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Sweden
18Bioinformatics & Scientific Computing, Vienna Biocenter Core Facilities (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
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SUMMARY

The evolution of land flora transformed the terrestrial
environment. Land plants evolved from an ancestral
charophycean alga from which they inherited devel-
opmental, biochemical, and cell biological attributes.
Additional biochemical and physiological adapta-
tions to land, and a life cycle with an alternation be-
tween multicellular haploid and diploid generations
that facilitated efficient dispersal of desiccation
tolerant spores, evolved in the ancestral land plant.
We analyzed the genome of the liverwortMarchantia
polymorpha, a member of a basal land plant lineage.
Relative to charophycean algae, land plant genomes
are characterized by genes encoding novel bio-
chemical pathways, new phytohormone signaling
pathways (notably auxin), expanded repertoires of
Cell 171, 287–304, Oc
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signaling pathways, and increased diversity in
some transcription factor families. Compared with
other sequenced land plants, M. polymorpha ex-
hibits low genetic redundancy in most regulatory
pathways, with this portion of its genome resembling
that predicted for the ancestral land plant.
INTRODUCTION

Land plants evolved 450 mya from an ancestral charophycean

alga from which they inherited numerous developmental,

biochemical, and cell biological features (Figure 1; see Delwiche

and Cooper [2015] for review). Characteristics of extant charo-

phytes indicate that at least some terrestrial physiological adap-

tations (desiccation and UV radiation tolerance) evolved prior to

land plants, and several land plant gene families originated in a

charophycean ancestor (Hori et al., 2014; Ju et al., 2015). In
tober 5, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 287
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contrast, a defining land plant feature, a multicellular diploid

sporophyte generation, was instrumental in land plants’ ascent

to terrestrial dominance, as it allowed optimized dispersal of

desiccation tolerant spores (Bower, 1908).

The three early diverging extant land plant lineages (liverworts,

mosses, hornworts; ‘‘bryophytes’’) lack vascular tissues and true

rootsbut collectivelypossessall key innovationsof landplant evo-

lution: a multicellular diploid sporophyte, a gametophytic shoot

apical meristem (SAM) with an apical cell producing 3-dimen-

sional tissues, a sporophytic SAM, and cell fate specializations

providing morphological and physiological terrestrial adapta-

tions. Bryophyte phylogenetic relationships remain enigmatic,
288 Cell 171, 287–304, October 5, 2017
with nearly every possible topology proposed (Nishiyama et al.,

2004; Qiu et al., 2006; Wickett et al., 2014). However, fossils as-

signed to liverworts (Ordovician-Silurian) predate thosedescribed

as either mosses (Carboniferous) or hornworts (Cretaceous),

suggesting that the first plants colonizing terrestrial habitats

possessed attributes of liverworts (Edwards et al., 1995; Oosten-

dorp, 1987; Wellman et al., 2003). Thus, liverworts may retain a

larger suite of ancestral characters than other extant lineages.

Liverworts are monophyletic, with the dominant gameto-

phyte body a dorsi-ventral thallus or leaf axis (Campbell, 1918).

The sporophyte is reduced, compared with other bryophytes,

and nutritionally relies on the gametophyte. Liverworts have

mailto:john.bowman@monash.edu
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Figure 1. Phylogenetic Context of Marchantia polymorpha

Monophyletic land plants are nested within a charophycean algal grade, with phylogenetic relationships of bryophyte lineages unresolved (red line). Major

evolutionary innovations within Viridiplantae are indicated.
membrane-bound oil bodies and ventral unicellular rhizoids and

lack stomata. Liverworts exhibit a low rate of chromosomal

evolution, with no evidence of ancient polyploidy (Berrie, 1960),

and molecular evolution within the Marchantiopsida is slow

compared with other liverwort lineages (Villarreal A et al.,

2016). Dioecious liverworts possess sex chromosomes, with

their presence possibly ancestral for the group.

Marchantia polymorpha is a member of the Marchantiopsida,

a clade characterized by a complex thalloid gametophyte.

Marchantialean fossils date to the Permo-Triassic period (Oos-

tendorp, 1987), with the complex thallus a possible adaptation

to arid conditions of the time (Wheeler, 2000). Due to ease of

growth and genetic manipulation in the laboratory (Ishizaki

et al., 2016) and an extensive historical literature (Bowman,

2016), we chose M. polymorpha as a representative liverwort,

and we present an analysis of its genome.

RESULTS

Structural Genomics and Annotation
The nuclear and organellar genomes of M. polymorpha subspe-

cies ruderalis (Bischler-Causse, 1993; Bowman et al., 2016a;
Shimamura, 2016) were sequenced using a whole-genome

shotgun sequencing strategy. We sequenced a single clonal

female derived from backcross 4 between a male Tak-1 line,

whose Y chromosome was previously sequenced (Yamato

et al., 2007), and a female Tak-2 line, whose X chromosome

was introgressed into a largely Tak-1 autosomal background.

Nuclear genome v 3.1 assembly consists of 2,957 scaffolds

(4,454 contigs) covering 225.8 Mb (see STAR Methods).

The M. polymorpha plastid (120,304 bp) and mitochondrial

(186,196 bp) genome sequences differ from previously pub-

lished sequences (Oda et al., 1992; Ohyama et al., 1986), which

are derived fromM. paleacea rather thanM. polymorpha (plastid,

GenBank LC035012.1; [Kisiel et al., 2011]). Organellar genome

organization is identical, and previous evolutionary and func-

tional conclusions are not compromised.

Gene Numbers

Annotation revealed 19,138 nuclear encoded protein-cod-

ing genes, with 5,385 alternative protein-coding transcripts,

(> 90%) having EST support (Table S1). To facilitate annotation,

we obtained transcriptomes (see Table S2, STAR Methods, and

Mendeley https://doi.org/10.17632/zb7hwyj3hp.1) representing

various tissues of axenically grown plants, and from two ‘‘wild’’
Cell 171, 287–304, October 5, 2017 289
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samples in which gene expression was detected for some genes

without evidence of expression in axenically grown plants. With

the arbitrary level R 10-fold higher cut-off, sporophytic and an-

theridiophore (male reproductive) tissues possess more special-

ized transcriptomes than either sporeling or archegoniophore

(female reproductive) tissues.

Highly expressed genes display a strong preference for synon-

ymous cytosine in codon position 3, perhaps due to translational

selection in such genes, as observed across a spectrum of

plants (Wang and Roossinck, 2006). Average UTR and intron

lengths of M. polymorpha genes are larger than in other land

plants. 50 UTRs contain a higher frequency of ATG(s) potentially

encoding uORFs compared to other land plants examined

(Table S1), suggesting that the translational machinery somehow

recognizes the genuine M. polymorpha start codons.

The nuclear genome encodes 769 tRNA genes (51 pseudo-

genes) and 301 snRNA genes. Of 265M. polymorpha MIR genes

(Lin et al., 2016; Tsuzuki et al., 2016), 264 miRNA precursors

(pre-miRNAs) were identified in diverse genomic contexts,

including within protein-coding genes, with five present in

tandem arrangements. ORFs (> 200 aa) were identified in 42

pre-miRNAs (Table S1). Expression patterns of pre-miRNAs

negatively correlate with those of their targets, and DCL1

orthologs—required for miRNA processing—were found in

M. polymorpha and some charophytes.

Gene and Genome Evolution

6404M. polymorpha geneswere assigned to a eukaryotic orthol-

ogous group (KOG), 12,842were assigned anOrthoMCL (with an

overlap of 6,348 genes), and 419 additional genes assigned a

PANTHER/Pfam category, leaving 5,821 genes lacking any

annotation (Table S3). Comparative analysis across Viridiplantae

revealed a larger increase of orthologous groups at the

Streptophyta origin than at the land plant origin. Increased

taxon sampling and analyses of shared algal and land plant

orthologs may resolve bryophyte phylogeny. KOGs found in

M. polymorpha, but not in other land plants, are often homolo-

gous with fungal genes or related tomobile elements, suggestive

of horizontal gene transfer. The large number of orphan genes,

lineage-specific, or evolutionarily recent genes (Tautz and

Domazet-Lo�so, 2011) may reflect the phylogenetic distance of

M. polymorpha from other species with sequenced genomes.

Several gene families that are over-represented in

M. polymorpha relative to other land plants encode transporters

(e.g., phosphate and ammonium). Gene families missing

inM. polymorpha include those required for successful arbuscu-

lar mycorrizal colonization, despite their presence in charo-

phytes and closely related Marchantia species (Delaux et al.,

2015). Related Marchantia form mycorrhizal associations, while

M. polymorpha subsp. ruderalis does not (reviewed in Bowman

et al. [2016a]). Increased transport capacity, rather than a

reliance on mycorrhizal associations, could be a genomic adap-

tation for M. polymorpha being a weedy colonizer of barren

disturbed habitats.

The ancestral chromosome number of all extant liverwort line-

ages is nine (Berrie, 1960; Heitz, 1927), implying an absence of

ancient whole-genome duplications, and analyses confirm a

lack of ancient polyploidy in M. polymorpha (Table S4). That a

large majority of regulatory genes occur as single paralogs
290 Cell 171, 287–304, October 5, 2017
(see below) provides further support for this hypothesis and con-

tributes to levels of paralogous genes inM. polymorpha (41.3%)

being at the lower end of values observed in other land plants

(45%–84%; Panchy et al. [2016]). However, local tandemly

arrayed genes (TAGs) are not uncommon, with arrays of 2–11

adjacent paralogs accounting for 1,125 genes. The percentage

of TAGs (5.9%) is at the lower end of the range observed in flow-

ering plants (4.6%–26%; Panchy et al. [2016]; Rizzon et al.

[2006]), but higher than in Physcomitrella patens (1%; Rensing

et al. [2008]). In M. polymorpha, 75% of TAGs are encoded on

the same strand, in contrast to P. patens, where a reduction of

such TAGs was attributed to loss via homologous recombination

(Rensing et al., 2008).

Repetitive DNA

Repetitive elements represent 22% of the M. polymorpha

autosomal genome (Table S5), a value lower than that of

P. patens (48%; Rensing et al. [2008]) but above that of the horn-

wortAnthoceros agrestis (6.98%; Szövényi [2016]). Similar to an-

giosperms, long terminal repeat (LTR) retroelements, including

264 full-length LTR retrotransposons, represent the largest

fraction of repetitive elements (9.7%). X- and Y-specific repeat

elements were previously reported (Yamato et al., 2007), and

no new additional sex-specific elements were identified.

Sex Chromosomes

M. polymorpha possesses sex chromosomes, with an X chro-

mosomal ‘‘feminizer’’ locus and multiple Y chromosomal loci

required for sperm motility (see Bowman [2016] for review). Pre-

vious annotation of 6.0 Mb of the Y chromosome revealed 64

genes (Yamato et al., 2007). We identified 9 X chromosome scaf-

folds representing 4.37 Mb and annotated 74 X chromosome

genes and 105 Y chromosome genes (see STAR Methods).

