UC Irvine

SSOE Research Symposium Dean's Awards

Title

Smart Mirror RORRIM

Permalink

https://escholarship.org/uc/item/7ps471h7

Authors

Wang, Isabelle Tang, Johnathan Sevaston, Carissa <u>et al.</u>

Publication Date

2021-03-09

Supplemental Material

https://escholarship.org/uc/item/7ps471h7#supplemental

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Background & Project Goal

Many health monitoring devices are single-purpose and inconvenient for daily use (e.g. thermometers). Repurposing the household mirror, RORRIM encourages users to proactively monitor their health by displaying health information in plain view and giving health recommendations.

RORRIM incorporates non-invasive devices to help end-users monitor:

- Heart rate
- Step count
- Blood Oxygen Saturation Level (SpO2)
- Temperature
- Stress Stage

Implementation

• Personalized Tkinter GUI

UCI Samueli

School of Engineering

- Histogram of oriented gradients (HOG) and convolutional neural network (CNN) face recognition algorithms
- k-number of neighbors (kNN) sklearn algorithm for machine learning
- Asynchronous architecture pulls sensor data and updates Firebase database

Department of Electrical Engineering and Computer Science

Smart Mirror RORRIM

Isabelle Wang (CSE), Johnathan Tang (CpE), Carissa Sevaston (CSE), Bryan Trinh (CpE), Kevin Zhu (CpE) Assistant Professor Salma Elmalaki Department of Electrical Engineering and Computer Science

Results

RORRIM achieves health monitoring by:

- Featuring an interactive GUI including touch input, datetime, weather, and health information
- Identifying users through facial recognition
- Managing user data through Firebase Server
- Using health data with kNN machine learning classifier to infer stress stage at over 91% accuracy, giving appropriate recommendations

Improvements

- Implement encryption
- Achieve a higher accuracy for stress stage prediction using deep neural networks
- Support additional wearable devices
- Finalize mirror frame exterior

Supported by

References

[1] S. Colantonio et al., "A smart mirror to promote a healthy lifestyle," Biosystems *Engineering*, vol. 138, pp. 33–43, Oct. 2015, doi: 10.1016/j.biosystemseng.2015.06.008.

[2] M. Bansal, "Face Recognition Implementation on Raspberrypi Using Opencv and Python," Social Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 3557027, 2019. Accessed: Oct. 21, 2020. [Online]. Available: https://papers.ssrn.com/abstract=3557027.

