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Genetic risk variants for schizophrenia have been linked to 
many related clinical and biological phenotypes with the hopes 
of delineating how individual variation across thousands of 
variants corresponds to the clinical and etiologic heterogene-
ity within schizophrenia. This has primarily been done using 
risk score profiling, which aggregates effects across all vari-
ants into a single predictor. While effective, this method lacks 
flexibility in certain domains: risk scores cannot capture non-
linear effects and do not employ any variable selection. We 
used random forest, an algorithm with this flexibility designed 
to maximize predictive power, to predict 6 cognitive endophe-
notypes in a combined sample of psychiatric patients and con-
trols (N = 739) using 77 genetic variants strongly associated 
with schizophrenia. Tenfold cross-validation was applied to 
the discovery sample and models were externally validated in 
an independent sample of similar ancestry (N = 336). Linear 
approaches, including linear regression and task-specific poly-
genic risk scores, were employed for comparison. Random for-
est models for processing speed (P = .019) and visual memory 
(P = .036) and risk scores developed for verbal (P = .042) and 
working memory (P  =  .037) successfully generalized to an 
independent sample with similar predictive strength and error. 
As such, we suggest that both methods may be useful for map-
ping a limited set of predetermined, disease-associated SNPs 
to related phenotypes. Incorporating random forest and other 
more flexible algorithms into genotype–phenotype mapping 
inquiries could contribute to parsing heterogeneity within 
schizophrenia; such algorithms can perform as well as stan-
dard methods and can capture a more comprehensive set of 
potential relationships.

Keywords:  cognition/machine learning/endophenotype/
genetics/computational psychiatry/polygenic risk scores

Introduction

Substantial progress has been made toward identify-
ing the genetic loci conferring risk for schizophrenia.1,2 
Known risk variants have been leveraged extensively 
to predict related phenotypes such as cognitive impair-
ment,3–5 symptom severity,5–7 structural brain abnormali-
ties,8,9 as well as other psychiatric illnesses,10,11 yielding 
insight into the shared (and discrepant) etiologies of 
these clinical and biological phenotypes. This suggests 
that individual variation in genetic risk for schizophrenia 
may be informative in parsing the phenotypic heteroge-
neity within schizophrenia—both in disease development 
and clinical presentation.12,13 Within psychiatry, geno-
type–phenotyping mapping usually employs polygenic 
risk scores—aggregate measures of disease-associated 
single nucleotide polymorphisms (SNPs). While this 
approach has many benefits, it is less flexible than other 
statistical methods used commonly in prediction.

Several recent studies have promoted the use of  ran-
dom forest and other machine learning algorithms to 
improve genomic mapping because they can detect com-
plex, nonlinear, high-dimensional patterns of  effects 
that may inform predictions.14–17 Interactions of  this 
kind are widely believed to play a role in the etiology 
of  schizophrenia18–20 and contribute variance above and 
beyond additive genetic effects.21 Additionally, random 
forest selects only those variants among a list that boost 
predictive power, providing a data-driven approach to 
identifying subsets of  SNPs from among those known to 
be disease-associated that are important for individual 
related phenotypes. These 2 features of  random forest—
nonlinearity and feature selection—allow for modeling 
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genotype–phenotype interactions more flexibly. Such 
flexibility has resulted recently in discovery of  novel 
disease-related loci16 and increased predictive strength 
of  genetic variants on case–control status in psychiatry14 
and medicine more broadly.22 Here, we are interested in 
the application of  this algorithm to mapping disease-
associated SNPs to intermediate phenotypes associ-
ated with schizophrenia. For reference, we compare it to 
linear, additive models, including polygenic risk scores 
given their popularity in the field.

In the current study, we used random forest, general lin-
ear regression, and polygenic risk scores to test the effects 
of 77 loci previously associated with schizophrenia23 on 
a range of cognitive domains known to be impaired in 
schizophrenia. Statistical models were trained to predict 
measures including verbal intelligence, working mem-
ory, and processing speed within a sample of European-
ancestry psychiatric patients and controls (N  =  739). 
However, the utility of any model depends critically on 
its generalizability to data beyond the original discovery 
context,24,25 which cannot be fully examined in one sample 
alone.24 With this in mind, models were then tested in an 
ancestry-matched independent cohort (N = 336), and the 
predictive ability of random forest, linear regression, and 
polygenic risk scores were assessed. We aimed to com-
pare how well each of these algorithms could map the 
same schizophrenia risk variants to 6 similar, but distinct, 
neuropsychological measures, as improving the precision 
of genotype–phenotype mapping may aid in understand-
ing heterogeneity in etiology and clinical presentation in 
schizophrenia.

