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Abstract

Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial
context at the regional, cellular or sub-cellular level. While previous computational methods have relied on gene expression information
alone for clustering single-cell populations, more recent methods have begun to leverage spatial location and histology information
to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with real spatial locations,
simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on
clustering accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis
demonstrates that even though incorporating the additional spatial and histology information leads to increased accuracy in some
datasets, it does not consistently improve clustering compared with using only gene expression data. Our results indicate that for the
clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by improving
information extraction and feature selection from spatial and histology data.

Keywords: Single-cell genomics, Spatial trasncriptomics, Clustering

Introduction
Advances in spatially resolved transcriptomics technologies have
allowed researchers to profile transcriptomes in single cells while
retaining information on spatial context, providing new oppor-
tunities to elucidate single-cell heterogeneity and define spatial
maps of cell types. This ability to capture and quantify the mes-
senger RNA (mRNA) molecules in situ is crucial for understanding
cell origins and functions, as well as cell–cell communications
[1, 2]. Such information on spatial context is also essential for
exploring and comparing tissue environment in healthy and
diverse disease states [2, 3].

Currently, two types of spatially resolved techniques can gen-
erate transcriptomics data with a medium to high throughput
of single cells or spatial spots [4]. The first type of technique is
imaging-based and uses fluorescence in situ hybridization (FISH)
to label and visualize mRNAs in individual cells. Example tech-
niques include MERFISH [5], osmFISH [6] and seqFISH [7]. The
second type of technique is sequencing-based and uses spa-
tial barcoding followed by next-generation sequencing to profile
transcriptomes. Example techniques include Spatial Transcrip-
tomics [8] and Slide-seq [9]. Unlike imaging-based techniques,
sequencing-based techniques cannot provide cellular resolution
and measure spatial spots that usually contain multiple cells.
Naturally, the resolution of spatial transcriptomic analysis would
depend on the type of technique used to generate the data.

To annotate the regions in the spatially resolved transcrip-
tomics data, a common approach is to cluster cells or spots based
on their transcriptional profiles, and then to further characterize
them with differential expression analysis [10–12]. In an unsu-
pervised analysis of single-cell RNA sequencing data, clustering
is performed with gene expression data alone to distinguish the
different cell populations present in biological samples. Since
additional information is available from spatially resolved tran-
scriptomics techniques, new clustering methods have been pro-
posed for spatial data to account for spatial locations or histology
image information, or both, in an attempt to improve the accu-
racy of clustering analysis [13–18]. These new clustering methods
followed from the recognition that cellular organization within
tissues is linked to biological function and therefore should not
be random [19].

Given the essential role of clustering analysis in exploring
spatial transcriptomics and the diverse selection of clustering
methods used in data analysis, it is necessary to systematically
evaluate the accuracy and robustness of methods based on data
generated from different techniques. Since such an evaluation
is not yet available, it is difficult to objectively choose cluster-
ing methods in practice, compromising researchers’ abilities to
accurately analyze and interpret spatial transcriptomes. In this
study, we have benchmarked 15 clustering methods for spatially
resolved transcriptomics data based on clustering performance,
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Table 1. Summary of the data characteristics. The last column refers to the number of cell types selected using
the RShiny program (see Supplementary Methods).

Dataset Technology # of replicates # of cells # of genes # of true cell types

Dataset 1 Spatial Transcriptomics 12 231-282 15284-16675 4

Dataset 2 10X Genomics Visium V1 1 1438 31053 5

Dataset 3 10X Genomics Visium V1 4 2696-3353 31053 7-9

Dataset 4 MERFISH 12 4786-5926 160 8-9

Dataset 5 osmFISH 1 5328 33 6

Dataset 6 Stereo-seq 1 10000 26145 8

Dataset 7 Slide-seq 1 25551 20141 8

robustness, computational efficiency and software usability. Our
evaluation is based on seven sets of spatial transcriptomics data
corresponding to different experimental techniques and tissue
regions, with ground truth cell-type information and correspond-
ing histology images. The rest of the article is organized as fol-
lows. We first introduce the spatial transcriptomics datasets and
clustering methods considered in the evaluation. Then, we discuss
the comparison results based on clustering accuracy, robustness
to sequencing depth, robustness to clustering parameter (i.e. user-
specified cluster number) and robustness to variation in histology
images. Lastly, we discuss the computational efficiency of the
methods and other considerations in software assessment.

