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Abstract

Geolocation of a Radio Frequency Emitter using a Single Low Earth Satellite

by

Patrick Ellis

A passive Radio Frequency (RF) geolocation solution is provided that uses a single

Low Earth Orbit (LEO) satellite to find an uncooperative earth-bound emitter.

For the first time, an unambiguous solution is available for real-time, single-pass,

and time-constrained acquisition scenarios where single transmissions are expected

and computational abilities are limited. The geolocation algorithm rapidly maps

Doppler and Doppler Rate measurements to an RF emitter location, offering a

unique and powerful take on Single Satellite Geolocation (SSG) - the provision

of a geolocation estimate only using one satellite as a passive receiver. An initial

search area of several hundred kilometers squared is expected.

Two solutions are provided that cater to approximately symmetric and asym-

metric error distributions, respectively. The first is a variant of the constrained

Unscented Kalman Filter (cUKF), which harnesses the estimation abilities of the

Kalman Filter, the modeling capabilities of the Unscented Transform, and a novel

projection technique to constrain estimates to be on the Earth’s surface. When

the error distributions are strongly non-Gaussian, as is common when ephemeris

and oscillator errors are present, a constrained Unscented Particle Filter (cUPF)

has been derived. In this solution, the cUKF is used as the proposal distribution

to allow the Monte Carlo properties of the Particle Filter to efficiently character-

ize the Posterior Distribution, while still avoiding sample degeneracy. Both the

cUKF and cUPF solutions are capable of obtaining single-kilometer geolocation

accuracy despite small sample sizes, short signal durations, large search areas,
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and non-trivial transceiver geometry. Usage of the cUKF versus the cUPF can be

seen as a trade-off between computational speed and modeling capabilities. Cor-

responding theoretic performance bounds are provided for mission analysis and

algorithmic optimality comparison. The bound takes the form of the recursive

constrained Posterior Cramér-Rao Bound (rcPCRB). This theoretic information

bound is uniquely suited to gauge the mean squared error optimality of iterative

nonlinear estimation algorithms - and is recast and adapted to the SSG scenario.

Computational capabilities of spaceborne processing units are reviewed. A

full computational cost profile of the two provided geolocation solutions are given

in terms of three types of floating point computations during a single algorithmic

iterative step. Computational requirements are well within reach of current space-

proven processing units. The advent of hybrid processing units speak to the

provided algorithms’ potential even more.

In all simulated scenarios, the provided cUKF geolocation solution meets

the optimal performance bounds provided by the rcPCRB, always reaching sub-

kilometer geolocation accuracy. Numerical analysis over measurement noise, cen-

ter frequency, slant angle, and initialization errors showcase the cUKF’s robustness

and aptitude over different mission profiles. When oscillator and ephemeris errors

are present, the cUPF continues to obtain single kilometer geolocation accura-

cies, even with single second acquisition times, limited computational powers,

and several hundred kilometer search spaces. Finally, the performance of the

cUPF is demonstrated on raw IQ data acquired from the TDS-1 satellite op-

erated by Surrey Satellite Technology, which listened to a transmitting beacon

over White Sands, New Mexico. This real life experiment exactly represents the

scenario designed for by this dissertation and provides a worst case test scenario

with extremely low SNR, small sample size, ephemeris and timing errors, and high

xiii



quantization error. In order to deal with the highly non-Gaussian error distribu-

tions, the cUPF was utilized and performed extremely well - converging within

three seconds to within approximately 10 kilometers of the true emitter position

over a 5002 km search space with only 24 samples.
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Chapter 1

Introduction

1.1 Motivation

The ability of satellites to detect and geolocate RF signals is highly coveted

as it facilitates search-and-rescue, tracking, and spectrum monitoring. A single

satellite geolocation (SSG) solution, if geolocation accuracy is maintained, offers

many benefits. With respect to multi-satellite systems - maintenance, calibration,

and central node establishment between satellites are largely eliminated. Satellite

formations, requiring expensive and time-consuming launch methods and onboard

propulsion systems, are avoided.

All altitudes offer geolocation capabilities for satellites. The higher the satel-

lite, the larger the search space. However, as the most effective SSG solutions

utilize the Doppler generated by the respective motion between the satellite and

the emitter, LEO is the only orbit altitude conducive to geolocating the short

duration (singular second), single burst emitters this dissertation is focused on.

Additionally, since satellites in LEO are rarely spaced for simultaneous recep-

tion of an RF emitter, there is an existing, demonstrable need for a reliable SSG

solution for RF geolocation.

1



A new space age has arrived where ultra-small satellites are being launched in

unprecedented numbers. These satellites do not have the computational abilities

nor the instrumental accuracies that existing SSG methods require. LEO satellites

provide large look areas upon the earth, but their fast orbital speeds often prevent

multiple bursts of the unknown emitter with a low repetition rate to be captured

in a single pass - often giving scenarios where only a single transmission burst

is available for geolocation. Consequently, there is a clear and dire need for an

SSG solution to provide an unambiguous solution applicable for real-time, single-

pass, and time-constrained acquisition scenarios where single transmissions are

expected and computational abilities are limited.

1.2 Context

1.2.1 The SmallSat Revolution

Over the past couple decades the SmallSat Revolution has emerged, signaling

a seismic change in the space exploration paradigm. Satellites are now being

made in much smaller sizes and increasingly larger numbers. In the past, massive

satellites the size of school buses were commonplace. Yet, in 2015 alone, 48%

of the satellites launched were less than 10 kg [2] and the trend has continued.

SmallSats have firmly established themselves as the satellite of choice across the

market.

SmallSats are generally classified by their weight, although a completely stan-

dardized categorization has not yet been established. One formulation is: ESPA-

Class (<180kg), CubeSats (<10kg), ChipSats (<1g). Another formulation is Min-

isatellite (>100 kg), Microsatellite (10-100kg), Nanosatellite (1-10kg), Picosatel-

lite (0.1-1kg), and Femtosatellite (0.001-0.01kg). The vast majority of the small

2



spacecraft launched are in the CubeSat-class. The concept of a CubeSat was first

established in the space community in 1999 by professors from Stanford and Cal-

ifornia Polytechnic University, whom devised and implemented a modular system

of standardization - SmallSats were to be measured in units of 1U cubes, mea-

suring 10x10x10 centimeters and 1.33kg weight. As such, CubeSats grow in size

through the accumulation of these units. 1.5U, 2U, 3U, 6U, etc [1].

One major benefit of the smaller satellite sizes is that they can be much more

affordably flown as secondary payloads on launch vehicles or from the International

Space Station. It has been observed that as satellites get smaller and smaller, the

launch vehicle industry has provided rockets that are growing bigger and bigger

and carrying more and more satellites per launch. This trend caters to the lower-

cost of space entry that is attracting so many space endeavors [67]. However,

the price reduction that comes from being launched as secondary payloads means

SmallSats are highly constrained in terms of available orbits and launch times.

This can adversely affect the transceiver geometry in geolocation scenarios.

The reduction in size has also enabled the ability to launch many more satel-

lites than before and at a much cheaper price. One of the most appealing aspects

of the SmallSat Revolution is the ability to rapidly traverse through mission con-

cept design, spacecraft production, launch, and operations. Generally speaking,

SmallSats can be conceived as an idea to realization within two years, costing

anywhere from $30,000 US dollars to roughly one million US dollars. This is a

vast improvement from the hyper-expensive satellites of decades past [67]. The

trade-off for the reduction in cost is the acceptance of higher mission risk. Small-

Sats are most often built with commercial off-the-shelf parts, although as interest

by various industrial, government, and private entities increases, military-grade

and space-ready components are actively being developed today. Despite these

3



Table 1.1: Consequences of the SmallSat Revolution

Advantages Disadvantages

Cost Effective Production Lower Quality Assembly

Fast Idea-to-Space Time Limited Orbital Choices

Low Launch Costs Constrained Launch Times

Greater Numbers of Satellites Shorter Satellite Lifetimes

improvements, mission planners still need to contend with the lower reliability

and quality of SmallSats compared with their larger predecessors.

SmallSat bus (’bus’ is the infrastructure of the satellite that determines the

orientation, size, and type of payloads available to the spacecraft) size inherently

limits its capabilities. Naturally, a smaller spacecraft implies a smaller bus which

means less spacecraft capabilities. However, the past two decades have seen a

drastic improvement in processing power, data storage, propulsion, and solar ar-

ray efficiency that allows small buses to provide large capabilities. As a result,

SmallSats now provide many long-life, complex operational missions in commer-

cial communications, earth observations, and military surveillance [38]. Despite

these impressive SmallSat accomplishments, the limited power supply and com-

putational capabilities are still major design constraints.

An exciting new era of space exploration has been entered. The advantages

afforded by the SmallSat Revolution have been outlined as well as the trade-spaces

it creates when designing a satellite mission. These are summarized in Table 1.1.

The work provided in this dissertation utilizes the unique opportunities afforded

by this new space age, but also specifically mitigates and caters to the detrimental

aspects as well.

4



1.2.2 Space RF Geolocation

Space offers the ultimate high ground, and has long held vested interest from

the private, government, and commercial communities. The SmallSat Revolution

is rapidly replacing prohibitively expensive monolithic satellites with low-cost,

smaller sized platforms that are performing increasingly complex missions. This

change in space accessibility and utilization has opened up a wide variety of op-

portunities. While the SmallSat missions are high-risk, there is also high return

with a relatively low cost. Technology miniaturization, solar array efficiency, and

increased processing power have paved the way for mission concepts previously

thought impossible on such a small bus size.

One of the burgeoning application areas for SmallSats is RF Geolocation. In

fact, patents dealing with RF geolocation are currently the fourth most numerous

patent type in the satellite industry [62]. However, nearly all of these patents are

tailored for large and expensive satellite systems. A few - such as Hawkeye 360,

Spire Global, and some academic entities are just now attempting to provide RF

geolocation with multiple SmallSats [11]. Previous concerns of the quality of on-

board electronics, computational powers, and general risk held back investment in

prior years. However, there is now an acceleration, particularly in the intelligence

community, on the willingness to adopt small satellites for missions. According

to Bill Gattle, the former program director of terrestrial communications and di-

rector of engineering for defense programs at the Pentagon, "It’s moved from...

customers being intrigued to believing it’s worthy of a demo." Indeed, geoloca-

tion and other related situation awareness scenarios are expected to grow at a

compound annual growth rate of 21% for the next 10 years [3, 38].

An SSG solution fits very well into these trends. Situational awareness and

geolocation utility is dependent on first hearing the signals of interest. Space
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geolocation systems requiring multiple satellites comes with a variety of caveats.

For instance, placing these systems in a fashion that covers large search areas

simultaneously is prohibitive in terms of number of satellites needed, cost, and

system maintenance. Having the ability to geolocate an RF signal with only a

single satellite decreases the point of failure for a geolocation system and allows

greater coverage. The proposed SSG solution fits perfectly within the trends of

SmallSats and RF geolocation from space.

1.3 Contributions and Novelty

The SSG solutions developed in this Dissertation are governed by measure-

ments of both Doppler and Doppler Rate. As all previous SSG solutions solely

utilize Doppler, a thorough analysis showing how Doppler and Doppler Rate pro-

vide a vastly improved solution space is provided in Section 2.3. Of particular

note is the provision of an unambiguous solution space, which is addressed in

depth and best depicted in Fig. 2.3 and Fig. 2.4. The measurement equations

are kinematically derived and can be seen in its final form in Eq. 2.24 along with

the full derivation in Appendix 8.1.

A key separation of the provided solutions from other SSG approaches is the

ability to geolocate signals with very short (singular-second) durations. The dif-

ficulty of this achievement stems from the short duration signals creating an ex-

tremely ill-conditioned solution space. The answer to this issue was a combination

of using Doppler and Doppler Rate measurements, assuming the unknown emitter

to be approximately stationary and sitting upon the Earth’s ellipsoidal surface,

framing the problem in the Earth Centered Earth Fixed (ECEF) coordinate sys-

tem, and performing geolocation with iterative, nonlinear filtering techniques. A

visual representation of these developments on the solution space can be seen in
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Fig. 2.5. The assumption of an approximately stationary emitter is made widely

applicable by the short signal duration and the fast speeds of the satellite. The

ECEF coordinate system necessitates only three state variables to be estimated

- the rectangular coordinates of the emitter position. This eliminates the need

to estimate velocity or acceleration components - greatly enhancing the stability

of the SSG solution and simplifying the state equation as seen in Eq. 2.14. To

enforce the ellipsoidal constraint in real-time filtering applications, a completely

novel method of projecting sigma points into the constrained solution space is

developed in Section 3.1.2 and Appendix 8.2.

The choice of an iterative nonlinear filtering algorithm to provide geolocation

estimates comes from expectations of short signal duration, highly nonlinear mea-

surement equations, the presence of ephemeris and oscillator errors, and the need

for an Earth-surface constraint. Two algorithms were developed based on the po-

tential noise characteristics in the measurement equations shown in Eq. 2.24. The

cUKF was developed for situations when the Posterior error distribution is mostly

symmetric and the cUPF for when the Posterior error distribution is asymmetric.

The construction of the cUKF algorithm is outlined in Section 3.1.2 and the cUPF

is detailed in Section 3.2.2. The trade-off between the two algorithms are outlined

in Table 3.1. Both of these algorithms take advantage of the aforementioned novel

sigma-point projection method developed in Section 3.1.2.

For the SSG scenario, ephemeris and oscillator errors are a serious concern

and have not yet been dealt with by any available SSG solution today. A thor-

ough literature review was done to collect experimentally obtained values of these

errors explicitly pertaining to SmallSats. The magnitudes of both ephemeris and

oscillator errors present in these SmallSat missions are summarized into three

categories of severity in Table 2.1 and Table 2.2, respectively. A methodology of
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statistically quantifying ephemeris errors was then developed and can be found in

Section 2.3.5. An analytic form of the received signal in the presence of oscillator

errors was derived and can be found in Eq. 2.35.

A key component of the offered SSG solutions is their ability to be run in

real-time aboard existing SmallSat processing units. For persective, an overview

of onboard computational capabilities of SmallSats is provided in Section 3.3. The

computational costs of the cUKF and cUPF are outlined in Table 3.2 and Table

3.3, respectively. The computational costs are described in terms of the number

of Floating Point Operations (FLOPs), square root operations, and trigonometry

operations per kth step of both the cUKF and cUPF.

Both the cUKF and cUPF aim to minimize the mean squared error. By obtain-

ing the theoretical lower limit of minimizing the mean squared error, a measure of

optimality can be obtained. The traditional Cramér-Rao Bound (CRB) provides

this performance measure, and it is currently the form all existing performance

bounds in literature take for the SSG scenario. However, the CRB is meant for

block processing and derives its information theoretic measure from measurement

equations. This is in stark contrast with SSG algorithms in use today (including

the cUKF and cUPF developed here) that utilize both the measurement equations

and state equations in an iterative fashion to obtain geolocation estimates. As

a result, all currently available bounds that utilize the CRB are poor indicators

of SSG algorithmic optimality. To remedy this, a recursive constrained Posterior

Cramér-Rao Bound (rcPCRB) was derived for the SSG scenario. It’s final form

can be found in Eq. 4.17, elaborated on in Section 4.2, and whose explicit deriva-

tives can be found in Appendix 8.3. This bound provides the best possible mean

squared error achievable for any iterative, nonlinear algorithm utilizing both state

and measurement equations when corrupted with approximately Gaussian noise.
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With the rcPCRB in place as a theoretical performance bound, significant

effort was made to find the most effective contemporary SSG solution as means

of comparison. Both the cUKF and cUPF are an unambiguous, computationally

friendly algorithm that is able to converge in single-pass, time-constrained acqui-

sition scenarios where single transmissions are expected. As covered in Section

2.2, no other existing technique can do this. In order to properly gauge the caliber

of these developed algorithms, the liberty was taken to adapt prior and current

techniques to the fit these design constraints through use of a constrained Ex-

tended Kalman Filter (cEKF), constructed in Section 3.1.2, and explicitly stated

in Eq. 3.12. In Section 5, numerical analysis is done over measurement noise,

center frequency, slant angle, and initialization errors. The cUKF’s superiority

over the cEKF is showcased by outperforming the cEKF by over three orders of

magnitude in every scenario. In these simulations, less than 5 seconds of signal ac-

quisition were utilized, steady state was reached within 3 seconds, and geolocation

errors of less than a single kilometer were obtained. The cUKF also matched the

rcPCRB in each of these simulated scenarios - proving that the cUKF is reaching

the optimal minimum mean squared error. In scenarios where the cUPF is to be

used - such as large ephemeris and oscillator errors - the cEKF failed completely

to converge. In contrast, the cUPF performed extremely well, obtaining single

kilometer geolocation accuracy as shown in Figs. 5.7-5.11. Initial search spaces

spanned hundreds of kilometers.

As a final validation, the cUKF and cUPF are demonstrated on raw IQ data

acquired from the TDS-1 satellite operated by Surrey Satellite Technology. The

TDS-1 satellite is a SmallSat that listened to a transmitting beacon over White

Sands, New Mexico at the L1 frequency in November of 2016. The experiment

exactly represents the desired scenario and provides a worst case test: the ex-
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periment exhibited extremely low SNR, small sample size, ephemeris and timing

errors, and high quantization error. In select cases, the cUKF could reach single

kilometer geolocation accuracies (Fig. 6.12). But in general, the cUKF could

not deal with the asymmetrical error distributions - generally yielding geolocation

estimates converging to about 40 km of the true beacon location. The cUPF was

then utilized and performed extremely well. In 50 trials, utilizing only 80 mea-

surements of Doppler and Doppler Rate each, the cUPF converged within three

seconds (24 samples) to just under 10 kilometers of the true emitter location. The

initial search space covered an area of over 5002 kilometers. The results of this

promising validation are shown in Fig. 6.13. The cUPF algorithm performed

exceptionally well given a worst-case scenario, and therefore provides a high level

of assurance for its capabilities on many existing and future systems.
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Chapter 2

Problem Formulation

2.1 Application Scenario

The physical scenario involves a single LEO satellite receiving a signal emitted

by a transmitter on the surface of the earth. The satellite has no knowledge of

the position of the transmitter, but does know its own position, velocity, and

acceleration (all orbital information on the satellite is referred to as ephemeris

information). There is a certain amount of error affiliated with the ephemeris

information as well as oscillator errors occurring within the transmitted radio and

the receiver clock on the satellite. The search area for the emitter is generally

a circle projected to the Earth’s surface with a diameter on the order of several

hundred kilometers.

