
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Optimal information transmission in organizations: search and congestion

Permalink
https://escholarship.org/uc/item/7pq9q4gc

Author
Arenas, A.

Publication Date
2009-02-03
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7pq9q4gc
https://escholarship.org
http://www.cdlib.org/


Optimal Information Transmission in Organizations:

Search and Congestion∗
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Abstract

We propose a stylized model of a problem-solving organization whose internal commu-
nication structure is given by a fixed network. Problems arrive randomly anywhere in this
network and must find their way to their respective specialized solvers by relying on local
information alone. The organization handles multiple problems simultaneously. For this
reason, the process may be subject to congestion. We provide a characterization of the
threshold of collapse of the network and of the stock of floating problems (or average delay)
that prevails below that threshold. We build upon this characterization to address a design
problem: the determination of what kind of network architecture optimizes performance for
any given problem arrival rate. We conclude that, for low arrival rates, the optimal network
is very polarized (i.e. star-like or centralized), whereas it is largely homogenous (or decen-

tralized) for high arrival rates. These observations are in line with a common transformation
experienced by information-intensive organizations as their work flow has risen in recent
years.
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1 Introduction

Efficient information transmission is one of the most pressing problems faced by organiza-
tions, say firms. This is specially important in modern economies, for at least two reasons.
One is that more firms now are pure knowledge-based outfits (think of large engineering,
consulting, research and development or financial services enterprises). The other is that
with an ever increasing stock of knowledge, most individuals cannot be reasonably expected
to master significant fractions of that knowledge.

Thus, the amount of available knowledge, plus the limitations inherent to the human
mind, make knowledge specialization a necessity. Yet there is another limitation that comes
with specialization. We not only ignore certain things, but also ignore who knows them.
Without this limitation, it would be simple to deal with information transmission within
organizations (barring incentive problems, from which we abstract). Suppose anybody in
an organization had a problem she could not solve. She would only need to contact the
expert in the topic, who would then deal with it. Some classes of problems are, arguably,
simple enough that this mode of information transmission would be sufficient. This paper
deals with classes of problems where being aware of the knowledge sets of others is a scarce
resource.

In this context, we explore what is the most efficient form of organizing communication.
The organization is modelled as a network, whose objective is to solve problems. The
individuals are the nodes of this network and they have the ability to solve a particular class of
problems. New problems originate at randomly chosen nodes, and for every problem there is
another, independently chosen, node within the organization who can solve it. The (mutual)
knowledge of two individuals about each other’s abilities are the links of this network. That
is, individuals only know whether they can solve a problem that arrives to them (either
because the problem originates with them, or because another member of the organization
handed it to them), or whether any of their directly linked neighbors can do it. The search
algorithm that routes information through the organization can only use that knowledge.
Our aim is to find the best way to connect the nodes, given a fixed number of links and an
algorithm with purely local knowledge.

The fundamental relationship we uncover is a trade-off between decreasing the average
distance between nodes and the countervailing effect on performance induced by problem
overload and congestion. If congestion were not an issue, the optimal organizational structure
would be very polarized. If one node were connected with all the rest, and that node were
the only one with which the others were connected (a star-like organization), any problem
could reach its solution in, at most, two steps. The number of links required for this would
be one less than the number of nodes. The drawback of this organizational form is that it
would collapse when the average number of problems arriving to an organization per period
were larger than the number of problems the center could handle per period.

Motivated by these considerations, our first contribution is to solve (given any organi-
zational structure) for the smallest rate of problem generation such that the average stock
of unsolved pending problems in the organization diverges to infinity, that is, the network
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collapses. Furthermore, for arrival rates of new problems that are smaller than this critical
value, we determine its average stock of floating problems. This stock, in turn, is directly
related to the average length of time that each problem spends in the organization. It can,
thus, be interpreted as a measure of the “quality of the (problem-solving) service” that the
organization provides. Using this characterization of the average delay, we then turn to con-
sidering what is the optimal organizational form that minimizes delay with a fixed number
of links. For low rates of problem arrival, we conclude that it is a polarized (star-like or “cen-
tralized”) network, whereas for high ones it is an homogenous (or “decentralized”) structure.
This appears consistent with a common trend observed among modern organizations whose
activity is centered around the efficient processing of growing amounts of information. As
we will see, our explanation for this observed decentralization is different from the standard
ones.

The paper is organized as follows. Section 2 describes the model. Section 3 carries
out the analysis by completing, in turn, the following steps: the study of a benchmark
setup without congestion (Subsection 3.1), the analytical characterization of the collapse
threshold (Subsection 3.2), an analogous task for the problem load (Subsection 3.3), and the
organizational design problem (Subsection 3.4). Section 4 discusses the related literature.
Section 5 summarizes and discusses some avenues for further research.