X chromosome gene density (1 gene/57.5 kb) is similar to that

of the Y (1 gene/56.7 kb)—about 5-fold lower than the auto-

somes (1 gene/11.3 kb). Of 74 X chromosome genes, 20 have

their closest homologs on the Y chromosome and can be

considered alleles (Figure 2). These genes are expressed vege-

tatively and conserved across land plants, Streptophyta or Viridi-

plantae, and thus represent relics of the ancestral autosome

from which the sex chromosomes evolved (Table S6). Little evi-

dence of synteny exists between X and Y scaffolds, suggesting

an absence of recombination in these regions. Further, as noted

previously (Yamato et al., 2007), synonymous substitutions be-

tween X and Y alleles are mutationally saturated, reflecting an

ancient sex chromosome origin. Divergence between X and Y

alleles is comparable to that between orthologs across extant

liverwort, with phylogenetic analysis indicating an origin of sex

chromosomes prior to Marchantiopsida diversification (Table

S6), consistent with the idea that the ancestral liverwort may

have possessed sex chromosomes (Allen, 1917; Berrie, 1960).

X or Y chromosome specific genes, when expressed, tend to

be expressed in a reproductive-organ-specific manner (Table

S6), conforming to predictions of sex chromosome evolution

(Bull, 1978). However, many X-specific loci are genes or gene

fragments with closely related autosomal paralogs, suggesting

that they recently immigrated into the X chromosome (Table

S6); a similar pattern has been reported in brown algae (Lipinska

et al., 2017). Thus, only a handful of functionally X-specific genes

exist, and among these, half have detectable expression only in



Figure 2. M. polymorpha Sex Chromosomes

Horizontal bars and vertical letters represent genomic sequences and genes, respectively. Shared genes are connected according to their phylogenetic

relationships.
the sporophyte, leaving few obvious candidates for the feminizer

locus. Y-specific genes exhibit a similar pattern, but include

several conspicuous ‘‘motility’’ candidates.

Insights into Land Plant Evolution
In the remaining sections, we highlight two facets of land plant

evolution gleaned via comparisons of the M. polymorpha

genome content with genomes and transcriptomes of charo-

phytes and other land plants. First, we detail genomic features

that distinguish land plants from their algal relatives and describe

their origins as precisely as possible. Origins are inferred in a

manner analogous to the fossil record, i.e., they represent the

latest possible dates unless orthologous algal sequences define

origins precisely. Second, we note, where possible, the pre-

dicted ancestral land plant genome composition inferred from

phylogenetic analyses.

Transcriptional Regulation
TheM. polymorpha genome contains 394 (387 autosomal, 4 with

X and Y alleles, and 3 X-specific) genes classified into 47 tran-
scription factor (TF) families (Figure 3, Table S7). These TF fam-

ilies are present in other land plants, and no families present in

other eukaryotes to the exclusion of Viridiplantae were found

(Weirauch and Hughes, 2011). TFs in M. polymorpha account

for 2.1% of protein coding genes, a lower percentage than in

other land plants but higher than in algae, supporting the obser-

vation that TF numbers increase with organismal complexity

(Catarino et al., 2016; Lang et al., 2010; Lehti-Shiu et al., 2017).

An estimate of the TF content in the ancestral land plant was in-

ferred via phylogenetic analyses of 18 TF families (Table S7, Fig-

ure 4, and Mendeley https://doi.org/10.17632/zb7hwyj3hp.1).

The TF content of M. polymorpha resembles that predicted for

the ancestral land plant, with a few exceptional lineage-specific

gene expansions (trihelix, ASL/LBD, 3R-MYB).

TF diversity increased at the base of the Streptophyta prior to

the divergence of Klebsormidium and the evolution of multicellu-

larity (Figure 3, Table S7). Only one TF family evolved concomi-

tantly with land plants (GeBP), and few families evolved within

land plants (YABBY, VOZ, ULT). Thus, the origin of new TF fam-

ilies, per se, was not critical for land plant evolution. However,
Cell 171, 287–304, October 5, 2017 291
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Figure 3. Numbers of Transcription Factor Genes in Land Plants and Algae

Transcription factor paralog numbers are listed for species (left) with sequenced genomes, with the green portion of the ribbon denoting presence in land plants

and the blue presence in algae.
increased diversity of many TF families, such as bHLH, NAC,

GRAS, AP2/ERF, ASL/LBD, and WRKY, suggests they may

have been instrumental for terrestrialization. For example,

14 bHLH subfamilies were found exclusively in land plants (Fig-

ure S1B). Some subfamilies direct development of analogous

cell types (angiosperm root hairs and bryophyte rhizoids) that

are involved in nutrient and water uptake in land plants (Catarino

et al., 2016). Other bHLH subfamilies function in differentiation

of vascular plant tissue or cell types not found in liverworts

(e.g., vasculature, stomata), indicating co-option of preexisting

regulatory modules during land plant diversification.

Phylogenetic analysis of 18 TF families revealed four distinct

recurring evolutionary patterns exemplified by clades of the

MYB TF family (Figure 4), namely the following: (1) clades predat-

ing land plants; (2) clades evolving in the ancestral land plant,

wherein a single M. polymorpha gene is orthologous to many

other land plant paralogs; (3) clades for which there are no angio-

sperm orthologs of M. polymorpha genes; and (4) clades exhib-

iting a lineage specific expansion in M. polymorpha. Pattern 2 is

exemplified by clades 1, 4, and 5 (Figure 4), whose members

function in regulating secondary metabolism. Pattern 4 is exem-

plified by 3R-MYBs.

Pattern 3 is notable in the RWP-RK (Koi et al., 2016; Rövekamp

et al., 2016) and TALE class homeodomain families, which are

phylogenetically more diverse inM. polymorpha (and other basal

land plant lineages) than in angiosperms. A striking example of

the opposite pattern is the MADS-box gene family, with type II

MADS-box genes diversifying within land plants (Figure 3) and
292 Cell 171, 287–304, October 5, 2017
type I genes lacking in M. polymorpha despite being found in

other land plant lineages.

Sporophyte Expression of Transcription Factors

A defining feature of land plants is a multicellular sporophyte

(Hofmeister, 1862). Evolution from an ancestral single-celled

zygote to a multicellular sporophyte was likely accomplished

via changes in existing, and establishment of new, gene regula-

tory networks. In two relatedmosses, a largely overlapping set of

TFs is predominantly sporophytically expressed (O’Donoghue

et al., 2013; Ortiz-Ramı́rez et al., 2016; Szövényi et al., 2011).

In M. polymorpha, 41 TFs are predominantly expressed during

sporophyte development, but only 10 are potential orthologs of

similarly expressed moss genes (Table S7). Of these, two are

TALE-HD genes that are known to regulate the alternation

of generations (Bowman et al., 2016b). The minimal overlap

possibly reflects the significant divergence in sporophyte anat-

omy and morphology between liverworts and mosses (Camp-

bell, 1918).

Chromatin

M. polymorpha possesses homologs of most chromatin-related

genes identified in other eukaryotes (Table S7). A proportion of

genes functioning in chromatin structure and modification are

highly expressed in either male reproductive (33%) or sporo-

phytic (19%) tissues. Preferential or unique sporophytic expres-

sion is frequently observed in families with multiple paralogs

(13 families out of 18), suggesting that changes in chromatin

occur during the gametophyte to sporophyte transition, as

noted in P. patens (Mosquna et al., 2009; Okano et al., 2009).



Figure 4. Phylogenetic Relationships of R2R3-MYBs

Central black numbers refer to modes of evolution described. Peripheral numbers indicate clades predicted in the ancestral land plant, with a potential loss in

M. polymorpha (?) and poorly resolved clades with potentially > 1 ancestral land plant gene (*). Green clades largely control development processes, while yellow

clades concern secondary metabolism. S numbers refer to previous classification of R2R3-MYBs (Du et al., 2015; Dubos et al., 2010); however, angiosperm-

based classifications are often inadequate in a broader phylogenetic context.
Chromatin-related genes could also account for specific sporo-

phytic features, such as mitosis in diploid cells or a possible

requirement for imprinting or dosage compensation. Similarly,

regulation of chromosome compaction might explain specific

expression patterns during male gametogenesis.

DNAmethylation is a heritable eukaryotic epigenetic modifica-

tion that plays roles in repetitive element silencing and regulation

of some protein coding genes. The M. polymorpha vegetative

gametophyte showed DNA methylation enrichment and 23–24

nt siRNA clusters at genomic loci with repetitive elements,

matching the pattern in vascular plants, but not over gene bodies

(Takuno et al., 2016), with the exception of genes on sex chromo-

somes, where methylation might spread from nearby repetitive

elements (Table S6). M. polymorpha possesses a suite of meth-
yltransferases similar to other land plants (Table S7), except an

absence of CMT3, which may be related to lack of gene body

methylation (Takuno et al., 2016).

RNA Biology

Genes encoding SR family proteins mediating mRNA splicing

are found in single copy in M. polymorpha (Table S7). Pentatri-

copeptide repeat (PPR) proteins direct RNA processing steps

in organelles, with land-plant-specific PLS-class PPR proteins

mediating RNA editing (Fujii and Small, 2011). The single

M. polymorpha PLS gene lacks domains characterizing other

RNA-editing PLS proteins (Table S7), consistent with a loss of

RNA editing in Marchantiopsida organelles (Rüdinger et al.,

2008) and implying a different function for the M. polymorpha

PLS protein.
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Figure 5. Origin of Phytohormone Biosynthesis and Signaling Pathways

Land plant signaling pathways comprise very ancient two-component system hormone pathways involved in cytokinin and ethylene signal transduction, which

evolved in an ancestral alga, and F-box mediated pathways involving the plant hormones auxin, jasmonate, and strigolactones that evolved in land plants from

pre-existing components. Even when signaling pathways are conserved, biosynthetic pathways may vary between algae and land plants or even within land

plants. Biosynthesis enzymes are shown as hexagons, receptors as pentagons, signal transduction components as ovals, and transcription factors as rect-

angles; blue, present in algae; dark green, origin with land plants; light green, origin within land plants.
Diversification of Signaling Pathways
One hallmark of multicellular life is a plethora of signaling

pathways by which cells communicate, influencing cell specifi-

cation, differentiation, and physiology. In most cases, the

M. polymorpha genome encodes a minimal, but complete, set

of land-plant-signaling molecules.

F-box-mediated Hormone Pathways

Auxin modulates growth, differentiation, and gravitational and

light-tropic responses. The conserved land plant auxin biosyn-

thetic pathway via indole-3-pyruvic acid (Eklund et al., 2015)

consists of one autosomal MpTAA gene and five YUCCA paral-

ogs, with one expressed gametophytically, in M. polymorpha.

Chlorophytes and charophytes possess a gene that is ortholo-

gous to a land plant clade containing both TAA and its paralog

TAR (Table S8), but no charophycean orthologs of land plant

YUCCA genes are recognizable (Yue et al., 2012), suggesting

that this auxin biosynthetic pathway evolved in land plants.

