
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Optimal Dispatch of Fleet Electric Vehicles

Permalink
https://escholarship.org/uc/item/7pt0s74f

Author
Wang, Mengfei

Publication Date
2017

Supplemental Material
https://escholarship.org/uc/item/7pt0s74f#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7pt0s74f
https://escholarship.org/uc/item/7pt0s74f#supplemental
https://escholarship.org
http://www.cdlib.org/


 

 

 

UNIVERSITY OF CALIFORNIA 

RIVERSIDE 

 

 

 

 

Optimal Dispatch of Fleet Electric Vehicles 

 

 

 

A Thesis submitted in partial satisfaction 

of the requirements for the degree of 

 

 

Master of Science 

 

in 

 

Electrical Engineering 

 

by 

 

Mengfei Wang 

 

 

March 2017 

 

 

 

 

 

 

 

Thesis Committee: 

Dr. Hamed Mohsenian-Rad, Chairperson 

Dr. Mahnoosh Alizadeh 

Dr. Matthew Barth 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Mengfei Wang 

2017 

 



 

The Thesis of Mengfei Wang is approved: 

 

 

            

 

 

            

         

 

            

           Committee Chairperson 

 

 

 

 

University of California, Riverside 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents for all their love and support.



 v 

 

 

 

 

ABSTRACT OF THE THESIS 

 

 

Optimal Dispatch of Fleet Electric Vehicles 

 

 

by 

 

 

Mengfei Wang 

 

Master of Science, Graduate Program in Electrical Engineering 

University of California, Riverside, March 2017 

Dr. Hamed Mohsenian-Rad, Chairperson 

 

 

 

 

Electric vehicle is popular and people try to find the optimal energy strategy for pure 

PHEV and hybrid EV. However, the routine for personal PHEV is rather fixed between 

home work, and commercial places, etc. There are studies about optimal dispatch on fleet. 

But few of them is on optimal dispatch for PHEV. Hence what we should be looking for 

is a vehicle pattern that constantly travels from one place to another, and the origins and 

destinations may not the same. Taxi service is what we need. The purpose of this thesis is 

to find out the effects on travel cost introduced by autonomous and electric taxis. 

Specifically, I analyzed the travel pattern for 536 cabs in San Francisco, and optimized 

their routine when they are not occupied. The goal is to reduce energy cost while serving 

all passengers in time. In the meanwhile, taxi will be charged when needed during the 

best time window. 



 vi 

Table of Contents 

Content Page number 

Chapter 1. Introduction 1 

Chapter 2. Literature Review 4 

Chapter 3. Data Processing 7 

Chapter 4. Real-time Optimal Dispatch 19 

Chapter 5. Pre-booked Optimal Dispatch and Charging Decision 39 

Chapter 6. Simulation Results 58 

Chapter 7. Conclusions and Future Work 61 

References 62 

 



 vii 

List of Figures 

Caption Page Number 

Figure 1 The Number of Requests in UNIX Time 8 

Figure 2 Dividing San Francisco into 60 Sections 9 

Figure 3 Occurrence of Where a Pick-up or Drop-off is Requested 10 

Figure 4 Traffic Time in Weekdays and Weekends 14 

Figure 5 Real-time Optimization Status Transition 18 

Figure 6 Real-time Optimization Flow Chart 19 

Figure 7 Test Case Trip Timeline 61 

Figure 8 Cab Assignment 62 

Figure 9 SoC, Discharge and Charge Amount over Time for Cab #1 63 

Figure 10 SoC, Discharge and Charge Amount over Time for Cab #2 63 

Figure 11 SoC, Discharge and Charge Amount over Time for Cab #3 63 

Figure 12 SoC, Discharge and Charge Amount over Time for Cab #4 64 

Figure 13 SoC, Discharge and Charge Amount over Time for Cab #5 64 

Figure 14 Historical Data Timeline 65 

Figure 15 Historical Dispatch 65 

Figure 16 Optimal Dispatch 65 

Figure 17 Energy versus Cabs for Pre-book Optimization 66 

Figure 18 Energy versus Time for Pre-book Optimization 67 

Figure 19 Electricity versus Total Energy for Pre-book Optimization 68 

 

 



 viii 

List of Tables 

Caption Page Number 

Table 1 Passenger Request History Records 7 

Table 2 Charging Station Locations 11 

Table 3 Travel Information Between Charging Station 1 and Others 13 

Table 4 Vehicle Characteristics 17 

Table 5 Real-time Status and Numeric Representation 19 

Table 6 Pre-booked Optimization Variable Relationships 50 

Table 7 Historical Trip Data 60 

Table 8 Real-time Optimization 61 

Table 9 Number of Cabs and Their Corresponding Trips in 1 Hour 67 

Table 10 Time and Corresponding Trips for 5 Cabs 68 



 1 

Chapter 1. Introduction 

With the development of self-driving technology, autonomous vehicle attracts public 

attention and more opportunities to enhance the energy efficiency as well as driving 

comfort. More than ten high tech companies invested in autonomous vehicles, including 

Volvo, Google, and Tesla [1]. Survey [2] reveals that the majority of respondents had not 

only previously heard of autonomous or self-driving vehicles, but also had a positive 

initial opinion of the technology, and had high expectations about the benefits of the 

technology. However, the majority of respondents also expressed concerns about riding 

in self-driving vehicles, as they may not perform as well as actual drivers. Hence one 

aspect of this thesis is to prove that autonomous vehicles can benefit the public with 

lower energy cost while keep the same level of driving performance. 

As for now, the challenges brought by autonomous vehicle and self-driving technology 

are sensing and navigating. As far as navigating, one has to know its departure time, 

departure location, expected arrival time, and arrival location, so as to calculate the 

trajectory. This is usually referred to as the optimal routing problem. Google Maps 

provides optimal routing as well as additional information with advanced technology [3]. 

However, how autonomous vehicles perform compared to human drivers is hard to 

measure, unless one can show that autonomous vehicles can satisfy the same level of 

requirements as human drivers do.  



 2 

Electric vehicle is another hot topic where people try to find the optimal energy strategy 

for pure PHEV and hybrid EV. However, the routine for personal PHEV is rather fixed 

between home, work, and commercial places, etc [4]. It is the same reason why charging 

station is usually constructed at places with high population and long staying time, such 

as shopping malls at downtown. However, the relatively unchangeable routine for PHEV 

with personal usage is somehow boring in a sense that it may not make any difference by 

applying optimal routing strategy to achieve optimal energy consumption. 

What we should be looking for is a flexible driving pattern that requires vehicles to 

constantly travel from one place to another, but the departure and arrival place may 

change from time to time. It is the definition of taxi services. 

Electric vehicles have already been in considered on taxi services 0. One big advantage is 

that electric vehicles are more environmental friendly with less fuel consumption for 

plug-in hybrid electric vehicle (PHEV), and literally zero fuel consumption for pure EV. 

However, electric vehicles on taxi services also have two challenges. The first is when 

and where to go to charging stations so as to maximize the usage of the battery, and the 

second is that how to dispatch the cabs energy efficiently. 

This thesis is to solve both optimal dispatch and optimal charging problems. It is to find 

out the effects on travel cost introduced by autonomous and electric vehicles on taxi 

services. On the one hand, optimal dispatch is to find the best match between cabs and 

passenger requests so that all passengers are satisfied in time with minimum energy cost. 

On the other hand, optimal charging is to find the best time window which has minimum 



 3 

impact in responding to passenger requests. Both problems are answered in my 

algorithms.  

After constructing the algorithms to solve PHEV problem, the next step is always to find 

applicable data to test the methods. However, the penetration level of EVs is still very 

low, so we are currently in lack of detailed PHEV data sets. One of the alternatives is to 

use existing data sets for conventional vehicles and test what will happen if combining 

them with specific PHEV features to synthesize PHEV data sets [6][7][8][9]. 

Specifically, I analyzed the travel pattern for 536 cabs in San Francisco, and how to 

optimize their routine when they are not occupied. The goal is to see how much effects it 

will bring in terms of energy saving.  

The thesis is organized as follows. Section I is introduction for why and what it is in the 

thesis. Section II is literature review. In Section III, I process the GPS data for 536 cabs 

and generate the historical data for passenger requests. I also approximate the coordinates 

of cabs and divide them into geographic regions. I calculate the travel distance and traffic 

time on Google Map Distance Matrix API. I calculated the power consumption based on 

different features of four PHEV. In Section IV, I designed a real-time optimal dispatch 

algorithm. In Section V, I further extended that algorithm on time-series with pre-booked 

cabs. In Section VI, I simulate several cases and discuss the results. I conclude the thesis 

in Section VII. 



 4 

Chapter 2. Literature Review 

There are studies about using incentives to change the driving patterns of people. 

[10][11][12] However, they are mainly on residential side for personal usage. They do 

not discuss commercial use such as taxi services. 

People have been thinking of taxi dispatch already. [13][14][15] proposed multi-agent 

system to dispatch taxi. [23] focused on minimizing total customer waiting time by 

concurrently dispatching multiple taxis and allowing taxis to exchange their booking 

assignments. A shortest time path taxi dispatch system based on real-time traffic 

conditions is proposed in [18]. [19][21][22] maximize cab profits by providing routing 

recommendations. However, none of them is about PHEVs. 

PHEV is popular nowadays mainly in what impacts it might bring to the power grid. 

There are studies that examine the opportunities that PHEV may offer to better operating 

the electric grid. In fact, people the role of PHEVs in particular at the distribution level, 

some as a potential source of energy storage, others as a means to improve power quality 

and reliability. There are studies that examine the adverse impact of EV charging load on 

distribution feeders [18] [19] [25]. The possibility of using PEVs to discharge electricity 

back to the grid has been studied in vehicle-to-grid (V2G) systems [26] [27] [28] [29] [30] 

[31]. More recently, it has been shown that PEVs may also offer reactive power 

compensation, not only in a V2G mode but also during a regular charging cycle, with 

minimum impact on the EV battery lifetime [32] [33] [34] [35] [36]. However, none of 

them discuss the usage of PHEV on taxis. [37] might be the only one combining optimal 



 5 

dispatch and charging for fleet of electric taxi. However, its main goal is to lower the 

waiting time of power recharging and thus increase the workable hours for taxi drivers. It 

does not minimize the total energy cost while serving passengers 

As for the data set for PHEV, we lack the actual data for PHEV due to the low 

occupation of PHEV. An alternative way to analyze PHEV is to use the data from 

conventional vehicles. [7] analyzed 536 GPS-equipped fleet of conventional vehicle 

taxies in San Francisco, and developed a PHEV test data set by combining each trip 

information from the original data set with additional PHEV features and characteristics. 

The developed data set was then used to analyze the PHEV charging load. Similarly, [38] 

converted one day travel trace data of 229 conventional vehicles in Austin to PHEV data 

set and analyzed the impact of charging network coverage for PHEV energy consumption 

and energy cost. [39] utilized a sample of real world driving data from the National 

Household Travel Survey, and applied the trip profile and drive cycle information to 

simulate on-road PHEV electricity and fuel consumption. [40] converted 830 days of 

driving traces from Southeast Michigan into a PHEV-resembled data set, and then 

proposed a statistical model to for generating PHEV daily driving missions.  

The thesis utilized the same data set as [7] but has a huge difference. [7] does not extract 

the information whether the cab is occupied or free, which is the core of my thesis. 

Because the main idea of my thesis is keep passenger trips unchanged, but optimized cab 

behavior when not occupied. Therefore it is essential for us to know when a cab is 

available or not. 



 6 

Chapter 3. Data Processing 

2.1 Passenger Request History Record 

The first step of this project is to extract the passenger request records out from the raw 

data. The raw data contains the timestamp in UNIX format, latitude and longitude of its 

current location, and whether the cab is occupied for each of all 536 cabs. 

I notice that the status of the cab is represented by a binary variable Fare. If it is 1, it 

means the cab is occupied. If it is 0, it means the cab is free now. Therefore I use 

differential method to calculate the difference between two consecutive fare values. For 

example, if the Fare series is 0, 0, 1, 1, 0, 0, the difference should be 0, 1, 0,-1, 0. Clearly, 

it could take values among -1, 0, and 1. If it is -1, it means the status of cab is changed 

from 1 to 0, which is a drop-off. If it is 0, it means en route with or without passengers 

(whether it is occupied or free). If it is 1, it means a pick-up. Therefore I record the time 

when 1 and -1 appears, and pairs them together as a passenger request.  

Therefore I have to consider four conditions starting and ending with 1 or 0. If the 

beginning and ending of fare records are both free, this is the desired case, I do nothing. 

But if the beginning and ending of fare are both free, or if the beginning and ending of 

fare are both occupied, or if the beginning of fare is free but the ending is occupied, or if 

the beginning of fare is occupied but the ending is free, I have to add one element to the 

beginning or ending of pick-up records or drop-off records. Then I sort the 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 table 

by pick-up time. The table contains 464138 records. A portion of the table is as below.  