2 The model

Our organization will be modelled as a network, or more precisely by an undirected graph. In
this graph, the nodes are the individual members of the organization. Let N = {1, 2, ..., n}
be the set of all individual nodes. Each individual can solve some specific class of problems.
A link between two nodes i and j implies that both individuals know the set of problems
that the other individual in the pair can solve. Formally, for each pair of nodes i and j, we
define gij ∈ {0, 1}. The condition gij = 1 is taken to imply that the two nodes are linked,
whereas gij = 0 implies that the two nodes are not linked. Since the graph is undirected,
gij = 1 if and only if gji = 1. Let Γ = {N, (gij)

n
i,j=1} be a given network. Then, the set of

neighbors of any given agent i ∈ N , denoted by Ni, is given by Ni = {j ∈ N : gij = 1}.
The mission of this organization is to solve problems. At each point in time, modelled

continuously, problems make their first appearance in an organization at an independent
rate ρ at each node. Each problem starting at i ∈ N has an “address” indicating the node k
where it is to be solved. We, thus, implicitly assume that individual knowledge is sufficiently
specific that each problem can be solved by only one person.1 Let us then refer to “problem
k” as any problem that can be solved only at node k. Typically, of course, k will be different
from the node where it arrives.

We now have to define the rules by which the problem travels through the organization.
If the node where the problem arrives, either at the beginning of the process or at some
intermediate step, can solve it, then it will do so and the problem disappears from the

1In the literature review we discuss alternative approaches.
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organization. We will now specify the rules determining further travel, when the node which
receives the problem cannot solve it. But first notice that there may be several problems
“waiting” at node i, at any point in time. Not all of them may be chosen to travel further
at one particular time. The rules through which “queues” are managed will be specified in
section 3.1. We will now explain how problems that are chosen to travel further “decide” a
destination. Denote by pk

ij the probability with which a problem k being at node i will go
to node j if chosen to be sent forward.2

Once a problem k is at (faced by) node i, one the following two alternative rules are
applied:

• If k ∈ Ni, the problem is sent to k with pk
ik = 1 and it is solved immediately.

• If k /∈ Ni, the problem is sent to some j ∈ Ni with some probability pk
ij . (Of course,∑

j∈Ni
pk

ij = 1.)

Any problem proceeds as above until solved. The first rule should not be controversial.
The second rule assumes that the knowledge that individuals can use to route problems is
the identity of their neighbors, and the final destination. This implicitly allows them to
have the underlying network geography in mind, but not exploit the knowledge of what is
the current state of congestion (even at the level of first neighbors). Such an assumption
is taken here for convenience, and we presume that little of interest would be changed by
relaxing it.

The network combined with the protocol that guides the problems lead to a collection of
communication (pseudo-stochastic) matrices

{P k ≡ (pk
ij)i,j∈N}k∈N . (1)

These matrices define the stochastic process that governs the steps (or direction) followed
by the each problem k. In line with the previous discussion, they are assumed to display the
following features:

pk
ij = 0 if j /∈ Ni

pk
ik = 1 if k ∈ Ni

pk
kj = 0 ∀j ∈ N.

We may compute, for each r ∈ N :

qk
ij(r) =

∑

l1,l2,...,lr−1

pk
il1

pk
l1l2

· · · pk
lr−1j

2Since the problem is supposed not yet to be solved, we are implicitly assuming that i 6= k. However, if
we had i = k, it is formally convenient to simply make the corresponding travel probabilities uniformly zero,
i.e. pk

kj = 0 for all k ∈ N.
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as the probability of a problem k currently in i to be in node j after r steps. Or, using
matrix notation, we may simply define Qk(r) as the matrix whose ijth element is qk

ij(r) so
that:

Qk(r) = (P k)r = P k(r times)
· · · P k

To be sure, note that the above probabilities only govern the direction of movement of the
packages, but not necessarily the time they spend unsolved. To address the latter, we need to
superimpose on the above “congestion-blind” formulation the processing delays which may
impede swift movement of packages across nodes in the presence of waiting queues.

3 Analysis

3.1 Steady-state analysis and the threat of collapse

Now, let us return to the case which has motivated our approach, where each agent/node
has limited processing capability. Specifically, we assume that the nodes behave as queues.
This means that they have unlimited storage capacity but process problems, in expected
terms, at a constant rate per instant of time, which we normalize to unity. Thus, under
the maintained assumption of stationarity, the number of pending problems standing in a
queue behaves like an infinite-state Markov process and the arrivals and departures from
each node i follow Poisson processes. As long as the fluctuations have finite variance, the
overall process displays well-defined steady state probabilities and averages.

Thus suppose that the process reaches a steady state and let us describe its characteristics.
Denote by ak

ij the stationary arrival rate to node j of problems which appeared in the network

at node i with destination k, and let δk
ij stand for the stationary departure rate of problems

from node j of problems which appeared in the network at node i with destination k. Let
also Iij be an indicator function Iij = 1 for i = j and Iij = 0 otherwise. Then, since the
arrival rate to a node is the sum of the arrival rate from the outside of the system (new
problems) plus arrival rates from other nodes we have:3

ak
ij =

{
ρ

n−1
Iij +

∑n

l=1 δk
ilp

k
lj, when j 6= k

0, when j = k
(2)

The second line is zero, since we assume that problems that reach their destination get
solved, so they do not get added to the queue. But given that in steady state all problems
that arrive to a node eventually depart from it in finite time, we must have that ak

ij = δk
ij

3The queuing network considered here is closely related to what is known in the Operations Research
literature as a multi-class Jackson network (see e.g. Chao, Miyazawa and Pinedo 1999). These networks
are known to generate an ergodic Markov process whose invariant distribution is a product measure. This
property is also satisfied in our case and permits analyzing the flow of problems faced by each node as a
composition of independent Poisson processes. Consequently, the arrival rates from different sources can be
made to add up to a combined arrival rate, as postulated in (2).

