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Development of a Transition-State Treatment of M ultifragmentation 
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Highly excited nuClear systems can be produced in the laboratory by use of medium-energy heavy-ion 
beams (or high-energy protons); these systems typically disassemble into several, or many, (moderately 
excited) nuclear fragments. The experimental basis for this topic is the fact that such multifragmenta
tion processes are presently of central interest in nuclear physics and in spite of vigorous efforts, both 
experimental and theoretical, they are not yet well understood. 

For the nuclear multifragmentation problem, several statistical models have been developed in recent 
years, based on excitable fragments within a specified freeze-out volume.[1,2,3] Such a scenario is of di
rect relevance to the study of dilute nuclear matter (at not too high temperatures) and the formulation 
of the associated statistical mechanics is relatively straightforward, even when fragment interactions 
are incorporated.[lb]Application of such statistical models to the disassembly of a nuclear "source" has 
usually been made by simply assuming that the yield of a given final channel is proportional to the 
corresponding statistical weight. 

Although capable of reproducing a variety of features of the data, such approaches are not entirely 
satisfactory. A principal problem is that there is no inherent way of determining the freeze-out volume, 
which therefore must be prescribed by some argument external to the model. A related problem is 
that the potential barriers are not given appropriate consideration, although experience from binary 
fission has shown that the potential-energy barriers have a controlling influence on the decay widths. 
Moreover, the propagation of the fragmenting system from the freeze-out configuration to asymptotia 
is dependent on how the potential energy is treated. These problems are particularly serious at rela
tively moderate excitations and they need to be adequately solved before it is possible to clarify such 
key questions as the transition from the ordinary sequential-binary type of decay characteristic of low 
excitation to the nearly simultaneous multifragrnent breakup apparently occurring at high excitation. 

This unsatisfactory situation has motivated us to develop[4] a refined treatment of statistical mul
tifragmentation based on a suitable generalization of the transition-state approximation for ordinary 
binary fission[5]. Thus, we consider the irreversible transition of a very excited compound nucleus into 
a number of prefragments. These prefragments are still interacting and may in general experience sig
nificant change during their dynamical evolution subsequent to the transition. The main objective will 
be to characterize the "transition state", the family of configurations at which the system irreversibly 
makes the transition into the specified prefragments. 

We describe the disassembling system as a collection of a number of interacting (pre)fragments. 
In this manner, the degrees of freedom associated with a given final channel are included explicitely 
already at the transition stage, even though the fragments may not yet have been fully developed as 
separate entities. The physical scenario is then quite similar to that addressed in current statistical 
multifragmentation models, and we shall adapt our formalism from [1]. As in the binary case, a central 
problem associated with such a formulation is the construction of a suitable potential energy function in 
terms of the spatial configuration of the prefragments. The internal level density must also be carefully 
modified to take account of the particular "shape" of the transition configuration. 

*This work was supported in part by the Director, Office o( Energy Research, Office o( High Energy and Nuclear 
Physics, Nuclear Physics Division o( the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 



The total density of states PA(Et) can conveniently be decomposed according to mass partition 
A1, ... ,AN, 

(~) = dNA(E) = _!_"' ITN ["'] 6(~ A -A) dNAl·"AN(E) 
PA 0 dR dP dE N! L...J L...J L...J n dR dP dE 

N n:l A,. n=l 
(1) 

The division by N! compensates for the fact that the summation over fragment mass numbers produces 
N! terms for which the fragment masses only differ by the order of their labelling. In the above 
decomposition, the contribution to the density of states from a particular mass partition is given by 

dNA 1 ... AN(E) = ITN [! drndPn·jd ( )] 6(E _E) 6(P ) 6(R ) 
dR dP dE h3 t'n Pn t'n F F F , 

n=l 
(2) 

where RF = ~o En mnrn is the overall center-of-mass position and P F = En Pn is the total mo
mentum. For convenience, we shall henceforth work in the CM reference frame, where both R and P 
vanish. Furthermore, AF = En An is the total mass number of the particular fragmentation, and EF 
is its total energy. This latter quantity is assumed to be of the form 

N,. 2 

EF = L(E~ + t'n + 2~ ) + V(r1, ... ,rN) = E?..,N + e- + Ekin + V. 
n=l n 

(3) 

Here E? .. ·N = En E~ is the sum of the ground-state energies of the N fragments, and f = En En is 
their total internal excitation energy. The total kinetic energy of the fragments is Ekin = En p~j2mn, 
where the inertial mass mn is approximately equal to An times the nucleon mass. Since the transition 
configurations of interest consist of fairly developed prefragments, we shall assume that the potential 
energy V can be expressed as a sum of pairwise interaction energies, V = Enn' Vnn'· The specific 
form of the interaction potential Vnn' ( rnn') is based on a simple parametrization[6] for the shapes and 
barrier heights for asymmetric binary fission. This prescription mimics the effect of the finite range of 
the nuclear ·interaction and leads to a reasonable global reproduction of fission barriers: 

> G 

! ... 
E • Ill 
c 
0 .. • IL 
.g 
• E 
E 
>-

CD 

eo 

60 

40 

'' 

20 

10 

• • 

,... ... -~:~.~~·:~··.~.:Ql1D DROP I .-·········· ... :~::\ 
: ..... 