 7 

T
a
b

le
 1

 P
a
ss

en
g
er

 R
eq

u
es

t 
H

is
to

ry
 R

ec
o
rd

s 

 

D
ro

p
 O

ff
 

S
ec

ti
o
n
 

N
u
m

b
er

 

4
5
 

4
4
 

3
 

4
8
 

2
 

5
4
 

5
3
 

4
4
 

D
ro

p
 O

ff
 

L
o
n
g
it

u
d
e 

-1
2
2
.3

9
0
7
4
 

-1
2
2
.4

1
3
8
7
 

-1
2
2
.4

3
0
3
7
 

-1
2
2
.4

3
6
3
6
 

-1
2
2
.4

6
8
 

-1
2
2
.4

0
8
4
1
 

-1
2
2
.4

5
8
5
8
 

-1
2
2
.4

1
9
2
1
 

D
ro

p
 O

ff
 

L
at

it
u
d
e 

3
7
.7

8
7
8
8
 

3
7
.7

9
9
8
8
 

3
7
.7

7
1
4
1
 

3
7
.7

7
3
2
8
 

3
7
.7

1
0
3
5
 

3
7
.7

8
1
2
2
 

3
7
.7

8
6
7
8
 

3
7
.7

8
6
9
1
 

D
ro

p
 O

ff
 

T
im

e 

1
2
1
1
0
1
8
5
9
4
 

1
2
1
1
0
1
8
6
8
6
 

1
2
1
1
0
1
9
0
6
7
 

1
2
1
1
0
1
8
4
1
3
 

1
2
1
1
0
1
9
7
9
1
 

1
2
1
1
0
1
9
2
6
4
 

1
2
1
1
0
1
8
5
9
9
 

1
2
1
1
0
1
8
5
4
7
 

P
ic

k
 U

p
 

S
ec

ti
o
n
 

N
u
m

b
er

 

5
5

 

5
4

 

5
4

 

4
8

 

5
4

 

3
7

 

5
3

 

3
4

 

P
ic

k
 U

p
 

L
o
n
g
it

u
d
e 

-1
2
2
.3

9
0
5
5
 

-1
2
2
.4

2
0
1
1
 

-1
2
2
.4

2
8
4
6
 

-1
2
2
.4

3
7
5
3
 

-1
2
2
.4

0
4
 

-1
2
2
.4

6
4
6
7
 

-1
2
2
.4

5
1
3
1
 

-1
2
2
.4

1
5
4
9
 

P
ic

k
 U

p
 

L
at

it
u
d
e 

3
7
.7

8
7
8
1

 

3
7
.7

9
6
1
1

 

3
7
.7

8
5
7
7

 

3
7
.7

7
3
5

 

3
7
.7

8
6
9
7

 

3
7
.7

3
9
8

 

3
7
.7

8
6
7
3

 

3
7
.7

8
5
5
9

 

P
ic

k
 U

p
 

T
im

e 

1
2
1
1
0
1
8
4
0
4
 

1
2
1
1
0
1
8
4
0
4
 

1
2
1
1
0
1
8
4
0
4
 

1
2
1
1
0
1
8
4
0
5
 

1
2
1
1
0
1
8
4
0
7
 

1
2
1
1
0
1
8
4
0
7
 

1
2
1
1
0
1
8
4
0
7
 

1
2
1
1
0
1
8
4
0
7
 

C
ab

 I
D

 

al
d
h
id

d
 

en
k
k
an

d
 

u
cg

ew
ft

 

o
m

d
ri

d
 

as
la

g
n
i 

eg
re

o
sk

o
 

ew
b
g
lo

 

ic
ag

p
o
n
y
 



 8 

Plot the occurrence of pick-up and drop-off time as below. 

 

Figure 1 The Number of Requests in UNIX Time 

The reason why it has so many “spikes” is because the data is incomplete. All the cabs 

have no time records right before every spikes. For example, there are 46 seconds 

missing in front of the first spikes. Therefore the spikes are actually very flatten through 

timeline. 

2.2 Geographical Approximation 

The latitude and longitude can be approximated to a small region and hence use the 

section number of that region to represent all the coordinates within. Since most of the 

coordinates are within latitudes 37.6 and 37.82 and longitudes −122.52 and −122.37. I 

can draw the same rectangular area as used in [7]. I have checked that among all the 

coordinates where pick-up and drop-off happen, there only exist 0.5283% coordinates 



 9 

whose latitude is less than the minimum latitude and 0.4006% greater than the maximum 

latitude. There only exist 0.0308% of all the coordinates whose longitude is less than 

minimum longitude and 0.9780% whose longitude is greater than maximum longitude. 

So the boundary assumption is reasonable.  

It is reasonable to relocate the pick-up location to the center of the section where the 

passenger is. Because in reality, passenger can wait at a cab station to be picked up. 

 

Figure 2 Dividing San Francisco into 60 Sections 



 10 

[7] just wanted to know where cabs park more. And hence the paper found three 

locations. Interestingly, the three locations are close to San Francisco downtown, the cab 

headquarter and San Francisco International Airport (SFO). That is where the paper set 

the charging stations. I hence use the address of SFO for the first charging station. I 

further confirmed that the cab headquarter is Yellow Cab and I use its address for the 

second charging station. I choose the largest parking lot in San Francisco with 2574 

parking spaces in total, which happens to be in downtown, as the third charging station. 

Luckily, both parking garage and SFO have PHEV chargers already. The geographical 

information is as below. I hence draw the occurrence of where a pick-up or drop-off is 

requested. The plot is as below. 

Figure 3 Occurrence of Where a Pick-up or Drop-off is Requested 

Since the exact address of all three charging stations are known, I can use the exact 

locations of charging stations to calculate the travel distance and traffic time in Google 

Map API when trying to find the cost heading for a charging station, rather than roughly 

assuming that these charging locations are in some cells. 



 11 

Optimal charging station placement is outside the scope of this thesis and so we keep the 

charging stations at popular locations where the cabs used to stop for long intervals of 

time. 

Table 2 Charging Station Locations 

 Charging Station #1 Charging Station #2 Charging Station #3 

Name San Francisco 

International Airport 

Yellow Cab Co-op Taxi 

Headquarter 

Fifth and Mission 

Parking Garage 

Address 780 S Airport Blvd, 

San Francisco, CA 

94128 

1200 Mississippi St, San 

Francisco, CA 94107 

833 Mission St, San 

Francisco, CA 94103 

Coordinates 37.6213, 

-122.3790 

37.751152, 

-122.394355 

37.783314, 

-122.404563 

As for the distance travelled between the successive GPS readings, such distance is 

approximated by a straight path between each two coordinates. Such approximation is 

reasonable for the purpose of our study since the reading intervals in the data set are 

fairly small.  

I further uses the ‘haversine’ formula to calculate the great-circle distance between two 

points. That is the shortest distance over the earth’s surface, ignoring any hills they fly 

over. If performance is an issue and accuracy less important, for small distances 

Pythagoras’ theorem can be used on an equirectangular projection. 



 12 

Let 𝜆1 and 𝜆2 denote the latitudes of two successive records of the GPS coordinates. 

Assume that 𝜑1 and 𝜑2 denote the longitudes of those coordinates. The direct distance 

traversed between the two points are calculated as 

 𝐷𝑖𝑠𝑡1,2 = 𝑅√((𝜑2 − 𝜑1)cos(
𝜆1 + 𝜆2

2
))2 + (𝜆2 − 𝜆1)

2 (1) 

where 𝑅 denotes the radius of the earth that is 6371km. 

2.3 Travel Distance and Traffic Time 

After having the approximated geographical locations, I need to get the travel distance 

and traffic time between two locations. I use Google Map Distance Matrix API to get 

such information. It can “access travel distance and time for a matrix of origins and 

destinations with the Google Maps Distance Matrix API. The information returned is 

based on the recommended route between start and end points and consists of rows 

containing duration and distance values for each pair.”[3] 

Therefore I use it to create a 63 × 63 cell, where each entry is a 24 × 2 cell, which 

contains the distance or time between two geographical locations for 24 hourly times. In 

addition, Google Map Distance Matrix API can not take a past time and only provides 

traffic information estimated in the future. The time elapse in 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 table is from 

05/17/2008 10:00:04 to 06/10/2008 09:17:21. Therefore I choose 05/25/2017 (Thursday) 

and 05/28/2017 (Saturday) as reference time for weekdays and weekends. For example, 



 13 

the traffic information from charging station 1 to all the charging stations (including 

charging station 1 itself) is as below. The time is 05/25/2017 00:00:00, equally 

1495670400 in UNIX format.  

Table 3 Travel Information Between Charging Station 1 and Others 

 ChargingStation1 ChrgStation2 ChrgStation3 

ChargingStation1 [0, 0]  [17945, 1161]  [21950, 1865]  

The first element in each matrix is travel distance in meters, and the second element is 

traffic time in seconds while choosing driving mode. For example, [17945, 1161] means 

it’s 18 kilometers between charging station 1 and 2, and it takes 20 minutes from 

charging station 1 to 2 at 05/25/2017 00:00:00. 

San Francisco, CA is in Pacific Time Zone (UTC-08:00). According to Google Map 

Distance Matrix API, “departure_time is an integer in seconds since midnight, January 1, 

1970 UTC.” Coordinated Universal Time (UTC) is 8 hours ahead of San Francisco, 

meaning that the local time in San Francisco at 05/25/2017 00:00:00 PST equals to 

05/25/2017 08:00:00 UTC. 

I then draw the traffic time in both weekends and weekdays as below. Red line describes 

weekdays, and blue line is for weekends. Clearly, red line has two surges for on-duty and 

off-duty rush hours at 8 am and 5 pm, respectively. On the other hand, blue line doesn't 

rise until 9 am because nobody gets up early on Saturday. The line reaches its peak at 12 



 14 

pm, then drops down to normal around 8 pm. What's more, the traffic load on weekdays 

is far more than that on weekends. 

 

Figure 4 Traffic Time in Weekdays and Weekends 

2.4 Power Consumption 

I need gasoline and electricity power consumption for a typical vehicle. I found the 

formula in Jiarui Liu’s thesis. In general, four different forces affect (impede) vehicle 

movement: 

(1) Rolling resistance. 

(2) Aerodynamic drag resistance. 

(3) Inertial resistance. 

(4) Grade resistance. 



 15 

The timely total power requirement 𝑃𝑡𝑜𝑡 can be calculated as the sum of all resistance 

force multiplied by the vehicle’s forward speed 𝑉. Accordingly, the energy usage 𝐸𝑡𝑜𝑡 in 

each second can be calculated as below. 

 𝑃𝑡𝑜𝑡 = (𝐹𝑎 ∙ 𝑉 + 𝐹𝑎𝑖𝑟 ∙ 𝑉 + 𝐹𝑐 ∙ 𝑉 + 𝐹𝑟 ∙ 𝑉)/𝐶𝑐 (2) 

Where 

 𝐹𝑎 = 𝑚 ∙ 𝑎 (3) 

 𝐹𝑎𝑖𝑟 =
1

2
∙ 𝜌𝑎𝑖𝑟 ∙ 𝐶𝑑 ∙ 𝐴𝑟𝑒𝑎 ∙ 𝑉2 (4) 

 𝐹𝑐 = 𝑚 ∙ 𝑔 ∙ sin 𝜃 (5) 

 𝐹𝑟 = 𝐶𝑟 ∙ 𝑚 ∙ 𝑔 (6) 

Therefore  

𝐸𝑡𝑜𝑡 = 𝑃𝑡𝑜𝑡 × 𝑡 (7) 

Here 𝐹𝑎, 𝐹𝑎𝑖𝑟, and 𝐹𝑟 denote, respectively, the force for acceleration, the aerodynamic 

force, a load related to steepness, and rolling resistance. 

 𝑚 Vehicle weight (kg). 

 𝑎 Vehicle acceleration (m/s2). 

 𝑉 Vehicle speed (m/s). 



 16 

 𝜌𝑎𝑖𝑟 Air density (kg/m3). Normally 1.2041kg/m3 for dry air at 20°C and 

101.325kPa. 

 𝐶𝑑 Aerodynamic drag coefficient (unitless). It is different between different 

vehicle model. 

 𝐴𝑟𝑒𝑎 Frontal area (m2). Different between each vehicle model. 

 𝑔 The acceleration of gravity. Normally 9.80665m/s2. 

 𝜃 The slope angle (rad). 

 𝐶𝑟 Rolling resistance coefficient (unitless). Normally equal to 0.0165. 

 𝑡 Time duration (second). The time duration is 1second for my simulation. 

 𝐶𝑐 The energy converting efficiency ratio (unitless), representing how much 

energy stored in the battery can be converted into kinetic energy. It is set to be 

80% in our analysis. 

Note that the road grade is not given in our available data set. In addition, I also calculate 

that the acceleration speed does not take much account in the energy. Hence I neglect 

acceleration speed and only consider the aerodynamic force and rolling resistance in my 

energy usage calculation. 

The unit of 𝐸𝑡𝑜𝑡 is Joule. I need to convert the unit to kWh for electric energy 

consumption (1kWh = 3600000J).  

In addition, fuel efficiency for petrol (gasoline) engine is about 20%.  

 



 17 

Table 4 Vehicle Characteristics 

Brand Chevrolet Honda  Ford Toyota 

Model Volt Accord Fusion Prius 

Weight (kg) 1717.3  1576.2  1774.9  1451.5  

Aerodynamic Drag Coefficient 𝐶𝑑 0.28  0.29  0.28  0.26  

Frontal Area Area (m2) 2.20  2.21  2.21  2.22  

Battery Capacity (kWh) 16  6.6  7.6  4.4  

Available Energy (kWh) 8.8  3.8  7.1  3.2  

Average Electric Range (Mile) 37  13  21  11  

Max Charging Rate (kW) 3.5  6.6  3.5  3.5  

Electricity Consumption (kWh/

100Miles) 

36  29  34  29  

Gas Consumption (Gallon/100Miles) 2.7  2.2  2.3  2  

Power Train Index * D  B  D  B  

* D: Charging Depleting. B: Charging 

Blending 

    

 



 18 

Chapter 4 Real-time Optimal Dispatch  

In order to run a time-series agent-based simulation, I have to treat each cab as an 

induvial agent. Each agent has attributes. I define matrix A to describe such attributes, 

where the rows represent each agent, arranged by alphabetical order of Cab ID, and the 

columns represent cab ID, brand-model, available time window, initial position, speed, 

progress, electric consumption, fuel consumption, and SoC for each agent from left to 

right. 

In addition, each agent has 6 statuses: Not Available, Being Idle, En Route with 

Passenger, Pre-booked, En Route to Charging Station, and Being Charged. The status 

transition is as below. 

 

Figure 5 Real-time Optimization Status Transition 

Pre-opt and post-opt means pre-optimization and post-optimization, which will be 

discussed later. 



 19 

 

Figure 6 Real-time Optimization Flow Chart 

For each cab, I can use a 5-digit number to represent its status. 