The only knowledge of the transmitted signal that the satellite holds is what-

ever knowledge is needed to produce the measurements that the chosen geoloca-

tion algorithm uses to generate a position estimate. Typical assumptions include

knowledge of the center frequency and modulation scheme, although this varies

widely based on the scenario. The main objective is to unambiguously estimate

the emitter location as quickly and accurately as possible. The accuracy will be
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such that the developed algorithm provides geolocation estimates that yield the

lowest possible mean squared error estimate. A measure of mean squared error

optimality will be given by a theoretic performance bound.

An example scenario is shown in Fig. 2.1. An emitter sits off the coast of

Greenland at longitude 35 deg W and latitude 65 deg N transmitting a 1200 Baud

Binary Phase Shift Keying (BPSK) signal at a center frequency of 120.6 MHz for

5 seconds continuously. The satellite flies in a circular orbit at an altitude of 1000

km, receiving the signal at a 15 deg slant angle and a slant range of about 1400

km. The average Carrier-to-Noise ratio is about 15 dB over the acquisition time.

As mentioned above, using only the transmitted signal that impinges upon the

satellite, the emitter location is to be estimated knowing only the center frequency

and modulation type. Additionally, geolocation estimates must be obtained com-

putationally efficient enough to be computed on the satellite’s onboard processing

unit.

2.2 Prior and Contemporary Solutions

Current SSG solutions generally involve either an angle-of-arrival (AoA) or a

Doppler-based approach. AoA-based algorithms [55, 68, 27, 30] offer simple solu-

tions but are limited to high signal strength scenarios, long acquisition times, rela-

tively stationary targets, and high precision satellite pointing accuracy - providing

limited geolocation accuracy in limited situations. Doppler-based algorithms are

governed by highly nonlinear equations but offer better information on the emitter

and higher accuracy capabilities and are therefore the focus of this Dissertation’s

proposed geolocation solutions. The processing methodology for single or multi-

ple satellite RF geolocation systems using a Doppler-based approach is generally

the same. A single satellite receives and stores data. When a ground station is
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Figure 2.1: A standard scenario for RF Emitter Geolocation. The red dot is the
emitter while the satellite moves overhead in black. The sub-satellite path and
range vectors are in cyan while the antenna footprints are also shown at time zero
(black dots) and five seconds later (light green dots).

available, the stored data is downlinked. Geolocation estimates are then obtained

through post-processing with a chosen algorithm.

The use of received Doppler for geolocation was largely pioneered by research

scientists at the Johns Hopkins Applied Physics Laboratory, who solved the orbit

of Sputnik-1 by analyzing the Doppler shift of the satellite’s transmitted sig-

nal in 1957 [14]. This technique quickly found its place in the Navy Navigation

Satellite System (NNSS) (also known as Transit), the first satellite-based geoposi-

tioning system launched in 1960. Ground stations constantly looked for satellite-

transmitted coherent carrier frequencies at 150 MHz and 400 MHz. At least one

Doppler curve of about 2 minutes long was recorded from a satellite pass. To-

gether, the Doppler curve(s), an initial estimated ground station position, the

transmitted orbit parameters, and a Least Squares Estimator then produced a
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refined location estimate of the ground station to within 100 meters of accuracy

[64].

Search-and-rescue operations soon took advantage of the use of satellite Doppler

for positioning in 1982 with the launch of the COSPAS-SARSAT (1979) satellite

system, which is still in use today. Distress signals sent from approved emergency

beacons are received by overhead satellites and sent to the ground station for

post-processing to find the location of the beacon. Beacons output a pre-defined

burst-mode lasting about a quarter of a second, repeated roughly every 50 sec-

onds. Legacy beacons transmitted at 121.5 MHz and 243 MHz but have now

migrated to 406 MHz beacons also transmitting GPS coordinates to the satellite.

Historically, the COSPAS-SARSAT is a search-and-rescue system that usually re-

quires at least two satellites, two transmissions, or two passes. However, with the

advent of the 406 MHz GPS-bearing signal, a new constellation called MEOSAR

was launched in 2016 that utilizes satellites in Medium Earth Orbit (MEO) to

repeat the received beacon signals for ground processing - drastically increasing

the geolocation accuracy [45].

Doppler geolocation was also implemented into ARGOS in 1978, a satellite-

based system which collects environmental data from transmitting platforms world-

wide. Two geolocation options are available, a Least Squares approach and a

Kalman Filtering approach [5]. The Least Squares approach requires two trans-

missions per satellite pass to calculate a position and its mirror solution (the

mirrored solution is often referred to as the ’antipode’). The Kalman approach

uses an Interacting Multiple Models (IMM) approach where each model consists

of an Unscented Kalman Filter (UKF) that models different movements of the

RF emitters (beacons fastened on sea turtles, ships, buoys, etc.) and can be com-

puted using a single transmission per satellite pass [46]. Both algorithms require
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an initialization procedure of obtaining four transmissions in a single satellite pass.

Other past Doppler-based SSG algorithms utilize Nonlinear Least Squares

and various forms of the Extended Kalman Filter (EKF) and can be found in

[26, 44, 58]. There are two algebraic solutions - the first [51] is meant for rough

initial geolocation estimates and is based on calculating Point of Closest Approach

(PCA). The second [50] goes further by algebraically estimating the center fre-

quency and then using an adaptive grid search to find the geolocation estimate.

Additional solutions suggest using Doppler Rate combined with a grid search [28]

and a Particle Filter (PF) approach meant for unmanned aerial vehicles that uti-

lizes Doppler to estimate location and center frequency [69].

Theoretic performance bounds have long been used to measure the optimality

of estimation techniques and for mission planning, however very few bounds exist

for the SSG solution. Existing bounds generally assume a flat earth, fixed and

known height above the emitter, and a straight line constant velocity flight path

[51, 40, 42]. Some have incorporated a spherical earth and elliptical flight path

but all have used the traditional CRB [69, 70].

2.3 The Proposed Solution Framework

Referring once more to the scenario described in Fig. 2.1, it is quickly appar-

ent that none of the current and prior solutions are able to provide a geolocation

solution. The acquisition time is too short, the assumptions are too strong, and

the search area is too big. Additionally, no existing solutions are designed for the

errors affiliated with SmallSats (oscillator and ephemeris) nor deal with transmit-

ters whom may be made with cheap and uncalibrated clocks that exhibit oscillator

errors much worse than those on SmallSats. Inaccuracies befitting useful geoloca-

tion (≈ 1 km) are only currently obtained through the use of strong initialization

15



procedures, the use of multiple satellites or passes, or additional information that

drastically decreases the search area. No available algorithm is meant for a single

satellite, real-time processing, with only a single pass and limited signal duration,

to find an uncooperative emitter.

A drastic change is needed to accommodate the requisites of crafting a geoloca-

tion system that handles short signal duration, single burst acquisitions scenarios,

one satellite pass, no initialization procedures, oscillator and ephemeris errors,

and no auxiliary signals in a computationally efficient manner befitting SmallSat

onboard systems. From a design standpoint, four things need to be stipulated,

and they are listed and described below:

1. Measurements that, from an information-criterion perspective, hold the

most information concerning the origin of the emitted signal impinging upon

the satellite.

2. A State Vector that provides the best estimation accuracy and stability.

The SSG scenario can be posed in several different coordinate systems, each

entailing a different set of state vectors.

3. A Geolocation Algorithm that maps the measurements to an emitter

location unambiguously, quickly, and in a computationally efficient manner.

4. A Theoretical Performance Bound to gauge algorithmic optimality and

for system design.

2.3.1 Measurements

An AoA-based approach utilizes raw IQ samples as the measurement quantity

as they are received on the satellite. The corresponding geolocation algorithm is

a power-based calculation that utilizes some form of peak finder over the pairs of
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azimuthal and elevational values as measured from the satellite nadir. The highest

peak corresponds to the highest power, and therefore yields the directional vector

pointing towards the presumed emitter location. This vector then can be inter-

sected with the Earth ellipsoid to obtain a location estimate. This approach is

attractive as it allows for computationally cheap power calculations and is insen-

sitive to oscillator drift. However, careful calibrations, long acquisition periods,

and stationary emitters are strong requirements. It is also, due to the large range

(slant) distances, extremely sensitive to ephemeris errors and pointing accuracy.

An AoA-based approach is simply not applicable.

A Doppler-based approach, as the historical and current approaches suggest,

is the most popular and effective. The emitted signal undergoes a Doppler shift

brought about by the transceiver geometry and satellite motion, which is captured

in the signal seen by the satellite. The shorter the range vector, the faster the

range rate, and more location information is embedded within the received signal.

The high speed of the satellite offers spatial diversity within a short period of time,

allowing high geolocation accuracies. This approach requires an intermediate step

of estimating the Doppler and a geolocation algorithm that can deal with a highly

nonlinear measurement equation.

Yet, no matter how good the measurements of the Doppler are, no matter

how efficient and accurate the geolocation estimation method used, there is a

reason all contemporary approaches utilize additional satellites, satellite passes,

or initialization procedures. A single satellite trying to geolocate a signal with

only Doppler measurements possesses an extremely ill-conditioned solution space

that is rife with ambiguities and heavily susceptible to noise and initialization

error. Current techniques only use Doppler, but this dissertation utilizes both

Doppler and Doppler Rate as measurement equations. The reasoning for using an
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additional measurement (as well as further insight on why to use Doppler-based

versus AoA-based approaches) follows from a derivation of the received signal.

The emitted signal is narrowband and sent at a center frequency fc. It can be

denoted as:

yT (t) = Re{s̃(t)ej2πfct} (2.1)

where s̃(t) is the complex envelope of s(t). If the emitter and the satellite have

no respective motion, the impinging signal at the satellite can be expressed as:

yR(t) = yT (t− τk)

= Re{s̃(t− τk)ej2πfc(t−τk)} where τk = rk
c0

The subscript k indicates a particular instant in time, rk is the range from the

emitter to the satellite, and c0 is the speed of light. However, the satellites of

interest travel as fast as 7.8 km/sec, making the range (rk) time dependent, rk(t).

The received signal at the satellite is now denoted as:

yR(t) = yT (t− τ(tk))

= Re{s̃(t− τ(tk))ej2πfc(t−τ(tk))}

u Re{s̃(t)ej2πfc(t−τ(tk))}

= Re{s̃(t)e−j2πfcτ(tk))} (2.2)

where

τ(tk) = r(tk)
c0

(2.3)

Note that it is assumed the phase of the impinging signal moves faster than s̃(t)

such that the change of s̃(t− τ(tk)) u s̃(t) in the third line. This is known as the

narrowband assumption. The last line has the carrier frequency term removed
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and represents the basebanded signal. This derivation is loosely based off of the

one found in [16].

The measurements desired are Doppler and Doppler Rate, denoted z1(t) and

z2(t), respectively. As shown in Appendix 8.1, the Doppler and Doppler Rate can

be shown in terms of the kinematic motion of the emitter and satellite. The satel-

lite’s position is ps(tk), its velocity vs(tk), and acceleration as(tk). Likewise, the

(assumed stationary for now) emitter’s position is denoted as pe(tk). Therefore,

Doppler and Doppler Rate can be written as:

z1(tk) = 1
2π

∂

∂tk
∠ỹR(tk)

= 1
λ

∂

∂tk
|r(tk)|

= 1
λ

∂

∂tk
|ps(tk)− pe(tk)|

= −
(

1
λ

)(
vTs (tk)[ps(tk)− pe(tk)]
|ps(tk)− pe(tk)|

)
︸ ︷︷ ︸

vr(tk)

(2.4)

z2(tk) = 1
2π

∂2

∂t2k
∠ỹR(tk)

= 1
λ

∂2

∂t2k
|r(tk)|

= 1
λ

∂2

∂t2k
|ps(tk)− pe(tk)|

= −
(

1
λ

)(
aTs (tk)[ps(tk)− pe(tk)]
|ps(tk)− pe(tk)|

+ |vs(tk)|2
|ps(tk)− pe(tk)|

− v2
r(tk)

|ps(tk)− pe(tk)|

)

(2.5)

where λ = c0
fc

is the wavelength, ỹR(tk) is the real and complex components of the

received signal, and | · | denotes the Frobenius norm operation.

It is immediately apparent from Eq. 2.4 and Eq. 2.5 that the desired informa-

19



tion, pe(tk), is present in a highly nonlinear fashion. Further, pe(tk) occurs many

times in the expressions and appears to largely govern the measurement values -

this is good for estimation purposes. However, a deeper dive is required to fully

realize this benefit.

For the scenario of a stationary emitter and a satellite as the receiver, Figure

2.2 describes the transceiver geometry and the governing kinematics. The satellite

position vector, velocity vector, acceleration vector are in blue, green, and orange

respectively as well as the emitter position vector in red. The range vector, r(tk) =

ps(tk)− pe(tk) can be seen as purple.

Figure 2.2: Kinematic representation of transceiver geometry as it pertains to
inducing Doppler effects.

From a transceiver geometry-kinematic viewpoint, three properties govern the

performance of a Doppler-based algorithm: |r(tk)|, Pvs
r (tk), and Pak

r (tk). These

terms represent the range vector length, the projection of the satellite velocity onto

the range vector, and the satellite acceleration vector projection onto the range

vector. The quantities can be defined as follows. Pvs
r (tk) is the vector projection
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of vs(tk) onto the range vector r(tk). The angle between the range vector and

the satellite velocity vector is θvr(tk) and ranges from 0 ≤ θvr(tk) ≤ π and does

not discriminate on whether the satellite velocity vector is pointing towards the

emitter or away (and ambiguity). Similarly, Pak
r (tk) is the vector projection of

as(tk) onto the range vector r(tk). The angle between the satellite acceleration

vector and the range vector is θar(tk). This ranges from 0 ≤ θar(tk) ≤ π and

possesses the same ambiguity as θvr(tk). These vector projections be generically

defined (suppressing time) as:

Px
y = xTy
|y|2

y (2.6)

= |a|
|b|

cos(θxy)b (2.7)

Let the scalar projection be defined as:

P x
y = xTy

|y|
(2.8)

= |x| cos(θxy) (2.9)

The question then arises of when is the usage of Doppler and Doppler Rate ben-

eficial for geolocation. It is not the magnitude of the Doppler or the Doppler

Rate that entails greater geolocation accuracy, but the rate at which they are

changing. A faster changing Doppler and Doppler Rate entails that more infor-

mation can be obtained from the measurements on the emitter position. This can

be likened to having a greater aperture for an array of receivers, since a larger

aperture means a greater diversity in measurements. The proposed algorithm

is a real-time algorithm that parses short-duration signals so the ability to have

as diverse (informative) measurements as possible is the key component. This
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is synonymous with having a scenario whose transceiver geometry and motion

characteristics provide the fastest changing Doppler and Doppler Rate.

An additional look at Eq. 2.4 is now warranted. Keeping in mind Fig. 2.2,

Eq. 2.8 and Eq. 2.9:

z1(tk) = −
(

1
λ

)(
vTs (tk)[ps(tk)− pe(tk)]
|ps(tk)− pe(tk)|

)

= −
(

1
λ

)(
vTs (tk)r(tk)
|r(tk)|

)
(2.10)

= −
(

1
λ

)
|vs(tk)| cos θvr(tk)︸ ︷︷ ︸

Pvs
r (tk)

(2.11)

Doppler is a scalar projection of the satellite velocity vector upon the range vector,

scaled by the wavelength of the transmitted signal. The magnitude of the range

vector is the most dominant factor in space geolocation since satellites travel up to

8000 meters per second but are located hundreds of kilometers from the emitter.

Therefore, the denominator of Eq. 2.10 determines whether the Doppler effect

will be negligible. The farther away the satellite and emitter are from each other,

the less of a change in Doppler the satellite will see even at the satellite’s closest

point of approach (PoC).

The wavelength, a function of the center frequency divided by the speed of

light, is a constant and has no ability to increase or decrease the information

available to be learned about the emitter location. The angle between the range

vector and the satellite velocity vector, cos θvr(tk) is seen in Eq. 2.11. It is

congruent with the look angle of the emitter. From that standpoint, cos θvr(tk)

will change faster when the satellite is closer to the emitter, thereby causing the

angular velocity of the emitter look angle to increase. Directionality (whether the

satellite is traveling towards or away from the emitter) is not discernable. This is

what causes the "mirror" or "antipodal" solutions so often found in Doppler-based
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approaches. Taking the derivative of Eq. 2.11 w.r.t. θvr(tk) and setting it equal

to zero yields θvr(tk) = [0, π]. Looking at Fig. 2.2, this result states that the

fastest changing Doppler - in terms of the angle, θvr(tk) - is obtained by moving

directly at the emitter or directly away - or in other words, the velocity vector of

the satellite is parallel with the range vector.

Fig. 2.3 demonstrates this analysis on Doppler for a satellite traveling a cir-

cular orbit at 500 km altitude receiving a signal sent by the emitter transmitting

at 120 MHz. The left column shows a satellite traveling along a path (black line)

with its current position marked in blue. The emitter’s true position is in red.

The Doppler error surface is produced by using Eq. 2.4 and varying pe(tk) over

a grid of potential emitter locations at the given time point and satellite position

(marked as a black dot). The Doppler error surface is a contour showing the

amount of absolute error in the calculated Doppler when the chosen emitter loca-

tion on the grid is plugged in from the true emitter position marked in red. The

corresponding right column shows the Doppler curve over the passage of time and

the current Doppler-Time point that corresponds to Doppler error surface directly

to the left.

Note that the first two rows are the satellite approaching the emitter, the third

row is the satellite at the closest location to the emitter, and the fourth row shows

the satellite heading away from the emitter. Further, note that the third row, first

column Doppler error contour plot shows the most density of lines - this aligns

perfectly with the statement that the closer the satellite is to the emitter, the more

informative the Doppler will be. The second point again shows more density

of lines than the first and fourth point, but still less than the point of closest

approach (3rd). An important facet to note about the Doppler error surface is

that it showcases a surface that does not have a global minima - it is characterized
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by lines. This corroborates with the statement that the Doppler solution space

is rife with ambiguities. The flatness of the valley carved in the figures on the

left column indicate why geolocation solutions solely based on Doppler need long

acquisition times, very accurate initial guesses, or additional information to get

the solution to converge.

Figure 2.3: Effect of transceiver geometry and emitter estimates on Doppler as
seen by the Satellite.

