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RESEARCH ARTICLE Open Access

A machine learning approach to optimizing
cell-free DNA sequencing panels: with an
application to prostate cancer
Clinton L. Cario1,2, Emmalyn Chen2, Lancelote Leong2, Nima C. Emami1,2, Karen Lopez3, Imelda Tenggara3,
Jeffry P. Simko3,4, Terence W. Friedlander5, Patricia S. Li5, Pamela L. Paris3,5, Peter R. Carroll3 and John S. Witte2,3*

Abstract

Background: Cell-free DNA’s (cfDNA) use as a biomarker in cancer is challenging due to genetic heterogeneity of
malignancies and rarity of tumor-derived molecules. Here we describe and demonstrate a novel machine-learning
guided panel design strategy for improving the detection of tumor variants in cfDNA. Using this approach, we first
generated a model to classify and score candidate variants for inclusion on a prostate cancer targeted sequencing
panel. We then used this panel to screen tumor variants from prostate cancer patients with localized disease in
both in silico and hybrid capture settings.

Methods: Whole Genome Sequence (WGS) data from 550 prostate tumors was analyzed to build a targeted
sequencing panel of single point and small (< 200 bp) indel mutations, which was subsequently screened in silico
against prostate tumor sequences from 5 patients to assess performance against commonly used alternative panel
designs. The panel’s ability to detect tumor-derived cfDNA variants was then assessed using prospectively collected
cfDNA and tumor foci from a test set 18 prostate cancer patients with localized disease undergoing radical
proctectomy.

Results: The panel generated from this approach identified as top candidates mutations in known driver genes
(e.g. HRAS) and prostate cancer related transcription factor binding sites (e.g. MYC, AR). It outperformed two
commonly used designs in detecting somatic mutations found in the cfDNA of 5 prostate cancer patients when
analyzed in an in silico setting. Additionally, hybrid capture and 2500X sequencing of cfDNA molecules using the
panel resulted in detection of tumor variants in all 18 patients of a test set, where 15 of the 18 patients had
detected variants found in multiple foci.

Conclusion: Machine learning-prioritized targeted sequencing panels may prove useful for broad and sensitive
variant detection in the cfDNA of heterogeneous diseases. This strategy has implications for disease detection and
monitoring when applied to the cfDNA isolated from prostate cancer patients.
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Background
Substantial research has explored potential oncological
applications of cell-free DNA (cfDNA), including in
early detection, monitoring of residual disease, recur-
rence following treatment, and as a discovery tool for
determining actionable therapeutic targets [1–3]. How-
ever, success using cfDNA in cancer has been limited by
heterogeneity and signal intensity. In the context of het-
erogeneous cancers like those of the prostate, cfDNA
also provides an opportunity to comprehensively meas-
ure tumor clonality (i.e. via liquid biopsy) through detec-
tion of genetic signatures of foci that would otherwise be
missed with traditional tissue biopsy.
Despite promising initial results, widespread clinical

adoption of cfDNA as a biomarker has been impeded by
several challenges [4]. One of the most important limita-
tions, especially in the context of variant detection, is
the scarcity of circulating tumor DNA (ctDNA) mole-
cules derived from a tumor from typical blood draw vol-
umes, an issue compounded by the weak signal-to-noise
ratio of ctDNA with respect to the cfDNA derived from
healthy tissue (ctDNA often representing much less than
1% of the total cfDNA fraction) [5, 6]. Several strategies
have been developed to circumvent this issue, including
techniques to enrich tumor derived molecules [7], highly
sensitive qPCR- or ddPCR-based assays to detect well-
characterized (or personalized) mutations [8–10], and
deep sequencing of broad regions of the genome. Each
approach has limitations; for example, enrichment tech-
niques are limited to only modest (~ 2–4 fold) enrich-
ment [7, 11] while qPCR-based methods require a priori
or patient-specific variant knowledge and cannot readily
be used for de novo discovery or across broad patient
cohorts. In some cancers, like prostate, this is especially
problematic as even the most common driver mutations
exist at frequencies too low to be of broad clinical utility
[12]. Targeted deep sequencing, on the other hand, can
be used for de novo discovery and broader patient
coverage, but faces issues concerning sensitivity and spe-
cificity introduced by weak tumor signal, clonal
hematopoiesis (CH) [13], and technical artifacts intro-
duced during library preparation and sequencing. Add-
itionally, efforts to mitigate these issues are diametrically
opposed— at fixed cost, one must choose to either se-
quence broadly at low depth with reduced sensitivity or
more narrowly and deeply but with reduced specificity.
To improve upon detection, we propose a solution