5



for all i, j, k and therefore:

ak
ij =

{
ρ

n−1
Iij +

∑n

l=1 ak
ilp

k
lj, when j 6= k

0, when j = k.
(3)

Let Rk be a diagonal matrix such that rk
ij = 1 for i = j 6= k and rk

ij = 0 otherwise. Now,
making Ak ≡ (ak

ij)i,j∈N , we can write the equations (3) in matrix form as follows:

Ak =
ρ

n − 1
Rk + AkP kRk

Ak =
ρ

n − 1
Rk(I − P kRk)−1

In order to interpret the induced arrival rates, let us consider a (fictitious) scenario, in
which time is discrete and the number of nodes visited by a problem is equivalent to the
time it spends in the network. That is, all problems arriving to a node on any given period
are always dispatched prior to entering the following period without delay. Further assume,
in order to fix ideas, that, for every k and i, a problem k is created in i with probability
one at each period. Then, the probability qk

ij(r) defined at the end of section 2 can be
trivially reinterpreted as the probability that, at any given time t(≥ r), there is a problem
k which originated r periods ago in node node i that is currently faced by node j. With this
interpretation in mind, the expression

bk
ij ≡

{ ∑∞

r=0 qk
ij(r), when j 6= k

0, when j = k

can be viewed as the limiting (or steady-state) expected number of problems k which arose
in i sometime in the past and are currently passing through j at some “distant” period t.4

Let Bk denote the matrix (bk
ij)i,j∈N for any given k. Then, compactly, we may write in matrix

form:

Bk =

∞∑

r=0

Qk(r)Rk =

∞∑

r=0

(P k)rRk = (I − P k)−1Rk

Based on these magnitudes, let us define the (algorithmic) betweenness of any particular
node j by:

βj ≡
n∑

i=1

n∑

k=1

bk
ij

That is, we simply add over all possible origins i and destinations k. In line with the previous
discussion, one can interpret βj as the expected number of problems (of any kind, and with
any origin) that are going through node j in the long run.5 The magnitude embodied by

4We have bk
ik = 0, since we assumed that problems that reach their destination are solved immediately.

5Note that the present notion of betweenness is algorithmic-based, in the sense that it is associated to
the particular search protocol used by the organization. Thus, it is to be distinguished from the more usual
notion of topological betweenness (Freeman 1977, Newman 2001), which assumes that the search algorithm
at work is globally efficient and is able to identify the minimal distance paths between nodes.
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each βj abstracts from considerations of congestion. We will see, nevertheless, that this
magnitudes bears a very strong connection with the behavior of the model, in particular
concerning the arrival rates displayed in Ak.

To make this connection, we need to carry out the following derivations. Notice first that
since pk

kj = 0 for all j, we have that RkP k = P k. Postmultiplying both matrices by Rk, this
implies that:

−RkP kRk = −P kRk

Adding Rk on both sides and then isolating the common factor Rk also on both sides we
have:

Rk
[
I − P kRk

]
=
[
I − P k

]
Rk

Now, premultiplying both sides by
[
I − P k

]−1
and postmultiplying

[
I − P kRk

]−1

[
I − P k

]−1
Rk = Rk

[
I − P kRk

]−1

so that Ak = ρ

n−1
Bk. This implies that if we denote by αj =

∑n

i=1

∑n

k=1 ak
ij the total arrival

rate of problems to a node (from every origin i and destination k), then

αj =
ρ

n − 1
βj (4)

i.e. the total problem arrival rate faced by any node is proportional to its betweenness.
Recall that we have normalized the departure rate of problems from each non-idle node

to 1. Under these conditions, the length of the queue is expected to grow without bound if,
and only if, the expected number of problems arriving every period to the queue is larger
than the expected number of problems that can be processed in each period. Therefore,
relying on (4), we can formulate matters in terms of the corresponding betweenness and
state that a particular node j collapses, provided no other does, iff

ρ

n − 1
βj > 1,

which implies that the maximum ρ consistent with no node collapsing in the network is:

ρc =
n − 1

β∗ (5)

where β∗ ≡ maxj βj is the maximum betweenness.
At this point, it may be useful to provide a concrete example that naturally fits in our

theoretical framework. Consider a scenario where:

(a) the probabilities pk
ij that define the communication protocol of the organization are

unbiased in the following sense: For all i, j, k ∈ N, such that i 6= k and k /∈ Ni,
6

pk
ij =

1

|Ni|
.

