-way interaction between 
language group, solidity, and dimension was marginally 
significant, F(1,15) = 4.33, p=.055, η2 = .22. 

The language-group-specific predictions made by the 
models were tested by analyzing the two groups separately. 
First, the prediction that early talkers would show a robust 
shape bias for solids and a robust material bias for nonsolids 
was confirmed by a 2 (solidity) x 2 (dimension) ANOVA 
revealing a two-way interaction between solidity and 
dimension, F(1,7) = 26.15, p = .001, η2 = .78. Furthermore, 
planned comparisons (all two-tailed) showed that this 
interaction came from early talkers’ shape bias for solids 
(t(7)=3.06, p=.018) and material bias for non-solids (t(7)=-
4.46, p=.003). Second, a similar analysis on late talkers’ 
scores revealed a main effect of dimension, F(1,8) = 5.5, 
p=.047, η2 = .41, and no other main effects or interactions. 
Planned comparisons showed that late talkers had a shape 
bias for solids, t(8) = 2.57, p=.033, but did not 
overgeneralize the shape bias to non-solids as a group, t(8) 
= 1.1,  n.s. However, 4 out of the 9 late talkers in the study 
showed a shape bias for non-solids (a difference score of 
more than 3), and none of the early talkers did. 

Discussion 
The results of Experiment 2 confirm the predictions of the 

simulations in Experiment 1. Early talkers show a shape 
bias for solids and a material bias for non-solids; late talkers 
show a shape bias for solids that can be over-generalized to 
non-solids. It is important to note that these predictions 
work at the group level and not at the level of individuals. 
For example, although four late takers showed an 
overgeneralized shape bias for nonsolids in both the 
behavioral tasks and in the network simulations, these were 
not the same children; only two children showed this bias in 
both the simulations based on their vocabularies and their 
performance in the behavioral task. The behavioral task, and 
probably the vocabulary measure as well, lack the finesse to 
make predictions at the individual level based on a single 
data point. We return to this point in the general discussion. 

The results of experiment 2 are in line with previous work 
noting a relationship between the number of nouns in a 
child’s vocabulary and their word learning biases, but they 
extend it in important ways. The finding that early talkers 
show robust word learning biases for both solids and non-
solids at not even two years of age is new. Although one 
might have predicted this pattern of results a priori from 
either the empiricist or the rationalist sides of the word 
learning debate, or even just from the idea that early talkers 
might excel across tasks, the prediction came from the 
models. Harder to predict without the networks, however, is 
the pattern found for the late talkers. In fact, at first glance it 
seems to contradict what we know about late talkers; that 2- 
to 3-year-old late talkers lack a shape bias while their same-
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aged peers already have a well-established bias. However, 
the prediction from the networks, and our findings on the 
patterns of word learning biases in very young late talkers, 
before the age of 2, can help us understand the processes 
underlying word learning in general. 

Gershkoff-Stowe and Smith (2004) followed eight 
children as they learned their first 100 nouns, looking at 
their word learning biases for solids and their vocabulary 
growth every three weeks. Their results show that as 
children’s noun vocabulary increases, so does their attention 
to shape. They set the emergence of the shape bias at around 
the time children acquire 50 nouns. Our results suggest that 
this relationship may be different for late talkers. None of 
the late talkers in Experiment 2 reached the 50-noun mark 
(though a couple were on the cusp), and yet they overall 
showed a robust preference for shape for the solid set in our 
task. Curiously, although attention to shape increased with 
vocabulary size in Gershkoff-Stowe’s study, the lower 
vocabulary group did show a preference of shape over 
material. This suggests an intriguing possibility: These 
models do not make a distinction between naming and non-
naming contexts. It is possible that the shape preference for 
solids here is not a true shape bias, but rather an 
overgeneralized heightened attention to shape. The fact that 
about half of the late talkers showed an overgeneralized 
shape bias for non-solids suggests that this may be the case. 

General Discussion 
The work presented here makes two main contributions. 

First, the findings of these two studies show that late talkers 
and early talkers know different sorts of nouns that lead to 
qualitatively different word learning biases. Importantly, 
these differences are shown within a computational model 
that has been previously shown to capture various aspects of 
novel noun learning, suggesting a promising use for 
process-level computational models. Efforts to tease apart 
the contributions of different factors to outcomes in late 
talkers have come up with some characteristics that put 
children at higher risk, but the underlying mechanisms are 
not well understood. The work of Ziegler and colleagues in 
the domain of dyslexia offers a good example of the 
potential for using computational models – and specifically 
models that operate at the mechanistic level – in simulating 
individual differences and further understanding subtypes in 
atypical development (Ziegler, Castel, Pech-Georgel, 
George, Aario, & Perry, 2008). Thus, the models presented 
here are a promising first step in leveraging computational 
models to aid in the understanding of why some late talkers 
catch up and others do not. 

Second, these models represent an important extension 
over previous word-learning modeling efforts in that they go 
beyond modeling the performance of the mythical average 
child to making predictions about the performance of 
individual children, and of children who are both at the top 
and at the bottom of the vocabulary spectrum. In so doing, 
the simulations presented here make novel and testable 
predictions. The relationship between vocabulary 

composition and word learning biases modeled here  – the 
words you know determine the way you learn new words, 
which constrains and facilitates the words you will know 
next, and so on – opens a new way of thinking about 
computational models, to capture not only averages and not 
only individuals, but individual trajectories. If we can build 
computational models that can successfully capture this self-
constructing developmental loop, the implications for early 
diagnosis, designing early interventions, and understanding 
the mechanisms that underlie word learning in typical and 
atypical development are far-reaching.  
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