that leverages the strengths of targeted deep sequencing
and minimizes the weaknesses of traditional panel de-
sign by generating a targeted panel guided by machine
learning. This solution consists of three strategies: 1)
generating a sub exome-sized (2.5Mb) targeted sequen-
cing panel, but instead of only including the coding re-
gions of known cancer genes, focusing on small (~ 350

bp, corresponding to dinucleosomal cfDNA) regions of
the genome that are either coding or regulatory non-
coding and potentially harbor tumor mutations; 2) com-
putationally selecting candidates for inclusion on this
panel with a machine learning model built from actual
tumor data and optimized to detect functional or regula-
tory mutations (“orchid”); and 3) using unique molecular
identifiers (UMIs) to suppress technical errors induced
by library preparation and sequencing.
In this article, we present our targeted sequencing

panel design, demonstrate its in silico performance
through comparison with two other design approaches,
and then validate its ability to detect somatically vali-
dated multi-foci tumor variants in the cfDNA of prostate
cancer patients at the time of prostatectomy.

Methods
Patients cohorts
This study uses data from two main patient cohorts, in-
cluding public prostate tumor variant data from 550 pa-
tients cataloged in the International Cancer Genome
Consortium (ICGC) and 23 (5 for our in-silico analysis
and 18 for our variant capture test) patients from the
University of California, San Francisco (UCSF). In the
ICGC dataset, patient ages ranged between 32 and 81
(mean of 58.7) and had the following stage distributions:
T1 (30%), T2 (42%), T3 (17%), T4 (1%), and Unknown
(11%). In the UCSF cohort, patient ages ranged between
50 and 73 (mean of 62.9) and had the following stage
distributions: T1 (34.8%), T2 (60.9%), and T3 (4.3%).
Additional information about patient cohorts is given in
Supplemental File “Donor Information.xlsx”.

Training data
Whole Genome Sequence (WGS) tumor variant data
from the 550 ICGC prostate cancer patients (274 with
copy number information) was used to populate a muta-
tion database. In total, the database consisted of 1,588,
558 single base substitutions, 66,202 insertions ≤200 bp,
and 90,255 deletions ≤200 bp. Of the 1,717,507 muta-
tions, 90.5% had sequencing coverage between 30-80X.
These mutations were annotated with 339 features using
the orchid software (http://wittelab.ucsf.edu/orchid) (‘or-
chid’ panel; Supplemental) [14]. Among features, anno-
tations included those related to functional impact, non-
coding regulatory status, cancer driver-ness scores, and
base-level evolutionary conservation among primates.

Panel generation
To build our targeted sequencing panel, we first trained
a classification and ranking model, a linear support clas-
sifier (SVC), using the orchid software as well as data
from our mutation database. We also generated two
panels from methods widely used in the field in order to
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benchmark performance: 1) a gene-centric panel consist-
ing of coding regions from the aggregated set of ~ 530
genes found in four clinically available cancer-specific
targeted sequencing gene panels (referred to as “union-
existing”; Supplemental Table 1), and 2) a “Frequency”
panel, consisting of the most frequent mutations in the
ICGC prostate cancer dataset. Code used to generate the
panels and the panel variant composition can be found
in the repository at https://github.com/wittelab/cfdna-
panel-publication/.

In silico analysis
We first benchmarked the orchid panel’s variant capture
performance against the two other designs using an in
silico analysis of Whole Exome Sequenced (WES) tumor
foci DNA and matched cfDNA from 5 patients undergo-
ing radical prostatectomy at UCSF. Somatic variant call-
ing was performed for at least 2 different tumor foci
with a normal tissue control for each patient. Next, we
generated in silico capture probes for the orchid panel
by expanding the genomic coordinates of panel muta-
tions by ±175 bp to match the mode size of cfDNA mol-
ecules. Tumor and cfDNA variants were intersected
with the orchid panel and the two comparison panels
described above.