Looking now at the Doppler Rate:

z2(tk) = −
(

1
λ

)(
aTs (tk)[ps(tk)− pe(tk)]
|ps(tk)− pe(tk)|

+ |vs(tk)|2
|ps(tk)− pe(tk)|

− v2
r(tk)

|ps(tk)− pe(tk)|

)

= −1
λ

(
|as(tk)| cos θar(tk)︸ ︷︷ ︸

Pas
r (tk)

+ |vs(tk)|
2

|r(tk)|
− (|vs(tk)| cos θvr(tk))2

|r(tk)|

)
(2.12)

= −
(

1
λ

)(
Pas
r (tk) + |vs(tk)|

2

|r(tk)|
−

(
Pvs
r (tk)

)2

|r(tk)|

)
(2.13)

the geometric quantities in Fig. 2.2 are again present. The interpretation of

Doppler Rate is not as straight forward as Doppler but it still provides tangible

insights. The first time variant term in Eq. 2.13 is the projection of the satellite
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acceleration vector upon the range vector and follows the same interpretation of

the vector projection previously discussed in Eq. 2.11. Namely, the faster θvr(tk)

changes, the closer the satellite will be to the emitter. The second time variant

term in Eq. 2.13 is an angle-independent term involving the squared magnitude

of the satellite’s velocity vector divided by the range length. A satellite’s velocity

magnitude will change in negligible amounts over the intended (short-duration)

acquisition period, so only the range distance will chance causing this term to

fade in and out of the equation as the satellite moves closer and away from the

emitter. The last time varying term is simply the scalar projection from the

Doppler expression Eq. 2.11 squared divided by the range. This term is again

governed by the proximity of the satellite to the emitter as well as its directionality

as stated before concerning θvr(tk). Setting Eq. 2.12 equal to zero and taking the

derivative w.r.t. θar(tk) yields θar(tk) = [0, π]. This is the same result as with

θvr(tk), but because of the orbital mechanics of satellite motion, the acceleration

vector will point towards the Earth. Unless hurtling directly towards the emitter,

the satellite will not provide a maximal angle for acceleration. Note that this

inherent dissimilarity in the projections of the satellite velocity and acceleration

vector upon the range vector avoids mirror solutions. The periodicity of the cosine

term that creates the ambiguity in Eq. 2.11 is broken by the appearance of two

additional terms. This is very important for estimation purposes and solidifies

the use of both Doppler and Doppler Rate measurements to glean information on

the emitter location.

Fig. 2.4 demonstrates the same scenario as Fig. 2.3 but instead plots the

Doppler Rate error surface in the left column and the Doppler Rate on the right

column. Once more, the denser lines are at the point of closest approach (row

3), and the "looser" lines appearing when the satellite is farther away. What is
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different is the manner that these lines appear on the error surface - they are

concentric circles clearly showing a global minima. When the satellite is far away

(rows 1 and 4), the minima is a flat basin but as more information is gleaned from

the received signal, it begins to deepen to an unambiguous minima as seen in

rows 2 and 3. This is pivotal, the inclusion of the Doppler Rate as a measurement

equation successfully mitigates the ambiguities plaguing purely Doppler-based

approaches.

Figure 2.4: Effect of transceiver geometry and emitter estimates on Doppler
Rate as seen by the Satellite.

2.3.2 State Vector and Constraints

While the choice of Doppler and Doppler Rate measurements provide a re-

spectable amount information on the emitter, the solution space remains very

ill-conditioned. A long acquisition time would help this drastically, but the aim

of this solution is to be able to geolocate short duration (single second) signals.

Further choices must be made to make the solution space as small and convergent

as possible. The emitter location is the parameter of interest, but no assumptions
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have been strictly stipulated on the emitter movement or which coordinate frame

it should be placed in.

From this point on it is assumed that the emitter is both stationary and

sitting upon the Earth’s ellipsoidal surface. This constraint is validated in that

the Earth’s surface is 71 percent water, so all ships and buoys can be considered

stationary or approximately stationary with respect to the satellite’s velocity.

As such, for most earth-bound emitters, if the Latitude and Longitude are known

then the Altitude can be reliably approximated by cross-referencing with a Digital

Terrain Elevation Data (DTED) map. While the constraint is an obvious one, the

ability to implement it on an onboard algorithm upon the satellite in a manner

that is not an exhaustive search is not trivial. One of the main contributes of this

dissertation is a methodology for doing this in a computationally cheap, analytic

fashion.

There exists a variety of coordinate frames including ECEF and Earth Cen-

tered Inertial (ECI) that each offer their own benefits and costs in different sce-

narios. Each represent the emitter location in terms of 3 state variables. This

outnumbers the number of available measurements (2) and contributes to the ill-

conditioned nature of the solution space. The addition of more parameters that

must be estimated in order to obtain an estimate of the emitter location must be

avoided to further deterioration of the solution space. The ECI coordinate frame

is Cartesian and has the center of the Earth as its origin and does not rotate with

respect to the stars. However, this means that even for a stationary emitter on

the Earth, the emitter has a movement component that cannot be ignored and

must be estimated. The emitter’s position, velocity, and acceleration components

in x,y, and z creates 9 parameters that must be estimated which is prohibitively

large for a single receiver producing two measurements. For this reason, the ECEF
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coordinate system will be used. In this framework, the Earth is held stationary

so an object sitting on its surface without any motion of its own will not appear

to be moving to the rotating satellite. In other words, a stationary emitter has

no Earth-relative velocity component because it is moving with the Earth.

Therefore, the emitter position, denoted pe(tk), constitutes the state vector

xk = pe(k) =
[
pxe(tk) pye(tk) pze(tk)

]T
(2.14)

Note that there has been a slight notational change. From now on, to better ac-

commodate the host of literature in nonlinear filtering and general readibility, the

parenthetical time annotation for the state vector will be written as a subscript,

xk. The notation of time varying components not being estimated, such as ps(tk),

will be written as ps(k), with the discrete time component placed in paranthesis

in the subscript. As another example, the satellite velocity will now be denoted

as vs(k) and acceleration as as(k).

Since the emitter is stationary, a relationship of this quantity over time can be

expressed as:

xk+1 = xk (2.15)

The knowledge that the emitter sits upon the surface of the earth is a state

constraint. This constraint can be written as:

0 = gk(xk)

0 =

(
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k

)2

R2
eq

+

(
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)2

R2
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+

(
x
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k

)2

R2
p

− 1
(2.16)

where Req and Rp are earth’s equatorial radius and polar radius, respectively and

x
(n)
k refers to the nth component of the state vector in Eq. 2.14.
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A thorough portrayal of the solution space can now be formulated and is

shown in Fig. 2.5. In the figure, the solution space using the proposed state and

measurement equations is shown using the same exact parameters that governed

Fig. 2.1. Greenland can be seen on the figure, surrounded by water. The satellite

is the black dot, the emitter the red dot. The light green line is the range vector.

Figure 2.5: Depiction of solution space improvement offered through the use of
two measurement equations and an earth surface constraint. H1 is the Doppler
measurement equation, H2 is the Doppler Rate measurement equation, and C1 is
the earth surface constraint. This depiction follows the example scenario laid out
in Fig. 2.1. The satellite is depicted as a black dot, the emitter as a red dot, and
the range vector outlined in green.

Various shaded regions (light blue, magenta, yellow) intersect the figure. These

shaded regions represent the solutions spaces offered from different choices of mea-

surements and state spaces and their respective tolerances to measurement error.

The shaded regions are generated using the following methodology. An Earth Cen-

tered Earth Fixed coordinate system is assumed, so the state space representing

the unknown emitter location concerns an x-y-z coordinate. Current techniques

utilize Doppler as measurements (H1). This dissertation proposes the use of both

the Doppler (H1), Doppler Rate (H2), and a state Earth-bound constraint C1).
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Only the first time sample is considered, where the received Doppler at tk = 0

is z1(0) = 574.98 Hz and the Doppler Rate z2(0) = −17.024 Hz/sec. The values

are obtained from the analytic form of the incident signal (Eq. 2.21 and Eq.

2.24) upon the satellite. The figure is generated by varying all possible values

of the emitter position and plugging into the measurement equation(s). If the

generated value(s) of the measurements come within 2.5% of their true values

(
[
574.98 Hz −17.024 Hz/sec

]T
) then the point is shaded.

The large light blue hyperboloid surface (H1) represents the solution space for

techniques that only use Doppler (Eq. 2.4). To reiterate, all values within the

light blue space represent an emitter position estimate that, when plugged into

the measurement equation for Doppler, yields a measurement value within 2.5%

of the true value. This suggests that only a little deviance in the state estimate

(emitter location) yields a very believable measurement. This does not bode

well for estimation purposes. An error tolerance of 2.5% is very easily attained

when marginal ephemeris errors, oscillator errors, and even only additive noise is

present. The inclusion of both Doppler and Doppler Rate (Eq. 2.4 and Eq. 2.5,

denoted as H1 and H2 in Fig 2.5) is portrayed by the magenta arc overlapping

a much smaller portion of the previous solution space. Note, the solution space

generated by the Doppler Rate (H2) intersects the solution space generated by

the Doppler (H1), producing a much smaller and well-defined space. The narrow

strip of yellow incorporates the earth-bound constraint in addition to Doppler and

Doppler Rate (Eq. 2.4, Eq. 2.5, and Eq. 2.16, denoted as H1, H2, and C1 in Fig

2.5). It clearly provides a much smaller solution space and allows the geolocation

algorithm to deal with spurious or systemic noise rather than ill-conditioned error

surfaces. The result is a nonlinear estimation algorithm that is able to yield much

more accurate, versatile, convergent, and efficiently computed answers.
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2.3.3 The Geolocation Solution

The choice of measurements suggests a specific geolocation processing chain

once energy has been detected by the satellite receiver.

1. Estimation of the Instantaneous Frequency (Doppler) and the Derivative of

the Instantaneous Frequency (Doppler Rate)

2. The Mapping of the Doppler and Doppler Rate to an Emitter Location

This dissertation exclusively focuses on the second step. The first step can be

done in a variety of ways (see [9, 10, 13]) and is left to the interested reader to

choose based on their desired application. The estimation methods used in this

dissertation will be outlined in the Section 5 when applicable.

But what can be taken from the first step is to note that it generates a sequence

of noisy measurements made on a system governed by a state vector. There must

be a model that relates the evolution of the state over time (Eq. 2.15, a linear

equation), a constraint on the state equation (Eq. 2.16, a nonlinear equation),

and a model relating the noisy measurements to the evolving states (Eq. 2.4 and

Eq. 2.5, highly nonlinear equations). The noise portions are statistically defined

and therefore stipulate a probabalistic state-space formulation. This problem is

perfectly posed for nonlinear filtering.

The classic nonlinear filtering problem with an equality constraint can be writ-

ten as:

xk+1 = fk(xk,wk) (2.17)

0 = gk(xk) (2.18)

zk = hk(xk,vk) (2.19)
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where xk is the (L × 1) state vector at time instant k and zk is the (N × 1)

measurement vector, fk and hk are nonlinear functions, and {wk} and {vk} are

independent white noise processes of the state and measurement equations, with

zero mean and covariances Qk and Vk, respectively.

The constrained nonlinear filtering equations Eqs. 2.17-2.19 utilized for both

the proposed geolocation solution and the derived theoretic performance bound

can now be explicitly written as:

xk+1 = xk + wk (2.20)
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zk = hk + vk (2.22)

=
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+ vk

There are a trove of nonlinear filtering approaches that have been developed

over the past half century. All roughly take the same general Bayesian approach to

dynamic state estimation in that they all try to construct the posterior probability

density function (pdf) of the state based on a series of noisy measurements [56].

For this scenario, an estimate is required at each new measurement, so a recursive

filter is utilized which means the data is processed sequentially rather than in a
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batch process. This is is pivotal as the entirety of the dataset does not need to be

stored or reprocessed once a new measurement becomes available.

The entire premise of the Bayesian approach is to recursively quantify with

a measurable confidence the state vector xk at the sample k given the data Zk.

Constructed in a statistical sense, this forms the Posterior pdf p(xk|Zk). The

optimal Bayesian solution is formed from two recurrence relationships that form

the two stages that nonlinear recursive filters are comprised of: prediction and

update.

The prediction stage assumes that the pdf p(xk−1|Zk−1) is available and that

the transitional probability p(xk|xk−1) can be defined by Eq. 2.17. It is also worth

noting that Eq. 2.17 is a Markov process of order one, and as such:

p(xk|Zk−1) =
∫
p(xk|xk−1)p(xk−1|Zk−1)∂xk−1 (2.25)

When the measurement comes available at time k, zk, the update stage then

involves an augmentation of the prediction (prior) pdf through the use of Bayes’

Rule:

p(xk|Zk) = p(zk|xk)p(xk|Zk−1)
p(Zk|Zk−1) (2.26)

where the denominator connects with Eq. 2.19 and its affiliated noise statistics.

The ability to define p(xk|Zk) allows an optimal state estimate to be computed

versus many criterion. However, except for a few special cases, the analytic solu-

tions of Eq. 2.25 and Eq. 2.26 cannot be found. As such, approximations must be

made and a wide variety of suboptimal nonlinear filters are available to be chosen.

Each come with their own strengths, caveats, and malleability to each application

scenario.
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There are many methods of describing the classes of these suboptimal Bayesian

nonlinear filters. Here, four classes are adopted [56]: Analytic approximations,

Numerical approximations, Multiple Model filters, and sampling approaches. An-

alytic approximations include the EKF and its many variants. The analytic ap-

proximation comes in the form of linearizing Eq. 2.17 and Eq. 2.17 if they are

nonlinear. The EKF always approximates the posterior density as Gaussian, so

if the nonlinearity is particularly pronounced, its performance will suffer greatly.

Furthermore, the linearization comes in by the use of a Jacobian - a derivative-

based approach - and is therefore highly susceptible to initialization errors. EKF

variants (such as the iterated EKF) have been made to mitigate these errors but

massive loads in complexity are required. Regardless, the EKF can be an excellent

approach that is very fast to compute.

Numerical methods involve some form of numerical integration to solve the

unsolvable integrals involved with the recurrence relationships in Eq. 2.25 and

Eq. 2.26. This is done using a grid-based method to discretize the integration

variables, which then leads to a summation over the integral(s). These can be

highly effective but are limited to small search spaces and often cumbersome

adaptable searches. These have been applied in Hidden Markov Model (HMM)

filters very successfully in speech processing.

Multiple Model (MM) approaches approximate the posterior density by a

weighted sum of Gaussian density functions. If the distribution is multi-model,

this technique can be very effective. However, the computational burden is high

as the number of densities grows. Furthermore, the estimation of the number of

densities is a massively complex problem in of itself.

Of the sampling approaches, there are two in particular of special interest.

The first is the Unscented Kalman Filter (UKF) which utilizes the Unscented
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Transform in the EKF framework. Instead of approximating any nonlinear func-

tion in Eqs. 2.17-2.19, the posterior is approximated by the use of deterministic

sample points. There is an assumption of a symmetric distribution, a slightly less

stringent requirement that allows greater modeling abilities and modest compu-

tational requirements when compared to the EKF. There are many variants of

the UKF that actually fall under a more general class of linear regression Kalman

filters. All of these use the same filtering equations but vary in how they select

their points. Particle filters (PFs) are a different class but also a sampling ap-

proach. They perform a sequential Monte Carlo estimation based on randomly

formed probability densities. In general, it is not possible to effectively sample

the posterior density, and so a vast array of PF-variants exist to most efficiently

sample the approximate posterior density with the greatest stability. PFs are still

known to be computationally expensive.

There are two geolocation solutions provided in this paper. One is a UKF

variant and the other is a PF variant. There is an obvious need for the solution

to be computationally efficient. Therefore, a recursive solution is a must - the

storage of the entirety of the data chain or the use of it to make an estimate at

each measurement is prohibitively large in terms of storage size and computational

requirements. The Kalman framework perfectly fits these needs. However, the

heavy nonlinearity in Eq. 2.19 points immediately at the usage of the UKF. Fur-

ther, the constraint Eq. 2.18 must be used to obtain a less ill-conditioned solution

space. Constraints, as mentioned, greatly help the geolocation solution but intro-

duce odd nonlinearities in the error distributions and the probabilistic Bayesian

modeling must handle that. Again, the UKF and PF frameworks speak to this.

Because of these reasons, a UKF-based algorithm was chosen as the framework

for the scenarios where the error distributions (posterior) are expected to be rel-
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atively symmetric. UKFs require symmetric distributions but are well suited to

be robust to occasional higher order moments in the error distribution. When

the posterior density is expected to exhibit consistently non-symmetric scenarios,

a geolocation algorithm based on the PF that utilizes the cUKF as a proposal

distribution is designed. Each algorithm is designed to efficiently incorporate the

Earth-bound constraint of the emitter.

2.3.4 The Theoretic Performance Bound

The geolocation algorithms are realized by the use of a nonlinear iterative

estimation algorithm. It was also established that these types of filters are sub-

optimal. In order to gauge how well-designed they are, there must be a way to

measure how far from optimal they are. From the review of past and existing

solutions, it is apparent that none of the prior bounds for the SSG scenario exist

to properly gauge its algorithmic optimality. All took unrealistic geometric as-

sumptions in either the Earth model or the flight path of the satellite and utilized

the traditional Cramér-Rao Bound (CRB). Consequently, these prior performance

bounds are often rendered non-canonical and are poor candidates for nonlinear,

iterative algorithmic comparison.

Consequently, a recursive constrained Posterior Cramér-Rao Bound (rcPCRB)

is derived and computed that provides a measure of mean squared error optimality

for the cUKF and cUPF. It is uniquely suited in that it is a bound meant to

gauge iterative nonlinear estimation algorithms. The bound is a culmination of

developments on the CRB by [66, 65, 59, 19] and [20] that quantifies information

measures from both the state and measurement equations. Its iterative nature

is a drastic improvement on current performance bounds which only properly

accommodate block processing algorithms.
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Both the proposed geolocation solutions (cUKF and cUPF) and the derived

theoretic performance bound (rcPCRB) utilize Eqs. 2.17-2.19.

2.3.5 Validation Approach

Beyond theoretical performance bounds, further validation is needed to prove

algorithmic capability at the real-world level. In order to accomplish this, both

simulated scenarios was generated and real world off-the-air IQ data was obtained

from the TDS-1 satellite.

The artificial data comes from a complex simulation environment written en-

tirely from scratch. Orbital mechanics are utilized to govern the satellite tra-

jectory and the Earth follows the WGS 84 ellipsoid standards. An entire link

budget has been implemented allowing the user to accurately model many real-

world scenarios. The impinging signal is imbued with the phenomena incurred by

the transciever motion using the derivations provided in previous sections. Ac-

tual waveforms with specific modulations are incorporated into a passband and

eventually baseband signal. Estimates of Doppler and Doppler Rate are not ana-

lytically derived (model + noise) but are instead estimated using cyclo-stationary

techniques as would be used in the field. This represents a more realistic scenario.

Further, it was identified that ephemeris errors and oscillator errors would heavily

affect geolocation accuracy and their respective formulation and derivation are

shown below.