Methods and Materials

Participants

American Sample. Neuropsychiatric subjects and 
healthy controls were recruited as part of  the Consortium 
for Neuropsychiatric Phenomics at the Semel Institute at 

the University of  California, Los Angeles, a study exam-
ining underlying genetic and neural factors and their link 
to 3 target neuropsychiatric illnesses. Details of  recruit-
ment and study protocol are listed in supplementary 
information S1. In total, 1254 subjects were evaluated 
for this study; however, to minimize issues associated 
with population stratification, only individuals with self-
reported European ancestry were included in the analy-
ses (N = 739). Of these, 645 were healthy individuals, 24 
were schizophrenia patients, 33 were bipolar patients, 
and 37 were attention-deficit, hyperactive disorder 
(ADHD) patients.

Swedish Sample. Same-sex twin pairs with at least one 
member diagnosed with schizophrenia or bipolar dis-
order when discharged from a hospital, and who were 
born in Sweden between 1940 and 1985, were identified 
on a population basis via the Swedish Twin Registry and 
Swedish National Patient Registry. Details of recruit-
ment and study protocol are listed in supplementary 
information S1. The final sample included 55 schizophre-
nia patients, 58 unaffected schizophrenia co-twins, 62 
bipolar patients, 45 unaffected bipolar co-twins, and 116 
control twins (N = 336). Demographic information for all 
subjects is listed in table 1.

Cognitive Performance

Participants in American and Swedish samples completed 
neuropsychological batteries that were partially overlap-
ping. To examine the generalizability of all statistical 
models, we only analyzed target measures that were avail-
able in both samples, though in some cases the included 
measures were from different neurocognitive batteries or 
different versions of the same battery in the 2 samples. 
Six cognitive tasks in the American sample met this cri-
terion: the California Verbal Learning Test (CVLT)26; the 
Vocabulary subtest of the Wechsler Adult Intelligence 

Table 1. Demographic and Cognitive Performance Metrics

American Sample Swedish Sample Statistic P

N 739 336 — —
Age (years) 31.6 (8.6) 49.5 (10.5) 25.56 <.001
Sex (%F) 50.6% 52.7% 0.32 .573
% Patients 12.7% 34.8% 70.13 <.001
CVLT 55.4 (9.6) 49.8 (11.5) 0.93 .353
Vocabulary 43.5 (9.4) 30.8 (6.1) -15.07 <.001
Trails 1/A 32.5 (11.9) 34.6 (13.9) -3.78 <.001
Digit Span 30.7 (5.6) 23.0 (5.6) -10.63 <.001
VR I 37.6 (5.1) 31.8 (6.2) -3.41 <.001
VR II 31.2 (8.9) 25.4 (9.0) 0.99 .324

Note: Sample means and standard deviations were reported for demographic and cognitive performance variables. Cognitive performance 
was adjusted for sample differences in scale ranges when necessary, but otherwise reflect raw scores. Chi-square tests were performed 
for sex and % patients. For all other variables, mixed effect regressions were run with family as a random effect. Age and diagnosis were 
included as covariates for cognitive models as samples differed by these metrics significantly. t statistics for the fixed effect of sample and 
corresponding P-values were listed. CVLT, California Verbal Learning Test; VR I and VR II, Visual Reproduction I and II.

https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
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Scale—IV (WAIS-IV)27; the Visual Reproduction—
Immediate Recall (VR I), Visual Reproduction—Delayed 
Recall (VR II), and Digit Span subtests of the Wechsler 
Memory Scale—IV (WMS-IV)28; and Color Trails 1.29 
In the Swedish sample, the Vocabulary subtest of the 
Wechsler Abbreviated Scale of Intelligence,30 the VR 
I and II and Digit Span subtests of the WMS-R,31 and 
Trail Making Test A32 were used instead and adjusted 
according to scale differences relative to the versions used 
in the American sample. Respectively, these tasks assessed 
verbal learning and memory, visual memory, work-
ing memory, and processing speed. Cognitive variables 
were z-scored according to the American sample means 
and standard deviations, and due to extreme outliers in 
the Swedish sample (|z| > 5), they were also winsorized 
(trim = 0.01). Table 1 lists descriptive statistics for each 
measure in each sample. See supplementary information 
S2 for a complete list of tasks administered in each study.