Table 5 Real-time Status and Numeric Representation 

Status Numeric Representation 

Not Available 10000 

Being Idle 01000 

En Route with Passenger 00100 

En Route to Charging Station 00010 

Being Charged 00001 



 20 

Hence I use a matrix 𝑆𝑡𝑜𝑡𝐶𝑎𝑏×5 to represent the 5 statuses of all cabs, where each row 

represents each cab. Each column represents each of the 5 statuses. Denote 𝑆 = [𝑠𝑐,𝑗], 

then 

𝑠𝑐,𝑗 ∈ {0,1}, ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑗 = 1: 5   (8) 

∑ 𝑠𝑐,𝑗
6
𝑗=1 = 1, ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏    (9) 

Formula (8) makes 𝑆 a binary matrix. Formula (9) means an agent must be at on one and 

only one status. Note that status is merely a way to better describe cab attributes. Our 

goal is to find the most cost effective way to dispatch and allocate cabs. Now the question 

is to determine which cab should change status and how to change its status. 

The procedure for such question in each time slot is as below. When 𝑡 = 𝑡1, 

Step 1: Pre-Optimization 

The main purpose of this step is to traverse all cabs and calculate their energy 

consumption first, and then update their status and attributes if needed. 

Update position, speed, electric energy consumption, fuel consumption, and SoC in 𝐴. 



 21 

1.1 energy consumption calculation 

Calculate electric consumption, fuel consumption and update SoC for moving and 

charging cabs. The energy consumption for moving cabs are based on vehicle 

characteristic, speed and SoC level.  

The energy consumption for charging cabs is based on the maximum charging rate of 

vehicle or maximum charging rate at the charging station, whichever is smaller. Because 

the actual charge rate for each PHEV is limited by its own charger interface. Therefore, 

we must calculate SoC during the charging period specifically based on the 

characteristics of each particular PHEV. Once a PHEV departs a charging station, its SoC 

will start to decrease based on its driving pattern and also its power train type. 

1.2 status change from “not available” to “being idle” 

Check if any cab is available online now by comparing the current simulation time with 

the available time window of each cab.  

Note that an off-duty cab only exists for human-driver case. With self-driving case, all 

cabs are always working whenever they are online. Also, if we don't see the GPS data for 

a cab in your data set, it is mostly because the car was turned off. Again, this does not 

happen in self-driving case. Therefore I can assume that a cab joins my fleet only when it 

becomes available based on the database. I have few cabs online at the beginning of my 

simulation. This is totally feasible because the population of passengers originally came 

from the cab data. That means I have fewer passengers at the beginning too. 



 22 

For those just available online,  

 Change the corresponding cab status from “not available” to “being idle”, which 

is to change the corresponding row in 𝑆 from 10000 to 01000. 

 Update the speed to zero. 

1.3 status change from “en route with passenger” to “being idle” 

Check drop-off time in 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 table to determine which cab should drop off its 

passenger. For those who finish their en route with passengers, 

 Change the corresponding cab status from “en route with passenger” to “being 

idle”, which is to change the corresponding row in 𝑆 from 00100 to 01000. 

 Update cab position to where it drops off its passenger. 

 Update cab speed to zero. 

1.4 status change from “being idle” to “en route to charging station” 

Check 𝑆𝑜𝐶 in 𝐴 for those cabs being idle to determine which cab should be charged.  

For whose to be charged, 

 Change the corresponding cab status from “being idle” to “en route to charging 

station”, which is to change the corresponding row in 𝑆 from 01000 to 00010. 

 Such cabs are not available for dispatch optimization in the next step, unless they 

arrive at charging station, finish charging, and go back to being idle again. 



 23 

 Or the number of cabs being idle is less than the number of requests at that time 

slot. This means I will have two cost functions later in my next step. 

 Update the speed. 

Update ER2CS (En Route to Charging Station) table by adding in one row in the format 

below: 

CabID  DepartureTime  DeparturePosition  ArrivalTime  ChargingStation  

Sort En Route to Charging Station table by Arrival Time. 

1.5 status change from “en route to charging station” to “being charged” 

Check ArrivalTime in 𝐸𝑛𝑅𝑜𝑢𝑡𝑒𝑡𝑜𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑖𝑜𝑛 table to determine which cab 

arrives at the current time slot. For those who just arrives, 

 Change the corresponding cab status from “en route to charging station” to “being 

charged”, which is to change the corresponding row in 𝑆 from 00010 to 00001. 

Update Charging Station History Record table by adding in one row in the format below: 

CabID  ChargingStation  StartTime  EndTime  

This table has no use in our simulation, but is for overall charging loads analysis per 

charging station later. 

 Update cab position to its corresponding charging station. 



 24 

 Update cab speed to zero. 

1.6 status change from “being charged” to “being idle” 

Check if cabs being charged finish charging. For those cabs finishing charging, 

 Change the corresponding cab status from “being charged” to “being idle”, which 

is to change the corresponding row in 𝑆 from 00001 to 01000. 

 Update the speed to zero. 

Step 2: Dispatch Optimization 

Determine which cab should be dispatched to pick up a request for those “being idle”. 

Check 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 table to determine how many requests is needed at this time slot and 

where they are. The number of requests determines the number of rows of our 

optimization matrix variable. Denote there are 𝑡𝑜𝑡𝑃𝑎𝑥 number of passenger requests 

needed in this time slot. This number may change as time goes by, but it is determined 

within each time slot before the optimization. Denote 𝑡𝑜𝑡𝐶𝑎𝑏 is the total number of cabs. 

This is a constant number throughout the simulation. 

I thereby define a matrix 𝐷𝑡𝑜𝑡𝑃𝑎𝑥×𝑡𝑜𝑡𝐶𝑎𝑏 to represent if a cab is dispatched in response to 

a request. Denote 𝐷 = [𝑑𝑝,𝑐], 𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, then 

 𝑑𝑝,𝑐 ∈ {0,1}, ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏        (10) 



 25 

Constraint (10) makes 𝐷 a binary matrix. 𝑑𝑝,𝑐 = 1 means cab 𝑐 is going to pick up 

passenger 𝑝, and its status should change from “being idle” to “en route with passenger”. 

𝑑𝑝,𝑐 = 0 means cab  𝑐 is not going to pick up passenger 𝑝. 

 𝑑𝑝,𝑐 = {
1, cab𝑐picksuppassenger𝑝

0, otherwise
 (11) 

     ∑ 𝑑𝑝,𝑐
𝑡𝑜𝑡𝐶𝑎𝑏
𝑐=1 = 1, ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥         (12) 

Constraint (12) means that each request must be satisfied by exactly one cab, which 

implies that no request should be left aside. It also indicates that no passenger should be 

picked up by more than one cab. 

     ∑ 𝑑𝑝,𝑐
𝑡𝑜𝑡𝑃𝑎𝑥
𝑝=1 ≤ 1, ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏         (13) 

Constraint (13) ensures that one cab can only respond to at most one request, which 

indicates no car sharing in my simulation. 

Note that matrix 𝐷 is relatively huge and sparse as 𝑡𝑜𝑡𝑃𝑎𝑥 and 𝑡𝑜𝑡𝐶𝑎𝑏 grow. There are 

two ways to construct such variables more efficiently. One way is to have 𝑡𝑜𝑡𝑃𝑎𝑥 

number of variables 𝑌. Denote 𝑌 = [𝑦𝑝], 𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, then 𝑦𝑝 represents the number 

of cab dispatched, from 1 to 𝑡𝑜𝑡𝑃𝑎𝑥. Constraint (10) does not apply for 𝑦𝑝, and 

constraint (12) is satisfied naturally. Constraint (13) is expressed as 𝑦𝑝1
≠ 𝑦𝑝2

, where 

𝑝1 ≠ 𝑝2, ∀𝑝1 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥. However, this inequality constraint is no 



 26 

more a convex constraint, since not-equal is non-convex. Hence it is harder to find the 

optimal solution. 

The other way to construct such variables is to have 𝑡𝑜𝑡𝐶𝑎𝑏 number of variables 𝑍. 

Denote 𝑍 = [𝑧𝑐], 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, then 𝑧𝑐 represents which passenger the cab shall pick 

up, from 1 to 𝑡𝑜𝑡𝑃𝑎𝑥, or the cab is not dispatched, simply 𝑧𝑐 = 0. Again, constraint (10) 

does not apply for 𝑧𝑐. But constraint (12) is hard to describe.  

In conclusion, 𝑌 and 𝑍 are denser but harder to describe or solve, hence matrix 𝐷 is the 

best way to construct such variables. Matrix 𝐷 also brings in another advantage in 

constraint (13) because it can be easily extended to car sharing case. For example, 

∑ 𝑑𝑝,𝑐
𝑡𝑜𝑡𝑃𝑎𝑥
𝑝=1 ≤ 2, ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏 means one cab can pick up at most 2 requests at the 

same time. I will explain how to construct such sparse matrix with less memory usage 

and solve the optimization problem by reducing its computational complexity later. 

I then record the geographical section number where each request happens in a matrix 

named 𝑅 with 𝑡𝑜𝑡𝑃𝑎𝑥 number of rows. The first column of the matrix is the geographic 

section number for each request happened in this time slot, arranged by alphabetical order 

of Cab ID in the 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 table. The matrix 𝑅 also contains when the passenger should 

arrive, and where the cab should drop off, according to historical data. Note that I use 

historical date to describe the driving behavior when the cab is occupied with passenger, 

and I use Google Map Distance Matrix API as reference for travel distance and traffic 

time when the cab is free. 



 27 

The objective of this optimization is to find the cab which takes less energy to pick up a 

passenger and with high SoC.  We can assume that a cab that consumes less energy to 

pick up a passenger also takes less time. So both the passenger and the taxi service are 

happy. If several cabs are in the same block as the passenger, the en route energy cost 

without passenger becomes 0. Therefore the cost function becomes zeros. There is no 

preference between cabs to pick up the passenger in the same block. That is why I add the 

SoC so that we will choose the cab with higher SoC. Sometimes the passenger we want 

to pick up wants to travel only a short distance and hence we do not really need high SoC 

to serve that request. But this is a minor affect. 

min𝐷 ∑ ∑ 𝑑𝑝,𝑐(𝛼 ∙ 𝐸𝐶(𝐴𝑐,1, 𝑟𝑝,1) + (1 − 𝛼) ∙ 𝐹𝐶(𝐴𝑐,1, 𝑟𝑝,1) − 𝛽 × 𝐴𝑐,5))
𝑡𝑜𝑡𝐶𝑎𝑏
𝑐=1

𝑡𝑜𝑡𝑃𝑎𝑥
𝑝=1  (14) 

𝛼 and 𝛽 are adjustable coefficient, where 0 ≤ 𝛼 ≤ 1. 𝐴𝑐,1 is the current position of each 

cab, and 𝐴𝑐,5 is their corresponding SoC. 𝑟𝑝,1 is the position for passenger 𝑝. 

𝐸𝐶(∙) and 𝐹𝐶(∙) are determined functions to calculate electric energy consumption and 

fuel consumption, respectively, from where the cab is to where the cab picks up the 

passenger.  

Total energy can be obtained based on cab characteristics and average speed, which is 

derived from geographical distance and traffic time from where the available cab is to 

where the request happens. Then I need to determine how much electric energy and fuel 

energy allocated from total energy consumption. This is based on cab characteristics, 



 28 

especially whether it is charge depleting or charge blending, its SoC, and its speed. This 

can be expressed in the following pseudo-code. 

if cab is charge depleting, 

    if (SoC * capacity – energy) >= available energy, 

        electric = total energy / electric efficiency,  

        fuel = 0, 

    if (SoC * capacity – energy) < available energy, 

        electric = (total energy – available energy) / electric efficiency, 

        fuel = (energy - electric * electric efficiency) / fuel efficiency, 

if cab is charge blending, 

    if cab speed > 60 mph, 

        if (SoC * capacity – energy) >= available energy, 

            electric = total energy / electric efficiency,  

            fuel = 0, 

        if (SoC*capacity – energy) < available energy, 



 29 

            electric = (total energy – available energy) / electric efficiency, 

            fuel = (energy - electric * electric efficiency) / fuel efficiency, 

if cab speed <= 60 mph, 

        electric = 0, 

        fuel = energy / fuel efficiency. 

The objective is an integer linear optimization problem for binary matrix 𝐷. 

In our optimization, I define only cabs that are being idle can be dispatched to pick up 

passengers. It is because cabs being idle can be easily located. However, a cab that is 

transferring a passenger and going towards the next pick up location to drop off that 

passenger may be more suitable. We can "project" a time when the taxi becomes 

available. This is discussed in the next chapter.  

For now, we stick with cabs being idle. It means for ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 

If 𝑠𝑐,2 = 0, then𝑑𝑝,𝑐 = 0, ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥; 

If 𝑠𝑐,2 = 1, then𝑑𝑝,𝑐 = 0 or 1, ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥. 

Mathematically, this can be represented as  

 (1 − 𝑠𝑐,2) × 𝑑𝑝,𝑐 = 0, ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏 (15) 



 30 

It can be simplified as 

 𝑑𝑝,𝑐 ≤ 𝑠𝑐,2, ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏        (16) 

In addition, I also want to limit the waiting time in response to a request so that no 

passenger should wait too long before picked up. The waiting time can be obtained by 

Google Map Distance Matrix API as the traffic time from one section where the cab is to 

the section where the passenger is. This constraint can be represented as below. 

 𝑇𝑖𝑚𝑒(𝐴𝑐,5, 𝑟𝑝,1) × 𝑑𝑝,𝑐 ≤ 𝑡𝑡ℎ, ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏      (17) 

𝑇𝑖𝑚𝑒(∙) is a table containing constant numbers to find the distance between two 

geographical sections based on current time. 𝐴(: ,5) is the 5th column in 𝐴 recoding the 

positions of all cabs. Matrix 𝑅 records where each request happens. Note that the time is 

rounded to its closest hourly time for convenience. Also I distinguish weekday times 

from weekend times for two time tables, because of different traffic pattern. 𝑡𝑡ℎ serves as 

a threshold for maximum waiting time. 