Datasets
To comprehensively evaluate the performance of different
clustering methods, we prepared seven spatial transcriptomics
datasets with ground truth information, based on seven real
datasets from different technologies. Dataset 1 is based on
a mouse olfactory bulb dataset obtained using the spatial
transcriptomics technology [20], which measures read counts
for pre-determined array spots. This dataset contains 12 mouse
brain tissue slices, and we treat each tissue slice as a separate
replicate. Dataset 2 is based on a mouse kidney coronal dataset
[21] containing a single replicate. Dataset 3 is based on a mouse
brain sagittal dataset [22]. As there are two sagittal sections, with
each section composed of two cuts (a sagittal-anterior cut and a
sagittal-posterior cut), we refer to each cut as a separate replicate.
Both Datasets 2 and 3 are based on the 10x Genomics Visium
v1 technology [8], which measures read counts for array spots.
Dataset 4 is based on a mouse hypothalamic preoptic dataset
[23] obtained using the MERFISH technology [24], and the read
counts were measured for single cells. We chose animal one
for our analysis, which contains 12 different bregma levels (i.e.
replicates). Dataset 5 is based on a mouse somatosensory cortex
dataset generated using the osmFISH technology [25]. Dataset
6 is based on a mouse olfactory bulb dataset generated using
the Stereo-seq technology [26]. Dataset 7 is based on a mouse
brain cerebellum dataset obtained from the Slide-seq technology
[27]. Both Datasets 5 and 7 have a single-cell resolution. The
complete information on dataset size, technology and cell-type
number is summarized in Table 1. For Datasets 1–5 and 7, we
directly used the spatial locations in the real data; for Dataset
6, we first sampled 10,000 spots from the real data and used

the locations of these spots. Then, we generated corresponding
simulated read counts and Hematoxylin and Eosin (H&E) stained
images as described below (Figure 1).

Read count matrix
In order to systematically evaluate the performance of different
clustering methods, ground truth cell-type labels are needed as a
basis to compute quantitative measures. We designed an RShiny
program to assign true cell-type labels to individual cells (or
spots) in the simulated data, using the spatial locations provided
by the real data and accounting for predetermined spatial pat-
terns (see Supplementary Figure S1 and Supplementary Methods).
Given each true cell type and corresponding read counts from
the real data, we then used scDesign2 [28, 29], a simulator that
can generate high-fidelity single-cell gene expression count data
and preserve gene–gene correlations, to simulate read counts
for synthetic cells. Compared with directly using real counts
and corresponding cell-type annotations, the generative model
in scDesign2 can help remove noises introduced by mislabeled
cells. We compared three gene-wise statistics (the count mean,
the count variance and the gene-wise proportion of zero counts)
and two cell-wise statistics (the total read count and the cell-wise
proportion of zero counts) between simulated and corresponding
real data for every dataset, and confirmed that the simulated
gene expression captures real-data characteristics (Supplemen-
tary Figures S2–S3). We also confirmed that the within-cell-type
correlations are indeed larger than between-cell-type correlations
(Supplementary Figures S4–S10).

H&E-stained image
H&E is widely used for histology staining and the resulting image
is usually characterized by colors ranging from dark purple to pink
[30]. As most studies implement spatial transcriptomics meth-
ods with histological staining [31], several clustering methods,
including SpaCell [17], SpaGCN [16] and stLearn [15], also take the
stained images as either an optional or required input to cluster
cells (or spots). Since different cell layers or cell types sometimes
have distinguishable color patterns, it is valuable to evaluate
how these methods perform compared with other methods that
do not utilize the histology information. For these methods, we
simulated pixel values for red, green and blue (RGB) in a way

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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Figure 1. Simulated H&E-stained images and true cell-type assignments of Datasets 1–7. (A, C, E, G, I, K, M): Simulated H&E-stained images of Datasets
1 to 7. (B, D, F, H, J, L, N): Cells or spots are shown in actual spatial coordinates and colored by their true labels. Datasets are ordered based on increasing
number of cells or spots.