Patient ctDNA variant detection
The cfDNA from a cohort of 18 prostate cancer patients
was isolated and prepared as UMI-tagged libraries for
sequencing. After the in silico validation of the orchid
panel, hybrid capture probes were ordered and used to
sequenced panel regions at 2500X. Tumor variants were
subsequently called using the Curio Genomics platform
(https://curiogenomics.com), which was designed specif-
ically for processing UMI-barcoded data generated
though ThruPlex Tag-seq library preparation by group-
ing reads into amplification families prior to construct-
ing consensus reads for variant calling. See
Supplemental for more details.

Results
Defining and evaluating mutation classes
It is widely accepted that a relatively small number of
genetic variants are responsible for the cellular transfor-
mations leading to cancer and that these “drivers” often
occur early in a tumor’s evolution leading to high clonal-
ity among tumor subclones [15–18]. Additionally, the
proportion of drivers decreases relative to the number of
passengers as a tumor accumulates mutations [17, 19–
21]. Following this, we hypothesize that if tumors accu-
mulate mutations as they evolve, those with the lowest
mutational burden are both enriched for drivers and
more likely to harbor variants at high allele frequency

among subclones, making these variants the best candi-
dates for detection in cfDNA.
In order to prioritize which of these low burden muta-

tions should be included on our cfDNA screening panel,
we built a mutational scoring model using the sequen-
cing data from the ICGC prostate cancer patients, first
defining training labels by dividing ICGC prostate cancer
patients into equal-sized groups (n = 275 each) based on
their number of mutations: 1) Low Burden (LB), consist-
ing of mutations from men with a lower mutational bur-
den, and 2) High Burden (HB), consisting of mutations
from men with a greater burden (Fig. 1a). We next
tested the hypothesis that LB labeled mutations were
enriched for drivers, evaluating for their presence in 88
known driver genes (as identified by The Cancer Gen-
ome Consortium Prostate Cancer Adenocarcinoma pro-
ject (TCGA-PRAD) and the IntOGen database; accessed
6/18/2019 [22]) and found significant enrichment in the
LB class (hypergeometric test; p = 4.11 e-129), but not
the HB class (p > 0.99). This was also the case with 97
prostate driver genes defined by Fraser et. al. (LB p =
1.13 e-119; HB p > 0.99) [23]. With these two classes de-
fined, computational complexity was reduced through
random down sampling of the data to a total of approxi-
mately 50,000 unique mutations while preserving the
original LB:HB mutation label ratio in the dataset (ap-
proximately 1:40).

Initial modeling and performance
In an effort to guard against overfitting, we used orchid’s
feature selection method—which removes features that
each account for an average drop in accuracy < 0.1%
when excluded from the full-featured model—to reduce
the number of features from > 300 to 20, and performed
10-fold cross validation with a linear SVC, generating a
“LB” predictive model. A ROC curve of model perform-
ance in the test sets is shown in Fig. 1b, indicating a 0.76
(± 0.12) classification accuracy. When classification
probabilities across all test cases were plotted, we ob-
served a higher likelihood of HB mutation classification,
which was expected from the intentional unbalanced LB:
HB class ratio used for training (Fig. 1c). To better
understand the importance of classification features, we
next used each feature singularly in a series new LB/HB
classification models, visualizing feature weights and dir-
ectionality. From this we observed that repressed regions
of the genome were predictive of HB mutations, and
conversely, regulatory/transcribed regions of the gen-
ome—and features indicating strong evolutionary con-
servation at the base level—were predictive of LB
mutations (Fig. 1d; Supplemental Fig. 1). This was also
expected under our assumption that LB mutations were
more likely to be drivers. We elaborate on feature im-
portance in Supplemental Results.
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Mutation ranking
After selecting features, we then built a final classification
model fully trained on down-sampled data (i.e. none with-
held for testing) and used it to score LB probability for all
prostate cancer mutations in the database. Mutation dis-
tances from the fit model’s classification hyperplane were
then used to rank them. Those with the greatest magni-
tudes in the LB direction (i.e. the most “driver-like” or
“clonal” under our hypothesis) were further considered for
inclusion on the targeted sequencing panel.