The M. polymorpha auxin transcriptional response machinery

consists of single orthologs of AUX/IAA, TOPLESS (TPL), three

classes of ARF genes, and the TIR1 receptor (Flores-Sandoval

et al., 2015; Kato et al., 2015). At least two ARF classes exist

in charophytes, with the association of B3 DNA binding and

PB1 protein interaction domains arising early in streptophyte

evolution (Figure S1). AUX/IAA genes were derived from an
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ancestral ARF via B3 domain loss and gain of domains (I, II)

that interact with the TPL corepressor and the TIR1 receptor

plus auxin. Charophyte proteins with PB1 domains that are

most similar to land plant AUX/IAA proteins lack domains I

and II (Figure S1). Thus, while charophytes have orthologs

of land plant AUX/IAA genes, they lack specific domains required

for canonical auxin transcriptional responses. InM. polymoprha,

two additional genes (MpAXI1, MpAXI2) encode PB1 domains

but lack the B3 domain, possibly providing additional ARF regu-

lation. Charophytes have an F-box gene that is orthologous to

both TIR1 (the auxin receptor) and COI (the jasmonate receptor)

(Table S8). However, these algal F-box orthologs do not possess

conserved key residues for interaction with corresponding land

plant ligands (JA-Ile/JAZ [Sheard et al., 2010] and auxin and

AUX/IAA [Tan et al., 2007]; Figure S2), suggesting that they are

neither auxin nor JA receptors. In spite of previous assumptions

(Wang et al., 2015), it appears that both auxin and JA perception

machineries evolved in the ancestral land plant from an ancestral

algal F-box via gene duplication and neofunctionalization (Fig-

ures 5 and S3).

Polar auxin transport (PAT) occurs in liverwort gametophytes

(LaRue and Narayanaswami, 1957; Maravolo, 1976). PAT de-

pends on PIN and ABCB efflux and AUX1 influx facilitators.

Both PIN and ABCB orthologs exist in Klebsormidium, raising



the posibility of PAT in charophytes (Hori et al., 2014).

M. polymorpha has 5 PIN genes and several ABCB auxin

efflux facilitator orthologs. A single AUX1 ortholog is present in

M. polymorpha, but no similar charophycean algal sequence

was identified. AGC VIII group kinases and NPH3/RPT2-like pro-

teins that regulate ABCB and PIN localization and activity arose

prior to the colonization of land but diversified in the ancestral

land plant (Suetsugu et al., 2016). Thus, land plant auxin efflux fa-

cilitators and transporters consist of both ancient and more

recently evolved components, implying that PAT predated land

plants and increased in complexity during land plant evolution.

Plants respond to biotic and abiotic stresses via the jasmo-

nate (JA) signaling pathway. Similar to other bryophytes,

M. polymorpha can synthesize the JA-precursor OPDA (12-

oxo-phytodienoic acid) but lacks OPR3 (OPDA reductase)

that produces the vascular plant hormone JA-Ile (Stumpe

et al., 2010; Yamamoto et al., 2015). Despite this, single ortho-

logs of the COI1 co-receptor, JAZ repressor, MYC transcription

factor, and NINJA adaptor to the TPL co-repressor are found

in M. polymorpha (Table S8). No clear JAZ or NINJA orthologs

exist in either Chlorophytes or charophytes. Thus the JA-

perception and repression machinery (COI1-JAZ, NINJA) arose

in the land plant ancestor, with pre-existing MYC TFs recruited

to modulate activity by a newly acquired JA- or OPDA-related

ligand.

Strigolactones (SLs) are secreted signals inhibiting shoot

branching and promoting arbuscular mycorrhizal symbiosis.

Bryophyte SL biosynthesis pathways differ from those of

vascular plants (Delaux et al., 2012; Proust et al., 2011). A mini-

mal set of SL signaling components exist inM. polymorpha, with

only some components present in charophytes, suggesting

that the land plant SL pathway was constructed from preexisting

and newly evolved components (Table S8). Similarly, homologs

for some, but not all, vascular plant GA-synthesizing enzymes

were identifed in M. polymorpha, consistent with the absence

of canonical GA compounds in bryophytes. Orthologs of

GA-signaling pathway components, except GID1, are present

in M. polymorpha; thus, compared to P. patens, the

M. polymorpha GA signaling module is closer to that in vascular

plants, but lack of GID1 suggests stepwise acquisition during

land plant evolution.

Abscisic Acid

Abscisic acid (ABA) regulates dormancy and stress acclimation

under water-limited environments in land plants (Sakata et al.,

2014).M. polymorpha produces endogenous ABA, and gemmae

undergo growth inhibition with desiccation tolerance upon exog-

enous ABA treatment (Akter et al., 2014; Li et al., 1994; Tougane

et al., 2010). Single orthologs of ABA biosynthetic enzymes,

except XD, ABA catabolism, and ABCG transporters for ABA

import and export are present in M. polymorpha (Table S8). A

PTR-type transporter was not identified. Cellular ABA response

is mediated by an intracellular receptor (PYL), wherein the

ABA-PYL complex activates SNF1-related protein kinase2

(SnRK2) through inhibition of group A protein phosphatase 2C

(PP2C). MpPYL1 is a functional receptor, as it complements Ara-

bidopsis pyr1pyl1pyl2pyl4 mutants (Figure S4). M. polymorpha

has a diversity of PYL paralogs that is not observed in other

land plants, and subfunctionalization of MpPYL paralogs is
evident in sporophyte-specific expression patterns. PP2C (Tou-

gane et al., 2010) and SnRK2 exist throughout Viridiplantae, but

PYL receptors evolved more recently. Thus, acquisition of the

PYL receptor was crucial for recruitment of ABA as a phytohor-

mone in an ancestor of land plants. Downstream TF ABI3, which

plays a key role in desiccation tolerance in bryophytes, evolved

with land plants, while AREB arose in streptophytes.

Two Component System Hormone Pathways

In contrast to F-box-mediated hormone pathways, two-compo-

nent system cytokinin and ethylene signal transduction path-

ways are present in charophytes, but not Chlorophytes, suggest-

ing an origin early in charophyte evolution (Table S8, Ju et al.

[2015]). As in other non-seed plants (Banks et al., 2011; Rensing

et al., 2008), genes encoding a distinct ethylene-forming enzyme

(ACO) that is characteristic of seed plants are not present in

M. polymorpha.

Receptor Kinase Signaling Pathways

Cells perceive extracellular molecules via transmembrane re-

ceptors, and a large numerical increase of RLK/Pelle kinases in

land plants compared to Chlorophytes has been documented

(Lehti-Shiu and Shiu, 2012). The paraphyletic leucine-rich repeat

receptor kinase family (LRR-RLK) is the largest subclass of

land plant RLK/Pelle kinases (Shiu and Bleecker, 2001). 107

M. polymorpha genes possess both LRR and kinase domains,

with 14 out of 15 subclasses characterized in Arabidopsis pre-

sent (Table S9), with some notable absences, e.g., BRI1 and

PSKR1. Charophytes possess members in only a few sub-

classes, indicating diversification of LRR-RLK genes in the

ancestral land plant. At least 15 peptide families act as signals

in Arabidopsis (Matsubayashi, 2014). Members of the CLE,

IDA, EPFL, and RALF families are present in M. polymorpha,

but we could not detect other families (Table S9). Receptors

for identified peptides (CLV1, HAESA, ERECTA, and FERONIA)

are found in M. polymorpha, but not in charophytes, indicating

that these peptide-signaling pathways evolved in an ancestral

land plant. Similarly, most RLK/Pelle kinase subclasses (Lehti-

Shiu and Shiu, 2012) found throughout land plants are present

inM. polymorpha butmissing in charophytes (Table S9), implying

diversification of both developmental and defense signaling sys-

tems with the advent of terrestrialization.

In contrast to RLK/Pelle kinases, most subfamilies of

MAPK(K)(K) genes are present in charophytes or Chlorophytes,

indicating that most extant MAPK cascade diversity evolved

prior to land plants, as did cell cycle machinery (Table S9). Like-

wise, all subfamilies of land plant PPP and PP2C phosphatases

are already present in charophytes or Chlorophytes. MAPK and

phosphatase gene familes in the M. polymorpha genome are

encoded minimal paralogs compared with other land plants

and are similar to predictions for the ancestral land plant. In

contrast, histidine kinase (HK) diversity arose early in charophyte

evolution, and portions were lost prior to and during land plant

evolution. Among other signaling pathways, only one class of

F-box originated with land plants, and ancestral land plant

PEPB diversity was higher than in extant angiosperms.

New Features Adaptive to Life on Land
The transition to land from a previously aquatic or semi-

aquatic habitat entailed adaptation to a host of environmental
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challenges, both abiotic and biotic, requiring new or modified

biochemistry.

Prevention against Photooxidative Stress

Plants evolved distinct photoreceptor families for adaptation to

ambient light conditions and efficient photosynthesis, with all

angiosperm photoreceptor classes predating land plant evolu-

tion. M. polymorpha has single orthologs of photoreceptors

and core light signaling components resembling those predicted

for the ancestral land plant and, in addition, a couple liverwort-

specific LOV domain proteins (Table S10). Phenylpropanoids,

in particular flavonoids, act as UV ‘‘sunscreens’’ in land plants,

and their production is upregulated by UV-B via the UVR8 photo-

receptor. Liverworts produce a variety of small phenylpropa-

noid metabolites, including anti-fungal bibenzyls, UV-absorbing

flavone glycosides, yellow aurone glycosides, and cell-wall-

located red pigmentation, presumably the anthocyanidins riccio-

nidin A and B (Kunz et al., 1993). Genes encoding core enzymes

of the phenylpropanoid and shikimate pathways and UVR8

signaling are present in M. polymorpha, primarily in single or

low copy number, with exceptions being PAL and CHS found

in tandem arrays (Table S10). There are no convincing reports

of flavonoids from algae, and we find no evidence of phenylpro-

panoid biosynthetic genes in charophytes. At least some of

these enzymes (e.g., PAL) may be derived via horizontal gene

transfer from soil microbes to the ancestral land plant (Emiliani

et al., 2009).

Control of Hydration

Cell wall rigidity and imperviousness enhances efficient water

conduction and retention. Typical land-plant cell-wall biochem-

istry exists in charophytes, with wall composition and mechani-

cal properties proposed to reflect an early adaptation to

terrestrialization (Harholt et al., 2016; Mikkelsen et al., 2014).

Annotation of M. polymorpha genes encoding cell-wall-related

enzymes supports this view, with most glycoside transferase

and hydrolase families present in charophytes (Table S10).

Diversification of carbohydrate esterases, polysaccaride lyases,

pectin methyl transferases, and origin of xyloglucan endotrans-

glucosylase and hydrolases (XTH) coincide with land plant

emergence. Lack of charophyte XTHs is consistent with reports

they lack xyloglucan. MpXTH and expansin diversity suggests

that remodeling of the xyloglucan-cellulose network may be

more important than pectin in regulating M. polymorpha cell

wall mechanical properties compared with seed plants (Hongo

et al., 2012).

Water distribution involves, in part, plasmodesmata, plasma

membrane-lined intercellular connections that evolved within

charophytes or in the ancestral land plant (Brunkard and Zam-

bryski, 2017). Most known angiosperm plasmodesmatal protein

homologs are restricted to vascular plants or have broad distri-

butions, including species lacking plasmodesmata; thus, their

origins either predate or postdate plasmodesmata evolution;

only two exceptions appear to be land plant-specific (Table

S10). Plasmodesmata formation is associated with the unique

type of cytokinesis mediated by cell plate formation that evolved

in the derived streptophytes (Pickett-Heaps, 1969) and is corre-

lated with diversification of membrane trafficking machinery in

charophytes (Sanderfoot, 2007). Evolution of a streptophyte-

specific clade of SYP1 genes, including SYP11/KNOLLE, a cyto-
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kinesis-specific syntaxin, may have been instrumental in cell di-

vision mechanism evolution. Unlike other land plants, liverworts

also retain ancestral centrosome-like polar organizers and thus

represent a transitional state between ancestral centripedal

cleavage and derived centrifugal division mechanisms (Brown

and Lemmon, 1990; Buschmann et al., 2016; Farmer, 1895).