4 | Cheng et al.

Table 2. A summary of the 15 clustering methods based on algorithm input and programming language

that reflects the realistic H&E color range and true cell-type
assignment (Supplementary Methods).

Clustering methods
We consider a clustering method as a collection of functions
and/or algorithms that take the observed spatial transcriptomics
data as the input and output cluster labels. In this study, we
compared 15 clustering methods provided by the following seven
software tools. A detailed summary of required inputs and
programming languages of these methods are summarized in
Table 2.

Seurat [32] is an R toolkit for single-cell genomic data analysis
and provides methods for dimensionality reduction and cluster-
ing of spatial transcriptomics data. This software includes the
option to select multiple clustering methods that only utilize gene
expression information. For our analysis, we chose the Louvain
(Seurat-LV), Louvain with multi-level refinement (Seurat-LM) and
the smart local moving (Seurat-SLM) methods.

The Giotto-Analyzer R toolbox [13] is a specialized package
for single-cell spatial transcriptomics analysis. In our compar-
ison, we considered four clustering methods provided by this
package: Leiden algorithm (Giotto-LD), Kmeans clustering (Giotto-
KM), hierarchical clustering (Giotto-H) and a method based on
the hidden Markov random field model (Giotto-HM). Giotto-LD,
Giotto-KM and Giotto-H use only gene expression data to perform
clustering, while Giotto-HM also uses spatial locations in addition
to gene expression information. Additionally, Giotto-HM requires
users to input a beta parameter, which defines the strength of
the interaction of cells. We set the range of beta parameters as
recommended in Giotto’s tutorial (see Supplementary Methods)
and selected the results corresponding to the optimal beta value
in that range.

The BayesSpace R package implements a Bayesian method
with the same name [14]. Using both gene expression and
spatial data, the BayesSpace method learns a low-dimensional

representation of the gene expression matrix and encourages
neighboring spots to belong to the same cluster via a spatial prior.

The DR.SC R package implements a dimensionality reduction
and spatial clustering method based on a hidden Markov random
field model [18]. The clustering is performed by combining a
Gaussian mixture model and a Potts model.

The SpaCell Python package implements a method based on
pre-trained convolutional neural networks and autoencoders [17].
Since SpaCell has different options of input data, we use SpaCell
to denote the method taking both gene expression and histology
data, SpaCell-G to denote the method taking gene expression data
alone and SpaCell-I to denote the method taking histology data
alone.

The SpaGCN Python package implements a graph convolu-
tional network method with the same name [16]. Using gene
expression, spatial locations and histology data (optional),
SpaGCN constructs a weighted undirected graph of the spots
and carries out the clustering analysis on the constructed graph.
Since the histology data are optional, we use SpaGCN to denote
the method without using histology information and SpaGCN+
to denote the method with histology data as an input.

The stLearn Python package implements a computational
workflow with the same name [15]. Using gene expression,
spatial locations and histology data, stLearn performs spatial
normalization followed by clustering in a low-dimensional space.

Comparison of clustering accuracy
We applied the 15 methods described in Table 2 to the seven
datasets and obtained their inferred cell cluster labels. To quan-
titatively evaluate and compare the clustering performance, we
calculated an adjusted Rand index (ARI) between every set of true
cell-type labels and the labels inferred by the clustering methods.
For each dataset and method, the performance was summarized
using the mean and standard deviation of the ARI score across
replicates (Figure 2A–G).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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Figure 2. Comparison of clustering accuracy based on seven spatial transcriptomics datasets. (A–G): Mean adjusted Rand index (ARI) scores for Datasets
1–7. The vertical bars indicate one standard deviation above or below the average score (when more than one replicate is available). (H): Ranking of
methods based on average ARI scores. (I): Ranking of methods based on standard deviations of ARIs, for Datasets 1, 3 and 4 which have multiple
replicates. Methods with higher average ARI or lower standard deviation are ranked better. Methods are ordered by average ranks in the heatmaps, with
methods on the top being the best. The entries marked by NA indicate that the method encountered an error for that dataset.