Since predictive accuracy could reflect performance-
related variance either specific to that task or attributable 
to general cognitive ability more broadly, we tested each 
model in the validation sample for its prediction of both 
(ie, task performance and general ability). We generated 
6 general ability scores, each excluding one cognitive task 
(so that general ability in each case is independent from 
performance on the task of interest), by extracting the 
first principal component from the scaled scores of the 
included 5 tasks.

To account for age, sex, and ancestry (see Genotyping 
and Quality Control for details), linear regression models 
were run using these variables to predict cognitive per-
formance. Residual values were extracted and used in all 
modeling and validation analyses in both cohorts.

Genotyping and Quality Control

Blood samples were collected from individuals recruited 
for the American sample and genotyped using the 
Illumina OmniExpress (769 152 SNPs) SNP array. DNA 
extracted from blood samples from the Swedish sample 
was genotyped in 3 batches, the first two on the Illumina 
Omni 1M SNP array and the third on the Illumina Omni 
2M SNP array. For all genotype data, markers were 
excluded if  they had <95% genotyping rate (3325 variants 
excluded), a minor allele frequency (MAF) <1% (53 143 
excluded), or deviated significantly from Hardy–Weinberg 
equilibrium expectations (P  <  10−4; 18 684 excluded). 
Individuals were excluded for missing genotypic data, 
missing phenotypic data, and unexpected relatedness as 
revealed by inflated pairwise identity-by-descent ( ˆ . )π > 2  
in PLINK.33 Data retained after these steps were imputed 
using SHAPEIT34 for the prephasing, IMPUTE235 for 
imputation, and the 1000 Genomes Project Phase 136 
as the reference panel; high quality imputed markers 
were retained (INFO score > .8, MAF > .01; 8 430 008 
SNPs). To generate hard-call genotypes from the imputed 

dosage data, we used maximum posterior probability ≥.8,  
MAF ≥.05, and SNP missingness rate <.01, yielding a 
final data set of 3 986 016 SNPs.

A multidimensional scaling matrix33 was generated 
for each cohort using hard-call genotypes, the first 10 
dimensions of which were used to control for ancestry. 
Genotypes available at the best SNP from each of the 108 
loci identified in the Psychiatric Genomics Consortium 
(PGC) schizophrenia genome-wide association study 
(GWAS)23 were extracted for all subjects. Minor allele 
dosage at 59 of these SNPs present in the imputed data 
sets and 18 additional proxy SNPs (r2 > .8), identified by 
SNAP37 using the CEU population panel from the 1000 
Genomes Pilot 1 reference data set, were included in the 
analyses (77 SNPs total). No high-quality markers or 
surrogate markers were available for the remaining 31 
schizophrenia-associated SNPs.

Statistical Modeling

Training and Validation Procedures. Random forest and 
linear regression models were constructed and exam-
ined with repeated 10-fold cross-validation (3 repeats), 
which partitioned the American sample into 10 distinct 
subsets, used 9 of those subsets in the training process, 
and then made predictions on the remaining subset. To 
avoid opportune data splits, model performance metrics 
were averaged across the test folds and repeats. During 
training (within the US sample, N = 739), model perfor-
mance was assessed by calculating a Pearson correlation 
between predicted and residual observed values.

For external validation, the model built in the 
American cohort was applied without modification to 
predict the same phenotypic measure in the Swedish 
cohort. To explore the specificity of these predictions, the 
same model was also used to predict general ability. To 
maintain power, we accounted for relatedness statistically 
rather than including only one individual from each twin 
pair. Specifically, model performance in the Swedish sam-
ple was assessed using linear mixed effects models, which 
included the fixed effect of model prediction on residual 
observed performance, and a random intercept for fam-
ily to account for relatedness. One-tailed P-values were 
used for significance testing in this sample as correlations 
should be positive in all cases.