Ephemeris Errors

GPS is a mature and widely used positioning system for satellites in LEO,

most of which only utilize a coarse acquisition (C/A) code and L1 phase measure-

ments [22] or off-the-shelf, downsized adaptations of dual-frequency GPS receivers
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[57, 29]. For this paper, it is assumed the LEO satellite has one of these two types

of GPS receivers onboard. These receivers are susceptible to errors induced by

satellite geometry, ionospheric effects, ephemeris errors, satellite clock errors, mul-

tipath distortion, tropospheric effects, and numerical errors [63].

Errors are often quantified - for position and velocity - in terms of radial,

tangential, and normal errors. The radial, on-track, and cross-track component

form an orthogonal coordinate system with the origin placed upon the current

satellite position. The radial component shoots in a geodetic fashion towards

the earth surface. The on-track axis lies upon the satellite position, pointing in

the same direction as the satellite velocity vector. The cross-track forms a two

dimensional plane with the on-track axis.

The positional error quantities are quantified as a zero-mean Gaussian Random

Variables (GRV) along this coordinate system. The radial component will have

the largest standard deviation (σpr). This is expected as the vertical component is

the most sensitive in the dilution-of-precision for single-point solutions, with most

errors falling between ±5 meters. The on-track and cross-track components (σpo

and σpc, respectively) are typically less than ±2.5 meters [29]. Pending on the

quality of the GPS receiver, often the mean of the position errors are near zero,

but can exhibit bias in the radial error estimates [22] up to 10 meters when only

a single-frequency GPS receiver is used without additional onboard processing.

The case of a radial bias is not considered here. Errors (in the vector norm sense,

|ve|) in velocity average 0.34 meters per second with minimal values reaching 0.27

meters per second and maximal errors being 0.48 meters per second [6].

Based on the manner these error quantities are reported, numerical values

based on experimental and simulated results published in [22, 57, 63, 6, 29] will

be used in this paper. Each of these papers pertain to LEO satellites utilizing the
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same quality of electronics as would be expected for the technology presented in

this paper. Table 2.1 summarizes the ephemeris errors sets that will be evaluated

in this paper: The parameters are radial error (σpr), on-track error (σpo), cross-

Table 2.1: Table of Positional Error Distribution Values

Set σpr σpo σpc |ve|
1 1.5 m 1.0 m 1.0 m 0.27 m/s
2 8.0 m 4.0 m 4.0 m 0.48 m/s
3 12.0 m 5.5 m 5.5 m 1.0 m/s

track error (σpc), and the (3×1) velocity error (ve). The values are taken from the

sources listed in references [22, 57, 63, 29] and [6]. and represent the best, average,

and worst quoted performances of small LEO satellite GPS systems. The drawn

positional error values are simply added onto the truth values and propagated

through the geolocation algorithms as usual. The velocity error is incurred by an

additive error vector (onto the true velocity vector) whose components are drawn

from a zero mean distribution with a standard deviation equal to the magnitude

given in Table 2.1. It is assumed these error distributions are zero mean.

Oscillator Errors

In single sensor Doppler-based geolocation oscillator drift is a serious concern.

Assume the reading from the ith clock is hi(t). If the clock is perfect, then:

hi(t) = t (2.27)

However, all clocks possess inaccuracies and the off-the-shelf receivers and trans-

mitters applicable for this technology will certainly possess a non-negligible amount

of oscillator error and drift. The error quantification utilized here is based on the
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clock error derived by [21]. The clock reading can be written as:

φi(t) = ξi(t) + wi(t) (2.28)

where ξi(t) is a GRV and wi(t) is a Weiner Process. The GRV has a mean of µi and

variance σ2
i and the Weiner process comes from a zero mean process integrating

(summing) over a random variable of variance ε2
i , with w(0) = 0.

Using this clock model, denote the receiver clock as hR(t) and the transmitter

clock as hT (t). They are defined as:

hT (t) = t+ φT (t) (2.29)

hR(t) = t+ φR(t) + φJ(t) (2.30)

where φT (t) is the transmitter oscillator error, φR(t) is the receiver oscillator error,

and φJ(t) is receiver jitter, specified from datasheets. Generally, datasheets give

a phase noise specification that can be modeled as a GRV. Then, using Eq. 2.1,

the transmitted signal can be expressed as:

yT (t) = Re{s̃
(
hT (t)

)
ej2πfchT (t)} (2.31)

= Re{s̃
(
t+ φT (t)

)
e
j2πfc

(
t+φT (t)

)
} (2.32)

When the transmitted signal undergoes a path delay τ(tk) = r(tk)
c0

(Eq. 2.3), the
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received signal at the time instant tk can be written as:

yR(t) = Re{s̃
(
t+ φT (t)− τ(tk)

)
e
j2πfc

(
t+φT (t)−τ(tk)

)
} (2.33)

= Re{s̃
(
t+ φT (t)− τ(tk)

)
e
j2πfc

(
t+φT (t)−τ(tk)

)
e
−j2πfc

(
t+φR(t)−φJ (t)

)
︸ ︷︷ ︸

Receiver Carrier Term

} (2.34)

u Re{s̃(t) e−2πjfcφJ (t)︸ ︷︷ ︸
Jitter Term

e−j2πfcτ(tk)︸ ︷︷ ︸
Doppler Term

e
j2πfc

(
φT (t)−φR(t)

)
︸ ︷︷ ︸

Oscillator Term

} (2.35)

Note that in Eq. 2.35 the narrowband assumption has been applied. The addition

(or subtraction) of a Gaussian noise process (GNP) from a GNP is another GNP.

The addition (or subtraction) of a Weiner process from a Weiner process is another

Weiner process. Therefore:

φT (t)− φR(t) = ξ(t) + w(t) (2.36)

where the mean of ξ(t) is µ = µT − µR and variance σ2 = σ2
T + σ2

R. The Weiner

process w(t) is again zero mean but ε2 = ε2
T +ε2

R. It is this form that the simulated

data the proposed algorithm takes in, the exact values of which are drawn from

Tables 2.1-2.2 and described in further detail in the Numerical Results section.

Table 2.2 shows the relevant values, representing standard values for a LEO

GPS unit and a typical cheap RF transmitter taken from references [22, 57, 63, 29]

and [6]. These values are used to obtain the statistical values of the oscillator

noise for simulated algorithmic validation. The phase noise comes from the ran-

dom variable ξ(t), which gets its values drawn from Table 2.2. Additionally, the

oscillator frequency accuracy for the transmitter and receiver is 5 × 10−11 which

is used to produce the oscillator drift. The receiver jitter (τJ) is 50× 10−9. This

is implemented as a GNP added onto the incorporated time delays at each time

sample.
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Table 2.2: Table of Oscillator Error Values

Set 10 Hz 100 Hz 1 kHz 100 kHz Units
1 −70 −113 −128 −140 dBc/Hz
2 −110 −120 −140 −150 dBc/Hz

The effects these oscillator errors will vary greatly depending on the quality

of the oscillator and the frequencies involved. The three labeled terms - Jit-

ter, Doppler, and Oscillator - in Eq. 2.35 will differ from scenario to scenario.

Clearly, the higher the transmitted frequency, the greater the effects of the Jitter

and Oscillator Term. However, higher transmitted frequencies generally exhibit

much smaller errors. Optimizing oscillator error is a tradespace between oscillator

quality, pricing, and the frequency of transmission.
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Chapter 3

Geolocation Solutions

This chapter outlines the rationale, background theory, and the theoretical

construction of the two geolocation solutions provided by this dissertation. The

two solutions represent two different assumptions on the posterior density: one of

approximate symmetry and one of non-symmetry. Each of these assumptions can

reasonably be expected to be present in SSG scenarios and are described below.

The first solution is meant for scenarios where the expected error distribution

is mostly symmetric. This geolocation solution takes the form of the constrained

Unscented Kalman Filter (cUKF) and can be applied in situations where errors

such as ephemeris and oscillator errors are mild or mitigated in some fashion such

that the biases incorporated into the measurements do not differ drastically from

the expected measurement model for a majority of the acquisition time.

When measurements are expected to exhibit large occasional deviance (bias)

from the analytic model, a constrained Unscented Particle Filter (cUPF) has been

derived that offers the same capabilities as the cUKF solution but with more tol-

erance to the aforementioned errors in measurements. It utilizes the cUKF as

its proposal distribution and constantly resamples to avoid sample impoverish-

ment. A methodology is laid out to keep the computational requirements roughly
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Table 3.1: cUKF vs. cUPF

cUKF cUPF

Computationally Efficient Computationally Heavy

Approximately Gaussian Posterior No Noise Density Constraints

Fast, Stable Convergence Fast, Slightly Oscillating Convergence

Robust within Assumptions Extremely Robust

comparable with the cUKF approach.

These two geolocation solutions far outstrip current methods in terms of ge-

olocation accuracy within the scope of the intended geolocation scenario. When

comparing the two approaches there are a set of very distinct tradeoffs, which are

shown in Table 3.1.

Both of these solutions utilize the well known advantages of the Kalman Filter

(KF). The KF is a technique well-suited for real-time processing and has modeling

and uncertainty quantification abilities that far outstrip techniques such as Non-

linear Least Squares. Both the cUKF and cUPF also utilize a novel projection

methodology meant to constrain the sigma points generated by the Unscented

Transform into the usable solution space. This constraint allows the filter to

generate geolocation solutions faster, with faster convergence, yielding higher ge-

olocation accuracy.

The background theory governing the choice of a Kalman-based approach is

described below. Additionally, the background theory and contributions within

the choice of the cUKF and the cUPF is shown as well. The derivation of the

constraint projection is outlined and demonstrated. A full computational cost

profile is provided for each algorithm in terms of three types of floating point

operations (FLOPs).

44



3.1 Low Measurement Bias Solution

3.1.1 Background Theory

The traditional UKF [35] is well known and is briefly outlined here. Recalling

the classic nonlinear filtering problem expressed in Eqs. 2.17-2.19, the traditional

KF assumes functions f and h are linear, and the state variables are Gaussian

random variables (GRVs). Naturally, a GRV put through a linear system is again

a GRV. When the system is nonlinear, characterizing the resulting distribution of

the propagated GRVs is non-trivial. The UKF assumes the state distributions are

Gaussian and represent the distributions as a set χ of 2L+1 deterministic sample

points called sigma points, where L is the number of states. The sigma points are

calculated as shown below:

χ0 = xk−1

χi = xk−1 + ζ(
√

Pxk−1)i for i = 1, . . . , L

χi = xk−1 − ζ(
√

Pxk−1)i for i = L+ 1, . . . , 2L

(3.1)

where xk−1 is the sample mean and (
√

Pxk−1)i denotes the ith column of the matrix

square root of the covariance of the prior state estimates at time t = (k − 1)Ts

with the desire to predict and estimate the state variables at time k where Ts

is hte sampling interval. ζ is a scaling factor that determines the spread of the

sigma points about the mean. These sigma points are then fed through the state

and measurement equations, and the resulting distributions are approximated

with weighted sample mean and weighted sample covariances. The time update
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equations are:

χxk/t = f(χxt , χwt )

x̂−k =
2L∑
i=0

wmi χ
x
k/t,i

P̂−xk
=

2L∑
i=0

wci (χxk/t,i − x̂−k )(χxk/t,i − x̂−k )T

(3.2)

Likewise, the measurement update equations are:

χzk/t = h(χxt , χvt )

ẑ−k =
2L∑
i=0

wmi χ
z
k/t,i

P̂−zk
=

2L∑
i=0

wci (χzk/t,i − ẑ−k )(χzk/t,i − ẑ−k )T

P̂−xkzk
=

2L∑
i=0

wci (χxk/t,i − x̂−k )(χzk/t,i − ẑ−k )T

(3.3)

where the weights are calculated using the following equations:

wm0 = λ

L+ λ
(3.4)

wc0 = λ

L+ λ
+ (1− α2 + β) (3.5)

wmi = wci = 1
2(L+ λ) for i = 1, . . . , 2L (3.6)

The scalars α, β, and λ are used to taper the spread of the sigma points to the

prior mean. Together, all of this allows the calculation of the final estimates where
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the measurement and state estimates are fused together:

Kk = P̂−xzk
(P̂−zk

)−1

x̂k = x̂−k + Kk(zk − ẑ−k )

P̂xk
= P̂−xk

−KkP̂−zk
KT
k

(3.7)

3.1.2 The constrained Unscented Kalman Filter (cUKF)

There are many methodologies for implementing constraints within the non-

linear filtering framework, yet there is no general way of doing so. Excellent

overviews can be found in [61] and [34], where it is suggested that constraint

implementations fall under pseudo-observation, projection or reparameterization

methods. Reparameterization is not applicable here due to complexities caused

by the square roots in Eq. 2.21 and the usage of the ECEF coordinate sys-

tem. Psuedo-observation puts the constraint as a noiseless measurement equation,

but this causes a highly singular noise covariance which creates many practical

difficulties concerning ill-conditioned covariances [61]. Therefore, the projection

methodology has been chosen due to its applicability to this problem.

Projection can be used in EKFs, UKFs, and PFs. The use of projections

in the particle framework is the basis of the second algorithm (described in the

proceeding section). In general, the use of a PF with very small process noise runs

the continual risk of sample impoverishment [7]. The EKF, due to its respectable

modeling capabilities and superior computational efficiency is a rational choice

and serves as the comparative basis in Section 5. Its formulation is provided

below.

The cEKF projects the unconstrained estimate of the Kalman filter onto the

constraint surface within the usual Kalman Filtering equations. This projection
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can be expressed [61] as:

x̃k = argminx(x− x̂k)T P̂xk
(x− x̂k) (3.8)

subject to: Dx = d (3.9)

where the positive-definite weighting matrix has been chosen to be the updated

covariance matrix P̂xk
that obtains the maximum probability estimate of x. The

constraint can be implemented by taking a first order Taylor Expansion of the

constraint, evaluated at the current state estimate as shown in [61]. For the

Earth-bound constraint:

D = ∂

∂x
g(x) =

[
2x(1)

k

R2
eq

2x(2)
k

R2
eq

2x(3)
k

R2
p

]
(3.10)

Therefore, Eq. 3.9 can be expressed as:

d = 1− g(x̂k) + D(x̂k)x̂k (3.11)

The updated state estimate can then be written as:

x̃k = x̂k − P̂xk
DT (DP̂xk

DT )−1(Dx̂k − d) (3.12)

As will be shown in Section 5, this cEKF formulation lacks the modeling capabili-

ties for both the measurement equations and constraint equation. To remedy this,

it is proposed to use a version of the cUKF, to better model the nonlinearity of

the measurement equation. Further, a novel projection method was derived that

takes each sigma point and quickly transforms them to the constraint surface. This

avoids large grid searches or computationally expensive nonlinear programming

problems [61, 36]. The process is succinctly outlined below:
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Constrained Unscented Kalman Filter Algorithm

1. Calculate sigma points as in Eq. 3.1

2. Project sigma points that are not in the constrained solution space into

the feasible region

3. Run projected sigma points through the time update equations as in Eq.

3.2

4. Project state estimates outside the constrained solution space into the

feasible region using the Sigma Point Projection Algorithm

5. Run projected sigma points through Measurement-Update Equations as

in Eq. 3.3

6. Run the Fusion Equations, Eq. 3.7

7. Repeat

This algorithm efficiently projects wayward sigma points to the closest feasi-

ble solution space, then recomputes the time and measurement update equations.

Each point projection requires only 48 multiplications, 28 additions, 1 square root,

and 10 trigonometry operations. Note the longitudal computation can be done in

a variety of ways, but the arc tangent method was used in the computational cost

analysis. Each sigma point pσ =
[
pxσ pyσ pzσ

]T
, is projected to the nearest point

on the Earth’s ellipsoid, pσ̂ =
[
pxσ̂ pyσ̂ pzσ̂

]T
.

Sigma Point Projection Algorithm

49



1. Compute the Longitude of pσ, λσ

2. Rotate pσ about the z-axis using the rotation matrix Rz(−λσ), so that the

resulting point pσ lies only on the x-z plane.

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (3.13)

p̂σ = Rz(−λσ)pσ (3.14)

3. Acquire the point of intersection of the geodetic line formed from p̂σ with

the x-axis

p̂i =


p̂xσ − p̂zσ tan(π − λσ)

0

0

 (3.15)

4. Rotate back the point p̂i using Rz(λσ) to obtain the original point of inter-

section pi formed with the geodetic line created with pσ and the xy-plane.

pi = Rz(λσ)p̂i (3.16)

5. Using the line formed from points pσ and pi, find the closest point of in-

tersection (w.r.t. pσ) of the line and the ellipsoid formed from Eq. 2.21,

pσ̂.

pσ̂ =


(1− s)pxi + spxσ

(1− s)pyi + spyσ

(1− s)pzi + spzσ

 (3.17)

Where s is the line formed from points pσ and pi parameterized in arc length.
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As is shown in Appendix 8.2, the constraint Eq. 2.21 is first reparameterized

in terms of s then solved for with a simple quadratic detailed below:

s = −b+
√
b2 − 4ac

2a (3.18)

where

a = (pxi − pxσ)2 + (pyi − pyσ)2

R2
eq

+ (pzi − pzσ)2

R2
p

(3.19)

b = 2pxi pxσ − 2(pxi )2 + 2pyi pyσ − 2(pyi )2

R2
eq

+ 2pzi pzσ − 2(pzi )2

R2
p

(3.20)

c = (pxi )2 + (pyi )2

R2
eq

+ (pzi )2

R2
p

− 1 (3.21)

Results depicting this process are shown in Figure 3.1. The blue plane is the

surface of the Earth. Unconstrained sigma points denoted in black are put through

the steps outlined above and projected onto the earth’s surface. The constrained

sigma points are shown in green, with its new sample mean much closer to the

true emitter position in red.

3.2 High Measurement Bias Solution

3.2.1 Background Theory

One of the four sub-optimal nonlinear filters was the category of grid-based

approaches. These grid the solution space to compute the Posterior density re-

cursively. A commonly used filter of this variant is the Point Mass Filter, but is

heavily cursed by dimensionality with respect to the state vector size, grid size,
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Figure 3.1: Depiction of the Sigma Point Projection Operation. The red dot
denotes true position of the emitter. The black dots are the unconstrained sigma
points which are put through the projection method to generate the constrained
sigma points in green. The blue plane is the surface of the earth.

and is also quadratic in algorithmic complexity.

The Unscented Kalman Filter is a deterministic sampling of a finite set of grid

points (the sigma points). The UKF uses a multivariate Gaussian assumption

to have these deterministic sampling points generate an estimate of the Posterior

density. The Particle Filter, on the other hand, provides a (numerical) approxima-

tion to the nonlinear filtering problem also with a grid, but the grid is adaptively

selected in a stochastic fashion. Weights are used to adapt the grid for each

particle (of which the set of Np particles, make up the stochastic grid) to then ap-

proximate the Posterior density. The deterministic sampling offered by the UKF

with 2L+ 1 sample points is now attempted with Np particles.