Even though the Seurat-based methods (Seurat-LV, Seurat-LVM
and Seurat-SLM) do not use any spatial or histology information
in clustering, they are among the most accurate methods on
Datasets 1, 3, 4 and 6. In addition, differences between Seurat-
based methods are negligible across all datasets. Three Giotto-
based methods (Giotto-H, Giotto-KM Giotto-LD), and SpaCell-G
also only use gene expression for clustering, but consistently
demonstrate lower accuracy than Seurat-based methods. Since
Seurat-based and Giotto-based methods have implemented a

series of different clustering algorithms, these results suggest that
data processing procedures used by the software may also play an
important role in clustering accuracy.

We also compared the four methods that use both gene
expression and spatial locations for clustering, including SpaGCN,
BayesSpace, Giotto-HM and DRSC. We observed that SpaGCN and
BayesSpace perform well on selected datasets, especially when
strong spatial patterns are present. For example, BayesSpace is
the most accurate on Dataset 2, and SpaGCN is the most accurate
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on Datasets 3, 5 and 7. However, on Dataset 4, whose spatial
distribution of cell types is less obvious, these two methods have
lower accuracy than Seurat-based methods. As for the Giotto-HM
method, it does not outperform the other Giotto-based methods
that do not utilize spatial information. We suspect that Giotto-
HM’s heavy reliance on parameter tuning affects its performance
on complex data. The DRSC method has an intermediate-level
performance on most datasets.

Next, we compared SpaGCN+, stLearn and SpaCell, which
incorporate both gene expression and histology information for
clustering. On most datasets, stLearn and SpaGCN+ have better
performance than SpaCell. stLearn and SpaGCN+ have similar
performance on Datasets 5 to 7, but rank very differently on
Datasets 1 to 4. Interestingly, SpaGCN+ consistently performs
worse than SpaGCN, suggesting that the default configuration
of the SpaGCN package does not efficiently leverage histology
information to improve performance beyond the use of only
gene expression and spatial locations. In addition, we found that
stLearn is among the top methods on five datasets, but attains
below-average ARIs on Datasets 2 and 3, both of which are based
on the 10X Visium technology and sequence the largest number
of genes.

We summarized the ranking of each method based on the
average ARI scores (Figure 2H) and the standard deviation of
ARI across replicates (Figure 2I). Seurat-LVM, SpaGCN, Seurat-LV,
Seurat-SLM and stLearn are ranked in the top five by average
ARI, which shows that clustering methods using spatial locations
and/or histology information did not systematically outperform
methods only using gene expression levels. We also compared
the concordance between different software packages, but did
not observe consistent relationships across datasets (Supplemen-
tary Figures S11–S17). In terms of performance across replicates,
Seurat-based methods, SpaGCN and stLearn demonstrate better
robustness given variation in the data. In summary, Seurat-LVM,
SpaGCN and Seurat-LV perform the best and are the most stable
across replicates, followed by Seurat-SLM and stLearn.

Comparison of robustness to sequencing
depth
Since real datasets often differ in sequencing depths (Supplemen-
tary Figure S18), we performed a comparative analysis to evalu-
ate the robustness of different clustering methods given varying
sequencing depths. For each dataset in Table 1, we downsampled
the read count matrix to a decreasing percentage of the original
sequencing depth (from 90% to 10%) (Supplementary Figure S19).
The clustering methods were then applied to these new datasets
with reduced sequencing depth, and the average ARI score across
replicates was used as a summary of performance for every
percentage (Figures 3–4).

Among the methods that do not use spatial or histology infor-
mation, the Seurat-based methods have a more stable perfor-
mance in average ARI score than do the Giotto-based methods for
Datasets 2 and 3, both of which are based on the 10x Genomics
Visium technology. However, for all other datasets, the Seurat-
based methods have a similar trend to the Giotto-based methods.
Even though the SpaCell-G method overall has a smaller change
in performance when sequencing depth decreases, its average
accuracy is still lower than that of Seurat-based or Giotto-based
methods.