Therefore the optimization problem is to solve: 

Objective: (14) 

Subject to: (11) (12) (13) (16) (17) 

To use 𝑖𝑛𝑡𝑙𝑖𝑛𝑝𝑟𝑜𝑔 in MATLAB for mixed-integer linear programming (MILP) solver, I 

transform the matrix variable 𝐷 to a vector of variables 𝑋. Denote 𝑋 = [𝑥𝑖], then 



 31 

 

       𝑋 = [𝑥1𝑥2 …𝑥𝑡𝑜𝑡𝑃𝑎𝑥×𝑡𝑜𝑡𝐶𝑎𝑏]  

= [𝑑1,1 …𝑑𝑡𝑜𝑡𝑃𝑎𝑥,1𝑑1,2 …𝑑𝑡𝑜𝑡𝑃𝑎𝑥,2 …𝑑1,𝑡𝑜𝑡𝐶𝑎𝑏 …𝑑𝑡𝑜𝑡𝑃𝑎𝑥,𝑡𝑜𝑡𝐶𝑎𝑏] 

(18) 

𝑋 can be achieved by 𝑋 = 𝐷(: ) in MATLAB. 

Remember that matrix 𝐷 contains (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏) elements. The total number of 

elements in vector 𝑋 contains the same number. I will keep check the number of equality 

and inequality constraints as illustrated below.  

The objective function (14) can be rewritten as: 

 min𝑋 𝑓𝑇𝑋 (19) 

Denote 𝑓 = [

𝑓1
𝑓2
⋮

𝑓𝑡𝑜𝑡𝑃𝑎𝑥×𝑡𝑜𝑡𝐶𝑎𝑏

], then for ∀𝑘 = 1: (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏), 

 𝑓𝑘 = 𝛼 ∙ 𝐸𝐶(𝐴𝑐,5, 𝑟𝑝,1) + (1 − 𝛼) ∙ 𝐹𝐶(𝐴𝑐,5, 𝑟𝑝,1) − 𝛽 ∙ 𝐴𝑐,10 (20) 

where 

 𝑘 = 𝑝 + (𝑐 − 1) × 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑝 ∈ 𝕀, 𝑐 ∈ 𝕀, 𝑝 ∈ [1, 𝑡𝑜𝑡𝑃𝑎𝑥], 𝑝 ∈ [1, 𝑡𝑜𝑡𝐶𝑎𝑏] (21) 

Constraint (10) can be rewritten as: 

𝑥𝑖 ∈ {0,1}, ∀𝑖 = 1: (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏)          (22) 



 32 

To rewrite constraint (12), I construct 𝑡𝑜𝑡𝐶𝑎𝑏 numbers of diagonal identity matrix, each 

with dimension 𝑡𝑜𝑡𝑃𝑎𝑥 by 𝑡𝑜𝑡𝑃𝑎𝑥. I then concatenate them horizontally as below.  

 𝑀 = [𝐼, 𝐼, … 𝐼] (23) 

The dimension of matrix 𝑀 is 𝑡𝑜𝑡𝑃𝑎𝑥 by (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏). 

Constraint (12) can be rewritten as: 

 𝐴𝑒𝑞 × 𝑋 = 𝑏𝑒𝑞         (24) 

where 𝐴𝑒𝑞 = 𝑀, 𝑏𝑒𝑞 = 𝐼𝑡𝑜𝑡𝑃𝑎𝑥×1. 

Recall that constraint (12) consists of 𝑡𝑜𝑡𝑃𝑎𝑥 equalities. Constraint (24) has the same 

number of equalities. 

To rewrite constraint (13), I construct a𝑡𝑜𝑡𝐶𝑎𝑏 by (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏)diagonal matrix 

𝑁 where 𝐼1×𝑡𝑜𝑡𝑃𝑎𝑥 as block diagonal matrix and 0 for the rest of the elements as below.  

 𝑁 = [
𝐼 0 0
0 ⋱ 0
0 0 𝐼

] (25) 

Such matrix can be achieved in MATLAB by 𝑘𝑟𝑜𝑛(𝑒𝑦𝑒(𝑡𝑜𝑡𝐶𝑎𝑏), 𝑜𝑛𝑒𝑠(1, 𝑡𝑜𝑡𝑃𝑎𝑥)). 

However, 𝑡𝑜𝑡𝐶𝑎𝑏 and 𝑡𝑜𝑡𝑃𝑎𝑥 can be huge in some cases. So I use sparse matrix to 

represent 𝑁. In MATLAB, sparse matrix 𝑁 can be obtained by 

𝑘𝑟𝑜𝑛(𝑠𝑝𝑒𝑦𝑒(𝑡𝑜𝑡𝐶𝑎𝑏), 𝑜𝑛𝑒𝑠(1, 𝑡𝑜𝑡𝑃𝑎𝑥)). 



 33 

Constraint (13) is thereby rewritten as: 

 𝑁 × 𝑋 ≤ 𝐼 (26) 

Where the dimension of 𝐼 is 𝑡𝑜𝑡𝐶𝑎𝑏 by 1.  

Recall that constraint (13) consists of 𝑡𝑜𝑡𝐶𝑎𝑏 inequalities. Constraint (26) has the same 

number of inequalities. 

To rewrite constraint (16), I extract the second column of matrix 𝑆 and repeat it for 

𝑡𝑜𝑡𝑃𝑎𝑥 times as below. The length of vector 𝑃 is(𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏). 

 𝑃 =

[
 
 
 
 
 
 
 
 
 

𝑠1,2

⋮
𝑠1,2

𝑠2,2

⋮
𝑠2,2

⋮
𝑠𝑡𝑜𝑡𝐶𝑎𝑏,2

⋮
𝑠𝑡𝑜𝑡𝐶𝑎𝑏,2]

 
 
 
 
 
 
 
 
 

 (27) 

This vector can be achieved in MATLAB by 𝑟𝑒𝑝𝑒𝑙𝑒𝑚(𝑆(: ,2), 𝑡𝑜𝑡𝑃𝑎𝑥). 

Constraint (16) can be rewritten as:  

 𝐼 × 𝑋 ≤ 𝑃          (28) 



 34 

Where 𝐼 is a (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝐶𝑎𝑏) by (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏) identity matrix. Such matrix can 

be achieved in MATLAB by 𝑒𝑦𝑒(𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏). Similarly, sparse matrix 𝐼 can be 

obtained in MATLAB by 𝑠𝑝𝑒𝑦𝑒(𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏). 

Recall that constraint (16) contains (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏) inequalities. Constraint (28) has 

the same number of inequalities. 

Constraint (17) can be rewritten as: 

 𝑄 × 𝑋 ≤ 𝑡𝑡ℎ × 𝐼         (29) 

where the dimension of 𝐼 is (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏) by 1.  

Matrix 𝑄 is a (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏) by (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏) diagonal matrix. The off-

diagonal elements in 𝑄 are all zeros. Denote 𝑄 = [𝑞𝑝,𝑐], then 

 𝑞𝑘,𝑘=𝑇𝑖𝑚𝑒(𝐴𝑐,5, 𝑟𝑝,1), ∀𝑘 = 1: (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏)       (30) 

where 

 𝑘 = 𝑝 + (𝑐 − 1) × 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑝 ∈ 𝕀, 𝑐 ∈ 𝕀, 𝑝 ∈ [1, 𝑡𝑜𝑡𝑃𝑎𝑥], 𝑐 ∈ [1, 𝑡𝑜𝑡𝐶𝑎𝑏] (31) 

Constraints (26) (28) (29) are all inequality constraints. They are all combined as:  

 𝐴𝑛𝑒𝑞 × 𝑋 ≤ 𝑏𝑛𝑒𝑞         (32) 

where 



 35 

 𝐴𝑛𝑒𝑞 = [
𝑁
𝐼1
𝑄

] (33) 

 𝑏𝑛𝑒𝑞 = [
𝐼2
𝑃

𝑡𝑡ℎ × 𝐼3

] (34) 

Note that the dimensions of 𝐼1, 𝐼2, and 𝐼3 are (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏) by (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏), 

𝑡𝑜𝑡𝐶𝑎𝑏 by 1, and 𝑡𝑜𝑡𝑃𝑎𝑥 by 1, respectively. And the dimension of 𝐴𝑛𝑒𝑞 and 𝑏𝑛𝑒𝑞 are 

(2 × (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏) + 𝑡𝑜𝑡𝐶𝑎𝑏) by (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏), and (2 × (𝑡𝑜𝑡𝑃𝑎𝑥 ×

𝑡𝑜𝑡𝐶𝑎𝑏) + 𝑡𝑜𝑡𝐶𝑎𝑏) by 1, respectively. 

Therefore, the integer optimization in MATLAB is transformed into: 

Objective: (19) 

Subject to: (22) (24) (32) 

The computational complexity to implement above optimization in MATLAB is very 

high and hence very time-consuming as the number of 𝑡𝑜𝑡𝑃𝑎𝑥 grows. However, there is 

a shortcut to express constraints (28) and (29) in a time efficient way.  

Note that constraints (28) and (29) are supposed to reduce the number of variables by 

enforcing some of them to zeros.  

For constraint (16), I can enforce the upper bound of 𝑑𝑝,𝑐 to be 0 if 𝑠𝑐,2 = 0, for ∀𝑝 =

1: 𝑡𝑜𝑡𝑃𝑎𝑥. Hence for constraint (28) derived from constraint (16), I can enforce the upper 



 36 

bound of 𝑥𝑘 to be 0 if 𝑝𝑘 = 0 for ∀𝑘 = 1: (𝑡𝑜𝑡𝑅𝑒𝑞 × 𝑡𝑜𝑡𝑇𝑎𝑥𝑖). 𝑝𝑘 is the 𝑘-th element of 

vector 𝑃. 

Similarly for constraint (17), I can enforce the upper bound of 𝑑𝑝,𝑐 to be 0 if 

𝑇𝑖𝑚𝑒(𝐴𝑐,5, 𝑟𝑝,1) ≤ 𝑡𝑡ℎ, for ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏. Hence for constraint (29) 

derived from constraint (17), I can enforce the upper bound of  𝑥𝑘 to be 0 if 𝑞𝑘 > 𝑡𝑡ℎ for 

∀𝑘 = 1: (𝑡𝑜𝑡𝑃𝑎𝑥 × 𝑡𝑜𝑡𝐶𝑎𝑏). 𝑞𝑘 is the 𝑘-th diagonal element of matrix 𝑄. 

After the optimization, some cabs will change their status from “en route with passenger” 

to “being idle”. They will not be back to optimization, which is to pick up a new 

passenger later, until they drop off their passengers and become being idle again. After 

they becomes being idle again. They stay where they drop off their passengers. 

Step 3: Post-Optimization 

Update 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 table by adding in new cabs dispatched to pick up the request in the 

following format:  

cabId  dispT dispPos pickUpT  pickUpPos  dispV dropOffT  dropOffPos  ERV 

From left to right, they are: cab ID, dispatch time, dispatch location, pick-up time, pick-

up position, dispatch speed, drop-off time, drop-off location, and en route speed. 

dispPos is where the cab is when a request rises. pickUpPos is where the passenger is. 



 37 

Use Google Map Distance Matrix to describe the trip in response to a request. Use 

historical data, more specifically, the drop off time and drop off position for en route with 

passenger. The distance is still based on Google. The time is based on historical data. 

The pick-up time is the current simulation time. The pick-up location is where the cab is 

right now. The drop-off time and drop-off location can be obtained from matrix 𝑅, since 

it records where a request happens, when the cab arrives at its desired destination, and 

where the destination is. Sort 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 table by 𝐷𝑟𝑜𝑝𝑜𝑓𝑓𝑇𝑖𝑚𝑒. 

Change the corresponding cab status from “being idle” to “en route with passenger”, 

which is to change the corresponding row in 𝑆 from 01000 to 00100. 

Update position and speed for en route cabs. 



 38 

Chapter 5. Pre-booked Optimal Dispatch and Charging Decision 

5.1 Discussion about real-time optimal dispatch algorithm 

The previous algorithm solves optimal dispatch in a sense that it can dispatch the best cab 

that uses least energy to pick up a passenger. However, it does not consider the energy 

needed to finish the en route trip with passenger. This means it might end up using a cab 

with high SoC to pick up a passenger that only needs to travel a short distance. Also it 

does not include charging decision into the optimization. Not considering the energy 

needed to finish the en route trip with passenger is understandable, because it is 

unchangeable according to the data set. However, the energy allocated to electricity and 

fuel must be taken into consideration, so this is the first shortage of the previous 

algorithm. What is more, the algorithm does not include charging decision into the 

optimization problem, which makes it insufficient for PHEV. Both shortages are due to 

the fact that the optimization does not include SoC in it, and SoC is iterative with time, 

meaning that we can never its change before the optimization. Therefore I must include 

SoC as one of the variables, and I must consider time as a critical factor in my 

optimization below.  

5.2 Variables in pre-booked optimal dispatch and charging 

The new decision variable is developed based on matrix 𝐷𝑡𝑜𝑡𝑃𝑎𝑥×𝑡𝑜𝑡𝐶𝑎𝑏. I further extend 

it to a third dimension with time involved. Denote the new decision variable is 𝜃𝑐,𝑝[𝑡]. 



 39 

 

𝜃𝑐,𝑝[𝑡] = {
1, cab𝑐iswithpassenger𝑝attime𝑡

0, otherwise
 

∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑡 = 1: 𝑡𝑜𝑡𝑇𝑖𝑚𝑒 

(35) 

𝜃𝑐,𝑝[𝑡] is a time-series of integer variables where 𝑡 = 1: 𝑡𝑜𝑡𝑇𝑖𝑚𝑒. 𝑡𝑜𝑡𝑇𝑖𝑚𝑒 is the total 

time slots for the horizon of this optimization problem. Horizon is how far away we are 

planning ahead in my optimization.  