The polymer lignin increases rigidity and imperviousness of

secondary cell walls—a key innovation of water-conducting sys-

tems and structural support. WhileM. polymorpha possesses all

putative lignin biosynthesis genes except ferulate 5-hydroxylase

(Table S10), similar to P. patens (Xu et al., 2009), bona fide lignin

polymers have not been found. Thus, these enzymes may func-

tion in a ‘‘pre-lignin’’ pathway as suggested for P. patens (Re-

nault et al., 2017). Differentiation of water-conducting cells in

other land plants is controlled by VNS subfamily NAC TFs that

upregulate cell wall and programmed cell death (PCD) genes

(Xu et al., 2014). WhileM. polymorpha has no internal water-con-

ducting cells, it possesses the core set of VNS-downstream

genes that could function in cells with secondary thickenings

or undergo PCD (elaters and pegged rhizoids). Charophytes

possess homologs of VNS-downstream enzymes but lack the

NAC and MYB orthologs (Figure 4, Table S10), implying that

the VNS regulatory network was established in the ancestral

land plant and later co-opted to direct conducting cell differenti-

ation in derived lineages.

M. polymorpha dorsal thallus surfaces are hydrophobic, attrib-

utable to a cuticle preventing water loss and providing protection

from insects and UV radiation (Schönherr and Ziegler, 1975).

Land plant cuticles consist of a cutin polymer forming an extra-

cellular structural matrix with interspersed cuticular waxes.

Orthologs of genes regulating cuticle biosynthesis and deposi-

tion are present inM. polymorpha (Table S10). In contrast, homo-

logs for monomer biosynthesis (CYP86A) were not identified,

consistent with cutin monomers in Marchantiopsida differing

from those of other land plants (Caldicott and Eglinton,

1976). A similar picture emerges for homologs of wax biosyn-

thesis. Despite potentially analogous surface layers in some

charophytes (Cook and Graham, 1998), no closely related

cutin biosynthesis or transporter homologs were identified in

charophytes.

The polymer sporopollenin is a major component of spore

exine, protecting spores from desiccation. During sporopollenin

biosynthesis, hydroxylated alkylpyrones are generated by

acyl-CoA synthetase, anther-specific chalcone synthase-like,

and tetraketide a-pyrone reductase (Daku et al., 2016), with

M. polymorpha possessing candidates for all enzymes. Plants

synthesize a diverse array of additional specialized metabolites

arising, in part, from the functions of cytochrome P450 monoox-

ygenases (CYPs), 2-oxoglutarate-dependent dioxygenases

(2OGDs), and UDP-dependent glycosyltransferases (UGTs). In

contrast to regulatory genes, the majority of M. polymorpha

148 CYP, 41 UGT, and 38 2OGD genes represent novel families,

indicating substantial lineage-specific diversification of special-

ized metabolism. In addition to water, channels also facilitate

regulated sensing and uptake of exongenous molecules

and their distribution throughout the plant. Most angiosperm

membrane-associated channels and transporters have

M. polymorpha homologs (Table S10), with most diversity arising



in algal ancestors, with exceptions being NPF transporters and a

subclade of ABCG transporters that diversified in the ancestral

land plant.

Defense

The signaling molecule salicylic acid (SA) regulates defense re-

sponses against pathogens (Dempsey et al., 2011). Homologs

of all key components in SA biosynthesis and signaling were

identified in M. polymorpha (Table S10). Both the PAL-depen-

dent SA biosynthesis pathway and the SA transcriptional

response mediator, NPR1, are found only in land plants. Expan-

sion of the downstream PR1 (pathogenesis-related) gene family

in land plants may have followed NPR1 gene acquisition.

Plants sense pathogens via two types of receptors. Plasma

membrane located pattern recognition receptors, FLS2 and

EFR, belong to the LRR-RLK subfamily XII and require SERK

(LRR-RLK subfamily II) co-receptors (Chinchilla et al., 2007; Gó-

mez-Gómez and Boller, 2000; Roux et al., 2011; Zipfel et al.,

2006). M. polymorpha does not have FLS2 or EFR orthologs

(Table S10), but other LRR-RLK subfamily XII genes could

have roles in sensing bacterial elicitors. In contrast, SERK genes

are conserved among land plants. Intracellular receptors, con-

taining nucleotide-binding site (NBS) and LRR domains (NBS-

LRR), directly or indirectly recognize pathogen virulence mole-

cules. A molecular chaperone complex required for NBS-LRR

protein activity predates land plants (Table S10). NBS-LRR

genes evolve rapidly with large clusters of genes in Arabidopsis

(536) andP. patens (165) (Sarris et al., 2016).M. polymorpha pos-

sesses only 34 genes, some of which are paired, suggesting a

similar genomic architecture as in angiosperms. The absence

of known NBS-LRR downstream signaling genes in non-seed

plants suggests that this pathway diversified later.

Oil bodies, unique to liverworts, accumulate terpenoids

and serve a role in deterring pathogens and herbivores (Suire

et al., 2000; Tanaka et al., 2016). M. polymorpha possesses 7

typical plant terpene synthase and 32 microbial terpene syn-

thase-like (MTPSL) genes, including 10 partial genes. Several

M. polymorpha MTPSLs function as sesquiterpene or monoter-

pene synthases in in vitro assays (Kumar et al., 2016). The ances-

tral MTPSL genes were acquired through horizontal gene trans-

fer from bacteria and fungi (Jia et al., 2016), providing liverworts

with a chemical defense to deter herbivores and pathogens from

their inception (Labandeira et al., 2014).

Horizontal Gene Transfer

Given the apparent horizontal gene transfer (HGT) of MTPSL, we

searched for families with a similar phylogenetic distribution—in

M. polymorpha and fungi, to the exclusion of all other eukary-

otes. Including MTPSLs, we identified 10 families (42 genes)

most closely related to fungal genes and 5 families (31 genes)

most closely related to bacterial genes as candidates for HGT

from microbes to liverworts (Table S11), a number that is similar

to that reported for P. patens (Yue et al., 2012). Sequence simi-

larity to either Ascomycota or Basidiomycota implies multiple

transfers not acquired from mycorrhizal fungi associates, which

are typically Glomeromycota in complex thalloid liverworts (Field

et al., 2015). While the majority of genes suggested by Yue et al.

(2012) to be acquired by the ancestral land plant are present

in charophycean algae (Table S11), given the potential HGT fre-

quency, further analyses may reveal additional events in the
ancestral land plant as it was exposed to new microbes during

terrestrialization.

DISCUSSION

Genome Composition
Our data are consistent with an ancient origin of dimorphic sex

chromosomes within the liverwort lineage. In organisms with a

dominant diploid generation, the unique heterogametic sex

chromosome undergoes degeneration due to accumulation of

detrimental mutations via a process first outlined by Muller

(Muller, 1914). In contrast, the evolutionary fate of sex chromo-

somes in organisms with a dominant haploid generation is

fundamentally different, with predictions being the following: (1)

the sex chromosomes should have similar characteristics, with

degeneration similar for both; (2) degeneration should be limited,

with retention of genes required gametophytically and loss of

sporophytic genes; and (3) changes in size should be additions

of heterochromatin (Bull, 1978). If the ancestral autosome from

which M. polymorpha sex chromosomes evolved resembled

extant autosomes, an aspect of theory not supported is limited

degeneration, as sex chromosome gene density implies gene

loss with concomitant repetitive elements acquisition.

One unique feature of the M. polymorpha genome relative to

other sequenced land plant genomes is lack of redundancy in

most regulatory genes. Regardless of the phylogenetic position

of liverworts, this implies that the last common ancestor of extant

land plants likely possessed a regulatory genome similar to

that of M. polymorpha. While M. polymorpha has a paucity of

duplicated regulatory factors, other biosynthetic, metabolic,

and structural genes do not exhibit this pattern. How can this

be explained? Whole-genome duplications (WGDs), from Para-

mecium to angiosperms, result in retention of an over-represen-

tation of TFs and regulatory molecules (Edger and Pires, 2009;

McGrath et al., 2014; Papp et al., 2003). In contrast, due to

dosage sensitivity, small-scale duplications of TF genes are

selected against because their products often act in complexes,

while small-scale duplications of biosynthesis, metabolic, and

structural genes are not (Birchler et al., 2001; Hanada et al.,

2008; Maere et al., 2005). Since there is little evidence for ancient

WGDs within liverworts (Berrie, 1960; Heitz, 1927), the pattern of

retained M. polymorpha paralogs may be a reflection of the lack

of ancient WGDs. The question then becomes, ‘‘why were there

no ancient WGDs in liverworts?’’ Mable lists several conditions

that may either limit or promote polyploidy (Mable, 2004).

Notably, most factors suggested to facilitate polyploid formation

exist in liverworts: e.g., high rates of vegetative propagation, self-

compatibility, and a measurable rate of dyad formation. Muller

hypothesized that polyploidy was less common in animals than

in plants due to the presence of strongly dimorphic sex chromo-

somes whose segregation during meiosis in tetraploids leads

to non-viable chromosome constitutions (Muller, 1925). While

the presence of sex chromosomes does not preclude polyploidy

(Mable, 2004), we propose that the early evolution of dimorphic

sex chromosomes contributed to genome stability in liverworts.

The formation of meiotic dyads in the Marchantiopsida is not

rare, but the lack of ancient polyploidy indicates selection

against polyploid genotypes, perhaps due to inefficient pairing
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Figure 6. Evolution of Land Plant Attributes

The acquisition, or loss, of genes involved in transcription, signaling, and biochemistry during the evolution of land plants from an algal ancestor are shown, with

positions reflecting the latest possible common ancestor.
of the sex chromosomes, as observed in induced liverwort poly-

ploids (Allen, 1935; Haupt, 1932; Lorbeer, 1927). In cases where

liverworts have recently, e.g., within extant genera, experienced

polyploidy, the species almost invariably become monoecious

(Berrie, 1964; Heitz, 1927). Consistent with our hypothesis,

mosses, ferns, and angiosperms do not have ancient dimorphic

sex chromosomes and readily become polyploid, while horn-

worts, which may possess sex chromosomes, are rarely poly-

ploid (Berrie, 1960; Rink, 1935). In this scenario, the early evolu-

tion of sex chromosomes in the liverwort lineage resulted in a

lack of WGDs, which in turn reduced proliferation of regulatory

genes. Whether retention of a largely ‘‘ancestral regulatory
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genome’’ has restricted or canalized liverwort evolution is a mat-

ter for debate (Van de Peer et al., 2017); however, the diversity

of liverwort gametophyte morphology compared to that of

mosses and hornworts (Campbell, 1918) might argue against

the premise.