Standardizing mutation scores
We annotated candidate LB mutations with associated gene
information, if available, using SnpEff [24], as well as func-
tional impact information and transcript length from the
UCSC genome database. After binning genes according to
their length, we visualized the number of mutations per
gene (Fig. 2a). As expected, longer genes had more muta-
tions (Pearson’s correlation = 0.20, p = 6.03 e-39), creating a

scenario where marginally scored mutations could be se-
lected for panel inclusion by virtue of strong gene-level fea-
ture annotations preferred by the model. To address this
issue and to increase gene mutational diversity on the
panel, we implemented a corrective standardization (Sup-
plemental Fig. 2) and applied it to the distance scores of
mutations (Fig. 2b). This standardization reduced Pearson’s
correlation between gene length and candidate mutations
number to 0.05 (p = 1.5 e-3). Mutations that were non-
coding or without gene annotation were unaffected by this
standardization. After applying this correction, the top 7034
mutations were then selected for the “orchid” panel. In all,
this panel represented 0.41% of the total number of original
candidate LB mutations.

Panel composition
Once our standardized orchid panel was established, we
attempted to biologically characterize the mutational
composition. Looking at the top 5 coding mutations, for

Fig. 1 Modeling simple somatic mutations. a We divided ICGC prostate cancer donors into two classes, Low Burden (LB) or High Burden (HB),
based on the number of somatic mutations in their tumors and labeled their mutations accordingly. b After modeling with a linear Support
Vector Classifier (SVC), we generated a ROC curve of LB classification. Accuracy was 76% +/− 12%. c We visualized classification probabilities for
test mutations. The model predicts fewer LB mutations and classifies both LB and HB with high confidence. d We show model feature weights
for both classes when features were used as lone predictors. Repressed regions of the genome were more predictive of HB mutations whereas
regulatory, transcribed regions of the genome or ‘deleterious’ mutations were more predictive of LB mutations
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example, we noted that corresponding genes (FES, TNFS
F15, MSRB1, HRAS, and SLC1A7) have all been experi-
mentally implicated in cancer as drivers [25, 26] (Fig.
2c). Additionally, we found panel mutations to be signifi-
cantly enriched for the aforementioned 97 prostate
driver mutations (p = 2.24 e-13); KEGG-annotated gen-
eral cancer (p = 4.18 e-228) and prostate cancer genes
(p = 1.19 e-61) (https://www.genome.jp/kegg); and re-
gions associated with regulation of cellular response to
growth factors (p = 2.68 e-4), MAP kinase activity (p =
8.66 e-8), and Integrin signaling (p = 1.74 e-13) among
others [27–29] (Enrichr; http://amp.pharm.mssm.edu/
Enrichr/). Finally, looking at functional impact, we no-
ticed a majority of coding mutations were classified as
high or moderate impact and included 50 induced stop

gains and 3386 missense mutations. A table of conse-
quence mutations is shown in Fig. 2d.
While the most highly ranked mutations were coding,

many functional non-coding mutations were also in-
cluded (~ 18%) on the panel. For example, we discovered
significant enrichment for several general and prostate
cancer transcription factor binding sites (Supplemental
Fig. 3), including BRD4 (e = 329), CTCF (e = 254),
FOXA1 (e = 188), MYC (e = 181), and AR (e = 159), as
well as a microRNA involved in angiogenesis (mir-126)
[27, 30] (ReMap; http://tagc.univ-mrs.fr/remap/).

Panel performance: in silico analysis
After characterizing the orchid panel, we compared how
well it detected somatic variants in relation to two other

Fig. 2 Generating a targeted sequencing library for hybrid capture of LB mutations. We generated a candidate panel consisting of probes
targeting the ~ 7000 highest ranked LB mutation loci. a We binned genes represented by candidate mutations into 10 groups based on length
and show the distribution in number of mutations. Gene length correlated with the number of mutations on the panel (Pearson’s correlation =
0.20, p = 6.03e-39). b We employed a distance standardization to mutation hyperplane distances to increase gene diversity on the panel. After
standardization the correlation between gene length and number of mutations decreased significantly (Pearson’s correlation = 0.05, p = 0.0015). c
We plotted the hyperplane distances of retained mutations after standardization against the log mutation rank. Mutations are labeled as coding
(green) or non-coding (grey). The top 5 coding mutations with their corresponding genes are labeled. d We show a table of panel mutation
consequence types and counts, colored by impact severity (red = high, orange =moderate, yellow = low, blue = modifier)
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panels: 1) the union of four existing sequencing panels
(Fluxion Biosciences, Foundation Medicine, Guardant
Health, and UCSF 500, referred to as the “union-exist-
ing” panel; Supplemental Table 1); and 2) a frequency-
based panel (consisting of the most common mutations;
see Methods). We assessed this by measuring each
panels’ ability to identify somatic tumor-normal variants
in multiple tumor foci from 5 prostate cancer patients.
Overall, the orchid panel detected more variants than
both the frequency panel (p = 7.4 e-9) and the union-
existing panels (p = 3.6 e-10; Fig. 3), and these differ-
ences were statistically significant for all patients except
P0024 (only one focus; union-existing [p < 0.03], fre-
quency [p < 0.02] using a T-test). We also note that,
given a fair percentage of the orchid panel (~ 18%) con-
sists of non-coding regions, tumor variants within these
regions could not be assessed through WES data, poten-
tially underestimating the panel’s performance.