Each passenger request can be represented as line segments in the third dimension with 

several ones. We also define a set of variables 𝛿𝑐,𝑝1,𝑝2
 to indicate that cab 𝑐 picks up both 

𝑝1 and 𝑝2 and no other passengers in between. 

 

𝛿𝑐,𝑝1,𝑝2
= {

1, cabcpickupboth𝑝1and𝑝2andnoothertripsinbetween
0, otherwise

 

∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 

(36) 

We further define a new set of decision variables 𝜑𝑐,𝑝1,𝑝2
 for charging decision. 

 

𝜑𝑐,𝑝1,𝑝2
= {

1, cab𝑐goestochargingstation𝑝1and𝑝2

0, otherwise
 

∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 

(37) 

Note that 𝜑𝑐,𝑝1,𝑝2
  has nothing to do with time 𝑡, because it is linked to a certain 

passenger request 𝑝, and we know when that request happens. The set of 𝜑𝑐,𝑝1,𝑝2
  is about 



 40 

SoC going up, while the set of 𝜃𝑐,𝑝[𝑡] is about SoC going down. There are certain 

constraints linking with 𝜃𝑐,𝑝[𝑡] and certain constrains with 𝜑𝑐,𝑝1,𝑝2
 . And there are certain 

constraints to link both sets of variable together. Further information about variable 

𝜑𝑐,𝑝1,𝑝2
  will be introduced later. 

To fully describe the change of SoC, and charging and discharging behavior for each cab, 

I define 𝑒𝑙𝑒𝑐𝑐[𝑡] for how much electric energy one cab should have consumed per time 

slot. I also define 𝑐ℎ𝑟𝑔𝑐[𝑡] for how much electric energy charged to a cab in a time slot. 

Last but not least, we introduce a set of auxiliary variables for SoC, namely 𝑆𝑜𝐶𝑐[𝑡]. 

Since the SoC of each cab at each time slot before the optimization is unknown, we 

should treat SoC as variables rather than parameters. Note that SoC is just auxiliary 

variables, meaning that it is determined by other decision variables. However, it is 

bounded in feasible set. Also note that SoC is a continuous variable from 0 to 1 rather 

than binary variable that can only pick from 0 or 1. Further information about variable 

SoC will be introduced later. 

5.3 Constraints in pre-booked optimal dispatch and charging 

 (1) Each request must be satisfied by exactly one cab. 

The first constraint is that passenger 𝑝 must be picked up by one and only one cab. Hence 

at time 𝑡𝑝
𝑠 ,  



 41 

 ∑ 𝜃𝑐,𝑝[𝑡𝑝
𝑠]

𝑡𝑜𝑡𝐶𝑎𝑏

𝑐=1

= 1, ∀𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 (38) 

Here 𝑡𝑝
𝑠  represents the start time of request for passenger 𝑝, as it is known prior to the 

optimization. Also note that the start time of charging decision is unknown ahead of time. 

I use constraint (e) to describe the behaviors of charging decisions later. 

The total number of equalities is 𝑡𝑜𝑡𝑃𝑎𝑥. 

(2) Each request must be conducted thoroughly by one cab and cannot change to 

another cab in the middle of the service. 

The second constraint is that when passenger 𝑝 is picked up by cab 𝑐 during its desired 

time interval [𝑡𝑖
𝑠, 𝑡𝑖

𝑒], the request must be conducted thoroughly. Here 𝑡𝑖
𝑠 and 𝑡𝑖

𝑒 represent 

the start and end time of request for passenger 𝑝, respectively. This constraint ensures 

that no request can shift to a different cab in the middle of the service. It also means that 

there should be no breaking points for request 𝑝 in the time interval, no matter the request 

is conducted by which cab. Therefore the constraint can be expressed as below. 

 

𝜃𝑐,𝑝[𝑡] − 𝜃𝑐,𝑝[𝑡 + 1] = 0 

∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑡𝑝
𝑠 ≤ 𝑡 ≤ 𝑡𝑝

𝑒 − 1 

(39) 



 42 

Note that the start time and location and the end time and location of request for 

passenger 𝑝 are known prior to the optimization because the requests are pre-booked 

ahead of time. 

The total number of inequalities is 𝑡𝑜𝑡𝐶𝑎𝑏 × (∑ (𝑡𝑝
𝑒 − 𝑡𝑝

𝑠)
𝑝=𝑡𝑜𝑡𝑃𝑎𝑥
𝑝=1 ). 

(3) No cab can take multi-tasks. 

The third constraint is that no cab can take multi-tasks. In other words, no car sharing is 

allowed. Specifically, at any time 𝑡, no cab can pick up more than one passenger. Here I 

assume every request happens at the beginning of each time slot. Then it can be 

expressed as below. 

 ∑ 𝜃𝑐,𝑝[𝑡]

𝑡𝑜𝑡𝑃𝑎𝑥

𝑝=1

≤ 1, ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑡 = 1: 𝑡𝑜𝑡𝑇𝑖𝑚𝑒 (40) 

The total number of inequalities is (𝑡𝑜𝑡𝐶𝑎𝑏 × 𝑡𝑜𝑡𝑇𝑖𝑚𝑒). 

Note that this constraint can be easily modified for car sharing by changing less than 1 to 

less than any number of car sharings. 

(4) Only certain pairs of requests can be taken by one cab in time. 

The fourth constraint is the core for optimal dispatch in pre-booked optimization 

problem. It ensures that every cab must have enough time to move from one request to 

another. Since I know exactly when and where a request happens and when and where it 



 43 

ends, I should be able to know prior to the optimization that whether or not one cab can 

take both the request for passenger 𝑝1 and the request for passenger 𝑝2.  

If one cab, no matter which cab it is, cannot pick up both requests, it can be explained by 

two reasons. First, both requests may happen simultaneously so they overlap in time. 

Second, both requests do not overlap in time, denote request 𝑝1 ends before request 𝑝2 

starts, one cab does not have enough time to travel from the drop-off location when 

request 𝑝1 ends to the pick-up location when request 𝑝2 starts. The travel time is 

calculated based on Google Map Distance Matrix API. 

Therefore I define a constant symmetric matrix 𝐵 beforehand, which describes the 

availability to travel between any two requests for a cab. Matrix 𝐵 is a 𝑡𝑜𝑡𝑃𝑎𝑥-by-

𝑡𝑜𝑡𝑃𝑎𝑥 binary matrix. Denote 𝐵 = [𝑏(𝑝1, 𝑝2)].  

 𝑏(𝑝1, 𝑝2) = {
1, onecabcantakeboth𝑝1and𝑝2intime

0, otherwise
 (41) 

Note that matrix 𝐵 is constant and symmetric, which does not impose two-way 

relationship between passenger 𝑝1 and passenger 𝑝2. Denote request for passenger 𝑝1 

ends before request for passenger 𝑝2 starts. Hence no cab can travel from request 𝑝2 to 

request 𝑝1, even if one cab can travel from request 𝑝1 to pick up request 𝑝2. It seems that 

𝑏(𝑝1, 𝑝2) = 1 while 𝑏(𝑝2, 𝑝1) = 0. However, in practice, no one cares about travelling 

from request 𝑝2 to request 𝑝1 because no one can travel back in time. In fact, if one cab 

have to pick up request 𝑝1 and 𝑝2, and cab knows prior to the optimization that request 𝑝1 



 44 

ends before request 𝑝2 starts, the cab only cares about one question. That is whether it 

can drop off passenger 𝑝1 first, and then pick up passenger 𝑝2 in time. That is why 

𝑏(𝑝2, 𝑝1) = 𝑏(𝑝1, 𝑝2) = 1. Therefore matrix 𝐵 must be symmetric. 

If 𝑏(𝑝1, 𝑝2) = 1, then one cab can pick up both request 𝑝1 and request 𝑝2, no constraint is 

applied. 

If 𝑏(𝑝1, 𝑝2) = 0, then one cab can at most pick one from 𝑝1 and 𝑝2. 

 𝑏(𝑝1, 𝑝2) = {
1, 𝑡𝑝2

𝑠 − 𝑡𝑝1
𝑒 ≥ 𝑡𝑝1,𝑝2

or𝑡𝑝1
𝑠 − 𝑡𝑝2

𝑒 ≥ 𝑡𝑝2,𝑝1

0, otherwise
 (42) 

where 𝑡𝑝1,𝑝2
 is the travel time from the drop-off location of request for passenger 𝑝1 to 

the pick-up location of request for passenger 𝑝2. Similarly, 𝑡𝑝2,𝑝1
 is the travel time from 

the drop-off location of request for passenger 𝑝2 to the pick-up location of request for 

passenger 𝑝1. 𝑡𝑝1,𝑝2
 and 𝑡𝑝2,𝑝1

 can be obtained from Google Map Distance Matrix API. 

Next, I apply matrix 𝐵 to the decision variable 𝜃𝑐,𝑝[𝑡] as below. 

 𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] + 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] ≤ 1, ∀𝑏(𝑝1, 𝑝2) = 0, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥, 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏 (43) 

This constraint means, if it is impossible to pick up both 𝑝1 and 𝑝2 for one cab, which is 

represented in matrix 𝐵, then the cab cannot make both 𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] and 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] be 1. 

This inequality can be achieved by the following pseudo code. 



 45 

For 𝑝1 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 

For 𝑝2 = (𝑝1 + 1): 𝑡𝑜𝑡𝑃𝑎𝑥 

    If 𝑏(𝑝1, 𝑝2) = 0 

        For 𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏 

            𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] + 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] ≤ 1 

The total number of inequalities depends on the total number of zeros in the upper 

triangle of matrix 𝐵. 

Here I must also consider whether the cab can pick up the request for passenger 𝑝 from 

its initial position. Note that the initial position of each cab is known. The pick-up and 

pick-up location of 𝑝 is also known. I can hence set the upper bound for 𝜃𝑐,𝑝[𝑡𝑝
𝑠] to be 0, 

if cab 𝑐 cannot pick up 𝑝 in time. 

(5) Requests leave time windows for cab to charge. 

The fifth constraint comes to the optimal charging decision. The previous constraint gives 

us an opportunity to select certain combinations of passengers for each cab. Therefore 

one cab can pick up both requests because there is enough time to drop off one request 

and pick up the next. If the time in between is big enough, this actually leaves us a time 

window where we can insert a possibility to charge the cab. We use 𝜑𝑐,𝑝1,𝑝2
 to indicate 

whether to charge or not in that time window. 



 46 

Recall that 𝜑𝑐,𝑝1,𝑝2
= 1 if cab 𝑐 goes to charging station right before picking up 

passenger 𝑝. Otherwise 𝜑𝑐,𝑝1,𝑝2
= 0. It indicates that if the cab does not pick up 

passenger 𝑝, then there will be no charging at all before that, because there is no action. 

Therefore charging decision is linked to picking-up-passenger decision. 

Note that 𝜑𝑐,𝑝1,𝑝2
 is not related to time. Because in terms of timeline, a cab just picks up a 

passenger, then becomes idle, then picks up another passenger, then becomes idle, so on 

and so forth. As long as we know the arrangement, all we need to know about charging 

decision is whether the cab is going to charge before picking up each passenger. If the 

cab will charge before picking up a certain passenger, the idle time before that pick-up 

becomes charging time. 

To ensure the availability to be charged before certain request, we need know when and 

where each request starts. The traffic time from each charging station to each request can 

be obtained from Google Map Distance Matrix API. If we ensure that all charging 

decision must fully charge a cab, then the cab 𝑐 cannot be charged for a certain time 

amount prior to request 𝑖 because the cab is en route to pick up request 𝑝. 

Similarly, when and where each request ends is given. The traffic time from each request 

to each charging station can be obtained from Google Map Distance Matrix API. So cab 

𝑐 cannot be charged for a certain time after the cab drops off request 𝑝. 



 47 

By doing so, there may be a time window to charge the cab. It does not have to be fully 

charged in the time window. Whether to charge or not in the time window is can be 

implied through cost function. 

To find out where exists such possibility to insert a time window to charge, we need to 

use the matrix 𝐵 and construct matrix 𝐶 with same dimension, (𝑡𝑜𝑡𝑃𝑎𝑥 + 1)-by-

(𝑡𝑜𝑡𝑃𝑎𝑥 + 1). Denote 𝐶 = [𝑐(𝑝1, 𝑝2)]. 

 𝑐(𝑝1, 𝑝2) = {
1, onecabcanbefullychargedbetween𝑝1and𝑝2

0, otherwise
 (44) 

Remember that 𝑏(𝑝1, 𝑝2) = 1 means that one cab can take both request 𝑝1 and request 

𝑝2. 𝑡𝑝1
𝑠 , 𝑡𝑝1

𝑒 ,𝑡𝑝2
𝑠 , and𝑡𝑝2

𝑒  are the time when request 𝑝1 starts and ends, and the time when 

request 𝑝2 starts and ends, respectively. We further define 𝑡𝑝1
𝑐𝑠 as the time when one cab 

departures from the charging station closest to request 𝑝1 and arrives at request 𝑝1 at 𝑡𝑝1
𝑠 . 

𝑡𝑝1
𝑒𝑐 is the time when one cab drops off request 𝑝1 at 𝑡𝑝1

𝑒  and arrives at charging station 

closest to request 𝑝1. Similarly, 𝑡𝑝2
𝑐𝑠 is the time when one cab departures from the closest 

charging station to request 𝑝2 and arrives at request 𝑝2 at 𝑡𝑝2
𝑠 .𝑡𝑝2

𝑒𝑐 is the time when one 

cab drops off request 𝑝2 at 𝑡𝑝2
𝑒  and arrives at charging station closest to request 𝑝2.𝑡𝑝1

𝑠 , 

𝑡𝑝1
𝑒 , 𝑡𝑝2

𝑠 , and 𝑡𝑝2
𝑒  are given in historical data. 𝑡𝑝1

𝑐𝑠, 𝑡𝑝1
𝑒𝑐, 𝑡𝑝2

𝑐𝑠, and 𝑡𝑝2
𝑒𝑐 are calculated based on 

Google map Distance Matrix API. 