Land Plant Evolution
Previous genomic comparisons have hinted at genetic innova-

tions that define land plants (Floyd and Bowman, 2007; Hori

et al., 2014; Ju et al., 2015; Nishiyama et al., 2003; Rensing

et al., 2008). Using genomic and transcriptomic resources

spanning charophyte and land plant diversity, we refined the



evolutionary origins of numerous gene families, with signaling

pathways prominent among land plant innovations. Compared

with those of their charophycean algal relatives, land plant ge-

nomes are characterized by genes encoding novel biochemical

pathways (cutin, phenylpropanoids, terpenoids, lignin, SA),

new F-box-mediated phytohormone signaling pathways (auxin,

JA, SL), expanded repetoires of receptor-like kinases (RLK/

Pelle) and their peptide ligands (CLE, IDA, EPFL, RALF), but

not MAPK or phosphatase families, and increased diversity in

a few TF families (Figure 6). In the simplest cases, gene duplica-

tion followed by neofunctionalization was sufficient to drive mo-

lecular diversification (TFs, cutin, RLK/Pelle). However, in other

cases, neofunctionalization of proteins to assemble de novomo-

lecular interactions between preexisting and newly evolved pro-

teins was required, e.g., in the assembly of the auxin and JA

pathways. As auxin influences a vast array of developmental

mechanisms in land plants, the evolution of its transcriptional

signaling pathwaywas critical to set the stage for themorpholog-

ical diversification of land plants. Finally, interactions with other

terrestrial organisms not only resulted in the establishment of

symbiotic interactions (e.g., mycorrhizal fungi [Field et al.,

2015]), but also access to genes acquired via horizontal transfer

that provided novel biochemistry (terpenoids, phenylpropa-

noids, auxin biosynthesis). These innovations were critical for

both developmental evolution of land plant architecture and

adaption to new abiotic (desiccation, UV, temperature fluctua-

tion) and biotic stressors typical of life on land.
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Gepard (Krumsiek et al., 2007) http://mips.gsf.de/services/analysis/gepard

BLAT - the BLAST-like alignment tool (Kent, 2002) https://www.soe.ucsc.edu/?kent

MIRA ver. 3.2.0 (Chevreux et al., 1999) https://sourceforge.net/projects/

mira-assembler/

PERTRAN (S. Shu, unpublished data) N/A

Program to Assemble Spliced Alignments (PASA) (Haas et al., 2003) https://pasapipeline.github.io/

RepeatMasker (Smit et al., 2013–2015) http://www.repeatmasker.org/

RepeatModeler (Smit and Hubley, 2008–2015) http://www.repeatmasker.org/

RepeatModeler.html

FGENESH+ (Salamov and Solovyev, 2000) N/A

GenomeScan (Yeh et al., 2001) http://genes.mit.edu/genomescan/

BRAKER1 (Hoff et al., 2016) http://bioinf.uni-greifswald.de/bioinf/braker/

CasFinder N/A http://arep.med.harvard.edu/CasFinder

STAR alignment software (Dobin et al., 2013) http://code.google.com/p/rna-star/

Cuffdiff (Trapnell et al., 2013) https://omictools.com/cuffdiff-tool

codonw 1.4.4 software J. Peden http://codonw.sourceforge.net

Spearman’s rank correlation analysis

tool version 1.1.23-r7

P. Wessa, Free Statistics Software,

Office for Research Development

and Education

https://www.wessa.net/

EMBOSS utility ‘‘getorf’’ N/A http://emboss.sourceforge.net/apps/cvs/

emboss/apps/getorf.html

KOG (Koonin et al., 2004) https://www.ncbi.nlm.nih.gov/COG/new/

shokog.cgi; ftp://ftp.ncbi.nih.gov/pub/

COG/KOG

OrthoMCL (Chen et al., 2006; Li et al., 2003) http://orthomcl.org/orthomcl/

OMA (Altenhoff et al., 2015) http://omabrowser.org/oma/home/

MUSCLE v3.8.31 (Edgar, 2004) http://www.ebi.ac.uk/Tools/msa/muscle/

KaKs_Calculator2.0 (Wang et al., 2010) https://sourceforge.net/projects/

kakscalculator2/

BLASTZ (Schwartz et al., 2003) genomewiki.ucsc.edu/index.php/Blastz

DAGchainer (Haas et al., 2004) http://dagchainer.sourceforge.net/

SynMap at CoGe website (Lyons et al., 2008) https://genomevolution.org/CoGe/SynMap.pl

Transposon Annotation using Small RNAs (TASR) (El Baidouri et al., 2015) https://tasr-pipeline.sourceforge.net/

LTRharvest (Ellinghaus et al., 2008) http://www.zbh.uni-hamburg.de/

forschung/arbeitsgruppe-

genominformatik/software/ltrharvest.html

LTRdigest (Steinbiss et al., 2009) http://www.zbh.uni-hamburg.de/

forschung/arbeitsgruppe-

genominformatik/software/ltrdigest.html

HMMER N/A http://hmmer.org/

Pfam (Finn et al., 2016) http://pfam.xfam.org/

Repeatmasker (Smit et al., 2013–2015) http://www.repeatmasker.org/

cgi-bin/WEBRepeatMasker

Repeatlandscape Juan Caballero, RepeatMasker.org/

Institute for Sytems Biology, 2012

https://github.com/caballero/

RepeatLandscape

SNAP v2.1.1 N/A https://www.hiv.lanl.gov

Geneious ver. 7.1.9 package N/A https://www.geneious.com

Se-Alv2.0a11 (Rambaut, 2014) http://tree.bio.ed.ac.uk/software/seal/

(Continued on next page)
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RAxML ver. 8.2.8 (Stamatakis, 2014) https://github.com/stamatak/

standard-RAxML

MrBayes ver. 3.2.6 (Ronquist et al., 2012) http://mrbayes.sourceforge.net/

download.php

Other

Genome portal: Marchantia polymorpha v3.1 this study https://phytozome.jgi.doe.gov/pz/

portal.html#!info?alias=Org_

Mpolymorpha_er

Genome portal: Marchantia polymorpha v3.1 Includes

raw RNaseq & DNA methylation data

this study http://marchantia.info/

Transcriptome data this study Table S2 Mendeley https://doi.org/10.17632/

zb7hwyj3hp.1

Marchantia nomenclature website this study; (Bowman et al., 2016a) http://marchantia.info/nomenclature/

index.php/Main_Page

Phylogenetic tree analyses this study Mendeley https://doi.org/10.17632/

zb7hwyj3hp.1 Tables S8-10
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact John L.

Bowman (john.bowman@monash.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Several accessions of M. polymorpha subsp. ruderalis (Bischler-Causse, 1993; Bowman et al., 2016a; Shimamura, 2016) were

utilized. The Y chromosome of the Takaragaike-1 (Tak-1) accession was previously sequenced (Yamato et al., 2007). The genome

sequence presented here was derived from a single clonal female derived from backcross 4 between a male Tak-1 line and a female

Takaragaike-2 (Tak-2) line (GenBank BioSample: SAMN02199054; Sample name: 33950; SRA: SRS441030). Genome sequencewas

also obtained from a female of the Kitashirakawa-2 (Kit-2) accession to facilitate identification of X chromosome scaffolds (GenBank

BioSample: SAMN05920745; DOE Joint Genome Institute: Gp0033047). Sporeling transcriptome data were derived from a cross

between the Cambridge-1 (Cam-1) and Cambridge-2 (Cam-2) accessions. Takaragaike and Kitashirakawa accessions were

collected in Sakyo-ku, Kyoto, Japan, in which the International Conference Hall and Kyoto University (university botanical garden)

are located, respectively. Cam accessions were collected in Cambridge, UK.

METHOD DETAILS

Sequencing Summary
Using a whole genome shotgun sequencing strategy, we sequencedMarchantia polymorpha, with DNA isolated from a single clonal

female derived from backcross 4 between amale Tak-1 line, whose Y chromosome was previously sequenced (Yamato et al., 2007),

and a female Tak-2 line. Sequencing reads were collected using 454, Illumina and Sanger sequencing platforms using standard

sequencing protocols. The 454, Illumina, and Sanger reads were sequenced at the Department of Energy (DOE) Joint Genome

Institute (JGI) in Walnut Creek, California and the HudsonAlpha Institute in Huntsville, Alabama. 454 reads were sequenced using

the GS FLX+ platform, Illumina reads were sequenced using the Illumina MiSeq/HiSeq, and Sanger reads were sequenced using

an ABI 3730XL capillary sequencer. Five linear 454 libraries (26.03x), one 2x250, 800bp insert Illumina fragment library (39.93x),

one 2x150 5-kb insert Illumina mate pair library (13.38x), and three fosmid libraries (0.81/0.66x) were obtained for a total of

approximately 80x coverage (see Table S11). Prior to assembly, all reads were screened for mitochondria, chloroplast, and phiX.

Reads composed of > 95% simple sequence repeats were removed. Illumina reads < 75bp after trimming for adaptor and quality

(q < 20) were removed. An additional deduplication step was performed on Illumina pairs that identifies and retains only one copy

of each PCR duplicate.

Genome Assembly Process
The current release is the version 3.1 release which is a combination of the version 0.6 and the version 1.0 release. The process

of assembly and combination to produce the version 3.1 release is detailed in this section. The version 0.6 release used a total of

26.03x linear 454 data combinedwith 0.81x Fosmid end data and assembled using Newbler (v2.6) (Margulies et al., 2005) with default
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settings. This produced a raw assembly consisting of 4,618 scaffolds (8,623 contigs) totaling 201.7 Mb of sequence, with a scaffold

N50 of 1.3 Mb, 223 scaffolds larger than 100 kb (180.4 Mb). Scaffolds were removed from the release if they were (a) repetitive;

defined as scaffolds smaller than 50 kb consisting of > 95% 24mers that occurred 4 or more times in scaffolds larger than 50 kb,

(b) contained only unanchored RNA-sequences, (c) were less than 1 kb in length, or (d) mitochondria/chloroplast contaminants.

The total release includes 201.1 Mb of sequence assembled into 4,396 scaffolds (8,401 contigs) with a contig N50 of 62.8 kb and

a gap content of 10.9%.

The version 1.0 release was assembled using a total of 53.31x Illumina data combined with the 0.66x Fosmid data and assembled

using our modified version of Arachne v.20071016 (Jaffe et al., 2003) with parameters correct1_passes = 0 maxcliq1 = 700

BINGE_AND_PURGE = True max_bad_look = 1000. This produced a raw assembly consisting of 4,353 scaffolds (8,944 contigs)

totaling 218.6 Mb of sequence, with a scaffold N50 of 1.5 Mb, 227 scaffolds larger than 100 kb (207.4 Mb). The screening procedure

used with version 0.6 was applied to version 1.0. The total release includes 213.7 Mb of sequence assembled into 1,317 scaffolds

(4,960 contigs) with a contig N50 of 262.1 kb and a gap content of 5.7%.

The version 2.0 release is a combination of the version 0.6 and version 1.0. The more complete version 1.0 assembly was used to

fill gaps in the version 0.6 assembly. A total of 2,632 gaps were patched in version 0.6 resulting in a total of 8,942,510 bp added to

the version 0.6 release. The patching increased the contig N50 from 62.8 kb to 256.9 kb. Post patching, a number of the version 0.6

scaffolds were rendered redundant. A total of 1,469 redundant scaffolds totaling 5.7 Mb of version 0.6 scaffolds were removed.

The version 1.0 assembly was masked using 24mers taken from version 0.6 and this revealed that there were a significant number

of R 1 kb contiguous sequences present in version 1.0 that were not present in the version 0.6 assembly. A total of 111 contigs

(362 kb) were identified in version 1.0 and were combined with the original version 0.6 assembly to form the version 2.0 release.