We also compared the robustness of methods that use both
gene expression and spatial information, namely BayesSpace,
Giotto-HM, SpaGCN and DRSC. When the sequencing depth
reduces to 50% (Figure 4A), the most robust method among the

four is DRSC, followed by Giotto-H, SpaGCN and BayesSpace.
However, we observed a reverse order when the sequencing
depth reduces to 10% (Figure 4B). In addition, we found that the
average ARI scores of BayesSpace and SpaCell-based methods
sometimes increase when sequencing depth reduces, for example,
in Datasets 2 and 5 (Figure 3B,E). This unexpected performance
suggests that these methods may not be efficient enough in
distinguishing biological signals and noises. For these methods,
the downsampling process helps remove some medium to lowly
expressed genes and sometimes improves the signal-to-noise
ratio.

Lastly, we compared SpaGCN+, stLearn and SpaCell, which
incorporate both gene expression and histology information for
clustering. SpaGCN+ and SpaCell have a similar overall perfor-
mance in robustness to sequencing depth, and both are generally
more robust than stLearn.

Comparison of robustness to clustering
parameter
The number of true cell types is often unknown to users in practi-
cal applications of clustering, but it may have a significant impact
on the quality of clustering results. Therefore, we evaluated seven
methods for which users are required to input a parameter of
cluster number, and three methods for which the parameter is
optional (Table 2). For each dataset, we evaluated these methods
with different cluster number parameters up to two integer values
above or below the ground truth. The average ARI across replicates
(Table 1) was then computed to measure clustering performance.

The ARI scores resulting from different cluster number param-
eters suggest that SpaGCN, SpaGCN+ and BayesSpace generally
have more accurate clustering results when the specified cluster
number is closer to the true cell-type number (Figure 5A–G). For
Datasets 1–3, a sharper decrease in performance is observed when
the cluster number parameter is lower than the true cell-type
number, compared with cluster parameter being greater than the
cell-type number. However, for Dataset 4, which presents a more
challenging clustering problem than the other datasets (Figure 2),
most methods have improved clustering performance when the
cluster number parameter decreases (Figure 5D).

Unlike the methods that utilize spatial information, the
Giotto-based methods and SpaCell-based methods do not have
a consistent dependence on the cluster number parameter.
Moreover, setting the parameter to true cell-type number usually
does not lead to the best clustering accuracy of these two types
of clustering methods, suggesting the existence of systematic
bias. Since the cluster number is often determined based on an
estimation of the true cell-type number, we also compared the
mean ARI of each method across different parameter values,
which suggest SpaGCN, SpaGCN+ and Giotto-H as the best three
methods in terms of robustness to the clustering parameter
(Figure 5H).

Comparison of robustness to variation in
histology images
Histology images often provide useful information to distinguish
between different cell populations, so some clustering methods
take the histology image as an additional input and attempt to
extract distinguishing features for use in the clustering process.
In this section, we compare the robustness of SpaGCN+, stLearn,
SpaCell and SpaCell-I given histology images with different lev-
els of variation. For each dataset, we simulated five histology
images by varying the standard deviations of the pixel colors

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data


Benchmarking cell-type clustering methods | 7

Figure 3. Comparison of average clustering accuracy across replicates given a decreasing percentage of original sequencing depth. (A, C, D): Replicates
are directly available based on data presented in Table 1. (B, E, F, G): Since the original dataset only has one replicate, for each percentage, five technical
replicates were generated in the downsampling process.

(Supplementary Methods). A larger standard deviation led to less
distinct information about different cell types (Figure 6A and
Supplementary Figure S20). Then, we applied the four methods
to the same spatial transcriptomics datasets combined with dif-
ferent histology images and compared their clustering accuracy
(Figure 6B–H).

For SpaCell and SpaCell-I, we observed a slight decreasing trend
of clustering accuracy when the images have greater variation.
In addition, the SpaCell method which uses both gene expres-
sion data and histology images consistently has better perfor-
mance than SpaCell-I, which only uses the images. However,
the clustering accuracy of stLearn and SpaGCN+ has a little

change on most datasets. Moreover, when these two methods
demonstrate obvious changes, they are not guaranteed to have
higher accuracy when histology images have a larger signal-to-
noise ratio. Since the synthetic histology images were generated
with different mean RGB values for different cell types, clustering
based on low-variation images supposedly should have better
performance than that based on high-variation images, provided
that a clustering method can effectively extract and utilize the
histology information. However, based on these results, current
methods leave room for improvement in their joint analysis of
gene expression, spatial and histology information to identify cell
populations.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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Figure 4. Ranking of methods based on robustness to decreased sequencing depth. Robustness is compared based on the absolute value difference in
mean ARI scores when the sequencing depth is reduced to 50% (A) or 10% (B) of the original depth. In both heatmaps, a smaller difference is ranked
higher. Entries marked with NA indicate that the corresponding method encountered errors on that dataset.