Random Forest. Machine learning methods identify 
patterns of information in data that are useful in predict-
ing targets at the single-subject level.24,38 Here, we imple-
mented an algorithm based on a class of models called 
decision trees, which are a nonparametric approach for 
mapping observations about an individual (in this case, 
minor allele dosage at each SNP) to a target of interest. 
They naturally perform an implicit form of variable selec-
tion because irrelevant predictor variables will not be used 
to partition observations. Recently, ensemble decision tree 

https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
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approaches have been developed that improve generaliza-
bility: here, we implemented the random forest.38,39 To cre-
ate a random forest, many bootstrap samples are drawn 
from the data and tree models are fit to each sample (a 
process known as bagging). Crucially, each tree model can 
only use a small random subset of the available predictor 
variables. Final predicted scores for each subject are deter-
mined by taking the average prediction of all tree models.

To select the most appropriate model parameters, we 
performed a grid search over a predetermined range of 
reasonable parameters, using an R2-optimization proc-
ess. We evaluated ∈{ , , }3 4 10  as the number of randomly 
selected predictors of the total 77 SNPs, as the global opti-
mum is thought to be reached when the range overlaps 
the square root of the number of predictors.40 We selected 
the least complex parameter combination that was within 
one standard error of the best performing combination 
to minimize risk of overfitting.41 Parameter optimization 
was only conducted within the American sample: once the 
optimal model was determined during cross-validation, it 
was applied to the Swedish cohort without modification.

Linear Regression Models. A linear modeling approach 
including all 77 SNPs as predictors was used for each of the 
6 cognitive tasks. Cross-validation and external validation 
procedures were conducted exactly as in random forest.

Polygenic Risk Scores.  Polygenic risk scores typically 
sum across SNPs weighted by odds ratios from a case–
control GWAS. One advantage of random forest and 
linear regression relative to polygenic risk scores is that 
these algorithms weight SNPs in training with respect to 
the desired outcome measure (cognitive performance), 
rather than a different phenotype (case–control status). 
To test this approach when tailored to the chosen out-
come, we calculated task-specific risk scores in PLINK33 
for each cognitive measure. We summed the number of 
minor alleles for each of the available 77 SNPs weighted 
by the beta from the association of that SNP with resid-
ual cognitive performance in the American sample. Mixed 
effect models of each cognitive polygenic risk score on 
corresponding residual task performance were run in the 
Swedish sample, including family as a random variable.

Unless otherwise specified, all analyses were imple-
mented in the freely available R statistical environment 
(Version 3.2.2; http://cran.r-project.org/). Models were 
built using the caret package42 as a wrapper to the R 
implementation of the Random Forest algorithm.43,44 
All R code developed for statistical modeling is available 
upon request (Chekroud, Zheutlin).

Results

Model Development and External Validation

Cross-validated performance metrics (Pearson correla-
tions) were modest and comparable for all random forest 

and linear regression models (R2s 1.0%–1.6%; supple-
mentary information S4) within the American sample. 
The random forest models were relatively complex, with 
216–270 terminal nodes. After training, all models—
random forest, linear regression, and polygenic risk 
scores—were applied without modification to predict 
corresponding performance measures in the Swedish 
sample (table 2). Two random forest models significantly 
predicted the corresponding cognitive measure, Trails 
1/A and Visual Reproduction II (table 2; supplementary 
information S3) and permutation analyses revealed that 
these models were unlikely to have generalized by chance 
(Ps ≤ .05; supplementary information S7). However, nei-
ther model significantly predicted general ability (all Ps 
> .11), suggesting they generated relatively task-specific 
predictions. Two task-specific polygenic risk scores also 
predicted the corresponding measure, CVLT and Digit 
Span (table  2) and did not predict general ability sig-
nificantly (all Ps > .07). Linear regression models did 
not significantly predict any cognitive measures in the 
Swedish sample.

We also trained random forest and linear regression 
models in exactly the same way as described in the pri-
mary analyses using only control subjects (N  =  645), 
tested these for external validation, and found similar 
effect sizes and errors (supplementary information S5) 
in both samples, suggesting these genotype–phenotype 
relationships do not reflect unrelated case–control differ-
ences. One final concern was regarding multiple compari-
sons as we built models for 6 independent phenotypes. 
While we believe that external validation and permuta-
tion testing should address concerns of false positives, we 
encourage readers to consider that these results do not 
survive correction for multiple comparisons and so they 
should be seen as preliminary.