X chromosome (sex chromosome) related scaffolds were identified by aligning Kit-2 and Tak-1 reads to the version 2.0 release using

bwa (Li and Durbin, 2009) and the per base depth was computed using samtools (Li et al., 2009). The Kit-2 and Tak-1 varieties were

selected to be of different sexes and X chromosome related regions were identified as regions where the Tak-1 depth was �0 while

the Kit-2 depth was unchanged. A total of 7 scaffolds representing 4.2 MB of sequence were identified as X chromosome related.

Homozygous SNPs and INDELs were corrected in the version 2.0 release using �150x of illumina reads (2x250, 800 bp insert). Ho-

mozygous SNPs or INDELs that were within 50bp of one another were not corrected. A total of 35 homozygous SNPs was corrected

out of a possible 546 and 5,585 indels were corrected out of a total 6,290. Finally, the version 3.1 release was formed by combining

the version 2.0 release with the two available Y chromosome scaffolds [labeled Chr_Y_A and Chr_Y_B, (Yamato et al., 2007)]. The

final version 3.1 assembly consists of 2,957 scaffolds (4,454 contigs) covering 225.8 Mb of the Marchantia polymorpha genome

with a contig L50 of 265.9 kb and a scaffold L50 of 1.4 Mb. See Table S11 for the final version 3.1 scaffold and contigs statistics.

Assessment of Assembly Accuracy
A set of 19 PAC clones was sequenced in order to assess the accuracy of the assembly (Table S11). Minor variants were detected in

the comparison of the PAC clones and the assembly. In 16 of the 19 PAC clones, the alignments were of high quality (< 0.03% bp

error) with an overall error rate of 1 in 16,239 bp. An example of a high-quality PAC alignment is given in Table S11. The overall bp error

rate (including marked gap bases) in all 19 PAC clones is 0.062% (1,287 discrepant bp out of 2,073,539). Table SM1c shows the in-

dividual PAC clones and their contribution to the overall error rate. Note that three PAC clones (4084730, 4084731, & 4084728)

contribute 92% of the discrepant bases. This is due to one of the clones (4084728) terminating in a repetitive region (Table S11)

and the discrepancies in the other clone are due to an insertion in the genome assembly (4084731) shown in Table S11.

Assessment of Completeness
Completeness of the euchromatic portion of the genome assembly was assessed using 1,682,726 454 ESTs (see below for their

origin). The aim of this analysis is to obtain a measure of completeness of the assembly, rather than a comprehensive examination

of gene space. The ESTswere aligned to the assembly using BLAT (Kent, 2002), with parameters: -t = dna –q = rna –extendThroughN.

AlignmentsR 90%base pair identity andR 60%coveragewere retained. The screened alignments indicate that 1,519,194 (95.93%)

of the ESTs aligned to the assembly. Out of the remaining ESTs, 102,216 (6.07%) were library artifacts (chimera, or < 50% aligned at

high identity), 3,081 (0.19%) sequences hadR 50 percent coveragewith low identity, and 61,235 (3.87%) sequences were not found.

The ESTs that were not foundwere checked against the NCBI non-redundant nucleotide repository (nr), and > 60%of them appear to

be fungal plant pathogens and commensal prokaryotes.

As a second approach to assess completeness of v3.1, we compared this assembly to a preliminary assembly based on long reads

(Pacbio). We first compared the length of the genome assembled by each of the approaches (Table S11). The length of the v3.1

(minus the Y chromosome of 6 Mb) is 219 Mb, while the female Pacbio assembly is 224 Mb. There are approximately 15 Mb of

Ns in v3.1 (repetitive DNA that was not assembled into contigs correctly), while the Pacbio assembly lacks these. Conversely, the

Pacbio assembly has about 13 Mb more ‘repeat masked’ bases (Table S11). Thus, the total length of the non-repetitive DNA portion

of the two assemblies is very similar.

To assess the completeness of the Pacbio assembly, we asked whether it covers the ‘gene space’ present in the v3.1 assembly

(Table S11). Thus, wemapped the annotated genes in v3.1 to the Pacbio assembly and found that of the 19,138 protein coding genes,

all but 127 (99.3%) were in the Pacbio assembly; this indicates that the Pacbio assembly is also essentially complete. We then asked

whether there is any ‘gene space’ in the Pacbio assembly not present in the v3.1 assembly. Wemapped all transcriptome reads from
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10 transcriptome experiments to the v3.1 (+/�Y chromosome) and Pacbio female assemblies. In every case v3.1 (w/o Y) had a slightly

higher mapping rate than the Pacbio female. The Pacbio sequence failed to identify any additional functional genes on the X chro-

mosome scaffolds. In summary, the v3.1 assembly accurately reflects the entire gene space in M. polymorpha.

Sequencing of Organellar Genomes
Nucleotide sequences of the organellar genomes of BC4 and Kit-2 were determined by assembling 454 and Illumina reads, respec-

tively. Sequence discrepancy was observed only in poly A/T stretches of BC4 and Kit-2, suggesting the organellar genomes in the

two accessions were conserved (Table S1). The sequences were mapped onto the published Marchantia organellar sequences,

NC_001319.1 and NC_001660.1 for plastid and mitochondrial genomes, respectively. Collected reads were assembled by MIRA

ver. 3.2.0 (Chevreux et al., 1999) run on the supercomputer of the Academic Center for Computing and Media Studies, Kyoto Uni-

versity, Japan). The sequences were finished by filling gaps with Sanger reads.

Annotation Methods
32,718 transcript assemblies were made from�0.5B pairs of paired-end Illumina RNA-seq reads, 24,803 transcript assemblies from

�0.35B single-end Illumina RNA-seq reads (derived from XVE:miR-E(z) lines (Flores-Sandoval et al., 2016) and ectopic MpKNOX2

andMpBELL expression lines (TomDierschke and J.L.B., unpublished data) to enrich for sporophyte expressed genes), 19,438 tran-

script assemblies from �3M 454 reads (Table S1). All these transcript assemblies from RNA-seq reads were made using PERTRAN

(S. Shu, unpublished data). 43,727 transcript assemblies were constructed using PASA (Haas et al., 2003) from 33,863 Sanger ESTs

(Nagai et al., 1999; Nishiyama et al., 2000; Yamato et al., 2007) and all RNA-seq transcript assemblies above. Loci were determined

by transcript assembly alignments and/or EXONERATE alignments of proteins from Arabidopsis thaliana, soybean, sorghum, rice,

mimulus, grape, Chlamydomonas reinhardtii, Sphagnum fallax, Physcomitrella patens and Klebsormidium nitens, Swiss-Prot pro-

teomes, and Pfam and Panther filtered ORFs from transcriptome assemblies of 4 Charophycean algae (Nitella, Spirogyra, Coleo-

chaete, and Mesostigma) to repeat-soft-masked Marchantia polymorpha genome using RepeatMasker (Smit et al., 2013–2015)

with up to 2-kb extension on both ends unless extending into another locus on the same strand. Repeat library was generated using

RepeatModeler (Smit and Hubley, 2008–2015). Gene models were predicted by homology-based predictors, FGENESH+ (Salamov

and Solovyev, 2000), FGENESH_EST (similar to FGENESH+, EST as splice site and intron input instead of protein/translated ORF),

and GenomeScan (Yeh et al., 2001), and from AUGUSTUS via BRAKER1 (Hoff et al., 2016). The best-scored predictions for each

locus were selected using multiple positive factors including EST and protein support, and one negative factor: overlap with repeats.

The selected gene predictions were improved by PASA. Improvement includes adding UTRs, splicing correction, and adding alter-

native transcripts. PASA-improved gene model proteins were subject to protein homology analysis to above-mentioned proteomes

to obtain C-score and protein coverage. C-score is a protein BLASTP score ratio to MBH (mutual best hit) BLASTP score and protein

coverage is highest percentage of protein aligned to the best of homologs. PASA-improved transcripts were selected based on

C-score, protein coverage, EST coverage, and its CDS overlapping with repeats. The transcripts were selected if its C-score is larger

than or equal to 0.5 and protein coverage larger than or equal to 0.5, or it has EST coverage, but its CDS overlapping with repeats is

less than 20%. For genemodels, whoseCDS overlaps with repeats formore than 20%, its C-scoremust be at least 0.9 and homology

coverage at least 70% to be selected. The selected gene models were subjected to Pfam analysis and gene models whose protein

was more than 30% in Pfam TE domains were removed. To define transcriptional units on the genome, we constructed full-length

enriched cDNA libraries from thalli grown under different light conditions and sporeling. Both ends of 33,000 clones from each library

were sequenced.

Sporeling RNA Enrichment Analysis
Crosses:Marchantia polymorpha Cam-1 & Cam-2 gametophytes were grown in soil and induced by far-red LED exposure for sexual

organ development. Sperm was collected from Cam-1 antheridia and sprayed onto Cam-2 archegoniophores every 2-3 days for

1 week. After 3 weeks, sporangia began emerging and spore heads (archegoniophores bearing sporangia) were collected and dried

with silica gel on 50mL Falcon tubes for 3 days. Spore heads were stored at �80�C. Spore germination and axenic growth: Twenty

frozen spore heads were crushed and resuspended with 1mL of sterile water per spore head. Resuspended spores were filtered

through a 40uM cell strainer and spun down at 13.000 RPM for 1 minute. Spores were sterilized by adding 1mL of Milton’s sterilizing

solution (1 Milton mini sterilizing tablet in 25mL of sterile water, Milton Pharmaceutical UK Company, active ingredient: Sodium

dichloroisocyanurate CAS: 2893-78-9: 19.5% w w-1) and incubated at RT for 20 minutes in a rotating shaker at 100RPM. Spores

were then spun down and washed once with 1mL of water. Finally, they were resuspended in 100uL per spore head and sown

onto 1/2 Gamborg’s B5 plates with 1% agar in decreasing amounts in respect to the expected mass obtained through germination

(1/3 of total spores were kept for time 0h, 1/4 of total spores for time 24h, 1/5 for time 48h, 1/8 for time 72h and 1/10 for time 96h).

Plates were sealed with micropore tape and placed in the culture chamber on a 16:8 day/night cycle at 21�C, with 60 mmol photons

m�2 s�1 of illumination. Sample collection and sequencing: Spores were collected from plates at the same hour of the day, every

24 hours for 4 days using sterile water with an L-spreader, and placed on 1.5mL Eppendorf tubes. Excess liquid was removed and

tubes stored at �80�C. Three biological replicates were performed for each time point. Total RNA was extracted using QIAGEN

RNeasy mini kit and RNA concentration was measured with a Qubit fluorimeter using the RNA BR assay kit. RNA integrity was as-

sessed with a Bioanalyzer 2100 machine using the Agilent RNA 6000 Nano kit and samples were sent to BGI for further processing.
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Library preparation was performed with the Illumina TruSeq RNA library preparation kit v.2 and 100bp paired-end sequencing was

carried out on an Illumina HiSeq 2000machine, with samples multiplexed on 2 lanes. RNA sequencing: RNA sequencing produced >

24M clean paired-end (PE) reads per time point on average. Reads were mapped to theMarchantia polymorpha v3.1 genome using

the STAR alignment software (Dobin et al., 2013) andmapped reads were processed through Cuffdiff (Trapnell et al., 2013). Sporeling

FPKM normalized read counts were then loaded onto the FPKMmatrix as sporeling datasets and enrichment analysis for sporelings

was carried out by obtaining the ratio between the maximum value of any sporeling dataset over the value of any other tissue

(see Table M1 at Mendeley https://doi.org/10.17632/zb7hwyj3hp.1). Genes were defined as enriched in sporeling tissue if the ratio

was > 10. Also, genes having infinity ratios (where all other tissues had 0 FPKM values) were assigned as enriched if the maximum

expression value of the sporeling datasets was > 0.3 FPKM, as to avoid extremely low counts from being assigned as enriched. This

approach produced 366 genes enriched in sporeling tissue, which can be found in the supplementary enriched genes table.