6Recall that, if k ∈ Ni, it was required that pk
ik = 1.
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(b) For every problem k awaiting at node i, this problem is processed with independent
probability equal to 1

qi

, where qi stands for the number of problems in the queue.7

Any scenario satisfying (a)-(b) is consistent with our maintained assumptions, i.e. its com-
munication protocol can be described by a corresponding set of matrices as in (1) and the
nodes behave as queues (they process an expected number of problems equal to unity).
Notice that assumption (a) precludes the possibility that a problem is routed taking into
account its final destination. This is consistent with our philosophy that the links represent
the mutual knowledge of two individuals about each other’s abilities. Thus, the absence of a
link with k implies that individual i (with k /∈ Ni) has no knowledge of the “best” direction
of movement. In the concluding remarks we discuss what can happen when this assumption
is relaxed.

3.2 Organizational performance

Assume that for all i ∈ N , ρ

n−1
βi < 1, that is, the expected number of arrivals to all nodes

is smaller than the expected number of exit opportunities. This, as explained, averts the
possibility of collapse. However, the fact that, in expected terms, the number of unsolved
problems cannot grow unboundedly does not rule out the possibility that queues of positive
length might persist throughout the network. To understand this intuitively, note that
the (unavoidable) fluctuations that are forever present along the process induce inherently
asymmetric effects on the length of queues. On the one hand, when no problems stand in the
queue of a certain node, the queue can obviously become no shorter. Instead, no matter how
long a queue might be, there is always positive probability that it increases even further. In
heuristic terms, one could describe the basis of this asymmetry as follows: whereas upward
fluctuations always increase congestion, downwards fluctuations cannot “anticipatorily save”
on it. This, in the end, implies that queues of some positive length should be expected to
persist even in the long-run.

Thus, let us maintain the assumption that ρ < ρc. Then, the arrivals and departures from
each node i follow Poisson processes with rates equal to αi = ρ β

i

n−1
and unity, respectively.

Denote by pim the steady state probability of a queue of size m in node i (i.e. the probability
that there is a load of m pending problems being faced by node i). The induced probability
distribution (pim)∞m=0 must satisfy:8

αipi,m−1 + pi,m+1 = (αi + 1)pim (m = 1, 2, ...)

pi1 = αipi0

7We could easily handle non-random disciplines for problem delivery, like FIFO (First-In-First-Out).
The advantage of a random discipline is that is minimizes the amount of memory needed for numerical
computation (as the algorithm does not need to keep track of an order of arrival to the queue at each node).
Thus, it speeds up the simulations we perform in the next section.

8See Allen (1990) for a good introduction to queueing theory.

8



The left-hand side of the first equation is the mean flow rate into the state m. That is, it
adds the transition rate from state m − 1 to state m (the queue has m − 1 elements and a
new problem arrives) plus the rate from m + 1 to m (the queue has m + 1 elements and a
problem is solved). There are no other possible transitions into state m, since the arrival
or departure of two problems at the same time has probability zero in a continuous-time
Poisson process. On the other hand, the right-hand side of the first equation represents the
flow out from state m, i.e. it adds the rates at which a queue that has m problems receives
one more, or solves one. In sum, therefore, the first equation only says that in a steady
state the flow into any given state has to be equal to the flow out of that state. The second
equation is just like the first one, except that it reflects the simple fact that a queue in state
m = 0 cannot go to state m = −1, since a problem can only be tackled when it arises.

The solution to the system of equations above can be checked to be:

pim = (1 − αi)α
m
i , m = 0, 1, 2, . . .

Therefore, the expectation for the length of the queue at node i in the steady state, which
we denote by λi, is:

λi =
∞∑

m=0

m(1 − αi)α
m
i =

αi

1 − αi

.

Over the whole network, the total expected length of the queues, i.e. the expected size
of what might be called the stock of floating problems is (using (4))

λ(ρ) =
∑

i∈N

λi(ρ) =
∑

i∈N

ρ β
i

n−1

1 − ρ β
i

n−1

. (6)

This magnitude, in turn, has its mirror image in the time dimension, where it shows as the
average delay, say ∆(ρ), involved in solving problems. By the so-called Little’s Law,9 it
follows that

∆(ρ) =
1

nρ
λ(ρ).

Intuitively, this merely reflects an “accounting identity”: on average, the stock of floating
problems λ(ρ) is to be viewed as the result of the mean delay ∆(ρ) displayed by each of the
nρ problems arising in the network per unit of time.

9Proofs for this Law can be found in Little (1961) and Stidham (1974). A simple proof, which we adapt
from Bentley (2000) is the following. Define X(T ) = C(T )/T , as the rate of problems solved up to a certain
period T , where C(T ) is the number of problems solved up to that period. Let Z(t) denote the stock of
problems in the system at time t ∈ [0, T ]. Let W (T ) be the area under Z(t) from 0 to T , which represents
the total aggregated waiting time over all problems in the system in that interval. The mean waiting time
per problem solved is defined as R(T ) = W (T )/C(T ). The mean number of problems in the system is the
average height of Z(t), which is L(T ) = W (T )/T . Clearly, L(T ) = R(T )X(T ). On the other hand, by
definition, we have that limT→∞ L(T ) = λ, and limT→∞ R(T ) = ∆. Since, in a steady state, the average
number of exits from the system per unit of time must equal the number that enter the system, it follows
that limT→∞ X(T ) = nρ. Thus, λ = ∆ · nρ, which is the desired conclusion.
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3.3 Designing the network for optimal performance

Once we understand the dynamics of a given network, we can address the issue of what is
the optimal network layout of an organization, given that it involves some pre-specified set
of nodes and has a given number of links at its disposal.