Variable Importance

For the 2 random forest models that generalized to the 
Swedish sample, we inspected which SNPs were selected. 
Random forest models perform a form of implicit fea-
ture selection because a variable is only used to parti-
tion a sample if  an informative split is found. For both 
the Trails 1/A and VR II models, nearly all (76 of the 
77) SNPs were used. We also estimated relative variable 
importance using a permutation based test. This method 
rests on the logic that if  a variable is not important (the 
null hypothesis), then rearranging the values of that var-
iable will not degrade prediction accuracy. For each tree, 
the mean squared error is computed on the out-of-bag 
data, and then the same is computed after permuting a 
variable. The differences are averaged and normalized by 
the standard error. If  the standard error is equal to 0 for a 
variable, the division is not done. The relative importance 
of all variables for each model that successfully general-
ized was illustrated in figure 1 along with the rankings of 

http://cran.r-project.org/
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
http://supplementary information S5
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SNPs by magnitude of beta-weight for the 2 polygenic 
risk scores that generalized.

Discussion

We tested how well linear and nonlinear models could 
map schizophrenia risk loci to 6 similar, but distinct, neu-
ropsychological measures. Random forest and polygenic 

risk scores each generated 2 externally valid models (for 4 
different cognitive tasks) with similar predictive strength 
and error. All of these models showed some task-speci-
ficity with respect to their predictions as well, signaling 
that these models picked up on variance relating to a 
particular cognitive task above and beyond that shared 
across cognition broadly. Furthermore, while all models 
were given the exact same genotypic information, the 

Table 2. Predictive Ability of Random Forest, Linear Regression, and Polygenic Risk Scores for Cognitive Performance

Random Forest General Linear Model Polygenic Risk Scores

R2 RMSE P R2 RMSE P R2 RMSE P

CVLT 0 1.91 .475 .004 1.90 .135 .010 1.75 .042
Vocabulary .002 1.17 .222 0 1.17 .488 .002 1.19 .200
Trails A .013 1.70 .019 .003 1.71 .179 .005 1.72 .108
Digit Span 0 1.10 .375 .005 1.11 .103 .009 1.17 .037
VR I .001 1.20 .258 .004 1.20 .135 0 1.22 .405
VR II .010 1.40 .036 .001 1.41 .291 0 1.46 .431

Note: All models were developed in the American sample (N = 739) and applied without modification to an independent Swedish 
sample (N = 336). Residual cognitive performance excluding variance attributable to age, sex, and ancestry was used in all cases. We 
reported mean model performance—the square of the correlation between model predictions and true performance (R2)—and RMSE 
from mixed effect linear regressions of model predictions on observed performance with a random effect of family in the independent 
sample. Significant effects were bolded. RMSE, root mean square error; CVLT, California Verbal Learning Test; VR I and II, Visual 
Reproduction I and II.

Fig. 1. The relative importance or beta-weight magnitude (absolute value of beta weight) of each SNP to the random forest models (A, 
B) and polygenic risk scores (C, D) that generalized successfully in an independent sample. Colors were assigned to SNPs arbitrarily 
based on their ranking for the Trails A model to demonstrate that the ranking of SNPs by importance/beta weight varied considerably 
across cognitive models.
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importance of each predictor within a given phenotype 
varied considerably (figure 1), suggesting individual vari-
ation in genetic risk for schizophrenia may correspond to 
nuances in cognitive impairment that can be captured by 
random forest and polygenic risk scores.

One important component of this study was including 
independent validation. While all cross-validated mod-
els performed well in training, most did not generalize 
to an external sample as even rigorous k-fold internal 
cross-validation routines can be susceptible to over-fit-
ting, especially when using powerful algorithms in small 
samples.24,45–49 Only interpreting the results of externally 
validated models minimizes the risk of overanalyzing 
sample-specific associations. This is especially true when 
distinguishing signal from noise while measuring small 
effects. Random forest fit comparable models for per-
muted data in our training sample. However, critically, 
these models did not produce meaningful predictions 
when tested out of sample (supplementary information 
S6). Although such concerns also apply equally to non-
machine learning approaches, these demonstrations are 
sure to become a functional requirement for machine 
learning studies as they gain popularity.24,25,46,50,51

Improving the precision of phenotypic prediction using 
genotypic risk factors may aid in understanding heteroge-
neity in etiology and clinical presentation in schizophre-
nia. Towards this end, both random forest and task- or 
outcome-specific polygenic risk scores may be useful and 
our results do not indicate one method is superior. It 
is possible that as more risk SNPs are identified, more 
flexible algorithms will perform favorably—this would 
be likely in the case of nonlinear allele effects or selec-
tivity of SNPs for certain outcomes—but this remains a 
hypothesis to be tested in future work.