Table 3. Comparison of software packages based on installation, documentation and usability

Comparison of software usage
To compare the computational efficiency of different clustering
algorithms, we recorded the maximum memory usage and run-
time of the methods on Datasets 1–7.

For memory usage, SpaCell-based methods overall use the least
memory, followed by SpaGCN-based methods and Seurat-based
methods (Figure 7A). The two most memory-demanding methods,
BayesSpace and stLearn, both account for spatial locations in their
models. As for runtime, Seurat-based methods, SpaGCN-based
methods and Giotto-LD have comparable efficiency (Figure 7B).
Most methods have a roughly linear trend when dataset size
increases from Dataset 1 to Dataset 7. The exception to this trend
is Giotto-KM, whose runtime increases significantly.

We then compared the software packages for each method
based on installation, documentation and usability. The strengths
and weaknesses of each software package with respect to these
criteria were then summarized in Table 3. Taking all the criteria
into consideration, the Seurat, SpaCell and stLearn packages pro-
vide better support than the other packages.

Comparison based on real data
We performed the majority of comparisons based on the seven
semi-synthetic datasets, since gold standard cell-type labels are
not yet available for existing spatial transcriptomic datasets. To
shed light on method performance on real data, we also compared
the clustering accuracy of the 15 methods on five real spatial tran-
scriptomics datasets (Supplementary Table S1), treating cell-type
labels reported from the original publications as a reference to
evaluate the clustering results. From these results, we found that
Seurat-SLM, BayesSpace, Giotto-LD, Giotto-H and SpaGCN have
the best clustering accuracy on real datasets 1 to 5, respectively
(Supplementary Figure S21). When comparing the relative perfor-
mance of different methods across datasets, we found that among
methods not requiring histology images, Seurat-based methods,
BayesSpace and SpaGCN have the best accuracy (Supplementary
Figure S22). Furthermore, among methods that depend on histol-
ogy images as input, SpaGCN+ and stLearn have similar rankings
and both outperform the SpaCell-based methods. These results
coincide with our observations on the simulated data.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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Figure 5. Comparison of clustering methods based on robustness to clustering parameter. (A–G): Mean ARI of clustering methods given different
parameters of cluster number. Change in parameter (the x-axis) denotes the difference between the input parameter of cluster number and the true
cell type number of a dataset. (H): Ranking of methods according to the mean ARI score across parameter values. Methods with a higher average ARI
score across parameter choices are ranked better. Methods are ordered by average ranks across datasets. Entries marked with NA indicate that the
method encountered errors on that dataset.

Discussions and Conclusions
In this article, we have benchmarked 15 clustering methods
for spatially resolved transcriptomics data based on clustering
accuracy, clustering robustness to various sources of variation,

computational efficiency and software usability. Our results
on seven semi-synthetic datasets highlight the following key
findings. First, in terms of clustering accuracy, Seurat-LVM,
SpaGCN and Seurat-LV are overall the most accurate clustering
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Figure 6. Comparison of clustering methods based on robustness to variation in histology images. (A): Histology images for Dataset 5 that were simulated
with an increasing standard deviation. (B–H): Mean ARI of SpaGCN+, SpaCell, SpaCell-I and stLearn given histology images of different levels of variation
for Datasets 1–7.