I THI.S WORK \\ 

10 100 110 100 

Mass Number 
150 soo 

> G a. ... 
~ • ID 
c 
a .. 
• IL 
.g 
• E 
E 
>-• < 

ao.---------------------------------~ 

40 

so 

10 

10 

.•..•. 

/~.;;;;;;:;;;:---·-----

yt.j\:,nvA-EXP 

:1 _, ...... :.. --···:::~=---------
.. · 

! ... 

f • .... · 
! 

II 
: . 
: . .. 
: . 
:. : i . . . ~----~~--~------~----~----~~ 

0 I 10 11 20 25 
Fragment Charge 

Left: Symmetric fission barrier heights for nuclei along the. line of {3 stability calculated with the liquid
drop model{i}, the Yukawa-plus-exponential model{i}, and our modified Swiatecki parametrization{6}. 
Right: Asymmetric fission barrier heights for 123Xy as calculated with the same models. 
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In order for the density of states (2) to yield a finite result, the fragment positions must be (some
how) confined. This is ordinarily accomplished by requiring the fragment positions to be within a 
specified volume n. While such a scenario is appropriate for studies of infinite matter, which can be 
approximated by periodic boundary conditions, the nature ofthe confining agency is less obvious for an 
isolated finite system, such as may be formed in a nuclear collision. In our present treatment, we shall 
replace the somewhat artificial volume n by a suitable generalized fission coordinate whose function is to 
constrain the overall spatial extension of the multifragment system so that the position integrals remain 
convergent. The corresponding density of states is well-defined and can be considered as a function of 
the disassembly variable. In this manner the breakup problem can be reduced to a one-dimensional 
form and is then amenable to a transition-state treatment in analogy with ordinary binary fission. 

Towards this end we define, for a given fragmentation F, the disassembly coordinate q and its 
conjugate momentum pas follows, 

N 
2 1"" 2 qF = - L....t mn r n , 

mo n=l 

1 N 
PF = -L:Pn ·rn · 

qF n=l 
(4) 

The associated inertial mass is given by m 0 = L:n mn, since the kinetic energy of the outwards flow is 
/{ = ~pq = p2 /2m0 • The disassembly variables q and p can be employed as a set of auxiliary degrees 
of freedom for the multifragment system by applying the identity operation J dqdp 6(qF- q)6(pF- p) 
to the expression (2) for the density of states for the particular mass partition considered. The density 
of states can then be considered as a function of q and p, which characterize the global extension and 
outwards motion of the system, resepctively. After performing the constrained integrations over the 
fragment momenta {Pn}, we obtain the following relation, 

We have also replaced the integrations over the N individual excitations En by a single integral over the 
total internal excitation energy f = L:n En. The corresponding total internal level density is denoted 
Pl···N(() and depends on the particular positioningP: {rn} of theN (pre)fragments. We shall use the 
convoluted form Pl···N = p1 * · · · * PN, which would be exact for separated fragments. 

For given positions {rn}, the amount of energy available for statistical sharing between the degrees 
of freedom of the system is given by 

(6) 

This energy is divided between the random kinetic energy K. of the 3N - 4 remaining translational 
degrees of freedom of the N fragments and their total internal excitation energy f. (Note that K. is the 
energy of the statistical motion of the fragments, i.e. their motion in addition to the minimal collective 
motion required for satisfying the specified constraints on the overall momentum P and the outwards 
flow p.] For a specified value of the collective outwards kinetic energy I<, the maximum attainable 
internal excitation is fK = E*, corresponding to K. = 0. This (unlikely) situation is achieved when all 
the fragments move in the radial direction, each with a momentum proportional to the distance from 
the origin. Moreover, we have (K = (o- I<, where Eo= E- E? ... N- Vis the largest possible internal 
excitation energy, as obtained when the collective kinetic energy I< vanishes. This quantity is also the 
largest value I< can have (occurring for fK = 0), for the particular positioning P considered. 