First, we introduce some notation. Given any network Γ, denote by λΓ, ρΓ
c , βΓ

i , the value
that the variables λ, ρc, βi take for this network. Now let U stand for the set of all networks
that can be constructed with a certain number of nodes and links, and denote by λ∗ the
lower envelope of {λΓ}Γ∈U , i.e.

λ∗(ρ) ≡ min
Γ∈U

λΓ(ρ)

with
N ∗(ρ) ≡ arg min

Γ∈U
λΓ(ρ).

Since

λΓ(ρ) =
∑

i∈N

ρ
βΓ

i

n−1

1 − ρ
βΓ

i

n−1

(7)

it obviously follows that

λ∗(0) = 0

lim
ρ↑ρΓ

c

λ∗(ρ) = ∞.

For any ρ < ρ̄c ≡ maxΓ∈U ρΓ
c , the lower envelope λ∗(ρ) defines the optimal performance (i.e.

lowest stock of floating problems) displayed by an organization which faces the demands
(nodes) and limitations (links) embodied by U. Correspondingly, N∗(ρ) specifies the optimal
network architectures (in general not unique) that underlie such an optimal performance.
Our aim here is to characterize the topological properties of the networks in N∗(ρ) for each
ρ < ρ̄c. In particular, for any such network Γ (and their corresponding βΓ

i ), we shall focus
on its polarization θ(Γ), which is defined as follows:

θ(Γ) =
maxi∈N βΓ

i −
〈
βΓ

i

〉
〈
βΓ

i

〉

For the moment, let us maintain the tentative assumption that, for each ρ < ρ̄c, all networks
associated to N∗(ρ) display the same polarization and denote this value θ∗(ρ).

It is intuitive that the following two properties should hold for an optimal network.
First, for ρ low, congestion is not expected to be an issue. Thus, optimality should involve
minimizing distance, which is achieved by a network with the highest polarization: a star
(or star-like) network. That is, for low values of ρ, we would expect θ∗(ρ) to take the
highest possible value. On the other hand, as ρ draws close to the maximum value given
by ρ̄c, congestion must become the crucial factor, and optimality should involve a balanced
(symmetric) network. That is, θ∗(ρ) would take the smallest possible value for such high ρ.
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To cast the previous discussion in more formal terms, note that, for low ρ (i.e. as ρ ↓ 0),
the performance of a network Γ can be approximated as follows:

λΓ(ρ) =
∑

i∈N

ρ
βΓ

i

n−1

1 − ρ
βΓ

i

n−1

≈
ρ

n − 1

∑

i∈N

βΓ
i .

Therefore, for low ρ (“slightly above” zero), the task of finding the optimal networks in Γ∗(ρ)
involves singling out those networks Γ that minimize the aggregate betweenness

∑
i∈N βΓ

i .10

It is easy to verify that this minimization is attained by a star-like network where the
polarization is maximal,11 as indeed suggested above.

Instead, for high ρ (i.e. as ρ ↑ ρΓ
c ), the stock of floating problems (which rises unboundedly

with ρ) is of the following order:12

λΓ(ρ) ∼ O

(
max
i∈N

1

1 − ρ
βΓ

i

n−1

)
= O

(
1

1 − ρ

n−1
maxi∈N βΓ

i

)
.

This implies that, for high ρ (“slightly below” ρ̄c), optimal performance is achieved by
networks Γ with a minimum value for maxi β

Γ
i . Thus, as suggested in our discussion, the

optimal network in this case is to be an homogenous one, where the maximum betweenness
is minimized and thus polarization is minimal.

As ρ rises from very low levels to values close to ρ̄c, it is natural to conjecture that the
optimal level of polarization θ∗(ρ) should vary in a monotonic (non-increasing) fashion. To
check the validity of this conjecture, it is useful to turn our attention to the form of the
objective function λΓ(ρ) which is minimized over Γ ∈ U (cf. (7)). A first useful observation
in this respect is that the dependence of this function on Γ is solely channeled through the
corresponding vector of induced betweenness βΓ. Thus, for each ρ < ρ̄c, we may equivalently
reformulate the optimization problem underlying θ∗(ρ) as follows:

min
β∈B

λβ(ρ) ≡
∑

i∈N

ρ β
i

n−1

1 − ρ β
i

n−1

.

Then, to proceed formally, we would need a sufficiently detailed characterization of the range
of feasible betweenness vectors

B ≡ {β = (βi)i∈N ∈ R
n
+ : β = βΓ for some Γ ∈ U}

10If we define algorithmic distance as the average number of nodes that a problem has to
travel in order to reach its destination, aggregate betweenness is equivalent to algorithmic
distance. To see this, note that every time a problem goes from one node to another, it
increases both its algorithmic distance by 1 unit and the betweenness of the receiving node
by 1 unit.