 



 48 

 𝑐(𝑝1, 𝑝2) = {
1, 𝑡𝑝2

𝑐𝑠 − 𝑡𝑝1
𝑒𝑐 ≥ 𝑡𝑐 or𝑡𝑝1

𝑐𝑠 − 𝑡𝑝2
𝑒𝑐 ≥ 𝑡𝑐

0, otherwise
 (45) 

𝑡𝑐 is the charging time to fully charge a fully depleted battery for an EV. 

Only when 𝑐(𝑝1, 𝑝2) = 1 can a cab have time to drop off request 𝑝1, for the charging 

station, and then pick up request 𝑝2, or the opposite way. Therefore the constraint can be 

written as below. 

 𝜑𝑐,𝑝1,𝑝2
≤ 𝐶(𝑝1, 𝑝2), ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 (46) 

Note that we do not have to write this constraint into inequality linear constraint matrix. 

Instead, because matrix 𝐶 is known, we can write this constraint into upper bound of 

𝜑𝑐,𝑝1,𝑝2
. In other words, if 𝐶(𝑝1, 𝑝2) = 0, it will force the upper of 𝜑𝑐,𝑝1,𝑝2

 to be 0. 

Matrix 𝐵 and 𝐶 should have the same dimension, which is 𝑡𝑜𝑡𝑅𝑒𝑞-by-𝑡𝑜𝑡𝑅𝑒𝑞. Matrix 𝐶 

is sparser than matrix 𝐵 in terms of more zeros. It is because only when 𝑏(𝑝1, 𝑝2) = 1 

can 𝑐(𝑝1, 𝑝2) = 1 becomes possible. 

(6) The charging decision between two requests is possible only if the cab takes both 

requests. 

Only when cab 𝑐 picks up both 𝑝1 and 𝑝2, can cab 𝑐 charging between 𝑝1 and 𝑝2 

becomes possible. 

 



 49 

Table 6 Pre-booked Optimization Variable Relationships 

𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] 𝜑𝑐,𝑝1,𝑝2
 

𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] = 1 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] = 1 𝜑𝑐,𝑝1,𝑝2
 can be 1 or 0 

𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] = 0 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] = 1 𝜑𝑐,𝑝1,𝑝2
 must be 0 

𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] = 1 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] = 0 𝜑𝑐,𝑝1,𝑝2
 must be 0 

𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] = 0 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] = 0 𝜑𝑐,𝑝1,𝑝2
 must be 0 

Mathematically, the table above can be expressed as below. 

 𝜑𝑐,𝑝1,𝑝2
≤ 𝜃𝑐,𝑝1

[𝑡𝑝1
𝑠 ], ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 (47) 

 𝜑𝑐,𝑝1,𝑝2
≤ 𝜃𝑐,𝑝2

[𝑡𝑝2
𝑠 ], ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 (48) 

The total number of inequalities is 2 × 𝑡𝑜𝑡𝐶𝑎𝑏 × 𝑡𝑜𝑡𝑃𝑎𝑥 × (𝑡𝑜𝑡𝑃𝑎𝑥 − 1). 

(7) The charging decision between two requests is possible only if the cab takes no 

request in between. 

 

𝜑𝑐,𝑝1,𝑝2
≤ 1 − 𝜃𝑐,𝑝[𝑡𝑝

𝑠] 

∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1 < 𝑝 < 𝑝2, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 

(49) 



 50 

(8) Define the variable to describe the process between passenger trips. 

Before we jump into SoC iteration, it is better if we first take a look at what are the 

scenarios where PHEV charges or gets charged.  

There are three scenarios where PHEV charges: 

(a) within a passenger trip 

(b) from dropping off a passenger to picking up another passenger 

(c) from dropping off a passenger to a charging station, and from a charging station to 

picking up the next passenger 

So far we have expressed (a) and (c). Now we will look at the process between trips. 

Similar to define a variable to describe whether to get charged between 𝑝1 and 𝑝2, I 

define a variable 𝛿𝑐,𝑝1,𝑝2
 meaning that cab will pick up both 𝑝1 and 𝑝2 with no passenger 

request in between. The reason why this variable exists is to easily express the energy 

consumption between trips. Therefore the constraints should be similarly to 𝜑𝑐,𝑝1,𝑝2
. 

 𝛿𝑐,𝑝1,𝑝2
≤ 𝜃𝑐,𝑝1

[𝑡𝑝1
𝑠 ], ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 (50) 

 𝛿𝑐,𝑝1,𝑝2
≤ 𝜃𝑐,𝑝2

[𝑡𝑝2
𝑠 ], ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 (51) 



 51 

 

𝛿𝑐,𝑝1,𝑝2
≤ 1 − 𝜃𝑐,𝑝[𝑡𝑝

𝑠] 

∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1 < 𝑝 < 𝑝2, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 

(52) 

However, 𝛿𝑐,𝑝1,𝑝2
 cannot be as flexible as 𝜑𝑐,𝑝1,𝑝2

. Because when 𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] and 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] 

are both 1, 𝜑𝑐,𝑝1,𝑝2
 can be 1 or 0. On the other hand, 𝛿𝑐,𝑝1,𝑝2

 must be 1, if both 𝜃𝑐,𝑝1
[𝑡𝑝1

𝑠 ] 

and 𝜃𝑐,𝑝2
[𝑡𝑝2

𝑠 ] are 1, and for all the 𝑝1 < 𝑝 < 𝑝2, 𝜃𝑐,𝑝[𝑡𝑝
𝑠] = 0. 

Therefore I must add in a new constraint as below. 

 

𝛿𝑐,𝑝1,𝑝2
≥

1

2
(𝜃𝑐,𝑝1

[𝑡𝑝1
𝑠 ] + 𝜃𝑐,𝑝2

[𝑡𝑝2
𝑠 ] − 1) − ∑𝜃𝑐,𝑝[𝑡𝑝

𝑠]

𝑝

 

∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑝1 < 𝑝 < 𝑝2, 𝑝1, 𝑝2 = 1: 𝑡𝑜𝑡𝑃𝑎𝑥 

(53) 

 (9) Define variables to express electric consumption for each cab at each time slot. 

I define a variable 𝑒𝑐[𝑡] to express the electric consumption for cab 𝑐 at time 𝑡.  

(10) Define a variable to express the average charging rate. 

I define a variable 𝑐ℎ𝑟𝑔𝑐,𝑝1,𝑝2
 to express the average charging rate if cab 𝑐 will go to 

charging station between picking up 𝑝1 and 𝑝2. Of course 𝑐ℎ𝑟𝑔𝑐,𝑝1,𝑝2
 is meaningful only 

when 𝜑𝑐,𝑝1,𝑝2
= 1.  



 52 

 (11) SoC iterates and must be within acceptable range. 

We express all the variables needed to calculate electric consumption and come to the 

SoC variable. Because we do not know the SoC of each cab before the optimization, we 

should treat SoC as variables rather than parameters. Note that SoC is just auxiliary 

variables, meaning that it is determined by other decision variables. Also note that SoC is 

a continuous variable from 0 to 1 rather than binary variable that can only pick from 0 or 

1. 

Recall that some previous constraints make it possible for cab to charge during a time 

window. Here we assume that the cab will stay at the charging station long enough that it 

can fully charge a fully depleted battery.  

SoC should have two subscripts for cab number and time slot, namely 𝑆𝑜𝐶𝑐[𝑡]. 

SoC must always be between 0 and 100% all the time. This is a bounding constraint that 

we must consider for electric vehicles. 

 0 ≤ 𝑆𝑜𝐶𝑐[𝑡] ≤ 100%,∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑡 = 1: 𝑡𝑜𝑡𝑇𝑖𝑚𝑒 (54) 

Note that SoC cannot bound the feasible set unless it is related to other decision variables. 

Also note that SoC is iterative, meaning that the SoC of cab 𝑐 at time slot 𝑡 depends on its 

SoC at previous time and its decision on previous time slot 𝑡. The key here is to properly 

express the iteration over time for SoC, especially list all the scenarios where a PHEV 

charges or gets charged. 



 53 

At the first time slot 𝑡0, I assume that the SoC for every cab 𝑐 is 100%. 

 𝑆𝑜𝐶𝑐[𝑡0] = 100% (55) 

This constraint is implemented by setting both the upper bound and lower bound of 

𝑆𝑜𝐶𝑐[𝑡0] to be 1. 

The iteration can be expressed as below. 

 

𝑆𝑜𝐶𝑐[𝑡 + 1] = 𝑆𝑜𝐶𝑐[𝑡] − 𝑒𝑐[𝑡] 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦⁄ + 𝑐ℎ𝑟𝑔𝑐[𝑡] 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦⁄  

∀𝑐, 𝑡 = 1: 𝑡𝑜𝑡𝑇𝑖𝑚𝑒 − 1 

(56) 

𝑒𝑐[𝑡] is the amount of discharge for cab 𝑐 at time slot 𝑡. 𝑐ℎ𝑟𝑔𝑐[𝑡] is the amount of charge 

for cab 𝑐 at time slot 𝑡. 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is the battery capacity for the EV. 

For ∀𝑐 = 1: 𝑡𝑜𝑡𝐶𝑎𝑏, 𝑡 = 1: 𝑡𝑜𝑡𝑇𝑖𝑚𝑒, 𝑒𝑐[𝑡] should have the following constraints. 

 

0 ≤ 𝑒𝑐[𝑡]

≤ ∑ 𝜃𝑐,𝑝[𝑡] ×

𝑡𝑜𝑡𝑃𝑎𝑥

𝑝=1

𝐿𝑝[𝑡] + ∑ ∑ 𝛿𝑐,𝑝1,𝑝2
× 𝑀𝑝1,𝑝2

[𝑡]

𝑡𝑜𝑡𝑃𝑎𝑥−1

𝑝1=1

𝑡𝑜𝑡𝑃𝑎𝑥

𝑝2=𝑝1+1

+ ∑ ∑ 𝜑𝑐,𝑝1,𝑝2
× (𝑃𝑝1,𝑝2

[𝑡] + 𝑄𝑝1,𝑝2
[𝑡])

𝑡𝑜𝑡𝑃𝑎𝑥−1

𝑝1=1

𝑡𝑜𝑡𝑃𝑎𝑥

𝑝2=𝑝1+1

 

(57) 



 54 

First, the electricity consumption must be greater than zero obviously. Second, the 

electricity consumption cannot be greater than the energy cost at any time slot 𝑡, no 

matter if cab 𝑐 will pick up 𝑝. Note that 𝑒𝑐[𝑡] is a continuous variable.  

The total number of inequalities is 𝑡𝑜𝑡𝐶𝑎𝑏 × 𝑡𝑜𝑡𝑇𝑖𝑚𝑒. 

Here I must explain the meaning of 𝐿𝑝[𝑡], 𝑀𝑝1,𝑝2
[𝑡], 𝑃𝑝1,𝑝2

[𝑡], and 𝑄𝑝1,𝑝2
[𝑡]. 

𝐿𝑝[𝑡] is the energy cost for trip 𝑝 at time interval 𝑡. 

𝑀𝑝1,𝑝2
[𝑡] is the energy cost between 𝑝1 and 𝑝2 at time interval 𝑡. There is no other trip or 

charging decision between 𝑝1 and 𝑝2. 

𝑃𝑝1,𝑝2
[𝑡] is the energy cost from 𝑝1 to the charging station that is closest to 𝑝1 and 𝑝2 at 

time interval 𝑡. 

𝑄𝑝1,𝑝2
[𝑡] is the energy cost from the charging station that is closest to 𝑝1 and 𝑝2, to 𝑝1 at 

time interval 𝑡. 

Back to SoC iteration, 𝑐ℎ𝑟𝑔𝑐[𝑡] should have the following constraint.  

 0 ≤ 𝑐ℎ𝑟𝑔𝑐[𝑡] ≤ ∑ ∑ 𝜑𝑐,𝑝1,𝑝2
× 𝑁𝑝1,𝑝2

[𝑡]

𝑡𝑜𝑡𝑃𝑎𝑥−1

𝑝1=1

𝑡𝑜𝑡𝑃𝑎𝑥

𝑝2=𝑝1+1

 (58) 

𝑁𝑝1,𝑝2
[𝑡] is the charging rate where the charging station can fully charge a fully depleted 

battery within one time interval, if one cab goes to charging station between 𝑝1 and 𝑝2. 



 55 

We should have enough time to charge the PHEV based on whatever SoC we have. If we 

pick up 𝑝1 and 𝑝2, we should have enough time to go to the charging station, stay there 

enough to fully charge a fully depleted battery, and leave. The charging time is hence the 

battery capacity divided by the charging rate. So for some cases, we can go there partially 

charged. When the cab is fully charged, it just stays there for the remaining time.  

𝐿𝑝[𝑡], 𝑀𝑝1,𝑝2
[𝑡], 𝑃𝑝1,𝑝2

[𝑡], and 𝑄𝑝1,𝑝2
[𝑡] are all constant matrices. 

Note that 𝑐ℎ𝑟𝑔𝑐[𝑡] is a continuous variable. Since it is not in cost function, it is a loss 

variable, meaning that it may not have a meaningful value at certain time 𝑡. Therefore I 

have to set the value for SoC at the end of the charging process to be exactly 100%. By 

doing so, we do not really care how much energy charged into EV. 

If 𝜑𝑐,𝑝1,𝑝2
= 1, 𝑆𝑜𝐶𝑐[𝑡𝑐

𝑒] = 100%.  

 𝜑𝑐,𝑝1,𝑝2
× 100% ≤ 𝑆𝑜𝐶𝑐[𝑡𝑐

𝑒] ≤ (2 − 𝜑𝑐,𝑝1,𝑝2
) × 100%, ∀𝑝1, 𝑝2 (59) 

5.4 Objective function and optimization problem 

Cost function is as below. 