Panel performance: ctDNA variant detection
After confirming that our orchid-generated machine
learning panel improved upon the union-existing and
frequency-based panels in an in silico setting for detec-
tion of mutations in tumor tissue, we ordered hybrid
capture probes for regions encompassing the orchid
panel mutations (a genomic footprint totaling ~ 2.5Mb).
We then sequenced 18 patients with multiple prostate

tumor foci and normal tissues at 2500X with our panel.
Matched cfDNA was also collected for these patients at
time of radical prostatectomy and targeted-sequenced at
a depth of 2500X with our panel. We next assessed the
panel’s performance in detecting somatic tumor-normal
ctDNA variants within the collected cfDNA of these pa-
tients. After removing variants not passing quality con-
trol filters (see Supplemental Methods), we found that
variants were detected in all 18 patients, ranging be-
tween 15 (S038) and 448 (S076) in number with a me-
dian of 122.5. We additionally filtered variants by
requiring they be detected in multiple foci of a tumor. In
this case, variants were detected in 15 of the 18 patients,
ranging between 4 (S025 and S078) and 289 (S076) in
number with a median of 26 (Fig. 4a). The allele fre-
quency of detected variants across patients ranged be-
tween 0.24% (S058, S067, and S078) and 19.82% (S027; a
conservative lower threshold for germline variants), with
a median of 3.76% (Fig. 4b). Allele frequency did not
correlate with age, stage, or Gleason score (p > 0.05).

Discussion
Despite continued progress and the marked successes of
cfDNA’s application in late-stage disease [2, 31, 32], on-
going issues prevent wide-spread adoption for early-
stage cancer. These issues largely center on tumor het-
erogeneity and scarcity of tumor derived molecules in

Fig. 3 Panel performance using in silico capture of cfDNA. Five patients with multiple prostate cancer tumor foci and normal tissue DNA were
whole exome sequenced at 200X-fold coverage. Discovered somatic variants were in silico “captured” with three panels: 1) our orchid generated
panel, 2) a panel consisting of all mutations in the ICGC prostate cancer dataset with a frequency > 1 patient, and 3) a panel consisting of genes
on any of 4 clinically used panels (union-existing). The mean number of total somatic mutations across foci are listed below each patient and the
mean numbers of those present on each of the three panels are shown (blue bars). Orchid detected significantly more mutations in all patients
except P0024 (with only one focus; union-existing [p < 0.03], frequency [p < 0.02] using a T-test)
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circulation. The issues are further compounded by chal-
lenges with sample collection and processing, variant ar-
tifacts (including CH mutations for non-tumor-matched
samples), and bioinformatic analysis. The most straight-
forward solutions to mitigate these problems include in-
creasing the volume of blood collected (e.g., 30–100
mL), analyzing ctDNA variants with paired whole blood
normal samples, and sequencing at ultra-high depths
(e.g. > 30,000X). Other solutions include improving mo-
lecular techniques, error suppression (e.g. UMIs), and
optimizing the composition of gene sequencing panels
[11, 13, 33–37]. Here we expand upon optimizing
panels, leveraging machine learning to move past driver-,
gene-, or frequency- based panels towards one informed
directly by biological datasets. In particular, this is ac-
complished by modeling low burden mutational signa-
tures developed from tumor/normal sequence and
variant annotation data.
While our machine learning approach improved the