A generic PF requires a proposal distribution, a resampling strategy, and a

stipulated number of particles. A proper choice of a proposal distribution allows
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the algorithm designer to sample from a simpler distribution than the desired and

generally unattainable posterior distribution. This ability is obtained through

importance sampling, which comes in many forms.

The theory governing this is as follows. Let Xk =
[
xj, j = 0, . . . , k

]
represent

the sequence of desired states. Let Zk =
[
zj, j = 0, . . . , k

]
be the sequence of

measurements. Additionally let the joint posterior density and marginal density

at time k be p(Xk|Zk) and p(xk|Zk), respectively. Lastly, let
[
xik,wi

k

]
denote a

random measure that characterizes the joint posterior - this represents a set of

support points with associated (normalized) weights.

Monte Carlo integration serves as a way to numerically evaluate a multidi-

mensional integral and serves as the engine of all Particle Filters. Assume the

following integral is to be evaluated:

I =
∫

g(x)∂x (3.22)

Generally, Monte Carlo integration is set up where the factorization g(x) = f(x) ·

π(x) occurs. π(x) is interpreted as a probability density function that, when N

samples are drawn from it, the Monte Carlo estimate of the integral:

I =
∫

f(x)π(x)∂x (3.23)

is the sample mean:

IN = 1
N

ΣN
i=1f(xi) (3.24)

where
[
xi, i = 1, . . . , k

]
are the drawn samples. Additionally if these samples

are independent then IN is an unbiased estimate and will, according to the Law

of Large Numbers, converge almost surely to I. The rate of convergence of the

estimate is independent of the dimension of the integrand. It is worth noting that
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deterministic sampling such as the UKF has a rate of convergence that decreases

as the dimension of the integrand increases [56]. This highly useful property of

MC integration comes from the assumption that the samples xi come from parts

of the state space that are informative to the integral. This directly translates in

the Bayesian estimation context to π(x) representing the posterior distribution.

The posterior density, as is well known, is very difficult to sample from. One of

the work-around methodologies is importance sampling.

The premise of importance sampling is the existence of a density, q(x) that is

similar to π(x) in that it shares the same support:

π(x) > 0→ q(x) > 0 ∀ x ∈ RN (3.25)

This allows the reformation of the integral to be written as:

I =
∫

f(x)π(x)
q(x) q(x)∂x (3.26)

Therefore the MC estimate can be found by generating N samples drawn from

q(x) and then the weighted sum can be formed:

IN = 1
N

ΣN
i=1f(xi)ŵ(xi) (3.27)

where ŵ(xi) = π(xi)
q(xi) from the weights. Generally the normalizing factor of the

desired density is not known so the normalization of the weights needs be done.

Importance Sampling put in the context of Bayesian nonlinear filtering is

known as Sequential Importance Sampling (SIS). This sequential Monte Carlo

approach is known by many names including bootstrap filtering, condensation

algorithm, particle filtering, interacting particle approximations, and more [56].
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Importance sampling established that the Posterior density could be obtained via

a discrete approximation:

p(Xk|Zk) ≈
Np∑
i=1

wikδ(Xk −Xi
k) (3.28)

with weights chosen as described via:

wik ∝
p(Xk|Zk)
q(Xk|Zk)

(3.29)

Recursion is obtained via the following assumptions [7]. First, that the impor-

tance density can be decomposed as:

q(Xk|Zk) = q(xk|Xk−1Zk)q(Xk−1|Zk−1) (3.30)

This establishes that a new drawn sample from the importance density is pairing

the prior samples with a new state. This, along with the last assumption that the

stochastic process is a Markov Chain (which allows a sample xk to only depend

on the previous step xk−1), allows the weight update equation to be established

as:

wik = wik−1
p(zk|xik)p(xik|xik−1)
q(xik|xik−1, zk)

(3.31)

which in turn allows the Posterior density to be more simply approximated as:

p(xk|Zk) ≈
Np∑
i=1

wikδ(xk − xik) (3.32)

The numeric values of the weights and amount of samples determine the efficiency

of the SIS algorithm. As shown, this algorithm utilizes recursion of the weights

and draws samples each time step for each particle from the importance density.
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It is an elegant and simple algorithm that is very powerful. However, every SIS

filter suffers from degeneracy where all but one particle will have nonzero weights

after a finite number of iterations. This is equivalent to saying the variance of the

particles is guaranteed to increase over time, which is well documented and is in

general unavoidable. Various means to measure degeneracy exist. One is shown

below.

Neff = 1∑N
i=1(wik)2 (3.33)

When the measure crosses below a user-stipulated threshold (Nthr), the next step

of Particle Filtering commences - resampling.

Resampling mitigates the degeneracy issue by generating a new same-sized set

(sampling with replacement) of particles with non-negligible weights. The new

state space variables (support) are chosen in a manner that particles with low

weight have a low chance of being chosen, and particles with a high weight are

given a high chance. The weights are reset to be uniform ( 1
N
). Many methodolo-

gies are available to do this, each with their own computational, accuracy, and

speed considerations. They are described below in the next section as they apply

to the PF variant designed.

The main components of the PF have been stipulated. SIS filtering, the cal-

culation of the Effective Sample Size (if desired), and Resampling. The structure

is simple and effective, but the main design component comes in the choice of the

importance function, the number of Particles, and the Resampling method choice.

3.2.2 The constrained Unscented Particle Filter (cUPF)

The variant of the Particle Filter devised for this dissertation does not deviate

from the main components of the SIS Filter with Resampling. However, many

design considerations need to be established as the PF framework is extremely
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general.

Choice of Importance Function

One of the main tenets of the PF is the use of the importance density as

described in Eq. 3.30. It is pivotal for the PF convergence and efficiency that this

importance density be as similar to the true Posterior density as possible. There

are a host of well established candidates [56]:

1. The optimal importance density w.r.t. minimizing the variance of the im-

portance weights has been derived in [17]. It involves the ability to sample

from p(xk|xik−1, zk) and to evaluate the integral yielding p(zk|xk−1). Nei-

ther of these quantities are readily available in a computationally feasible

manner.

2. The transitional prior p(xk|xk−1). However, this was found to be a poor

choice. Note that the state space spanned by x at time point k = 0 is the

entirety of the search space for the satellite to look for the RF emitter. This

is a much broader and expansive (uninformed) likelihood than the likelihood

p(zk|xk−1). This causes a severe degeneration in the particles, yielding only

a few particles with non-negligible weights within a few iterations.

3. There are a host of variants that "inform" the transitional prior to providing

samples with a higher likelihood (larger weight). A common method is the

Auxiliary Particle Filter which utilizes the current measurement to augment

the transitional state prior density. It was found in this application that the

state likelihood was simply too broad, and the usage of measurements to

augment it introduced instability and slow convergence. The SSG scenario

inherently depends on the measurement equation to constraint the state
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space much more than the state equations do. In the case of heavily biased

measurements as in this application scenario, the use of a measurement

that will be prone to frequent, non-Gaussian errors often incorrectly informs

likelihoods.

The constrained Unscented Kalman Filter developed in the previous section

is far and beyond the best choice for the importance distribution. It doubles

as both the best possible guess of the support of the importance density and as

a convergent, well-behaved estimation process. This is essentially the same as

placing Np particles, or Np cUKF filters to estimate the emitter location. Each

cUKF filter is initialized different, and the iteration process of the PF can be

visualized as particles randomly placed upon the Earth and incrementally moving

across the surface of the earth in search of the potential emitter location that

provides the best state estimate. As a result, this creates a filter that is much

more resilient filter to initialization error and greatly expands the search area

space. As will be shown, because resampling is done at each step, the importance

weights are not recursively passed on to be used in the computation for the next

time iteration.

Choice of Resampling Method

The resampling method used is referred to as Systematic Sampling and is cho-

sen for accuracy and computational efficiency. The computational requirements

are discussed more in the next section. The resampling method is simple to im-

plement and has a computational complexity of O(N). In general, systematic

sampling draws samples from a larger set, selected according to a random start-

ing point within a fixed, periodic interval. This method has wide applications

across many fields. But as it is applied to nonlinear filtering, the implementation
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was taken from [37] and is restated here:

Systematic Resampling

1. Initialize the cumulative sum of weights to be c1 = w1
k

2. FOR i = 2 : N set ci = ci−1 + wik

3. Set u1 ∼ U [0, N−1]

4. FOR j = 1 : N

• uj = u1 +N−1(j − 1)

• WHILE uj < ci : i = i+ 1

• Assign sample: xj∗k = xik

• Assign weight: wjk = N−1

Additional Components

A very accurate and efficient SSG solution has been formulated through the

use of a SIS Filter, utilizing a constrained UKF as the importance density and

resampling to mitigate sample degeneracy. However, resampling when the state

equation has relatively little noise in comparison to the measurement noise cre-

ates an unwanted phenomena called sample impoverishment [7]. This describes

a situation when there is a loss of diversity within the particles since the resam-

pling algorithm is preset to pick samples with high weights repetitively (therefore

when only a few samples have nonzero weights, sample diversity is quickly lost).

This generally leads to extremely quick convergence to a single particle and is

essentially equivalent to running a single cUKF.
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Given the emitter is assumed stationary, there is little chance that the noise

within the process equations will be relatively significant. In scenarios where

the emitter is approximately stationary (with respect to the satellite) the process

noise can reach the same magnitude as the measurement noise - but this cannot

be expected in a generic SSG system design.

To combat this, jitter can be added within the algorithm that prevents a

terminal loss of particle diversity. One of the more elegant matters of the SSG

problem formulation is the highly intuitive geometry. The constrained state space

is the surface of the earth. The cUKF generates sigma points that assume a mean

that is the emitter location estimate and gives a state covariance which is the

area of uncertainty about the estimate. The proposed PF runs Np cUKFs, each

returning a state estimate and covariance. At each time step, once all Np emitter

estimates (xnk) are returned, the centroid is computed, xγk . If the distance of all the

estimates (corresponding to distance upon the Earth) is less than 500 meters, then

all Particles are drawn once more from a Gaussian distribution centered at xγk)

and a covariance of the 500 meters squared in X,Y, and Z. This technique can be

seen as an ad-hoc methodology of a regularized particle filter (RBF) and attempts

to accomplish the same purpose as the Markov Chain Monte Carlo (MCMC) move

step. Each are legitimate contemporaries but were deemed too computationally

intense for the amount of times particle diversity is very low (this is rare).

Scenarios needing this jitter technique are rarely encountered in practice. How-

ever the jitter technique does add stability if the PF reaches a convergent point

with low particle diversity. This situation can occur when the estimate is very

accurate or entirely off, and is a symptom of purely perceived algorithmic con-

vergence. Adversely, it also prevents asymptotic approximation of the Posterior

density, although geolocation estimates of less than 500 meters for the purposes
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of this SSG scenario is hardly expected.

At this point the entirety of the crafted geolocation algorithm, the constrained

Unscented Particle Filter can be fully outlined:

Constrained Unscented Particle Filter

Assume there are i =
[
1 . . . Np

]
particles and Nt sampled time points.

The algorithm is initialized using the state covariance effectively covering the

search area. For each sampled time point:

1. Run the cUKF as discussed in the previous section

2. Draw xik ∼ N(x̂k|P̂i
xk

) = q(xik|xik−1, zk)

3. Assign each xik a corresponding weight, wnp

k

wik = p(zk|xik)p(xik|xik−1)
q(xik|xik−1, zk)

(3.34)

4. Normalize Weights by dividing each wik by Wn = ∑Np

i=1 w
i
k

5. Resample at each processed time step using Algorithm 2 in [7]

6. Compute the centroid xγk = ∑Np

i=1
1
Np

x̂ik. If |xγk − x̂ik| < 500 for each i

then redraw x̂ik ∼ N(xγk , 5002I).

7. Assign Covariance for each Particle = Pi
xk

= P̂i
xk

and compute a

weighted estimate of the mean for the current best estimate at time

k as x̂k = ∑Np

i=1 w
i
kxik.
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3.3 Computational Complexity

3.3.1 Overview of On-Board Processing Capabilities

The ability to process these geolocation algorithms in real-time is a major

aspect of its novelty. This is a distinct challenge as computation abilities of space-

craft have generally lagged behind terrestrial computers by several generations.

In general the cost to manufacture silicon computer parts tolerant to space radi-

ation forces a tradeoff between computationally high performance and radiation

tolerance [4]. Before the SmallSat Revolution, most satellite missions chose high

radiation tolerance to be risk-adverse. An excellent list of SmallSat Processors

and Single-Board Computers that have flown to space or are on existing missions

is in [24].

However, with the onset of the SmallSat Revolution, the risk equation has

changed. Satellite designers are more open towards utilizing higher computational

powers with lower radiation tolerance. Despite this trend, the onboard computa-

tional powers are still dominated by microcontrollers and general purpose central

processing units (CPUs).

Recently, research and applications involving reconfigurable computing and

hybrid computing have allowed much more power to be harnessed [24]. Recon-

figurable computing focuses on devices with adaptive designs that can be pro-

grammed to create different architectures and circuits. The most well-known of

these are Field Programmable Gate Arrays (FPGAs) which also bring to the table

energy efficiency. They are used now to interface multiple high-bandwidth sensors

to a system ("interface glue logic"), synthetic aperture radar (SAR), hyperspectral

imaging (HSI), image processing, image compression, and more. Hybrid comput-

ing combines dissimilar devices to gain their respective strengths when used as a

62



whole. An example of this is the use of a general-purpose CPU combined with an

FPGA on the same board or a combination of rad-hard devices with higher grade

commercial devices. The most popular of these are the System-on-Chip (SoC)

devices which combine several designed blocks into a single chip. These are then

embedded into processors, memory blocks, interface blocks, and more [24].

A specific example of a data processing system that could comfortably host

the provided geolocation algorithms is the SpaceCub v2.0 [53]. This was designed

by the NASA Goddard Space Flight Center and has flown on several missions.

It is a hybrid processor that houses two Virtex-5 FPGAs linked by a high speed

interconnect. The hybrid processor is a Xilinx Virtex-5 which has two PowerPC

440 RISC hardcore CPU blocks. Several other similar processing systems exist

and are escribed in [24].

3.3.2 Computational Cost of the Proposed Algorithms

Measures of computational costs are difficult as there is no standard metric

that yields equivalent comparisons across different systems. Computational Com-

plexity is traditionally described in the asymptotic sense using the big O notation.

It is a generic, usually worst case scenario that describes how an input number

of items, n, affects and is expressed in terms of the system output O(n). For

instance, integer multiplication is at worst O(n2), suggesting that there is a con-

stant cm such that the multiplication of at most n integers will be computed equal

to or less than cmn2 time.

This, however, does not give a tangible feel for an algorithmic implementation.

A more palpable measure is often a numerical quantity of flops. Flops is actually

an acronym, FLOPS, standing for "Floating Point Operations." It is a standard

for gauging algorithms and computations that require the high precision offered
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by floating point numbers. The number of flops needed to execute an algorithm

is highly informative. In a commercial processor setting, "FLOPs" is generally

understood to mean "Floating Point Operations per Second" to give a tangible

feel for how a particular processing unit can handle floating point tasks. Each

of these interpretations are more informative than another common measure -

instructions per second. The algorithms given in this paper are dominated by

floating point operations so the use of flops is reasonable and therefore utilized.

What constitutes a floating point operation differs from processor to processor,

so care must be taken to not false advertise. For instance, in the modern CPU

Intel x86 trigonometric computations are included as single line instructions. This

would quantify it as a flop, the same as a floating point multiplication. However,

if one were to perform a benchmark to measure the time required to compute

a trigonometric calculation versus a floating point multiplication - it would not

be uncommon to see the trigonometric computation time be upwards of 20 times

lengthier (taking many cycles to compute). Yet, they are both considered a flop.

The same story goes for square root operations. Because of this, the two algo-

rithms provided in this dissertation - the cUKF and the cUPF - are stipulated

below in number of flops (addition, subtraction, multiplication, division, exponen-

tiation), trigonometric computations, and square root computations.

cUKF

Let M be the number of measurements, L the number of states, and N the

number of sigma points. N is kept generic as the number of sigma points can

vary (although here N = 2L + 1, L = 3, and M = 2). Table 3.2 outlines

the computational burden at each step in the cUKF algorithm. The Cholesky

Decomposition (serially implemented) was used for the sigma point computation
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Table 3.2: cUKF Computational Cost Each kth Algorithmic Iteration

Algorithmic Step Flops
√
· Trig

σ-Pt Computation N(N+1)
2 + N3−N

3 N 0
Constraint Projection 78N N 10N

Time Update 2N(L2 + L) +NL+ L 0 0
Constraint Projection 78N N 10N
Measurement Update 2M2N + 4MN + 27LN +MLN 4N 0
Fusion Equations M3 + 3M2 − L + 2M + 4LM2 − LM M 0

Total
1
6 (2N3 + 3N2 + 946N + 3) + 5M2 + 2M + M3+

2NL2 + 30NL + 4MN + MLN + 4M2 − LM
16N +M 20N

in the State prediction and the LU decomposition [33] was used to invert the

state-measurement covariance in the Measurement Update section.

cUPF

Notation is the same as the cUKF in the prior section: Let M be the number

of measurements, L the number of states, and N the number of sigma points. For

this application M = 2 and K = 3 but is kept generalized. Let N f
cUKF denote the

total number of flops required by a single cUKF kth iteration. Likewise, let N s
cUKF

and N t
cUKF denote the total number of square root operations and trig operations.

The number of Particles is denoted as Np and D represents the number of draws

needed to characterize the uniform distribution (this will differ each time). Table

3.3 outlines the computational burden at each step in the cUPF algorithm.

The Cholesky Decomposition was used for the sigma point computation (se-

rially implemented) in the State prediction and the LU decomposition was used

to invert the state-measurement covariance in the Measurement Update section.