11This derives from the following three observations. First, the topological betweenness is
never higher than the algorithmic betweenness – recall Footnote 5. Second, the topological
betweenness is minimized at a star network, where the average (topological) distance is min-
imized. Third, at a star network, both notions of betweenness (topological and algorithmic)
coincide.

12We say that f(ρ) ∼ O (g(ρ)) if 0 < limρ→ρΓ
c

f(ρ)
g(ρ)

< ∞.
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that can be spanned by the set of admissible networks U . This, unfortunately, seems an
especially difficult task, given the complex combinatorial considerations involved. We may
hope, however, to shed some light on the problem if we rely on the following two simple
features of the situation.

A first observation is that λβ(ρ) is an increasing and convex function on Rn
+ whose

curvature increases with ρ. Thus, in particular, its level curves {β : λβ(ρ) = K} pass from
being linear when ρ = 0 to displaying a “right-angle kink” at points of uniform betweenness
(i.e. in the bisectrix) as ρ → ρ̄c (cf. Figure 1).

The second observation derives from an already explained fact: the sum of betweenness
is minimized over the set B at star-like configurations. To help formalize the implications of
this fact, suppose that “perfect-star” networks with just one node i at the hub and all other
nodes j 6= i as symmetric pure spokes are admissible configurations in the set U. Then, if
we denote such star networks by Γ̂i, it follows that the set B must lie above the following
hyperplane in Rn:

H ≡ {β = (βi)i∈N ∈ R
n :

n∑

i=1

βi = β
bΓi

for any i ∈ N}.

Thus, if we now make the plausible assumption that the lower frontier of B, i.e.

∂B ≡ {β = (βi)i∈N : [β′ ∈ B, β′
i < βi for some i ∈ N ] ⇒

[
β′

j ≥ βj for some j ∈ N
]

does not change curvature throughout the space Rn
+, it must convex to the origin as illustrated

again in Figure 1 for the bidimensional case.

Let us now combine the above considerations. For convenience in the argument, let us
also make the assumption that the curvatures of the level curves {β : λβ(ρ) = K} and the
frontier ∂B (both convex to the origin) are unambiguously comparable, i.e. either one is
uniformly more convex than the other or viceversa (of course they coincide in the borderline
case). Then, it readily follows that, as suggested above, the polarization θ∗(ρ) associated to
the optimal network depends on ρ in a weakly monotonic (non-decreasing) fashion. But the
analysis can go much farther than this anticipated dependence and arrive at the following
startling conclusion. As the problem rate ρ rises (and the “bending” of the level curves
becomes progressively more acute) there is a threshold transition from the case where the
optimal network displays a polarized betweenness (i.e. it is star-like) to a situation where
the betweenness vector is essentially symmetric (and the network is basically homogenous).
Thus, what this heuristic analysis suggests is that, as ρ changes, there is a qualitative
“discontinuous” change in the optimal network that basically reduces the range of optimal
configurations to two extreme cases: a fully centralized and a fully decentralized network.

We have checked the conclusions derived from this analysis (in particular, the validity of
our simplifying assumptions) by exploring matters numerically in a variety of computation-
ally amenable contexts. The results are shown in Figure 2 for the leading scenario described

12



Figure 1: Optimal betweenness profile β∗(ρ) as ρ passes from a relatively low ρ = ρ1 to
a higher ρ = ρ2. For the lower ρ, the level curves display less marked curvature and the
optimal profile occurs at the two extreme betweenness points where the corresponding level
curve and the lower frontier of B meet in each of the two axes. For the higher ρ, the optimal
profile lies at the tangency between the corresponding level curve and the lower frontier of
B that lies in the bisectrix of the positive orthant.
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in Subsection 3.1 and a range of different possible specifications of U (i.e. different number
of nodes and possible links).

Figure 2: Polarization of the optimal structure as a function of ρ, for networks of size n = 32
and different number of links m = 64, 96, 128, 160. The star-like configuration (top left) is
optimal for low ρ , while an homogeneous configuration (bottom left) is optimal for high ρ.

Figure 2 plots the value of θ∗(ρ) as a function of ρ, for organizations that differ in the
number of links (64, 96, 128, 160). The organizational size is kept constant at N = 32. The
value of θ∗(ρ) was obtained through algorithmic search over the set of admissible networks.13

13Let us explain the method used to perform the numerical search for the optimal network.
We use generalized simulated annealing, as described in Penna (1995) and Tsallis and Stariolo
(1994). Starting from a given initial network configuration, random rewiring of individual
links are performed. The cost λΓ(ρ) is then evaluated. The change is accepted with a certain
probability that depends on a computational temperature. This temperature is decreased
with time so that the system tends to explore regions of the configuration state with lower
and lower costs.