sequencing panel design, the accuracy of predicting LB
versus HB mutations was only 0.76. This accuracy can
be largely explained by label contamination introduced
though incomplete partitioning of driver and clonal vari-
ants into the LB class, as presence of these mutations
also occurs in the HB class albeit at lower frequency
(our hypothesis only assumes enrichment in LB). This
situation motivated our use of a linear support classifier,
which has a higher tolerance of noise (e.g. mislabeled
training data) and better feature interpretability relative
than other machine learning model types. We found or-
chid’s feature classification weights to be sensible; for ex-
ample, associating evolutionary conserved/transcribed

regions of the genome with LB tumor mutations, and re-
pressed regions of the genome with HB tumor muta-
tions. Still, despite a fairly high accuracy for noisy data
and sensible feature selection, the modeling approach
could be improved upon with alternative labeling strat-
egies and/or training data, drawing upon recently gener-
ated datasets of statistically determined drivers in
noncoding regions of the genome [38], for example.
There are a number of other qualifications to our ma-

chine learning panel design approach that merit consid-
eration. First, establishing a panel’s clinical utility will
require much larger sample sizes and greater sequencing
depth to further validate variant detection and improve
sensitivity in early stage prostate cancer patients. Second,
to better elucidate and catalogue CH variants, cfDNA
samples should be paired with DNA isolated from whole
blood samples and sequenced at equal depth, especially
when matched tumor samples are not available. Third,
although we compared our panel to two alternative de-
signs in silico, future work should compare panels dir-
ectly using patient cfDNA samples—ideally with paired
deep whole genome tumor/normal sequence data. Fi-
nally, to further assess panel detection as it relates to
mutation clonality, follow-up comparison with more
sensitive detection strategies (e.g. qPCR), and serial sam-
pling of patient tumors during course of treatment
would need to be performed.
As liquid biopsy and cfDNA continues to find increas-

ing clinical applications, the modeling approach de-
scribed here can be adopted to generate panels for those
purposes as well. For example, in discriminatory dichot-
omous scenarios (early vs. late stage, onset vs.

Fig. 4 Variant detection and frequency distribution in prostate cancer patients using the orchid generated targeted sequencing panel. Eighteen
patients with multiple tumor foci and normal tissue DNA were sequenced at 2500X-fold coverage after targeted capture using the orchid
generated panel. Matched cfDNA was likewise captured and sequenced. a The number of tumor variants detected in the cfDNA of 15 patients is
shown. Tumor variants were both somatic and present in multiple tumor foci. Three of the eighteen patients did not have any mutations
detected in more than one focus. b The allele frequency distribution of all cfDNA detected tumor variants in A (germline threshold shown at
20%; theoretical sensitivity at 0.8%)
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recurrence variants), mutational spectra can be learned
to rank variants for the formation of a blended panel
consisting of highly ranked mutations from both classes.
Variants from this panel that are ultimately detected
within a patient could then be used in a maximum likeli-
hood computation to determine the patient’s likeliest
class. Likewise, multi-class models (e.g. tumor stage)
could be developed in a similar fashion. Finally, panels
designed to optimize variant detection (like the orchid
panel) could potentially be used to estimate Tumor Mu-
tational Burden (TMB) which has recently become an
important biomarker in cancer, particularly within the
cancer immunotherapy field.

Conclusions
The use of machine learning to optimize targeted se-
quencing panel composition presents a promising new
approach to improve ctDNA variant detection in pa-
tients with cancer. In an in silico screen, our panel out-
performed two alternatives in detecting tumor-derived
ctDNA mutations—one generated from a combination
of several existing panels, and one based on tumor mu-
tation frequencies. We also demonstrated the targeted
panel’s ability to detect tumor variants found in both the
cfDNA captured from prostate cancer patients and mul-
tiple foci of their tumors.
In summary, we have developed a novel method to

rank coding and non-coding tumor mutations for inclu-
sion on a targeted sequencing panel. To our knowledge,
this is the first use of machine leaning to generate a cap-
ture panel for screening ctDNA of cancer patients.
While further research is needed to address the issues of
scarce starting material, modeling, and variant discovery,
our results provide a useful strategy for broad—yet sen-
sitive—future panel design. Strategies like these are in-
creasingly important for mutation detection in cfDNA
isolated from cancer patients with heterogeneous dis-
ease, especially at sequencing depths required to reach
levels of sensitivity needed for utility in early detection
at an affordable cost.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-020-07318-x.

Additional file 1.
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