For the generation of a Gaussian sample, the method of CDF (Φ(x), Cumulative

Distribution Function) inversion is utilized. This takes a random number from a

unitary uniform distribution U [0, 1] and generates a Gaussian random variable,

x, via Φ−1(x). The closed form for the inversion of Φ(x) does not exist so a host
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Table 3.3: cUPF Computational Cost Each kth Algorithmic Iteration

Algorithmic Step Flops
√
· Trig

N cUKFs NpN
f
cUKF NpN

s
cUKF NpN

t
cUKF

Redraw Particles 4Np Np Np

Particle Weights 2M2Np + 7NpM+
2NpL

2 + 29NpL+ 3Np
2Np 0

Resample 6Np +DNp − 2 DNp DNp

Estimate KNp 0 0

Total Np(N f
cUKF + 2M2 + 2L2+

8M + 29L + 13 + D)− 2 Np(Ns
cUKF + D + 3) Np(Nt

cUKF + D + 1)

of approximations exist. The one used in this computational cost profile is the

Box-Muller transform [47]. The acquisition of a psuedo-random seed is assumed

to be taken from a physical process such as thermal or clock noise. These pro-

cesses are known to be roughly uniform and can be used to generate a uniform

distribution once scaled. The process needed to accomplish this varies broadly

from processor to processor and is largely left out of the analysis. The drawing of

a uniform number is considered a singular flop.

As will be shown in the Numerical Results Sections, in order to combat the

cUPFs high computational requirements, time samples can be skipped. This lux-

ury is afforded by the modeling capabilities of the cUPF framework.
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Chapter 4

Theoretic Performance Bounds

4.1 Background Theory

Let x be an (L × 1) deterministic parameter vector and let z be an (M × 1)

vector of measured data. As such, let p(z|x) be the conditional pdf of data z given

the parameter set x. Lastly, let x̂(z) be an estimate of x. The estimation mean

square error matrix can now be formed:

Σ = E
p(z|x)

[x̂(z)− x][x̂(z)− x]T
 (4.1)

and related to the Fisher Information matrix (FIM) and Cramér-Rao Bound

(CRB): [
Σ
]
ii
≥
[
J−1

]
ii

= C (4.2)

where
[
A
]
ij
denotes the element in the ith row and the jth column of matrix A.

C is the Cramér-Rao Bound (CRB), which is defined as the inverse of the Fisher

Information Matrix (FIM), denoted as J. It gives a theoretical lower bound on
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the covariance of any unbiased estimator. The FIM is defined as:

J = − E
p(z|x)

∇x
x log p(z|x)

 (4.3)

and ∇β
α is the (m × n) Hessian matrix w.r.t. parameter vectors α of size (m ×

1) and β of size (n × 1). This bound stands as long as the expectations and

derivatives exist, and the limits of integration do not depend on the parameters

to be estimated.

When the parameter vector is random with known statistics, Van Trees pro-

posed a Bayesian CRB (BCRB), also known as the Posterior Cramér-Rao Bound

(PCRB) [8]. Provided the derivatives and expectations exist, and the prior densi-

ties go to zero at the limits of the parameters being estimated, the Posterior FIM

can be written as:

JB = − E
p(z,x)

∇x
x log p(z,x)

 (4.4)

where p(z,x) is the joint pdf of z and x.

The recursive Posterior Cramér-Rao Bound (rPCRB) obtains its recursive

properties through use of the PCRB framework and Markovian Chain attributes,

as will be shown. The result is a bound well-suited to gauge the optimality of

iterative nonlinear estimation algorithms. The following expressions in this are

taken from the derivation in [66], and are restated here for convenience. Consider

the classic (non-constrained) nonlinear filtering problem:

xk+1 = fk(xk,wk)

zk = hk(xk,vk)

where xk is the system state (L × 1) vector at time k, {zk} is the measurement
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process (M ×1) vector, fk and hk are nonlinear functions, and {wk} and {kn} are

independent white noise processes of the state and measurement equations, with

zero mean and covariances Qk and Vk, respectively.

Together with a known pdf function of the initial state x0, p(x0), the joint

probability distribution of Xk = [xT0 , . . . ,xTk ]T and Zk = [zT0 , . . . , zTk ]T can be

formed:

p(Xk,Zk) = p(x0)
k∏
i=1

p(zi|xi)
k∏
j=1

p(xj|xj−1) (4.5)

Using this joint distribution and the Posterior Cramér-Rao Bound equation (Eq.

4.4), an (LN × LN) information matrix can be formed, J. The inversion of

this large matrix gives the PCRB. However, the only portion of this matrix that

is desired is the lower (k × k) submatrix representing the PCRB of only the

latest state estimates, denoted as
(
JBk
)−1

, as can be seen by decomposing Xk =[
XT
k−1xTk

]T
.

By assuming the iterative process is a Markovian Chain and the use of the

Woodbury matrix identity, Tichavsky et al showed that this submatrix can be

efficiently computed in a recursive manner [66]. The sequence JBk of posterior

information submatrices for the estimation of state vectors xk can be computed

as:

JBk+1 = D22
k −D21

k (JBk + D11
k )−1D12

k (4.6)
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where

D11
k = E

p(xk)

−∇xk
xk

log p(xk+1|xk)

 (4.7)

D12
k = E

p(xk)

−∇xk+1
xk

log p(xk+1|xk)

 (4.8)

D21
k =

(
D12
k

)T
(4.9)

D22
k = E

p(zk|xk)

{
Jk+1

}
+ E

p(xk)

−∇xk+1
xk+1

log p(xk+1|xk)

 (4.10)

and Jk is the standard FIM matrix:

Jk+1 = E
p(zk+1|xk+1)

−∇xk+1
xk+1

log p(zk+1|xk+1)

 (4.11)

Note that this recursion is initialized with:

J0 = E
p(x0)

−∇x0
x0 log p(x0)

 (4.12)

The following outlines the effect of adding a constraint to the estimation problem.

The traditional CRB under parametric constraints has been derived by several

methods. It was first proposed by [25] and later in a simplified manner by [49].

It was then expanded for the singular case by [65]. The theoretical foundation is

outlined here.

Now assume the (L×1) parameter vector x is subjected to a set of continuously

differentiable constraints as in Eq. 2.18:

C = {x|g(x) = 0} (4.13)

where it is assumed the set is nonempty. The (G × L) gradient matrix of the
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constraints is:

G(x) = ∂

∂x
g(x) (4.14)

Here, it is assumed that G(x) is of full row rank for any x that satisfies the

constraint Eq. 4.13 (although the case where it is singular is again covered in

[65]). This means there exists a matrix U ∈ RL×(L−G) whose columns forms an

orthonormal basis for the nullspace of G(x).

Recalling the mean squared error matrix defined in Eq. 4.1, Σ, the constrained

CRB can be defined as:

Σ ≥ U(UTJU)−1UT (4.15)

The application of the constraint to the rPCRB was formalized by [59]. Recall the

nonlinear filtering equations with an equality constraint in Eqs. 2.17-2.19. Then,

as shown in [59] the error covariance of any unbiased state estimate xk at time k

is:

Σk ≥ UkJ−1
k Uk (4.16)

where Uk denotes the matrix whose columns forms an orthnormal basis for the

nullspace of Gk(xk). This is stating that the matrix Σk is positive semi-definite.

It then follows through recursion that Jk (derived in the same fashion as [66]) can

be expressed as:

Jk+1 = Uk+1
(
D22
k −D21

k Uk(UT
kD11

k Uk + Jk)−1 . . . (4.17)

. . .×UT
kD12

k

)
Uk+1
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4.2 The recursive constrained Posterior Cramér-

Rao Bound (rcPCRB)

This section provides a recursive constrained Posterior Cramér-Rao Bound

(rcPCRB) that provides a measure of mean squared error optimality for the cUKF

and cUPF. The rcPCRB is uniquely suited in that it is a bound meant to gauge

iterative nonlinear algorithms that incorporates information measures from both

the state and measurement equations and easily adapts to on-off signal charac-

teristics. There are currently no existing bounds for the SSG scenario meant for

nonlinear iterative estimation algorithms, and this section applies the theory laid

out in Section 4.1 to the nonlinear filtering setup in Eq. 2.24.

Note, this bound does not apply to the situation where there are ephemeris

or oscillator errors present. These errors propagate a different characterization of

noise than is assumed in this bound (Gaussian).

Recall the desired rcPCRB bound defined in Eq. 4.17 as:

Jk+1 = Uk+1
(
D22
k −D21

k Uk(UT
kD11

k Uk + Jk)−1 . . .

. . .×UT
kD12

k

)
UT
k+1

Now, given Eq. 2.20 and Eq. 2.24, we can define the recursive Bayesian CRB

matrices as:

D11
k = Q−1

k (4.18)

D12
k = −Q−1

k (4.19)

D21
k =

(
D12
k

)T
(4.20)

D22
k = E

p(zk|xk)

{
Jk+1

}
+ Q−1

k (4.21)
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The expectation of the nonlinear function of xn in D22
n cannot be evaluated an-

alytically. One can either take the expectation of a Taylor Series approximation

of the nonlinear function or a Monte Carlo integration can be done. The latter is

the technique used here and defined below:

E
p(xk)

[Jk] =
∫

Jkp(xn)∂xk (4.22)

≈ 1
N

N∑
i=1

Jk(x̃ik) (4.23)

where x̃ik are drawn from the Gaussian distribution of xk. Jk is the traditional

FIM, which can be expressed as shown below:

Jk = E
{(

∂

∂xk
ln p(zk|xk)

)T(
∂

∂xk
ln p(zk|xk)

)}
(4.24)

=
(
∂

∂xk
hk
)T

V−1
k

(
∂

∂xk
hk
)

(4.25)

and the partial derivatives of Eq. 2.24:

∂zk
∂x(i)

k

=


∂

∂x
(i)
k

h
(1)
k (xk)

∂

∂x
(i)
k

h
(2)
k (xk)

 (4.26)

where (as is derived in Appendix 8.3):

∂

∂x
(i)
k

z
(1)
k (xk) =

(
1
λ

)(−v(i)
s(k)|ps(k) − xk| − (vTs(k)(ps(k) − xk))

p
(i)
e(k)−p

(i)
s(k)

|ps(k)−xk|

|ps(k) − xk|2

)
(4.27)

and
∂

∂x
(i)
k

z
(2)
k (xk) = ∂

∂x
(i)
k

A(xk) + ∂

∂x
(i)
k

B(xk) + ∂

∂x
(i)
k

C(xk) (4.28)
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where

∂

∂x
(i)
k

A(xk) =
(
−1
λ

)(−a(i)
s(k)|ps(k) − xk| − (aTs(k)(ps(k) − xk))

p
(i)
e(k)−p

(i)
s(k)

|ps(k)−xk|

|ps(k) − xk|2

)
(4.29)

∂

∂x
(i)
k

B(xk) =
(

1
λ

)( |vk|2(p(i)
e(k) − p

(i)
s(k))

|ps(k) − xk|3

)
(4.30)

∂

∂x
(i)
k

C(xk) =
(
−1
λ

)(
1

((ps(k) − xk)T (ps(k) − xk))3

)
× . . .

+
(
− 2vs(k)(vTs(k)(ps(k) − xk) ·

(
(ps(k) − xk)T (ps(k) − xk)

) 3
2 + . . .

3(p(i)
s(k) − x

(i)
k )|ps(k) − xk|(vTs(k)(ps(k) − xk))2

)
(4.31)

noting again that x(i)
k denotes the ith element of the vector x at the kth time step

and p(i)
s(k) denotes the ith element of the position vector of the satellite at the kth

time step.

Recall the constraint in Eq. 2.21. This constraint allows the construction of

the L × (L − G) matrix Uk (as shown in Eq. 4.16) where L = 3 is the number

of parameters of interest and G = 1 is the number of constraints. The gradient

matrix can then be defined in this case as:

G(xk) = ∂

∂xk
gk(xk)

=
[

2x(1)
k

R2
eq

2x(2)
k

R2
eq

2x(3)
k

R2
p

] (4.32)

We want a matrix Uk that is the orthonormal nullspace of G(xk). The constraint

space as dictated by Eq. 2.16 is an ellipsoid, and the vector described by Eq. 4.32
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is the normal vector at the point xk. Therefore, the tangent plane of the earth

ellipsoid at the emitter location provides the basis of Uk. The tangent plane at

the point xk can be expressed as:

0 = x(1)
k

R2
eq

(
x− x(1)

k

)
+ x(2)

k

R2
eq

(
y − x(2)

k

)

+ x(3)
k

R2
p

(
z − x(3)

k

)
(4.33)

where two vectors spanning this space at point xk can easily be found and made

orthonormal. The rcPCRB can now be computed for any SSG scenario where the

error distribution is approximately Gaussian.
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Chapter 5

Numerical Results: Simulated

Using both the cUKF geolocation algorithm and the rcPCRB performance

bounds, an in-depth analysis of the accuracy capabilities of SSG is provided with

variations in measurement noise, center frequency, slant angle, and initialization

error - lending valuable information for various mission types. A contemporary

approach using an cEKF (derived in Chapter 3) approach with the same earth-

bound constraint as the cUKF is provided for algorithmic comparison. The pro-

posed cUKF algorithm shows a close match with the rcPCRB theoretic perfor-

mance bounds (derived in Chapter 4), converging to single-kilometer geolocation

estimates in only a few seconds of acquisition time with demonstrated resiliency

to measurement and initialization error - vastly outperforming the cEKF by over

three orders of magnitude in every scenario.

The truth values for the synthesized data follow the derivations in Chapter

2 and are corrupted by Additive White Gaussian Noise (AWGN). The governing

physics for the Earth and satellite movement are generated using the realistic

simulation environment created from scratch, described in Section 2.3.5. For

the processing of the simulated IQ data, the measurement equation (Eq. 2.24)

estimates are produced as one would do in real-time by using a cyclostationary-
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Figure 5.1: Depiction of scenario used for simulated numerical results (unless
otherwise noted). The red dot is the emitter while the satellite moves overhead
in black. The sub-satellite path and range vectors are in cyan while the antenna
footprints are also shown at time zero (black dots) and five seconds later (light
green dots).

based method [23] for zk(1) (Doppler) and zk(2) (Doppler Rate)is estimated using

a Least Mean Squares curve fit to a numerical derivative.

All simulated results come from the following settings, shown in Fig. 5.1. An

emitter sits at 65 deg Latitude, 35 deg Longitude, and an altitude of 0 kilometers

above mean sea level (MSL). The transmitted signal has a center frequency of 120

MHz, emitting a 1200 Baud BPSK signal continuously for 5 seconds. The LEO

satellite is flying circular orbit at 500 kilometers altitude at an 88 deg inclination.

The satellite receives the transmitted signal, sampling at 4 times the highest

expected Doppler frequency. All other parameters are stipulated as needed for

the given scenario, or if changed from above, are succinctly noted to the reader.

Each point in the rcPCRB curves was obtained with 150 Monte Carlo trials to

produce the numerically derived Expectation in Eq. 4.23. The state covariance
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values are set to as close to zero as numerically possible within both the cUKF and

rcPCRB to reflect the stationary emitter assumption. The measurement noise for

the rcPCRB is set to the average of the measurement noise seen by the cUKF

trials. The rcPCRB starting (initial position estimate) covariance matches the

cUKF trials’ average starting position.

For each of the coordinates (x, y, and z), 100 initial position guesses are drawn

from a Gaussian distribution centered about the true position of the emitter with

a standard deviation of 50 km (in x, y, and z) unless otherwise stated. These

initial emitter position estimates are then projected onto the earth in the manner

described in Chapter 3 and fed into the cUKF. The cEKF possesses the same

covariances for state and measurement equations as the cUKF and is also fed the

same random initialization guesses.

For scenarios exhibiting large ephemeris or oscillator errors, the cUPF is shown

to effectively mitigate the non-Gaussianity in the Posterior error distributions.

The cUPF is pitted against the cUKF and evaluated for the same scenario as

with the cUKF (Fig. 5.1) over various magnitudes of ephemeris and oscillator

errors. Again, the received Doppler is estimated using a cyclostationary technique

[23] and the Doppler Rate is estimated using a Least Mean Squares curve fit to

a numerical derivative technique. Measurements for Doppler and Doppler Rate

are provided every 0.0573 seconds. The cUKF is run 150 times to produce the

performance curves, and unless otherwise stipulated, the cUPF utilizes 20 particles

and skips every 10 samples. Initial guesses are randomly drawn from a normal

distribution centered around the true emitter position with a covariance spanning

the surface of the earth nearly 400 kilometers in diameter. The cUKF settings in

both the cUKF (as itself) and the cUPF (as the proposal distribution generator)

are the same - the state standard deviation is set at 50 meters, the measurement
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Table 5.1: Parameter Table for Fig. 5.2

C2N [dB] σz(1)
[Hz]

σz(2)
[Hz/Sec] hs [km] i [deg] fc [MHz]

20 2.22 0.16 500 88.5 120.6
30 0.8 0.06 500 88.5 120.6
40 0.15 0.0175 500 88.5 120.6

standard deviation is at 10 Hz for Doppler and 3 Hz for Doppler Rate. The tuning

parameters are α = 1, β = 2, and κ = 0.

5.1 Carrier-to-Noise Ratio

The following scenario depicts the effect of measurement noise on geolocation

accuracy. A LEO satellite orbits the earth in a near polar orbit at 500 km altitude

above MSL and an 88.5 deg inclination listening to a transmitted signal for 5

seconds. The emitted signal has a center frequency of 120 MHz and has a BPSK

modulation with a baud rate of 1200. The sampling frequency is 4 times the

expected highest Doppler frequency. The emitter sits at slant angle of 27 deg and

a slant range of 574 km at tk = 0 relative to the satellite.

The cEKF, cUKF and rcPCRB are evaluated at differing carrier-to-noise

(C2N) ratios, which in turn affects the estimated measurements. This scenario is

very typical of a search-and-rescue operation or the intercept of a communication

signal. Table 5.1 lists the parameters used to generate the results shown in Fig.

5.2. For reference, the highest absolute measurement values are zk(1) = 664.99

Hz and zk(2) = 36.67 Hz/sec.

The cUKF closely matches rcPCRB with divergence beginning at 20 dB.

Carrier-to-Noise ratios ranging from 20 dB to 40 dB are standard values, and

given a stable enough estimation of the Doppler and Doppler rate, one can see

from Fig. 5.2 that single-kilometer accuracy is obtained nearly immediately and
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Figure 5.2: Depiction of the effect of differing Received Signal Powers upon the
cUKF Algorithm

steady state reached at about 3 seconds. The cEKF is clearly multiple orders

of magnitude larger than the cUKF performance. The cEKF is severely ham-

pered by its inabilities to deal with large initialization errors and lower modeling

capabilities.

5.2 Center Frequency

Center frequency is a complicated parameter to isolate due to the effect it

has on the sampling rate requirements to accommodate Doppler shifts, the RF

path loss, and the estimation technique applied. In general, an increase in center

frequency brings about a trade space with bandwidth, noise floor, and sampling

rate. One sanity check is the following: if the sampling rate is kept proportionally

constant to the highest received frequency, and the measurement noise of the

received Doppler and Doppler rate are kept with the same ratio - the performance

across center frequencies will be the same.