Regarding the cooling, at a given temperature, each node of the network is allowed to try
a rewiring. Then the temperature is decreased by 1%, and the process is repeated until a
minimum temperature is reached or, alternatively, the system has remained unchanged after
a significantly large amount of rewiring trials.

Different sets of initial conditions are explored: for a given value of ρ, the optimization
process is started from random initial configurations and also from networks that turned out
to be optimal at similar values of ρ. Of all the realizations, only the network with a smallest
cost is considered as optimal.
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In all cases, we observe that the degree of polarization associated to the optimal architecture
depends on ρ as predicted by our former theoretical discussion, i.e. it is non-increasing in
ρ and displays an abrupt change between the two extreme topologies – i.e. star-like and
homogenous – as ρ varies. Moreover, throughout the whole range of ρ, only these two
topologies ever qualify as optimal.

Our analysis provides some basis to understand the move towards flatter and less hi-
erarchical structures experienced by corporations in the fast changing world of progressive
globalization and widespread use of information technologies. This phenomenon has given
rise to a huge literature in both the academic and popular press, associated to terms such
as the “horizontal firm,” “process reengineering,” “total quality management,” or “business-
process redesign” (see, for example, Byrne (1993), Davenport (1993), Hammer (1990), and
Ostroff and Smith (1992)). In the words of Byrne (1993, 77-78):

“Just as a light bulb wastes electricity to produce unwanted heat, a traditional
[hierarchic] corporation expends a tremendous amount of energy running its own
internal machinery – managing relations among departments or providing in-
formation up and down the hierarchy, for example. (...) Collaboration among
different departments was often the triumph over formal organization charts [un-
der] heightened global competition and the ever increasing speed of technological
change (...)”

As suggested by Dodds et al (2003), when organizations face increasing volatility of the
environment and a stronger competitive pressure they are forced to pool their disperse in-
formation at an ever faster rate. In this light, our model suggests a new perspective on the
transition to a horizontal (“decentralized”) organizational structure that has been taking
place in the last two decades among the successful firms of the most dynamic sectors. The
earlier literature often viewed the transition to a flatter organization as a way to improve co-
ordination, and thus performance, by making workers more cross-functional.14 We suggest,
on the other hand, that the change need not work through a modification in the pattern of
specialization, but through the pattern of communication. Under the pressure to conduct
faster and wider intra-organizational communication, only by breaking their traditional hier-
archical structure could those firms (i.e. their individuals) cope with the entailed mounting
burden of information processing.15

4 Related literature

In the last few years there has been a booming interdisciplinary interest in the study of
networks. Social scientists have been working steadily on this topic, but also physicists in-

14“Those on teams are cross-trained so that they can perform each of the tasks necessary to the entire
manufacturing process.” (Ostroff and Smith 1992, p. 161).

15As Krachardt and Hanson (1993) point out “But when unexpected problems arise, the informal orga-
nization kicks in.” Arguably, the number of unexpected problems has grown with the increasing speed of
technical change.
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terested in the dynamics of complex systems, or biochemists studying autocatalytic networks
and the origin of life. This vast line of research has been motivated by the belief that social,
physical, or biological models that ignore the topological structure of interaction are often
unable to give account of many interesting phenomena. The increasing importance of the
world wide web for scientific, governmental and commercial purposes is another powerful
source of interest in this topic.

Our paper belongs most directly to the literature on the economics of organizations. In
a sense, our analysis reflects the same informational considerations that have long lied at
the core of the controversies on the merits and drawbacks of economic (de)centralization.16

However, rather than highlighting how the richness of information or the cost of communi-
cation bears on the problem, our analysis displays a somewhat different focus. We stress
that limitations on the ability to process a large amount of information simultaneously raises
the threat of organizational collapse or at least long delays in the organization tackling the
required tasks.

There is a recent strand of the economic literature that is motivated by similar concerns
and also identifies organizations with networks whose objective is to process information.
The paper initiating this line of research was Radner (1992), then followed, among others,
by Bolton and Dewatripoint (1994), and van Zandt (1999). Their work mostly abstracts from
search issues. The information that flows in an organization is such that any of its members
can process it. Typically, there are advantages in terms of processing time if different bits
of the same problem are processed in parallel. But, in this case, the different bits must
be combined in order to obtain the final output, and the required communication brings
about a coordination problem. The main trade-off here is the one between parallelization
and coordination costs. The organization consists, thus, of a rather mechanical process of
combining disperse information. Sah and Stiglitz (1986) and Visser (2000) also study an
analogous design problem, their main focus being on the contrast between the performance
of a hierarchic and a poliarchic organization.