 

max
𝜃,𝜑,𝛿,𝑒,𝑐ℎ𝑟𝑔,𝑆𝑜𝐶

∑ ∑ 𝑒𝑐[𝑡]

𝑡𝑜𝑡𝑇𝑖𝑚𝑒

𝑡=1

𝑡𝑜𝑡𝐶𝑎𝑏

𝑐=1

− ∑ ∑ ∑ (𝜑𝑐,𝑝1,𝑝2
× 𝛼𝑝1,𝑝2

+ 𝜃𝑐,𝑝1,𝑝2
× 𝛽𝑝1,𝑝2

)

𝑡𝑜𝑡𝑃𝑎𝑥−1

𝑝1=1

𝑡𝑜𝑡𝑃𝑎𝑥

𝑝2=𝑝1+1

𝑡𝑜𝑡𝐶𝑎𝑏

𝑐=1

 

(60) 



 56 

The cost function tries to maximize the usage of electricity cost while minimizing the 

travel distance without passenger. This will enforce PHEV to use electricity before fuel, 

and reduce all the unnecessary travel while serving all the passengers in time. 𝛼𝑝1,𝑝2
 is a 

coefficient for travel distance between the drop-off location 𝑝1 and pick-up location 𝑝2. 

𝛽𝑝1,𝑝2
 is a coefficient for travel distance between the drop-off location 𝑝1 and the 

charging station that is closest to both 𝑝1 and 𝑝2, plus the travel distance between the 

charging station and pick-up location 𝑝2. 

Therefore the pre-booked optimization problem is as below. 

Objective: (60) 

Subjective to: (38)(39)(40)(43)(46)(47)(48)(49)(50)(51)(52)(53)(54)(56)(57)(58)(59) 



 57 

Chapter 6. Simulation Results 

6.1 Simulation for real-time optimization problem for one hour 

I use the data set for 536 cabs in San Fransisco. 

 𝑡𝑜𝑡𝑇𝑎𝑥𝑖 = 536 (61) 

Within all the top selling PHEV brands in the United States, Nissan Leaf is the best-

selling all-electric vehicle, which has sold 82,138 units through June 2015, followed by 

Tesla Model S, which has sold 49,720 units since June 2012. As for PHEV selling, 

Chevrolet Volt is the most popular PHEV model, which has sold 78,979 units since it 

launched in market on December 2010, followed by Toyota Prius PHV – 40,992 units, 

and Ford Fusion Energi – 21,929 units, another model which we considered in our later 

analysis – Honda Accord PHEV, has sold 1,034 through 2015 in the entire United States 

[17]. 

[7] assumed the following mixture of different PHEV brands: 

 Chevrolet Volt: 161 vehicles,  

 Honda Accord Plug-in: 125 vehicles,  

 Ford Fusion Energi: 125 vehicles,  

 Toyota Prius Plug-in: 125 vehicles.  

But based on the sale records of four EVs, the actual distribution should be as below: 



 58 

Chevrolet Volt: 

 78979/(78979 + 1034 + 21929 + 40992)× 536 = 296.1699 = 296 

Honda Accord Plug-in: 

 1034/(78979 + 1034 + 21929 + 40992) × 536 = 3.8775 = 4 

Ford Fusion Energi: 

 21929/(78979 + 1034 + 21929 + 40992)× 536 = 82.2334 = 82 

Toyota Prius Plug-in: 

 40992/(78979 + 1034 + 21929 + 40992)× 536 = 153.7193 = 154 

To illustrate the real-time design, I use the first 5 cabs in the 536 cabs and simulate it for 

an hour from 05/18/2008 07:00:00 am to 05/18/2008 08:00:00 am. There are in total 10 

trips as Table 7. After the simulation, the result is as Table 8. 

From both tables, you can see that by using real-time optimization, all passengers can be 

picked up within desired time and the total energy consumption in transition is minimum. 

 

 

 



 59 

 
T

a
b

le
 7

 H
is

to
ri

ca
l 

T
ri

p
 D

a
ta

 

 

E
n
 R

o
u
te

 

S
p
ee

d
 

7
.5

4
4
5
 

4
.7

3
8
5
 

6
.1

5
9
5
 

3
.3

9
7
9
 

7
.1

2
6
 

6
.3

6
0
3
 

1
1
.3

6
6
4
 

7
.1

1
9
4
 

6
.1

9
8
2
 

6
.5

1
 

E
n
 R

o
u
te

 

T
im

e 

5
9
3
 

3
4
9
 

5
1
0
 

8
2
1
 

5
2
4
 

5
0
3
 

1
2
0
 

4
4
1
 

6
0
2
 

4
6
3
9
 

E
n
 R

o
u
te

 

D
is

ta
n
ce

 

4
4
7
3
.9

4
1
2
 

1
6
5
3
.7

3
8
1
 

3
1
4
1
.3

4
9
7
 

2
7
8
9
.7

0
3
6
 

3
7
3
4
.0

3
1
6
 

3
1
9
9
.2

3
1
1
 

1
3
6
3
.9

7
5
5
 

3
1
3
9
.6

9
2
6
 

3
7
3
1
.3

3
1
8
 

3
0
2
0
0
.3

0
5
 

D
ro

p
-o

ff
 

L
o
ca

ti
o
n
 

4
3
 

4
9
 

4
3
 

4
9
 

4
3
 

5
4
 

4
3
 

4
3
 

5
4
 

5
0
 

D
ro

p
-o

ff
 

T
im

e 

1
2
1
1
1
2
3
6
1
8

 

1
2
1
1
1
2
3
4
2
1

 

1
2
1
1
1
2
4
2
7
5

 

1
2
1
1
1
2
4
8
2
6

 

1
2
1
1
1
2
4
8
0
4

 

1
2
1
1
1
2
5
5
1
5

 

1
2
1
1
1
2
5
2
9
3

 

1
2
1
1
1
2
6
3
0
2

 

1
2
1
1
1
2
6
6
3
7

 

1
2
1
1
1
3
0
7
0
1

 

P
ic

k
-u

p
 

L
o
ca

ti
o
n
 

5
4
 

5
4
 

4
8
 

5
4
 

5
3
 

5
4
 

5
3
 

5
3
 

5
3
 

5
4
 

P
ic

k
-u

p
 

T
im

e 

1
2
1
1
1
2
3
0
2
5
 

1
2
1
1
1
2
3
0
7
2
 

1
2
1
1
1
2
3
7
6
5
 

1
2
1
1
1
2
4
0
0
5
 

1
2
1
1
1
2
4
2
8
0
 

1
2
1
1
1
2
5
0
1
2
 

1
2
1
1
1
2
5
1
7
3
 

1
2
1
1
1
2
5
8
6
1
 

1
2
1
1
1
2
6
0
3
5
 

1
2
1
1
1
2
6
0
6
2
 

T
ax

i 
ID

 

'a
b
g
ib

o
' 

'a
b
jo

o
la

w
' 

'a
b
g
ib

o
' 

'a
b
jo

o
la

w
' 

'a
b
g
ib

o
' 

'a
b
d
re

m
lu

' 

'a
b
g
ib

o
' 

'a
b
g
ib

o
' 

'a
b
d
re

m
lu

' 

'a
b
jo

o
la

w
' 

 



 60 

 

T
a
b

le
 8

 R
ea

l-
ti

m
e 

O
p

ti
m

iz
a
ti

o
n

 

 

E
n
 R

o
u
te

 

S
p
ee

d
 

7
.8

7
4
0

 

9
.8

5
6
2

 

0
 

1
4
.1

5
2
2

 

4
.7

1
7
0

 

1
4
.1

5
2
2

 

4
.3

9
0
0

 

4
.3

9
0
0

 

4
.3

9
0
0

 

9
.5

5
7
5

 

D
ro

p
-o

ff
 

L
o
ca

ti
o
n
 

5
4
 

5
4
 

4
8
 

5
4
 

5
3
 

5
4
 

5
3
 

5
3
 

5
3
 

5
4
 

D
ro

p
-o

ff
 

T
im

e 

1
2
1
1
1
2
3
0
5
2

 

1
2
1
1
1
2
3
1
3
6

 

1
2
1
1
1
2
3
7
6
5

 

1
2
1
1
1
2
4
0
4
9

 

1
2
1
1
1
2
4
3
7
4

 

1
2
1
1
1
2
5
0
5
6

 

1
2
1
1
1
2
5
2
7
4

 

1
2
1
1
1
2
5
9
6
2

 

1
2
1
1
1
2
6
1
3
6

 

1
2
1
1
1
2
6
1
2
8

 

P
ic

k
-u

p
 

L
o
ca

ti
o
n
 

4
3
 

4
9
 

4
3
 

4
9
 

4
3
 

5
4
 

4
3
 

4
3
 

5
4
 

5
0
 

P
ic

k
-u

p
 

T
im

e 

1
2
1
1
1
2
3
6
1
8

 

1
2
1
1
1
2
3
4
2
1

 

1
2
1
1
1
2
4
2
7
5

 

1
2
1
1
1
2
4
8
2
6

 

1
2
1
1
1
2
4
8
0
4

 

1
2
1
1
1
2
5
5
1
5

 

1
2
1
1
1
2
5
2
9
3

 

1
2
1
1
1
2
6
3
0
2

 

1
2
1
1
1
2
6
6
3
7

 

1
2
1
1
1
3
0
7
0
1

 

D
is

p
at

ch
 

S
p
ee

d
 

1
2
.4

2
0
4
 

1
0
.4

8
4
2
 

5
.5

2
3
5
 

3
.8

4
5
5
 

1
1
.3

5
5
8
 

0
 

2
5
7
 

1
4
.3

6
1
7
 

1
5
.9

8
8
0
 

0
.2

3
7
2
 

D
is

p
at

ch
 

L
o

ca
ti

o
n
 

5
9
 

4
5
 

4
8
 

6
3
 

6
3
 

6
3
 

6
3
 

6
3
 

6
3
 

4
5
 

D
is

p
at

ch
 

T
im

e 

1
2
1
1
1
2
3
0
2
5
 

1
2
1
1
1
2
3
0
7
2
 

1
2
1
1
1
2
3
7
6
5
 

1
2
1
1
1
2
4
0
0
5
 

1
2
1
1
1
2
4
2
8
0
 

1
2
1
1
1
2
5
0
1
2
 

1
2
1
1
1
2
5
1
7
3
 

1
2
1
1
1
2
5
8
6
1
 

1
2
1
1
1
2
6
0
3
5
 

1
2
1
1
1
2
6
0
6
2
 

C
ab

 I
D

 

'a
b
co

ij
' 

'a
b
d
re

m
lu

' 

'a
b
g
ib

o
' 

'a
b
d
re

m
lu

' 

'a
b
co

ij
' 

'a
b
co

ij
' 

'a
b
d
re

m
lu

' 

'a
b
d
re

m
lu

' 

'a
b
co

ij
' 

'a
b
jo

o
la

w
' 

 



 61 

6.2 Simulation Results for 5 Cabs with 10 Trips in 1 Hour 

I keep using the first 5 cabs listed in the 536 cabs to simulate for pre-booked optimization 

problem for one hour. There are 10 trips in the one hour time window from 05/18/2008 

07:00:00 to 05/18/2008 08:00:00. 

 

Figure 7 Test Case Trip Timeline 

I further modified the time so as to cover all kinds of combinations for different trips. 

You can see from the figure that there are trips that departure at the same time slot, such 

as trip #1 and #2, #8 and #9. There are trips that arrive at the time slot, such as #3 and #4. 

There are also trips that departure at the time when another arrives, such as #1 and #3, #2 

and #4, #5 and #7, #9 and #10. There are trips that full covers the time for another trip, 

such as #3 and #4, #6 and #7, #6 and #9. 

The simulation results are as below. 



 62 

First is about which cab picks up which passenger. 

 

Figure 8 Cab Assignment 

From the figure, we know that cab #1 picks up passenger #5 and #10. Cab #2 picks up 

passenger #3 and #8. Cab #3 picks up passenger #1 and #6. Cab #4 picks up passenger #4 

and #9. Cab #5 picks up passenger #2 and #7. 

Second is about the SoC, discharge and charge amount for each cab. The result is shown 

as below. It clearly show that cab #2 to cab #5 get charged in the middle. Their SoC 

drops when discharge, then comes back to 100% after charging, and then drops because 

of new trips. Cab #1 # 3 and #5 do not go to charging station. As for cab #5, t is because 

cab #5 picks up passenger #3 and #6. There is not enough time to go from #3 to charging 

station, and then come back to pick up #6 in time. 

 



 63 

 
Figure 9 SoC, Discharge and Charge Amount over Time for Cab #1 

 
Figure 10 SoC, Discharge and Charge Amount over Time for Cab #2 

 

 
Figure 11 SoC, Discharge and Charge Amount over Time for Cab #3 



 64 

 
Figure 12 SoC, Discharge and Charge Amount over Time for Cab #4 

 
Figure 13 SoC, Discharge and Charge Amount over Time for Cab #5 

Previously I modified the start and end time a little bit just to show that the optimization 

can cover all the conditions. The figure below shows the real start and end time for 5 cabs 

with 10 passengers in 1 hour. The trip information is shown in figure 14. The historical 

dispatch is shown in figure 15. The optimal dispatch is shown in figure 16.  



 65 

 
Figure 14 Historical Data Timeline 

 
Figure 15 Historical Dispatch 

 

 
Figure 16 Optimal Dispatch 



 66 

6.3 Simulation Results for Energy versus Cab 

We already make sure that the optimization can dispatch cabs to pick up passengers in 

time and make cabs go to charging station in between if needed.  We further want to 

know how much energy it can save compared to historical data. I hence used different 

number of cabs in 1 hour with their corresponding trips to see the effects. 

Table 9 Number of Cabs and Their Corresponding Trips in 1 Hour 

Number of Cabs Number of Trips 

4 7 

8 13 

12 16 

16 21 

The total energy consumed in 1 hour is described as below. The blue line is for historical 

data, and the red is for optimization. 