Codon Analysis
METHODOLOGY:Analyses of indices of codonusage across the transcriptomedatasetwereperformedusing codonw1.4.4 software

(J. Peden, http://codonw.sourceforge.net). Correlation analysis was carried out using a Spearman’s rank correlation analysis tool

(P. Wessa, Free Statistics Software, Office for Research Development and Education, version 1.1.23-r7, https://www.wessa.net/).

Identification of Upstream ORFs
The full transcript sequences, including splice variants, for A. trichopoda, A. thaliana,M. polymorpha, P. patens and S. moellendorffii

were obtained from Phytozome v11.0, TAIR 10 and ENSEMBLE databases. We predicted all ORFs in the forward strand for each

sequence with EMBOSS utility ‘‘getorf,’’ detecting the longest ORF as the coding gene and filtering the 50 upstream uORFs if the

size in aminoacids were > 9 using custom Perl scripts (available upon request), all uORFsmust have an AUG and a stop codon within

the 50UTR. Information for initial and end positions, uORF size and uORF distance to ORF was recorded in text tables (see Table S1).

The minimum size was set to 10 amino acids, including the start and stop codon, this consideration was taken due to the experi-

mental evidence from functional uORFs. We considered all splicing variants to perform our analysis, all uORFs described here

must have an AUG and a stop codon within the 50UTR, in other organisms there a great number of uORFs that overlap with the

main ORF, in plants most of the uORFs described and for those with functional experimental evidence are located on the 50UTR.
As a positive control we were able to identify 100% of the Conserved Peptide uORFs reported in A. thaliana previously.

Ortholog Analysis
To examine conservation of orthologs and expansion and loss of protein families, we performed ortholog analysis using three re-

sources, KOG (Koonin et al., 2004), OrthoMCL (Chen et al., 2006; Li et al., 2003), and OMA (Altenhoff et al., 2015). They are designed

to cluster homologs according to similarity scores obtained by an all-against-all search (BLAST for KOG and OrthoMCL; Smith-

Waterman for OMA). Although it becomes more difficult to identify genuine orthologs as sequences to be examined become

more distant from their most recent common ancestor (Smith and Pease, 2017), they provide a practical way to compare orthologs

and protein families amongmultiple organisms. Of the 19,138 genes, 13,175were assigned to at least one group by at least one of the

three resources (Table S3). The numbers and members of groups varied among the three resources and we found several groups

whose members are not consistent with those identified by rigorous phylogenetic analysis (e.g., in OMA: phytochrome and several

families of transcription factors). Thus, only results from OrthoMCL and KOG are presented in Table S3. Due to the incongruences in

the different ortholog analyses, perhaps due to the phylogenetic distances involved and sparse taxon sampling (Smith and Pease,

2017), we chose to performmore rigorous phylogenetic analyses for specific gene families of interest (see main text and subsequent

Supplemental Information).

Whole and Segmental Genome Duplication Analysis
The transcript with the longest ORF among transcriptional variants was collected from each gene. Paralog pairs were selected as

reciprocal best hits by BLAST. The amino acid sequences of the pairs were aligned by MUSCLE (v3.8.31; Edgar, 2004), and their

Ks and 4dTv values were calculated by the KaKs_Calculator2.0 [Table S4, (Wang et al., 2010)]. Dot plot figures generated using

BLASTZ (Schwartz et al., 2003) and DAGchainer (Haas et al., 2004) included in SynMap at CoGe website (Lyons et al., 2008).

Identification of Repetitive DNA
We performed de novo annotation of repeats through a homology based approach by building a library of consensus sequences

with RepeatModeler (that combines both RepeatScout and RECON) (Smit and Hubley, 2008–2015) and subsequently employing

the consensus sequences as probes to screen for similar sequences with RepeatMasker (Smit et al., 2013–2015). In addition,

we employed Transposon Annotation using Small RNAs (TASR) (El Baidouri et al., 2015) by taking advantage of the different

M. polymorpha small RNA libraries publically available. Repeat elements were identified using the RepeatModeler (http://www.

repeatmasker.org/RepeatModeler.html) pipeline that combines and automates four different programs RECON, RepeatScout, Re-

peatMasker (http://www.repeatmasker.org/) and Tandem Repeats Finder (TRF) to build, refine, and classify consensus models of

putative interspersed repeats (Lerat, 2010). Long Terminal Retrotransposons (LTRs) were identified using the LTRharvest (Ellinghaus

et al., 2008) LTRdigest (Steinbiss et al., 2009) pipeline. LTR retrotransposons were subjected to computational identification and
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manual curation to identify LTRs containing particular arrays of protein domains characteristics of retrotransposon proteins using

HMMER (http://hmmer.org/) and Pfam (http://pfam.xfam.org/) database for domain search. Assignment of superfamilies was

done based on the array of the Integrase (INT), and Reverse Transcriptase (RT) domains. Filtered LTRs were classified into Copia

(GAG AP INT RT RH) and Gypsy (GAG AP RT RH INT) families. This way we identified 264 full-length LTRs. Consensus

libraries derived from both pipelines were employed to determine the repetitive content in theM. polymorpha genome using Repeat-

masker and Repeatlandscape (https://github.com/caballero/RepeatLandscape; http://www.repeatmasker.org/genomicDatasets/

RMGenomicDatasets.html).

Sex Chromosome Analysis
X chromosome scaffolds were identified by aligning Kitashirakawa-2 (Kit-2) and Tak-1 reads to the genome assembly. The Kit-2

(female) and Tak-1 (male) varieties were selected to be of different sexes and X chromosome regionswere identified as regions where

the Tak-1 depth was �0 while the Kit-2 depth was unchanged. A total of 9 scaffolds, two of which (17, 18) are large, representing

4.37 Mb of sequence were identified as X chromosome related (Table S6). Consistently, all available X-linked markers (Fujisawa

et al., 2001; Yamato et al., 2007) were mapped onto the scaffolds.

Since the sex chromosomes are diverged not only in sequence but also in function, the expression profiles of the sex chromosomal

genes were examined. RNA-seq data from vegetative and reproductive tissues from each sex (see Table S6) were mapped to the

genomic sequence by tophat ver. 2.1.0, and gene expression profiles were estimated by cuffdiff ver. 2.2.1 (Trapnell et al., 2012).

A given gene is ‘‘reproductive,’’ when its expression level (FPKM/RPKM) is larger than 0.1 in reproductive tissues, antheridiophore

or antheridium in Tak-1 (male) and archegoniophore, archegonium or sporophyte in Tak-2 (female), and its vegetative to reproductive

expression ratio is larger than 10. Synonymous versus non-synonymous rates are analayzed with SNAP v2.1.1 (https://www.hiv.lanl.

gov/content/sequence/SNAP/SNAP.html).

Phylogenetic Methods
Protein and/or transcript sequences were collected using theMarchantia genome portal site (http://marchantia.info/genome/index.

php/Main_Page) based on the sequence similarity, or from the GenBank databases at NCBI. In some case, domains were evaluated

using NCBI Conserved Domain Database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) or PROSITE (http://prosite.

expasy.org).

Multiple sequence alignments were performed using the MUSCLE program (Edgar, 2004) contained in the Geneious ver. 7.1.9

package (https://www.geneious.com) with the default settings. Alternatively, amino acid sequences were manually aligned using

Se-Alv2.0a11. After removing alignment gapsmanually or using the Strip Alignment Columns routine in theGeneious package, phylo-

genetic analyses were performed using RAxML ver. 8.2.8 (Stamatakis, 2014) or MrBayes ver. 3.2.6 (Ronquist et al., 2012) programs.

Alignments used to generate the phylogenetic trees are available upon request.

Predicted protein sequences obtained from the sequenced genomes of land plants, charophytes, and Chlorophytes and from the

transcriptomes of charophytes listed below. In some cases for which greater resolution with the charophycean algal grade was

desired, additional algal sequences were interrogated (Cooper and Delwiche, 2016). Finally, sequences in GenBank from additional

algal or land plant taxa, as detailed in figure legends, were utilized for the examination of select gene families (Table S11).

Arabidopsis thaliana
TAIR Ver. 10

proteins

https://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=PhytozomeV10

Athaliana > annotation > Athaliana_167_TAIR10.protein_primaryTranscriptOnly.fa.gz

Ref: http://www.arabidopsis.org

Amborella trichopoda
Ver. 1.0

proteins

http://amborella.huck.psu.edu/

Data > Filtered peptide sequences

Ref: (Albert et al., 2013)

Picea abies
Ver. 1.0

transcripts; proteins

ftp://plantgenie.org/Data/ConGenIE/Picea_abies/v1.0/FASTA/Z4006_Transcripts/454.newbler.mRNA.AllContigs.fna>

ftp://plantgenie.org/Data/ConGenIE/Picea_abies/v1.0/FASTA/GenePrediction/

Pabies1.0-HC-pep.faa.gz; Pabies1.0-MC-pep.faa.gz; Pabies1.0-LC-pep.faa.gz

Ref: (Nystedt et al., 2013)
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Selaginella moellendorffii
Ver. 1.0

proteins

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Mpolymorpha

Smoellendorffii > annotation > Smoellendorffii_91_v1.0.protein_primaryTranscriptOnly.fa.gz

Ref: (Banks et al., 2011).

Physcomitrella patens
Ver. 3.0 proteins

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Mpolymorpha

Ppatens > annotation > Ppatens_251_v3.0.protein_primaryTranscriptOnly.fa.gz

Ref: (Rensing et al., 2008)

Spirogyra pratensis transcripts
https://www.ncbi.nlm.nih.gov/Traces/wgs/wgsviewer.cgi?val=GBSM01&search=GBSM01000000&display=scaffolds

GBSM01.1.fsa_nt.gz

Ref: (Ju et al., 2015)

Coleochaete orbicularis transcripts
https://www.ncbi.nlm.nih.gov/Traces/wgs/wgsviewer.cgi?val=GBSL01&search=GBSL01000000&display=scaffolds

GBSL01.1.fsa_nt.gz

Ref: (Ju et al., 2015)

Nitella mirabilis transcripts
https://www.ncbi.nlm.nih.gov/Traces/wgs/wgsviewer.cgi?val=GBST01&search=GBST01000000&display=scaffolds

GBST01.1.fsa_nt.gz

Ref: (Ju et al., 2015)

Klebsormidium nitens*
Ver. 1.0

proteins

http://www.plantmorphogenesis.bio.titech.ac.jp/�algae_genome_project/klebsormidium/kf_download.htm

Ref: (Hori et al., 2014)

*Originally described as K. flaccidum NIES-2285 for which the draft genome sequence was produced (Hori et al., 2014), and was

taxonomically reclassified as K. nitens NIES-2285 (Ohtaka et al., 2017). The name change has bee corrceted in the text, but the

phylogenetic trees may still contain names reflecting the older nomenclature of Hori et al. (2014).