The above formula (5) "counts" the total number of states (within the given tolerance dE on the 
total energy) by going through all possible fragmentation F consistent with the constraints RF = 0, 
qF = q, and PF = p, and for each such positioning summing over all values of (q, p). The disassembly 
coordinate q controls the overall spatial extension of the multifragment system, while the constrained 
positionings represent orthogonal macroscopic degrees of freedom analogous to the additional deforma
tion parameters employed in refined description~ of ordinary fission. 
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Our transition-state approximation to the disassembly problem is most conveniently formulated in 
terms of the outwards probability current, i.e. the number of elementary multifragment states that 
pass by a given value of q per unit time. This quantity can be obtained from (5) by extending the q 
integration over values of from 0 to pfmo, the distance covered by q per unit time, yielding the flux factor 
pfm0 in the p integration. Subsequently, it may be used that (pfmo)dp = di<, so that the integrations 
over I< and f may be interchanged and the former one performed analytically. The outwards current is 
then 

dvl···N = ..J41r 1 ( (moqfi)JN-2 rod! ... (!) (! _ !)~N-2 )'. (7) 
dE f(~N- ~) f(~N- 1) 21i2 Jo Pl N o 

The statistical average (·}', is over the fragment positions, constrained by some (arbitrary) value of 
the disassembly coordinate q. [It is an important feature of the result that is independent of which 
particular value q' has been chosen to constrain the reduced positions, since the subsequent stretching 
will bring the system to the same transition configuration.] 

For given values of the constrained positions {r~}, the integrand in the flux (7) has a minimum 
at some value qo, because the potential energy exhibits a maximum as the system is stretched from a 
compact configuration towards separated fragments. (The minimium in the integrand is shifted slightly 
inwards relative to the barrier top due to the factor q3N - 4 .] As in the treatment of binary fission, it 
is natural to identify the value q = qo with the local bottle neck in the evolution towards breakup. 
Accordingly, the total rate at which the system makes an irreversible transition towards disassembly 
is approximated by the above current (7), with the proviso that the local value of q be chosen as that 
value qo for which the integrand has its minimum. 

Invoking the usual statistical assumption, the decay width of the system (into the specified mass 
partition) is given by the magnitude of the transition current, dvl···N /dE, divided by the total compound 
level density, PA(~), which represents the total number of elementary states in the decaying compound 
system. Evaluating the £-integral in (7) approximately, we then obtain the following result for the partial 
width for transition into the specified mass partition, 

Equal ~asses 

r 
(~leV) 

0 2 4 
F:/A (MeV) 

6 

A=60 

8 

The patital width r A, ··AN(E) for transition of a compound nucleus with mass number A into N 
prefragments with equal masses, as a function of the initial excitation energy per nucleon EQfA. 
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where fa is the internal temperature of the transition configuration. The total width r~ (E) for transi
tion into any N prefragments can be obtained subsequently by summing over all the contributing mass· 
partitions, 

1 N [ l N f~ (E) = N! g t: 6(~ An- A) f A1···AN(E). (9) 

The partial width r Al···AN(E) for equal-mass breakup (i.e. Al = 0 0 0 =AN) is shown at the bottom of 
the previous page, for a number of instructive cases. 

At low excitation, channels with only two prefragments dominate and the formula (8) for the decay 
width reduces to a form rather similar to the standard Bohr-Wheeler expression(5], but with a modula
tion factor arising from the orbital motion of the binary complex. The dominant multiplicity increases 
with excitation and at high excitation the treatment acquires considerable formal similarity with ex
isting statistical multifragmentation models (especially (1b]), although certain notable differences are 
present. An important advantage of our treatment is that it automatically provides a constraint on the 
fragment positions so that a finite result obtains; in this regard it is a significant advance relative to 
current statistical models in which the freeze-out volume must be prescribed separately. 

This novel transition-state treatment of multifragmentation provides a well-defined means for cal
culating the partial widths for transition of the system into a number of interacting prefragments with 
specified masses and total energy. It is important to be aware that in order to obtain the actual final 
channel for a particular disassembly process, it is necessary to follow the further propagation of the 
system from the transition point towards asymptotia, since some prefragment pairs may find themselves 
inside the barrier of their respective two-body interaction potential and hence may recombine. 

A major motivation for undertaking the present work has been the need for a model in which the 
evolution of the disassembly process from low to high excitation can be addressed. Having attractive 
limits, the developed model provides such a framework and its utility has bee~ illustrated by our studi~s 
of the dependence of the (pre)fragment multiplicity on excitation energy. Though depending on Monte
Carlo sampling, the application of the model is not more computer-demanding than current statistical 
multifragmentation models, and a variety of instructive applications of the model are foreseen, at this 
point primarily for the purpose of gaining theoretical insight. 
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