Closer in spirit to our work is Garicano (2000). In his model, each individual specializes
in solving a certain type of problems. If she cannot solve a problem that reaches her, there is
another person to whom she must deliver that problem. The task of the organization designer
is twofold. First, she must assign knowledge sets to each individual in the organization. Then,
she must design the routes through which unsolved problems must travel. Both knowledge
acquisition and communication are costly. There is, then, a fundamental trade-off between
acquiring knowledge and communicating it. The solution to this trade-off is to organize
workers along a hierarchy. All problems are first given to the workers lowest in the hierarchy,
who have the knowledge about the most ordinary problems. Those relatively uncommon
problems that they cannot solve are then transferred to individuals in the next higher level,

16This debate, for example, is nicely epitomized by the well-known work of Lange (1936, 1937) and Hayek
(1940). The central issues raised by these authors were later formulated and addressed formally by the
Theory of Mechanisms, as initiated by Hurwicz (1960). See van Zandt (1999) for a good survey on this
topic.
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and so on.17

Despite the similarity in spirit, there is a crucial difference between Garicano’s (2000)
model and ours. We assume that knowledge acquisition cannot be controlled or designed and
thus the organization planner must take the knowledge sets of workers as given. This, in turn,
creates a congestion problem in our set-up which does not appear in his context. Since the
planner in Garicano (2000) has control about what every worker knows, the organization can
be designed so that bottlenecks are avoided. We feel that our model is relevant for firms in
which endowments of knowledge are not easy to replicate in a standardized fashion. Even if
a university wanted, it would be hard to find two solvers of Fermat’s last conjecture for every
ten solvers of standard elliptic partial differential equations. We conjecture that the high-
level knowledge-based organizations we used to motivate our paper present characteristics
that make them look more like those in our model.

A more technical literature has focused in the problem of search in complex networks.
Watts and Strogatz (1998) pioneered the recent surge of interest in what has been called
small-worlds (see also Watts 2000, and Newman, Moore and Watts 2000). This term refers to
regular lattices where nodes have many local links (links that connect nodes to neighbors in
an underlying topological sense) and a few long-range links. This kind of networks have the
characteristic that the average distance between two randomly chosen nodes is relatively low.
This is so despite the fact that most connections are purely local. The small-worlds literature
abstracts from search problems (and also congestion), since distance here means minimal
graph distance and thus implicitly presumes global knowledge of the network. Albert and
Barabási (2002) survey the findings in the area.

Kleinberg (1999, 2000), on the other hand, does address search issues in the context of
complex networks. In his model, problems have to travel through a network looking for
its (known) destination. The search is helped by knowledge of the underlying “geographic
structure” (and the links of each node). This structure may be very effective in guiding search
within a small-world type network. In contrast, it is not useful in a random network (i.e. one
whose links are completely random), despite the fact that average distance is actually smaller.
Kleinberg’s model helps to explain the speed and effectiveness of search in some large complex
networks (e.g. the huge world-wide web). It abstracts, however, from the congestion issues
that are our main interest here and that, undoubtedly, also represent a key consideration
in many real-world contexts. Arenas, Dı́az-Guilera and Guimerà (2001) address problems
similar to those considered here and study, in particular, the trade-off between congestion
and distance. They restrict, however, to a limited range of possible organizational forms,
namely hierarchies, which face no genuine issue of search. In a hierarchy, all problems (which

17Beggs (2001) introduces a model that is close (and produces similar conclusions) to Garicano (2000),
with two important differences. From the conceptual point of view, the differences between workers in
Beggs (2001) arises because of different ability (processing power) between individuals, rather than because
of specialization, as in Garicano (2000). From the technical point of view, Beggs (2001) uses an explicitly
stochastic model, and the techniques come mainly from queuing theory. The difference between individuals
in our model occurs because of specialization, so in that sense we are closer to Garicano (2000). In the
technical respect, however, we are closer to Beggs (2001), which also makes a imporatnt use of queueing
theory.
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are aware of their destination) know the (fixed) route they have to travel. Even more closely
related is Guimerà et al. (2002). The main difference with respect to this work is that
we now explicitly discuss the economic situation involved, and we address the problem of
designing the optimal network.

5 Summary and extensions

We have proposed an abstract model of a problem solving organization which (a) operates
through local communication, (b) is forced to search restricted by local information (c) is
subject to the effects of congestion. For this model, we provide an analytical characterization
of both the threshold of collapse and the stock of floating problems (or average delay) below
that threshold. We then build upon this characterization to shed some preliminary light on
the network features that optimize performance depending on the rate of problem arrival.

A number of extensions could be explored. An interesting one concerns studying the
effect of a larger “information radius” on the performance of the organization. That is,
when designing the optimal organization, we assumed that individuals only use information
about their direct neighbors to route a problem. We are currently undertaking research to
relax this assumption. Individuals may use the knowledge of their neighbors’connections (or
even of individuals with higher order degrees of separation). First, concerning the issues of
congestion and delay, it is easy to see that the analytical approach used here to characterize
the congestion threshold and the average delay may be applied unchanged for any information
radius (remember we only started use the assumption of first neighbors knowledge for the
design problem). Turning then to the issue of organizational design, preliminary numerical
results suggest that, as one would expect, the optimal network becomes less polarized as the
information radius expands. This is intuitive since, as the information of nodes becomes less
local, the informational advantages of a polarized network should correspondingly decrease.

Many other extensions could be easily handled in our framework. For example, the
problems could be sent with higher (or even lower) probability to nodes with a larger number
of connections. Also, the rate at which problems originate at one node could depend on the
node where they can be solved, which may create local “communities” of problem-solvers.
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