Many limitations should be considered when interpret-
ing these results. First, though we restricted analyses to 
SNPs and endophenotypes associated with schizophre-
nia, and our results confirm previous genotype–pheno-
type findings,3,52 the inclusion of other patient groups in 
the study may suggest that these relationships are not 
specific to schizophrenia and may apply broadly among 
these illnesses. Further, in selecting only a subset of SNPs 
significantly associated to schizophrenia, we cannot con-
sider patterns including all causal risk loci nor explain 
the large majority of variance in any endophenotype. 
We also tested only schizophrenia-related SNPs, whereas 
SNPs associated with bipolar disorder53 and general 
cognition54,55 may also have been appropriate, though 
derived from smaller samples and less well-characterized. 
However, the current samples were not adequately pow-
ered to discover novel loci via a genome-wide search, nor 
test all applicable SNP lists, so we limited selection to 
those markers already known to associate with schizo-
phrenia. Nonetheless, for models that generalized exter-
nally, most SNPs were retained as predictors, suggesting 
that this a priori selection was relatively successful, as 

random forest models drop uninformative predictors. 
Although this approach precludes the opportunity for 
gene discovery, it may offer a more sensitive analysis 
method for moderate sample sizes.

Second, even for the models that successfully gener-
alized, predictive performance (variance explained) was 
modest. This is unsurprising given that models were built 
using only 77 SNPs—a tiny fraction of the total SNPs 
hypothesized to account for complex phenotypes such 
as schizophrenia or cognition—even though these were 
the SNPs best associated with schizophrenia in the PGC 
GWAS. Nonetheless, performance in the current study, 
using less than 100 SNPs, was comparable to the per-
formance typically seen in traditional efforts examining 
complex traits using thousands of loci.

Finally, while 4 models did generalize, the rest did not. 
Typically, it is assumed that models do not generalize 
because of  “overfitting”; that is, when an algorithm is 
capturing sample-specific (noise) relationships, a prob-
lem that is exaggerated when the number of  predictors is 
far larger than the number of  observations. In any case, 
a priori selection in the current study meant that we had 
around 10 times as many observations as variables and 
some models did generalize. As such, a more likely expla-
nation is that the external validation sample was not suf-
ficiently representative of  the primary training sample. 
Indeed, the patient composition of  the samples was not 
matched with respect to diagnosis type nor proportion 
of  cases relative to controls. Allelic frequencies differed 
between samples, as well (supplementary information 
S7). In addition to sample differences, there were also 
differences in the task constructs across the 2 samples: 
5 tasks required numerical adjustments for differences 
in scoring ranges, tasks were administered by different 
practitioners in different languages on different conti-
nents, and outliers were observed in the Swedish sample. 
Given that these discrepancies between samples could 
only diminish the generalizability of  these models (ie, 
they would inflate type II error rate), those that did gen-
eralize are likely robust.

Here, random forest and task-specific polygenic risk 
scores were able to generate externally valid models with 
similar predictive strength and error. As such, we sug-
gest that both methods may be useful for mapping a 
limited set of  predetermined, disease-associated SNPs 
to related phenotypes. Ideally, with the incorporation of 
more SNPs and phenotypes, both linear and nonlinear 
methods together will eventually identify how general 
risk variants for a disorder pool together to indicate 
likelihood of  certain clinical features within an indi-
vidual. Incorporating random forest and other more 
flexible algorithms into these inquiries could contrib-
ute to parsing heterogeneity within schizophrenia; such 
algorithms can perform as well as standard methods 
and can capture a more comprehensive set of  potential 
relationships.

https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
https://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schizophreniabulletin/sby005#supplementary-data
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Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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