Mesostigma viride
transcripts

https://www.ncbi.nlm.nih.gov/Traces/wgs/wgsviewer.cgi?val=GBSK01&search=GBSK01000000&display=scaffolds

GBSK01.1.fsa_nt.gz

Ref: (Ju et al., 2015)

Chlamydomonas reinhardtii
Ver. 5.5

proteins

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Mpolymorpha

Creinhardtii > annotation > Creinhardtii_281_v5.5.protein_primaryTranscriptOnly.fa.gz

Ref: (Merchant et al., 2007)

Ostreococcus tauri
proteins

https://bioinformatics.psb.ugent.be/gdb/ostreococcus/

Ostta_prot_LATEST.tfa.gz

Ref:(Derelle et al., 2006)
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Ostreococcus lucimarinus
Ver. 2.0

proteins

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Mpolymorpha

Olucimarinus > annotation > Olucimarinus_231_v2.0.protein_primaryTranscriptOnly.fa.gz

Ref: (Palenik et al., 2007)

To standardize the appearance of the phylogenetic trees presented, the primary taxa from which sequences were obtained have

been color-coded. All algal genes are blue, with charophyte sequences being readily distinguishable from Chlorophyte sequences,

by a dark blue versus a light blue appearance, respectively. AllM. polymorpha sequences are in bold black and are denoted by their

Mapoly numbers. P. patens genes are in green, with vascular plant genes in orange/brown/purple/red.

Arabidopsis thaliana angiosperm At red

Amborella trichopoda angiosperm Am, AmTr purple

Picea abies gymnosperm Pa brown

Selaginella moellendorffii lycophyte Sm, Smoe orange

Physcomitrella patens moss Pp, Phpat green

Marchantia polymorpha liverwort Mp, Mapoly black

Spirogyra pratensis charophyte Sp, Spipr dark blue

Coleochaete orbicularis charophyte Co, Color dark blue

Nitella mirabilis charophyte Nm, Nitmi dark blue

Klebsormidium nitens charophyte Kf, Kfl dark blue

Mesostigma viridae charophyte Mv, Mesvi dark blue

Chlamydomonas rienhardtii Chlorophyte Cr, Cre light blue

Ostreococcus lucimarinus Chlorophyte Ol, Olu light blue

Ostreococcus tauri Chlorophyte Ot light blue

Sequences from taxa different than those listed above are color-coded with their respective phylogenetic placement, e.g., angio-

sperms, red/purple; gymnosperms, brown; ferns, light brown; lycophytes, orange; liverworts, black. If additional taxa are utilized,

their color codes are listed in the respective figure legends.

Note that due the limited number of species of Chlorophytes, charophyte algae, and Embryophytes used in this study, the origins of

gene families are dated in a manner analogous to inferred dates in the fossil record. The proposed origins represent the latest

possible dates, with earlier origins possible; additional genome and transcriptome sequences will refine the estimated times of

origins reported here. Some phylogenetic trees are presented in Figure 4 and Tables S8-10; additional tree data are available

from Mendeley https://doi.org/10.17632/zb7hwyj3hp.1.

ABA Analyses
Transformation of A. thaliana pyr1pyl1pyl2pyl4 quadruple mutant: A cDNA of MpPYL1 fused in frame to the N terminus of sGFP

cDNA was introduced into pCambia1300, adjacent to the cauliflower mosaic virus 35S promoter, and used for transformation by

Agrobacterium infiltration of the inflorescence. Transgenic seedlings were selected on agar plates containing 30 mg/L hygromycin

and 100 mg/L cefotaxime. Immunoblot analysis: Leaves of transgenic T2 plants were used for immunoblot analysis for confirmation

of MpPYL1-GFP accumulation. Protein extract was electrophoresed, blotted onto PVDF membrane, and reacted with anti-GFP

antibody (#598, MBL, Nagoya, Japan). Positive signals were detected by horseradish peroxidase-conjugated secondary antibody

(#458, MBL, Nagoya, Japan) and the chemi-luminescence reagent (Chemi-lumi One, Nacalai Tesque, Japan). Germination tests:

Seeds of transgenic T2 plants were sown on plates of B5 medium with or without 1.5 mM ABA. The sown seeds were stratified at

4�C for one week, and then grown at 23�C under continuous light for seven days.

QUANTIFICATION AND STATISTICAL ANALYSES

Genome sequencing, accuracy and completeness of assembly, and annotation, along with sporeling and sex chromosome gene

transcriptome quantification can be found in the relevant sections of the Methods Details.

DATA AND SOFTWARE AVAILABILITY

Genomic resources are available from web sites of both JGI (https://phytozome.jgi.doe.gov/pz/portal.html#!info?

alias=Org_Mpolymorpha_er) and the Marchantia user community (http://marchantia.info/). Both sites provide similar services,

such as a genome browser, BLAST and keyword searches, but there are some features unique to each. The site of JGI, for example,

is a part of Phytozome and thus suitable for comparative genomics, and bulk data can be downloaded. On the other hand, the site by

the user community is more oriented to supporting researchers who are usingM. polymorpha. Its genome browser provides separate
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tracks for the RNA-seq data (see Table S2 andMendeley https://doi.org/10.17632/zb7hwyj3hp.1) andmethylation, and a platform for

community annotation. Unified gene nomenclature is facilitated through a community website, (http://marchantia.info/nomenclature/

index.php/Main_Page), with nomenclatural rules outlined (Bowman et al., 2016a). Additional phylogenetic analyses are available at

Mendeley, https://doi.org/10.17632/zb7hwyj3hp.1.

Raw sequence reads are available at https://www.ncbi.nlm.nih.gov/sra (SRX874572-SRX874573, SRX555320-SRX555475,

SRX301553-SRX301560, SRX114614-SRX114615, SRX030759-SRX030787, SRX2268331-SRX2268345)

Additional phylogenetic analyses can be found at Mendeley, https://doi.org/10.17632/zb7hwyj3hp.1.
e10 Cell 171, 287–304.e1–e10, October 5, 2017

https://doi.org/10.17632/zb7hwyj3hp.1
http://marchantia.info/nomenclature/index.php/Main_Page
http://marchantia.info/nomenclature/index.php/Main_Page
https://doi.org/10.17632/zb7hwyj3hp.1
https://www.ncbi.nlm.nih.gov/sra
https://doi.org/10.17632/zb7hwyj3hp.1


Supplemental Figures

Figure S1. Evolution of ARF and AUX/IAA families, Related to Figure 5

(A) Three ARF clades (A, B, C) exist in land plants, with at least two (A/B, C) existing in a charophyte ancestor (see also B3 phylogentic tree at Mendeley, https://

doi.org/10.17632/zb7hwyj3hp.1). ARFs with B3, ARF-MID and PB1 domains evolved within, or prior to the emergence of the charophycean algae.

(B) Searches for charophyte AUX/IAA-like sequences identified genes with IAA-like PB1 domains, but that were not associated with B3 domains. However, none

of the charophyte IAA-like genes has either conserved domains I or II (required for TPL or TIR1 interaction). A single Coleochaete gene has a proto-domain II with

some but not all the canonical amino acids necessary for TIR interaction, suggesting that IAA genes evolved from a B3-PB1 gene via loss of a B3 domain and,

likely subsequently acquiring DI and DII and the capacity to interact with TPL and TIR1 in the ancestral land plant.

https://doi.org/10.17632/zb7hwyj3hp.1
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Figure S2. Conservation of AtTIR1/AFBs and COI1 Residues Involved in Signaling Interactions, Related to Figure 5

Conservation of AtTIR1/AFBs and COI1 residues involved in interactions with auxin, Aux/IAA, IP6 (inositol hexakisphosphate), JA-Ile, JAZ or IP5 (inositol pen-

takisphosphate) in TIR1, and COI1 orthologs and related algal F-box proteins. Sequences were aligned withMUSCLE. The right part of the table shows the role of

the amino acids in the interaction with IAA, Aux/IAA, IP6 in TIR1 or with JA-Ile, JAZ and IP5 (inositol pentakis-phosphate) in COI1. Numbers indicate positions

within each protein. Color code is indicated in the key.



Figure S3. Summary of the Proposed Origins of Components of Auxin Biosynthesis and Signaling Components, Related to Figure 5

The assemby of the auxin transcriptional signaling pathway in an ancestral land plant exemplifies the origins of new genes and functions that evolved in the land

plant lineage. With respect to auxin biosynthesis, the land plant TAA gene family and has its origin in a gene duplication, possibly followed by neofunctionalization

producing paralogs with new activities. In contrast, convincing YUCCA orthologs were not identifed in available charophycean algal databases — the origin of

land plant YUC genes may have been via horizontal gene transfer from a microbe. The auxin receptor, TIR1, has its origin in a gene duplication followed by

neofunctionalization into TIR1 and COI proteins that possess the ability to interact with auxin and AUX/IAA proteins (TIR1) or a jasmonate-related ligand and JAZ

proteins (COI). Neofunctionalization of an AUX/IAA precursor via addition of domain II enabled the evolution of an AUX/IAA-TIR complex that interacts in the

presence of auxin, thus assembling the auxin transcriptional signaling system. Acquisition of domain I by AUX/IAA genes enabled the repressive capability of

AUX/IAA proteins. ARF transcription factors predated the evolution of the auxin-signaling system, suggesting they could retain ancestral functions independent

from auxin. Thus, the auxin biosynthesis and signaling components were assembled via modification (neofunctionalization) of both pre-existing and newly

evolved genes.



Figure S4. ABA Signaling Pathway, Related to Figure 5

(A and B) Complementation byMpPYL1 (Mapoly0030s0080) of mutants of ABA receptors in A. thaliana. The 35S:MpPYL1-GFP construct was introduced into the

quadruple mutant (pyr1pyl1pyl2pyl4) of ABA receptors by Agrobacterium-mediated transformation. Leaves of the generated transgenic plants were used for

immunoblot analysis using anti-GFP antibody to determine the protein expression levels (A). Two lines (#8 and #10) expressing different amounts ofMpPYL1-GFP

were used for germination tests on the agar medium containing 1.5 mM ABA (B). Photo was taken after 7 days of culture following stratification of seeds.

(C) Comparison of transcriptional profiles for ABA-related genes in various organs of M. polymorpha. Comparison of transcriptional profiles for ABA-related

genes. Color chart shows relative FPKM values. Themixed organ sample is assigned a value of 1 for every gene, while all other samples are presented with values

relative to the mixed sample. Non-detect FPKM values were calculated as 10-6.

(legend continued on next page)



(D) Phylogram of PYR/PYL/RCAR proteins. Amino acid sequences were aligned and BEAST was used to generate the tree. Numbers on the branches indicate

posterior probability values. While there are five M. polymorpha genes, Mapoly0030s0080 (MpPYL1) is phylognetically more similar to angiosperm proteins

shown to be ABA receptors. The other M. polymorpha genes are phylogenetically more diverse that the Arabidopsis proteins, and experiments are required to

determine if they are bona fide ABA receptors. The most similar gene in the charophycean algal transcriptomes is Spirogyra_pratensis_comp6086, which differs

from the consensus at several sites in the ABA binding pocket and the gate and latch (see Table S8); again whether this is a bona fide ABA receptor must be

determined experimentally.
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