 

Figure 17 Energy versus Cabs for Pre-book Optimization 



 67 

6.4 Simulation Results for Energy versus Time 

In the previous section, we discuss the effect on energy with different number of cabs. In 

this section, I used the first 5 cabs in different time duration. The number of trips is 

generated by the 5 cabs in the time window.  

Table 10 Time and Corresponding Trips for 5 cabs 

Time Number of Trips 

30 5 

60 10 

90 14 

120 15 

150 17 

The total energy is described as below. The blue line is for historical data, and the red is 

for optimization. 

 

Figure 18 Energy versus Time for Pre-book Optimization 



 68 

After that, I also plotted the electricity consumption versus total energy for pre-book 

optimization as below. 

 

Figure 19 Electricity versus Total Energy for Pre-book Optimization 

 

 



 69 

Chapter 7 Conclusions and Future Work 

In this thesis, I propose two optimization methods to optimize the operation, including 

dispatching and charging decision, of autonomous and electric taxis, so as to maximize 

electricity usage while minimizing the total travel distance and serving all passengers. 

First, real-time optimization is to optimize dispatch strategy. Second, pre-book 

optimization is to optimize both dispatch and charging strategy. I project for a certain 

time ahead, and consider customer demand, electricity and geographic distance in 

between. Charging decision is optimized between passenger requests. 

The simulation results show that pre-book optimization reduces energy cost while serving 

all passengers in time. 

For future work, one can further discuss how much energy is charged at the charging 

station instead of charging to 100%. Also, one can further combine the charging curve of 

SoC with that time. 

On the other hand, I choose the closest charging station between two trips in time. One 

can further consider the waiting time at charging station, the floating charging price at 

different charging station, and what effect this might bring to the charging decision. 



 70 

Reference 

[1] http://www.techworld.com/picture-gallery/big-data/-companies-working-on-

driverless-cars-3641537/ 

 

[2] https://deepblue.lib.umich.edu/handle/2027.42/108384 

 

[3] https://www.google.com/maps/about/ 

 

[4] G. Hill, P. T. Blythe and C. Higgins, "Deviations in Markov chain modeled 

electric vehicle charging patterns from real world data," 2012 15th International IEEE 

Conference on Intelligent Transportation Systems, Anchorage, AK, 2012, pp. 1072-1077. 

 

[5] http://www.nytimes.com/2007/05/23/nyregion/23taxi.html 

 

[6] Ramteen Sioshansi, Riccardo Fagiani, Vincenzo Marano, “Cost and emissions 

impacts of Plug-In Hybrid Vehicles on the Ohio power system,” Energy Policy, vol. 38, 

issue 11, Nov. 2010. 

 

[7] Hossein Akhavan-Hejazi, Hamed Mohsenian-Rad, “Developing a Test Data Set 

for Electric Vehicle Applications In Smart Grid Research,” Vehicular Technology 

Conference (VTC Fall), 2014 IEEE 80th. 

 

[8] Mobashwir Khan, Kara M. Kockelman, “Predicting the market potential of plug-

in electric vehicles using multiday GPS data,” Energy Policy, vol. 46, July 2012. 

 

[9] Jarod C. Kelly, Jason S. MacDonald, Gregory A. Keoleian, “Time-dependent 

plug-in hybrid electric vehicle charging based on national driving patterns and 

demographics”, Applied Energy, vol. 94, June 2012. 

 

[10] M. Rahmani-andebili and Haiying Shen, "Traffic and grid-based parking lot 

allocation for PEVs considering driver behavioral model," 2017 International Conference 

on Computing, Networking and Communications (ICNC), Silicon Valley, CA, USA, 

2017, pp. 599-603. 

 

[11] Sibi Krishnan K., Sunitha R. and P. Pathiyil, "Driver classification for Hybrid 

Electric Vehicles based on Fuel Consumption Index," 2016 International Conference on 

Computation of Power, Energy Information and Commuincation (ICCPEIC), Chennai, 

2016, pp. 321-325. 

 

[12] T. P. Dirienzo, N. A. Krishnan, Srija and J. R. Santos, "Effects of smart 

appliances on residential consumption patterns," 2014 Systems and Information 

Engineering Design Symposium (SIEDS), Charlottesville, VA, 2014, pp. 188-192. 

http://www.techworld.com/picture-gallery/big-data/-companies-working-on-driverless-cars-3641537/
http://www.techworld.com/picture-gallery/big-data/-companies-working-on-driverless-cars-3641537/
https://deepblue.lib.umich.edu/handle/2027.42/108384
https://www.google.com/maps/about/
http://www.nytimes.com/2007/05/23/nyregion/23taxi.html


 71 

[13] K. T. Seow, N. H. Dang and D. H. Lee, "Towards An Automated Multiagent 

Taxi-Dispatch System," 2007 IEEE International Conference on Automation Science and 

Engineering, Scottsdale, AZ, 2007, pp. 1045-1050. 

 

[14] K. T. Seow and D. H. Lee, "Performance of Multiagent Taxi Dispatch on 

Extended-Runtime Taxi Availability: A Simulation Study," in IEEE Transactions on 

Intelligent Transportation Systems, vol. 11, no. 1, pp. 231-236, March 2010. 

 

[15] K. T. Seow, N. H. Dang and D. H. Lee, "A Collaborative Multiagent Taxi-

Dispatch System," in IEEE Transactions on Automation Science and Engineering, vol. 7, 

no. 3, pp. 607-616, July 2010. 

 

[16] F. Miao et al., "Taxi Dispatch With Real-Time Sensing Data in Metropolitan 

Areas: A Receding Horizon Control Approach," in IEEE Transactions on Automation 

Science and Engineering, vol. 13, no. 2, pp. 463-478, April 2016. 

 

[17] https://en.wikipedia.org/wiki/Electric_car_use_by_country#United_States 

 

[18] L. P. Fernandez, S. A. Enagas, T.G.S. Roman, R. Cossent, C. M. Domingo, P. 

Frias, “Assessment of the Impact of Plug-in Electric Vehicles on Distribution Networks”, 

IEEE Trans. on Power Systems, Vol. 26, No. 1, pp. 206-213, February 2011. 

 

[19] Y. Huang and J. W. Powell, “Detecting regions of disequilibrium in taxi services 

under uncertainty,” in Proc. 20th Int. Conf. Adv. Geographic Inform. Syst., 2012, pp. 

139–148. 

 

[20] D.-H. Lee, R. Cheu, and S. Teo, “Taxi dispatch system based on current demands 

and real-time traffic conditions,” Transp. Res. Rec.: J. Transp. Res. Board, vol. 8, no. 

1882, pp. 193–200, 2004. 

 

[21] J. W. Powell, Y. Huang, F. Bastani, and M. Ji, “Towards reducing taxicab 

cruising time using spatio-temporal profitability maps,” in Proc. 12th Int. Conf. Adv. 

Spatial Temporal Databases, 2011, pp. 242–260. 

 

[22] M. Qu, H. Zhu, J. Liu, G. Liu, and H. Xiong, “A cost-effective recommender 

system for taxi drivers,” in Proc. 20th ACM SIGKDD Int. Conf. KDD, 2014, pp. 45–54. 

 

[23] K.-T. Seow, N. H. Dang, and D.-H. Lee, “A collaborative multiagent taxi-

dispatch system,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 3, pp. 607–616, Jul. 2010. 

 

[24] K. Clement-Nyns, E. Haesen, J. Driesen, “The Impact of Charging Plug-In 

Hybrid Electric Vehicles on a Residential Distribution Grid”, IEEE Trans. on Power 

Systems, Vol. 25, No. 1, pp. 371 - 380, December 2009. 



 72 

[25] R. C. Green, L.Wang, M. Alam, “The Impact of Plug-in Hybrid Electric Vehicles 

on Distribution Networks: A Review and Outlook”, Renewable and Sustainable Energy 

Reviews, Vol. 15, No. 1, pp. 544-553, January 2011. 

 

[26] S. Han, S. H. Han, K. Sezaki, “Development of an Optimal Vehicle-to-grid 

Aggregator for Frequency Regulation”, IEEE Trans. on Smart Grid, Vol. 1, No. 1, pp. 65-

72, June 2010. 

 

[27] P. Kumar, I. N. Kar : “Implementation of Vehicle to Grid Infrastructure Using 

Fuzzy Logic Controller”, in Proc. of IEEE Transportation Electrification Conference and 

Expo, Dearborn, MI, June 2012. 

 

[28] Y. C. Ma, T. Houghton, A. J. Cruden, D. G. Infield, “Modeling the Benefits of 

Vehicle-to-grid Technology to a Power System”, IEEE Trans. on Power Systems, Vol. 27, 

No. 2, pp. 1012-1020, May 2012. 

 

[29] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, A. Yokoyama 

“Autonomous Distributed V2G (Vehicle-to-grid) Satisfying Scheduled Charging”, IEEE 

Trans. on Smart Grid, Vol. 4, No. 1, pp. 559-564, March 2012. 

 

[30] M. Singh, P. Kumar, I. N. Kar, “Coordination of Multi Charging Station for 

Electric Vehicles and its Utilization for Vehicle to Grid Scenario”, IEEE Trans. on Smart 

Grid, Vol. 4, No. 1, pp. 434-442, March 2012. 

 

[31] C. Wu, H. Mohsenian-Rad, J. Huang, “Vehicle-to-Aggregator Interaction Game”, 

IEEE Trans. on Smart Grid, Vol. 4, No. 1, pp. 434-442, March 2012. 

 

[32] M. C. Kisacikoglu, B. Ozpineci, L. M. Tolbert, “Examination of a PHEV 

Bidirectional Charger System for V2G Reactive Power Compensation”, in Proc. of the 

IEEE Applied Power Electronics Conference (APEC), Palm Springs, CA, Feb 2010. 

 

[33] Y. Mitsukuri, R. Hara, H. Kita, E. Kamiya, N. Hiraiwa, E. Kogure, “Voltage 

Regulation in Distribution System Utilizing Electric Vehicles and Communication”, in 

Proc. of the IEEE T&D Conference, May 2012. 

 

[34] C. Wu, H. Mohsenian-Rad, J. Huang, “PEV-based Reactive Power Compensation 

for Wind DG Units: A Stackelberg Game Approach”, in Proc. of IEEE Smart Grid 

Comm, Taiwan, Nov. 2012. 

 

[35] C. Wu, H. Mohsenian-Rad, J. Huang, J. Jatskevich, “PEV-Based Combined 

Frequency and Voltage Regulation for Smart Grid”, in Proc. of IEEE Conference 

Innovative Smart Grid Technologies, Washington, DC, January 2012. 

 



 73 

[36] C. Wu, H. Akhavan-Hejazi, H. Mohsenian-Rad, J. Huang, “PEV-based P-Q 

Control in Line Distribution Networks with High Requirement for Reactive Power 

Compensation”, in Proc. of the IEEE PES Conference on Innovative Smart Grid 

Technologies, Washington, DC, February 2014. 

 

[37] J. L. Lu, M. Y. Yeh, Y. C. Hsu, S. N. Yang, C. H. Gan and M. S. Chen, 

"Operating electric taxi fleets: A new dispatching strategy with charging plans," 2012 

IEEE International Electric Vehicle Conference, Greenville, SC, 2012, pp. 1-8. 

 

[38] Jing Dong, zhenhon Lin,” Within-day recharge of plug-in hybrid electric vehicles: 

Energy impact of public charging infrastructure”, Transportation Research, Part D, 2012. 

 

[39] Jarod C. Kelly, Jason S. MacDonald, Gregory A. Keoleian, “Time-dependent 

plug-in hybrid electric vehicle charging based on national driving patterns and 

demographics”, Applied Energy, vol. 94, June 2012. 

 

[40]  Tae-Kyung Lee, et al,” Stochastic Modeling for Studies of Real-World PHEV 

Usage: Driving Schedule and Daily Temporal Distribution”, IEEE Transactions on 

vehicular technology, vol. 61, No.4, May 2012. 


	Chapter 1. Introduction
	Chapter 2. Literature Review
	2.1 Passenger Request History Record
	2.2 Geographical Approximation
	2.3 Travel Distance and Traffic Time
	2.4 Power Consumption

	Chapter 4 Real-time Optimal Dispatch
	Step 1: Pre-Optimization
	1.1 energy consumption calculation
	1.2 status change from “not available” to “being idle”
	1.3 status change from “en route with passenger” to “being idle”
	1.4 status change from “being idle” to “en route to charging station”
	1.5 status change from “en route to charging station” to “being charged”
	1.6 status change from “being charged” to “being idle”

	Step 2: Dispatch Optimization
	Step 3: Post-Optimization

	Chapter 5. Pre-booked Optimal Dispatch and Charging Decision
	5.1 Discussion about real-time optimal dispatch algorithm
	5.2 Variables in pre-booked optimal dispatch and charging
	5.3 Constraints in pre-booked optimal dispatch and charging
	(1) Each request must be satisfied by exactly one cab.
	(2) Each request must be conducted thoroughly by one cab and cannot change to another cab in the middle of the service.
	(3) No cab can take multi-tasks.
	(4) Only certain pairs of requests can be taken by one cab in time.
	(5) Requests leave time windows for cab to charge.
	(6) The charging decision between two requests is possible only if the cab takes both requests.
	(7) The charging decision between two requests is possible only if the cab takes no request in between.
	(8) Define the variable to describe the process between passenger trips.
	(a) within a passenger trip
	(b) from dropping off a passenger to picking up another passenger
	(c) from dropping off a passenger to a charging station, and from a charging station to picking up the next passenger

	(9) Define variables to express electric consumption for each cab at each time slot.
	(10) Define a variable to express the average charging rate.
	(11) SoC iterates and must be within acceptable range.

	5.4 Objective function and optimization problem

	Chapter 6. Simulation Results
	6.1 Simulation for real-time optimization problem for one hour
	6.2 Simulation Results for 5 Cabs with 10 Trips in 1 Hour
	6.3 Simulation Results for Energy versus Cab
	6.4 Simulation Results for Energy versus Time

	Chapter 7 Conclusions and Future Work
	Reference