methods. However, methods that use additional information from
spatial coordinates and histology images do not systematically
outperform methods that only use gene expression information.
Second, given decreased sequencing depth to 50%, Seurat-based
methods are the most robust methods. Again, incorporating
spatial or histology information does not guarantee to improve
clustering robustness in existing methods. Third, among methods
that require users to specify the number of clusters, SpaGCN,
SpaGCN+ and Giotto-H maintain the highest average clustering
accuracy when given mis-specified parameter values. Fourth, for
clustering methods that take histology images as input (stLearn,
SpaGCN+, SpaCell and SpaCell-I), they do not demonstrate
obvious improvement when images of better quality are supplied.
Fifth, Seurat-based and SpaGCN-based methods have the best
computational efficiency, and Seurat, SpaCell and stLearn have
the best software support. In summary, the additional spatial and
histology information provided by spatial transcriptomics data
opens new avenues for the development of clustering methods,

and we have indeed observed increased accuracy in cell
population identification in selected datasets. However, there
remain important subjects of future research, including how to
more effectively incorporate spatial and histology information in
the presence of noises and how to alleviate the dependence of
clustering on user-specified cluster numbers or other clustering
parameters.

In addition, we would like to discuss two future directions. First,
in this study, we utilized semi-synthetic datasets with real spatial
locations and synthetic gene expression data generated by the
scRNA-seq simulator scDesign2, since real spatial transcriptomics
datasets with high-quality cell-type labels are very rare. We antic-
ipate that the comparison can be extended to spatial data with
real gene expression levels after curated spatial transcriptomics
atlas becomes available. Second, this is a fast evolving field,
and we have noticed several new clustering methods during the
preparation of this manuscript, including STAGATE [33], SEDR [34],
ClusterMap [35] and SC-MEB [36]. To support further comparison
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Figure 7. Comparison of clustering methods based on maximum memory usage and runtime. (A): Log10 of maximum memory measured in megabytes
and used by the entire clustering pipeline for each method, including pre-processing. (B): Log10 of runtime measured in minutes. Datasets are ordered
based on cell number × gene number. In each panel, methods marked on the right are ordered based on results on Dataset 7. Since Giotto-HM
encountered errors on Datasets 2, 5 and 7, its memory usage and runtime are not displayed for these three datasets.

of new methods, we have uploaded the data analyzed in this study
to a publicly available repository at Github (https://github.com/
acheng416/Benchmark-CTCM-ST).

Key Points

• Spatially resolved transcriptomics data provide spatial
locations and sometimes histology information in addi-
tion to gene expression levels. These additional sources
of information are being explored to further improve
identification of cell populations.

• Among the 15 clustering methods, we have summa-
rized the best-performing methods in terms of clustering
accuracy, clustering robustness to various sources of
variation, computational efficiency and software usabil-
ity.

• Current clustering methods that use spatial location
and/or histology information show promising results in
selected datasets, but do not consistently perform better
and are not more robust to variations in the data than
methods that only use gene expression.

• Our comparison indicates that for the clustering of spa-
tial transcriptomics data, there are still opportunities to
enhance the overall accuracy and robustness by improv-
ing information extraction and feature selection from
spatial and histology data.

Data availability
The mouse olfactory bulb dataset (for Dataset 1 and Real dataset 1
in Table S1) is available from from DOI: 10.1126/SCIENCE.AAF2403.
The coronal mouse kidney section (Dataset 2) is available from
https://www.10xgenomics.com/resources/datasets. The mouse
brain serial sections corresponding to Dataset 3 were obtained
from the mouse brain serial section 1 and section 2 datasets at
https://www.10xgenomics.com/resources/datasets. The mouse
hypothalamic preoptic dataset (for Dataset 4 and Real dataset
4 in Table S1) can be obtained from DOI: 10.5061/dryad.8t8s248.
The mouse somatosensory cortex dataset (for Dataset 5 and Real
dataset 3 in Table S1) is available from http://linnarssonlab.org/

osmFISH/availability/. The Stereo-seq dataset (for Dataset 6 and
Real dataset 5 in Table S1) is available from https://db.cngb.org/
stomics/mosta/. The mouse brain cerebellum dataset (Dataset 7)
is available from https://singlecell.broadinstitute.org/single_cell/
study/SCP354. The simulated data generated in this study are
available at https://github.com/acheng416/Benchmark-CTCM-
ST. Real dataset 2 (Table S1) is available from http://research.libd.
org/spatialLIBD/ [37].
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