Fig. 5.3, generated using Table 5.2, numerically demonstrates this conclusion.
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Table 5.2: Parameter Table for Fig. 5.3

fc [MHz] σz(1)
[Hz]

σz(2)
[Hz/Sec] max z

(1)
k [Hz] max z

(2)
k [Hz/sec]

100 2.00 0.25 481.4 −32.3
500 10.11 1.20 2407.1 −161.55
1000 20.22 2.49 4814.2 −323.1

The fourth and fifth columns in Table 5.2 denote the highest received Doppler

and Doppler Rate over the acquisition time to give the noise standard deviations

in columns three and four meaning (as SNR will change based on a constant noise

level and a changing value of Doppler and Doppler Rate). Using the same orbit

settings as Section 5.1, it can be seen that the cEKF, cUKF, and the rcPCRB

perform the same at each center frequency. Simulations show once more a good

match between the cUKF and the rcPCRB, obtaining single-kilometer accuracies

well within 1 second. The cEKF once again performs a little over 3 orders of

magnitude worse than the cUKF, far from the optimal rcPCRB. This is strictly

from the lack of modeling capabilities of the highly nonlinear equations governing

the Doppler, Doppler Rate, and the constraint equation. the cEKF is notorious

for falling short in highly nonlinear situations and this scenario is no different.

Center frequency scales the Doppler and Doppler Rate curve up or down pro-

portionally. Yet, when the sampling rate and carrier-to-noise ratios are held pro-

portionally the same across different center frequencies, changing the center fre-

quency yields no new information for the geolocation algorithm to utilize. This is

an important fact when designing an SSG system.

5.3 Transceiver Geometry

This section shows how much more information is obtained from larger abso-

lute Doppler Rates that correspond to different signal acquisition positions during
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Figure 5.3: Depiction of the effect of different center frequencies when C2N
ratios and sampling rates are held proportionally the same.

the orbit. The faster the Doppler is changing (corresponding to the satellite being

closer and/or approaching the emitter), the more accurate the expected geoloca-

tion solution.

Table 5.3 shows the four signal sets. Each set corresponds to the satellite

receiving the signal at differing distances from a direct flyover. Here the center

frequency is held constant at 120 MHz. The 500 km orbit is set such that the

Doppler zero-crossing (fD = 0) occurs at a closest distance of 530 km away. The

time at which the satellite observes fD = 0 is denoted TD0 and the midpoint of

the satellite’s signal acquisition time is denoted Tmid.

As one would expect, shows that as the satellite moves closer and closer, the

performance improves both in convergence time and accuracy. As the range vec-

tor decreases as the satellite moves closer, the signal power increases, causing the

cUKF to track closer to the rcPCRB. Note there is a full magnitude of improve-

ment when the satellite is directly over the emitter and when it receives the signal

30 seconds earlier (at a 30 degree slant angle and an additional 50 kilometers of
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Table 5.3: Parameter Table for Fig. 5.4

Set σz(1)
[Hz]

σz(2)
[Hz/Sec]

Tmid − TD0
[Sec]

Slant Angle
[deg]

Range
[km]

1 1.65 0.49 0 15 535
2 3.31 1.00 −10 18 543
3 5.10 1.50 −20 23 561
4 6.04 1.82 −30 30 587

range distance). The cUKF outperforms the cEKF as in previous trials, but the

cEKF still reflects the slant angle trends discussed.

Figure 5.4: Depiction of the effect of different geolocation performances at dif-
fering slant angles. The different sets refer to the rows in Table 5.3

5.4 Initialization

A concern of any iterative algorithm is its resiliency to initialization errors.

Prior to this section, initial guesses were chosen from a spherical zero mean Gaus-

sian distribution with a standard deviation of 50 km. There, convergence is nearly

guaranteed. Here, two satellite orbits are portrayed and a much larger search
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space is considered. The two orbits differ mainly in that they are on opposite

sides of the emitter. The center frequency is 1000 Mhz and the measurement

noise σz(1) = 20.00 Hz and σz(2) = 2.5 Hz/Sec in each scenario.

In order to test the algorithm’s sensitivity to initialization, the following is

done. For each initial emitter location guess, five simulated runs of the satellite

receiving the emitting signal for 2.5 seconds are performed. Each of these runs

are put into the cUKF, generating a positional estimate. The average ending

error of these five runs is given a proportional color as shown in Fig. 5.5 and Fig.

5.6. The x and y axes show the distances (in x and y) that the initial emitter

positional estimate is from the true emitter position. The z error is imbued into the

geolocation process, but is not visibly apparent in Fig. 5.5 and Fig. 5.6. However,

the z value has an insignificant effect as each guess is projected upon the surface

of the earth with a search space located near the North Pole. The directionality of

the satellite is shown in the blue vector with light blue dot denoting the satellite

position at the end of the acquisition period.

The geolocation algorithm showcases a large area of convergence, several hun-

dreds of kilometers wide surrounding the true emitter position where geolocation

accuracies are well below 5 km. These results exemplify the conditioning of the

ill-conditioned solution space using the sigma point projection method and the

second measurement equation. It can also be noted that there is a divergence in

geolocation accuracy along the sub-satellite path of the satellite.

5.5 Ephemeris & Oscillator Errors

The following analysis shows the resiliency of the cUPF to both ephemeris and

oscillator errors. The setup and parameterization of the cUPF are as stipulated

at the beginning of this Chapter. All the figures are generated utilizing the values
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Figure 5.5: Depiction of the effect of different initial emitter position guesses for
Flight Path 1.

in Tables 2.1 and 2.2. On each plot the cUKF performance is plotted in red. The

weighted estimate of the cUPF is plotted in black. The cUPF’s distribution of

particles at each time point is plotted as well. Each color represents a particular

particle. As the particle evolves over time, the color still remains the same. How-

ever, the size of the marker is proportional to the weight the sample has received

and so will change over time as the cUPF is applied.

Figs. 5.7-5.9 all show the geolocation performance when the ephemeris errors

are set as specified in Table 2.1. The improvement of the cUPF over the cUKF is
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Figure 5.6: Depiction of the effect of different initial emitter position guesses for
Flight Path 2.

apparent in each scenario. For the ephemeris error sets 1, 2, and 3, the cUKF’s

final estimates are approximiately 63, 71, and 75 kilometers away from the true

emitter position, respectively. With the cUPF, those estimates are only 12, 8, and

18 kilometers away.

Fig. 5.10 showcases the geolocation performance when the transmitter is given

the noise characteristics of Error Set 1 in Table 2.2 and the receiver is given

noise characteristics of Error Set 2 in Table 2.2. Again the cUPF significantly

outperforms the cUKF. It should be noted that the ephemeris errors appear to
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Figure 5.7: Ephemeris Error Set 1 (from Table 2.1).

Figure 5.8: Ephemeris Error Set 2 (from Table 2.1).
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Figure 5.9: Ephemeris Error Set 3 (from Table 2.1).

Figure 5.10: Oscillator Error Set (from Table 2.2).
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Figure 5.11: Oscillator Error Set and Ephemeris Error Set 3 (from Tables 2.1
and 2.2).

have a greater impact on geolocation error than oscillator errors. Indeed, the cUPF

approaches only 3 kilometers of error when only oscillator errors are present.

When both oscillator and ephemeris errors (Error Set 3, the worst case sce-

nario) are present, Fig. 5.11 shows that the cUKF fails to get within 96 kilometers

of the true emitter position. The cUPF manages to converge to 10 kilometers of

RMS geolocation error in only 4 seconds of acquisition time. Note, the particle

degeneracy is avoided and "rogue" particles are corralled in efficiently for fast and

accurate convergence. The particle initialization is such that the search area is

nearly 4002 km.

5.6 Computational Cost

Given that the cUPF utilized 20 particles and skipped every 10 samples, the

computational cost for the cUPF and cUKF from the prior section (serving as the

proposal distribution in the cUPF implementation) can now be expressed. This

is outlined in Table 5.4 which utilizes Tables 3.2 and 3.3. It should be noted that
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Table 5.4: Computational Cost of cUKF and cUPF Comparison Each kth Al-
gorithmic Iteration

Category Flops
√
· Trig

cUKF 2028 114 140
cUPF 46998 2340 2820
Ratio ≈ 21.3x ≈ 20.5x ≈ 20.1x

the proportional increase in computation per kth time step is roughly equal to

the number of particles chosen (Np), which in this case is 20. Tables 3.2 and 3.3

show this computational comparison in detail. However, since the cUPF skips

every 10 time steps (for the numerical results on simulated data), the increase in

computation over the entire algorithm run-time is only approximately two times

more than the cUKF.
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Chapter 6

Numerical Results: Raw Data

The Cyclone Global Navigation Satellite System (CYGNSS) is a fully func-

tional constellation of 8 microsatellites in LEO whose goal is to improve extreme

weather predictions, particularly hurricanes. CYGNSS is a NASA-sponsored

project led by the Southwest Research Institute, University of Michigan, Sierra

Nevada Corporation, and Surrey Satellite Technology [15]. The objective of

Figure 6.1: Functional depiction of the CYGNSS mission. A CYGNSS mi-
crosatellite travels above the Earth receiving reflections of GPS signals upon the
water. Areas able to receive the GPS signal reflections are shown with the con-
toured, concentric circles representing where the antenna gain is large enough to
secure the signal. These reflections undergo a Doppler shift caused by the surface
water’s motion that allows scientists to infer the wind speeds.

CYGNSS is illustrated in Fig. 6.1. One of the 8 microsatellites can be seen
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flying above the Earth from left to right across the image. The microsatellite re-

ceives both direct and indirect signals from the GPS satellites. The direct signals

go straight from the GPS satellite (not pictured) to the CYGNSS microsatellite

and are used for precision positioning. The indirect signals also are emitted from

the GPS satellite, but instead of traveling to the CYGNSS microsatellite directly,

they reflect first upon the surface of the ocean and travel to the CYGNSS mi-

crosatellite listening above. The points where the indirect GPS signals reflect off

of the water are called specular points. These specular points under go differ-

ent Doppler shifts when reflecting off of different ocean surface contours. These

Doppler shifts can be reliably mapped to calculations of wind speed.

This system has been performing successfully since its launch in December of

2016. Prior to its launch a proof-of-concept mission was flown in November of

2016 for final mission validation. The data from this proof-of-concept mission was

obtained for the purposes of this Dissertation. Figures 6.3,6.4, and 6.6-6.8 used

with permission from Scott Gleason.

6.1 Data Acquisition

On November 13, 2016 a proof-of-concept mission was scheduled to demon-

strate the capabilities of the upcoming CYGNSS mission [15] in White Sands,

New Mexico. The TDS-1 satellite (see Fig. 6.2) operated by Surrey Satellite

Technology would be flying two passes within view of the proposed beacon lo-

cation. To execute the mission objectives, the predicted ephemeris data of the

TDS-1 satellite was obtained for the data collection time window. Similarly, the

ephemeris data for the GPS satellites in view at that time was obtained as well

as their specific psuedorandom noise sequence (PRN).

One of the main objectives of the proof-of-concept mission was to test how
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Figure 6.2: TDS-1 Satellite flown by Surrey Satellite Technology for the
CYGNSS Proof-of-Concept mission in November 2016. TDS-1 has a size of 77 cm
x 60 cm x 90 cm with an approximate launch mass of 156 kg and falls under the
category of Minisatellite.

wide of a swath the CYGNSS satellite could reliably receive the specular points (as

shown in Fig. 6.1) and to test the resolution of wind speed that could be detected

(synonomous with Doppler shift of specular point). To do this, each PRN signal

was imbued with small time delays and Doppler shifts - representing different

locations and characteristics of specular points. By analyzing which of these

points were "seen" by TDS-1, a rough experimental bound on the viewing limits

of the CYGNSS satellites could be obtained as well as the Doppler resolution. The

exact format of these spectral copies are shown in Fig. 6.3, which span Doppler

shifts of ±5 kHz and time delays of 1000 chips (equivalent to ±16µsec).

One more hurdle remained to validate the CYGNSS operation. Looking at the

mission concept in Fig. 6.4, the "Desired Scenario" depicts exactly what is shown

in Fig. 6.1: a GPS satellite transmits its signal which then bounces off a watery

area upon the Earth to be received by the CYGNSS (TDS-1) satellite overhead.

However, due to this demonstration occurring in the middle of New Mexico, the

bounce (specular point) would not occur as there was no water to reflect off of.

The mission would have to emulate the desired scenario with only the "Reality"

setup in Fig. 6.4, consisting of only the TDS-1 Satellite and a transmitting L1
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Figure 6.3: The baseband transmitted signal of 54 PRN summed sequences.
Each dot represents a PRN sequence that has been imbued with a time delay and
Doppler Shift.

beacon.

Figure 6.4: Mission concept of the TDS-1 Proof-of-Concept Demonstration.

In other words, although the GPS signal is being transmitted from the beacon

to the TDS-1 satellite along the path rbr, doctoring of the signal needs to be done

such that the signal appears to the TDS-1 satellite as though it had traveled across

rst and rsr. This concept is pictured in Fig. 6.4. In order to accomplish this, the

predicted ephemeris data of the TDS-1 satellite and the GPS satellites in view at
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that time was obtained and used to pre-multiply each PRN signal (representing

a specific GPS satellite) with the appropriate delay and Doppler shifts to make

the signal appear to be coming from a moving specular point. This effectively

emulates the "Desired Scenario" in Fig. 6.4 and the concept depicted in Fig. 6.1.

A visual summary of data manipulations in the experiment is shown in Fig.

6.5. It can be seen that the transmitted signal is comprised of two PRN sequences

(7 and 9). Each PRN sequence is then multiplied with a specific delay and Doppler

shifts to create 54 different specular points. These two sets of 54 GPS C/A coded

replicas are then summed and multiplied with pre-calculated Doppler shifts to

emulate the "Desired Scenario" of the specular points moving across the Earth

as shown in Fig. 6.4. The signal is then transmitted at the L1 frequency and is

received by the TDS-1 satellite, immediately downconverted to 4.188 MHz, and

stored at 2 bit resolution.

Figure 6.5: Functional diagram of the TDS-1 Experiment. The data stored at
2 bit resolution is the data used in this analysis.

An off-the-shelf USRP beacon with a pointing mechanism was set up to trans-

mit a BPSK signal at 1200 baud to the TDS-1 satellite. The setup is shown below

in Fig. 6.6.
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Figure 6.6: Experimental setup in White Sands, NM on November 13, 2016.

6.2 Data Processing

Two passes of the satellite were recorded but only one was usable due to

timing and pointing mechanism errors. Roughly 74 seconds of this pass was made

available and two GPS satellites were in view at the time corresponding to PRN

sequence 7 and 9. The saved IQ data (stored at 2 Bit resolution) was converted into

complex baseband form and then the pre-multiplied Doppler Shifts were removed

as all geometry and necessary timekeeping of GPS satellites, TDS-1 satellite, and

beacon were known. The scenario represented is now equivalent to the "Reality"

scenario shown in Fig. 6.4 of a beacon transmitting to an overhead satellite.

As described in the previous section, each of the 54 GPS C/A coded replicas

constituted a specular point. These specular points had a received power anywhere

from −160 dBm to −125 dBm over the acquisition period. A Cross Ambiguity

Function (CAF) was computed in an effort to reproduce Fig. 6.3. Due to the low

received power (Fig. 6.7) and slight aiming errors (Fig. 6.8), these specular points

flickered in and out of view sporadically throughout the pass. It should be noted

that the peaks of the two plots in Fig. 6.7 are aligned in the subplot on the left

but misaligned on the plot on the right. This is due to a combination of timing
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errors possibly from the USRP radio and a clock bias on the TDS-1 satellite. The

aiming errors as shown in Fig. 6.8 are most likely due to errors in the predicted

ephemeris of the GPS and TDS-1 satellites.

Figure 6.7: The plot on the left shows the Expected total received power in blue
and the expected received power of each of the 54 specular points. The plot on the
right shows once again the total expected received power (blue) versus magnitude
of CAF (red) of one of the 54 spectral points.

The strongest, most consistently appearing specular spot (also referred to as

a hotspot) was chosen to be extracted over the 74 seconds of acquisition time. In-

stantaneous frequency measurements were made by computing a Cross Ambiguity

Function (CAF) every 0.125 seconds - thereby yielding the Doppler shift over time.

The same numeric derivative and denoising algorithm as described in Section 5

was used to obtain the Doppler Rate. The position of the transceiver geometry

over this acquisition period is shown in Fig. 6.9 along with the corresponding spec-

ular point over time, recreated in the developed simulation environment discussed

in Section 2.3.5.

An example of the Doppler and Doppler Rate estimates are shown in Fig. 6.10.

The Doppler is shown on the left subplot, and the Doppler Rate shown on the

right subplot. Two estimates are provided on the Doppler Rate. The first uses

a numerical derivative approach with smoothing. The second used a polynomial
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Figure 6.8: Recorded IMU pointing angle (blue) versus elevation angle (red) of
recorded TDS-1 pass.

fitting technique to calculate the derivative and then added a pre-determined

Gaussian noise to the answer as an attempt to avoid the bias created when using

polynomial fitting. It was found that the former attempt yielded better cUKF

and cUPF results than the latter.

6.3 cUKF

For the purposes of this section, the best (the time span yielding the most

"accurate" Doppler and Doppler Rate estimates) 10 seconds of the 74 seconds

available were used. The truth values over this acquisition time are shown in Fig.

6.11. The range at the first data point is 731.44 km at a slant angle of 25 deg.

The Doppler estimates had an average bias of 100 Hz with a standard deviation

of 485.98 Hz. The Doppler Rate estimates had an average bias of −30 Hz/Sec

and a standard deviation of 41.08 Hz/Sec.

Initial guesses were drawn 150 times, distributed about the true emitter po-
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Figure 6.9: Geometry of the TDS-1 Proof-of-Concept Mission over the 10 second
chosen acquisition period. The black line represents the movement of the TDS-1
Satellite, the line gradient from black to light green denotes the passage of time
for the footprint and sub-satellite path. The pink line denotes the synthesized
movement of the specular point (removed in pre-processing). The red dot rep-
resents the emitter. The cyan color denotes reception of the 10 seconds on the
satellite path, sub-satellite path, and the corresponding range vectors.

sition with an initial average error of 225 km to emulate a realistic search space.

Fig. 6.12 shows the performance of the cUKF algorithm utilizing the aforemen-

tioned 10 seconds of data. It can be seen that the algorithm converged under 10

km of the true emitter location, which is very encouraging considering the TDS-1

mission was not designed for geolocation. Limited samples, extremely low received

power, and data stored at a 2-bit resolution do not provide an ideal scenario for

Figure 6.10: Truth values for Doppler and Doppler rate of the TDS-1 Proof-of-
Concept Mission. Time is measured from the beginning of the 74 second acquisi-
tion period.

99



Figure 6.11: Truth values for Doppler and Doppler rate of the TDS-1 Proof-of-
Concept Mission. Time is measured from the beginning of the 74 second acquisi-
tion period.

geolocating the beacon signal, but the algorithm’s utility and effectiveness is clear.

The absence of the rcPCRB is due to the error distributions exhibiting very large

biases (over the 10 second time span) that invalidate the usage and comparative

utility of the rcPCRB. However, it is very apparent that even under these settings,

the cUKF filter performed very well.

Figure 6.12: Performance of the cUKF on TDS-1 Data.
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6.4 cUPF

In the prior section, the best 10 seconds of estimated measurements were

chosen. For this scenario, 10 seconds of continuous data were chosen at random

from the 74 seconds available, 50 times. Each 10 seconds of signal acquisition was

estimated from 15 extracted seconds (so an additional 2.5 seconds obtained from

the start and finish of the utilized 10 seconds) using the same methodology as

the previous section. Again, Instantaneous frequency measurements were made

by computing a Cross Ambiguity Function (CAF) every 0.125 seconds - thereby

yielding the Doppler shift. A numeric derivative and least mean squares fit was

used to obtain the Doppler Rate. The received power ranged anywhere from −160

dBm to −125 dBm over the acquisition period. The Doppler estimates had biases

of up to 300 Hz with a standard deviation of up to 520.12 Hz. The Doppler

Rate estimates had biases up to 50 Hz/Sec and a standard deviation up to 45.65

Hz/Sec. The range of truth values for Doppler and Doppler rate are shown in Fig.

6.10.

Fig. 6.13 shows the performance of both the cUKF and cUPF on the TDS-1

Data. The cUKF performance is seen to stabilize quickly at about 48 km ge-

olocation error. Varying the state covariances or the measurement uncertainty

produced negligible effects. This reflects the cUKF’s inability to capture the phe-

nomena and mitigate the noise present in the measurements. The cUPF however

has managed to converge under 10 km of geolocation error.

The cUPF is seen to deal very well with the large biases exhibited in the

measurements. This shows the capability of the weights to harness information

from both the state assumptions and current estimates that are corrupted with

highly erroneous measurements. With only a few samples (80 samples in total),

convergence is reached within 3 seconds (24 samples). This was accomplished
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Figure 6.13: Performance of cUKF and cUPF on TDS-1 Data

with only Np = 20 particles.

There is a well-posed trade space between the number of particles used, the

number of samples (if possible) able to be skipped, and the desired accuracy of

the geolocation estimates and rate of convergence. For this scenario, Np = 3

particles produced a cUPF that consistently beat cUKF estimates. Any cUPF

with Np > 20 particles produced only marginal better RMS geolocation error.

The horizontal "lines" in Fig. 6.13 represent groups of particles that have

converged on a particular geolocation estimate over time. Within the first second

of filtering, there are many, which is reasonable considering how noisy and biased

the Doppler and Doppler Rate measurements are. Then, in the 2-4 second filtering

time interval there are only 6 horizontal lines. The 4-7 second interval has only

three, and past the 8 second mark there remains only one, representing algorithmic

convergence. This shows the cUPF’s resiliency to the large biases present in the

measurements, despite a very limited amount of time samples. Even in the first

couple seconds, where many candidate geolocation estimates are being represented

by particles with significant weight, the weighted average still hovers and hones
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in to the correct geolocation position.

The results here are extremely encouraging. Resiliency to initialization er-

ror and low carrier-to-noise ratio were exhibited while obtaining nearly single-

kilometer geolocation accuracies. This was all done despite very noisy and biased

measurements taken at a sample rate of 1
8th of a second from IQ samples saved

at 2-bit resolution that was transmitted from an off-the-shelf USRP possessing

a low quality oscillator (producing oscillator drift) to a SmallSat with additional

timing errors and ephemeris errors. Within reason, it can safely be considered a

worst-case scenario, and the performance of the cUPF is still very good.

For a standard space system that the cUPF could be applied to, 2-bit resolution

is actually quite standard and it is very possible the emitter that is desired to be

located possesses a similarly poor oscillator such as the USRP. However, sample

rate can be expected to be much higher and further refinements on Doppler and

Doppler rate measurements can easily applied. Further, if the system were to be

made specifically for geolocation, oscillator error on the side of the receiver could

be mitigated with a high quality crystal oscillator and the storage of the IQ data

could easily be improved causing drastically increased geolocation accuracy.

In conclusion, the TDS-1 satellite dataset is a perfectly posed worse-case val-

idation of the algorithms provided in this dissertation. The experiment was not

meant for geolocation, but instead it was to provide a rough validation of the

CYGNSS concepts working on a similar system. As a result, there are ephemeris

errors, timing errors, and parasitic errors introduced from the many manipulations

required to make the TDS-1 experiment emulate the desired scenario. Quantiza-

tion and low sampling frequencies also play a major role in geolocation accuracy

issues. Despite this, the cUPF algorithm performed exceptionally well and pro-

vides a high level of assurance for its capabilities on many existing and future
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systems.
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Chapter 7

Conclusion

7.1 Dissertation Summary

A passive radio frequency (RF) geolocation solution is provided that uses a sin-

gle low earth orbit (LEO) satellite to find an uncooperative earth-bound emitter.

Prior knowledge on the emitter’s location only lends a several hundred kilometer

search space. For the first time, an unambiguous solution is available for real-time,

single-pass, and time-constrained acquisition scenarios where single transmissions

are expected and computational abilities are limited. The geolocation algorithm

rapidly maps Doppler and Doppler Rate measurements to an RF emitter location,

performing a unique and powerful take on single satellite geolocation (SSG) - the

provision of a geolocation estimate only using one satellite as a passive receiver.

Context of the provided technology is given in terms of past techniques and

the constraints that are governed by the ill-conditioned solution space offered

by the SSG scenario. It is rationalized that of the two approaches available to

solve the SSG problem - Angle-of-Arrival and Doppler - that Doppler-based tech-

niques holds the greatest potential. As was shown, the emitter position governs

Doppler and Doppler Rate, providing highly informative measurements that al-
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low for quick convergence and high geolocation accuracies. The additional mea-

surement of Doppler Rate provides a drastically improved solution space free of

ambiguities. An Earth-bound constraint - implemented in a fast and efficient

projection technique - was also added that further improves the solution space.

Given the high nonlinearity of the system affiliated with the proposed measure-

ment and state constraint problems, as well as the computational limitations of

onboard processing - an iterative, nonlinear filtering algorithm was found to be

the optimal choice for the geolocation algorithm.

From the host of nonlinear filtering options, two variants were derived. These

two solutions cater to approximately symmetric and asymmetric Posterior error

distributions, respectively. The first is a variant of the constrained Unscented

Kalman Filter (cUKF) which harnesses the estimation abilities of the Kalman

Filter and the modeling capabilities of the Unscented Transform. When the error

distributions are strongly non-symmetric, as is common when ephemeris and oscil-

lator errors are present, a constrained Unscented Particle Filter (cUPF) has been

derived to be used instead. In this solution, the cUKF is utilized as the proposal

distribution to allow the Monte Carlo properties of the Particle Filter to efficiently

characterize the Posterior Distribution, while avoiding sample degeneracy. Both

the cUKF and cUPF solutions are capable of obtaining single-kilometer geoloca-

tion accuracy despite small sample sizes, short signal durations, large search areas,

and non-trivial transceiver geometry. Computational costs of each algorithm are

given in terms of three categories of floating point operations for a single iterative

step.

Corresponding theoretic performance bounds are provided for mission analysis

and algorithmic optimality comparison. The bound takes the form of the recursive

constrained Posterior Cramér-Rao Bound (rcPCRB). This theoretic information
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bound is uniquely suited to gauge the mean squared error optimality of iterative

nonlinear estimation algorithms - and is recast and adapted to the SSG scenario.

In all simulated scenarios, the cUKF geolocation solution matches the optimal

performance bounds provided by the rcPCRB, always reaching sub-kilometer ge-

olocation accuracy with only a few seconds of signal acquisition time. Numerical

analysis over measurement noise, center frequency, slant angle, and initialization

errors showcase the cUKF’s robustness and aptitude over different mission pro-

files. When oscillator and ephemeris errors are present, the cUPF continues to

obtain single kilometer geolocation accuracies, even with single second acquisition

times, limited computational powers, and search spaces spanning several hundred

kilometers. Finally, the performance of the cUKF and cUPF are demonstrated

on raw IQ data acquired from the TDS-1 satellite operated by Surrey Satellites,

which listened to a transmitting beacon over White Sands, New Mexico. This real

life experiment exactly represents the scenario designed for by this dissertation

and provides a worst case test scenario with extremely low SNR, small sample

size, ephemeris and oscillator errors, low sample rate, and high quantization er-

ror. Predictably, the cUKF failed to provide reliably useful estimates, yielding

RMS geolocation accuracies of around 50 km. The cUPF performed extremely

well, converging within three seconds with only 24 samples to within roughly 10

kilometers of the true emitter position over a 5002 km search space.

7.2 Future Work

The work in this dissertation is rich in that many research efforts can spring

from it. A theoretic information bound that would also accommodate distribu-

tions generated by ephemeris and oscillator errors is a highly desirable result. It

would be an extension of the rcPCRB developed in this dissertation.
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The problem of simultaneously estimating the center frequency of the trans-

mitted signal is also a logical next step. The application of geolocating a wideband

signal would be a major contribution.

Additionally, the use of single satellites to perform Satellite Cluster Geoloca-

tion where there is non-simultaneous reception, on the sharing of metadata (not

IQ Data) would be an interesting and highly applicable trajectory.

108



Chapter 8

Appendix

8.1 Derivation of Received Signal

The following derivation of parameters within the received signal model is done

for only two dimensions (x and y coordinates). The extension to three dimensions

is straightforward. The dependence on time is suppressed and the derivation is

kept general for both a moving emitter and satellite.

Range

r = |r| (8.1)

= |ps − pe| (8.2)
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Range Rate

vr = ∂

∂t
|r| (8.3)

= ∂

∂t
((pxs − pxe)2 − (pys − pye)2) 1

2 (8.4)

=
∂
∂t

((pxs − pxe)2 − (pys − pye)2)
2((pxs − pxe)2 − (pys − pye)2) 1

2
(8.5)

= (pxs − pxe)(vxs − vxe ) + (pys − pye)(vys − vye )
|r|

(8.6)

= [vs − ve]T r
|r|

(8.7)

Range Acceleration

ar = ∂2

∂t2
|r| (8.8)

= ∂

∂t

(
(pxs − pxe)(vxs − vxe )

|r|︸ ︷︷ ︸
A1

+ (pys − pye)(vys − vye )
|r|︸ ︷︷ ︸
A2

)
(8.9)

= ∂

∂t
A1 + ∂

∂t
A2 (8.10)

∂

∂t
A1 = ∂

∂t

(pxs − pxe)(vxs − vxe )
|r|

(8.11)

= 1
|r|

(
(vxs − vxe )(vxs − vxe ) + (pxs − pxe)(axs − axe)

)

− 1
|r|2

(pxs − pxe)(vxs − vxe )

·
(

(pxs − pxe)(vxs − vxe ) + (pys − pye)(vys − vye )
|r|

)
(8.12)
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∂

∂t
A2 = ∂

∂t

(pys − pye)(vys − vye )
|r|

(8.13)

= 1
|r|

(
(vys − vye )(vys − vye ) + (pys − pye)(ays − aye)

)

− 1
|r|2

(pys − pye)(vys − vye )

·
(

(pxs − pxe)(vxs − vxe ) + (pys − pye)(vys − vye )
|r|

)
(8.14)

Therefore, substituting Eq. 8.12 and Eq. 8.14 into Eq. 8.10:

ar = 1
|r|

(
|vs − ve|2 +

(
as − ae

)T
r
)
− vr
|r|2

(
(vs − ve)T r

)
(8.15)

=

(
as − ae

)T
r

|r|
+ |vs − ve|2

|r|
− v2

r

|r|
(8.16)

8.2 Intersection of a Line and Ellipsoid

Let the line segment be defined by p0 =
[
x0 y0 z0

]T
and p1 =

[
x1 y1 z1

]T
.

This line can be parameterized in terms of arc length, s, by the following:

x = (1− s)x0 + sx1

y = (1− s)y0 + sy1

z = (1− s)z0 + sz1

(8.17)

The equation of an ellipsoid with two equal axes is:

1 =
(
x

a

)2

+
(
y

a

)2

+
(
z

b

)2

(8.18)
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Substituting in (x, y, z) from Eq. 8.17 into Eq. 8.18:

1 = s2(x2
0 − 2x0x1 + x2

1) + s(2xox1 − 2x2
0) + x2

0
a

+ s2(y2
0 − 2y0y1 + y2

1) + s(2yoy1 − 2y2
0) + y2

0
a

+ s2(z2
0 − 2z0z1 + z2

1) + s(2zoz1 − 2z2
0) + z2

0
b

(8.19)

And further simplifying:

1 = s2
(

(x0 − x1)2 + (y0 − y1)2

a2 + (z0 − z1)2

b2︸ ︷︷ ︸
ã

)

+ s

(
2x0x1 − 2x2

0 + 2y0y1 − 2y2
0

a2 + 2z0z1 − 2z2
0

b2︸ ︷︷ ︸
b̃

)

+
(
x2

0 + y2
0

a2 + z2
0
b2︸ ︷︷ ︸

c̃

)
(8.20)

This is a quadratic that can be solved using the positive solution:

s = −b̃+
√
b̃2 − 4ãc̃

2ã (8.21)

which can be substituted into Eq. 8.17 to obtain the point of intersection.
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8.3 Derivatives for rcPCRB

This Appendix shows the calculations of the derivatives in Eq. 4.26, the tra-

ditional Fisher Information Matrix (FIM). The FIM can be written as:

Jk = E
{(

∂

∂xk
ln p(zk|xk)

)T(
∂

∂xk
ln p(zk|xk)

)}

=
(
∂

∂xk
hk
)T

V−1
k

(
∂

∂xk
hk
)

(8.22)

where Vk is a zero mean covariance matrix of the measurement noise vector vk,

which is an independent white noise process. Noting that xk = pe(k), the mea-

surement equation can be described as:

zk = hk + vk (8.23)

=

h(1)
k (xk)

h
(2)
k (xk)

+

v(1)
k

v
(2)
k

 (8.24)

where

h
(1)
k (xk) = −

(
1
λ

)(vTs(k)[ps(k) − xk]
|ps(k) − xk|

)
(8.25)

and

h
(2)
k (xk) = −

(
1
λ

)(aTs(k)(ps(k)(tk)− xk)
|ps(k) − xk|

+ |vs(k)|2

|ps(k) − xk|
−

(
vT

s(k)(ps(k)−xk)
|ps(k)−xk|

)2

|ps(k) − xk|

)
(8.26)
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Then, Eq. 8.22 can be fully expressed by computing the partial derivatives of the

measurement equation 8.24:

∂

∂x
(i)
k

zk(xk) =


∂

∂x
(i)
k

z
(1)
k (xk)

∂

∂x
(i)
k

z
(2)
k (xk)

 (8.27)

=


∂

∂x
(i)
k

h
(1)
k (xk)

∂

∂x
(i)
k

h
(2)
k (xk)

 (8.28)

Then the derivatives can be computed using the quotient and product rule. Namely,

given the generic equation c(x) = a(x)
b(x) :

c′(x) = a′(x)b(x)− a(x)b′(x)
b2(x) (8.29)

Then for ∂

∂x
(i)
k

h
(1)
k (xk):

a(xk) = vTs(k)(ps(k) − xk) (8.30)
∂

∂x
(i)
k

a(xk) = −v(i)
s(k) (8.31)

b(xk) = |ps(k) − xk| (8.32)

∂

∂x
(i)
k

b(xk) =
p

(i)
e(k) − p

(i)
s(k)

|ps(k) − xk|
(8.33)

yielding the final result of:

∂

∂x
(i)
k

z
(1)
k (xk) =

(
1
λ

)(−v(i)
s(k)|ps(k) − xk| − (vTs(k)(ps(k) − xk))

p
(i)
e(k)−p

(i)
s(k)

|ps(k)−xk|

|ps(k) − xk|2

)
(8.34)
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A similar fashion is used for ∂

∂x
(i)
k

z
(2)
k (xk), the derivative is more complex so is

divided into three parts such that:

∂

∂x
(i)
k

z
(2)
k (xk) = ∂

∂x
(i)
k

A(xk) + ∂

∂x
(i)
k

B(xk) + ∂

∂x
(i)
k

C(xk) (8.35)

where

A(xk) =
(
−1
λ

)(aTs(k)(ps(k)(tk)− xk)
|ps(k) − xk|

)
(8.36)

∂

∂x
(i)
k

A(xk) =
(
−1
λ

)(−a(i)
s(k)|ps(k) − xk| − (aTs(k)(ps(k) − xk))

p
(i)
e(k)−p

(i)
s(k)

|ps(k)−xk|

|ps(k) − xk|2

)
(8.37)

B(xk) =
(
−1
λ

)(
|vs(k)|2

|ps(k) − xk|

)
(8.38)

∂

∂x
(i)
k

B(xk) =
(
−1
λ

)(
vTk vk

) ∂

∂x
(i)
k

(
(ps(k) − xk)T (ps(k) − xk)

)− 1
2

(8.39)

=
(

1
λ

)( |vk|2(p(i)
e(k) − p

(i)
s(k))

|ps(k) − xk|3

)
(8.40)

C(xk) =
(
−1
λ

)(
−

(
vT

s(k)(ps(k)−xk)
|ps(k)−xk|

)2

|ps(k) − xk|

)
(8.41)

∂

∂x
(i)
k

C(xk) =
(
−1
λ

)(
1

((ps(k) − xk)T (ps(k) − xk))3

)
× . . .

+
(
− 2vs(k)(vTs(k)(ps(k) − xk) ·

(
(ps(k) − xk)T (ps(k) − xk)

) 3
2 + . . .

3(p(i)
s(k) − x

(i)
k )|ps(k) − xk|(vTs(k)(ps(k) − xk))2

)
(8.42)
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where use of the quotient rule (Eq. 8.29) was used in the following fashion:

a(xk) =
(
vTs(k)(ps(k) − xk)

)2
(8.43)

∂

∂x
(i)
k

a(xk) = −2vs(k)(i)
(
vTs(k)(ps(k) − xk)

)
(8.44)

b(xk) =
(
(ps(k) − xk)T (ps(k) − xk)

) 3
2 (8.45)

∂

∂x
(i)
k

b(xk) = −3|ps(k) − xk|(p(i)
s(k) − x

(i)
k ) (8.46)
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