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A Statistical Mechanical Approach to Steady-State Tissue

Structures in Human Mammary Epithelial Organoids

Jennifer Liu Hu

Abstract

Tissues in the body adopt regular structures that are actively maintained far from

thermodynamic equilibrium and yet achieve a steady state. This control over cellular ar-

rangements both ensures tissue function and protects against the spread of cancer cells in the

mammary gland, where structural disruption marks the transition from in situ to invasive

breast cancer and a major increase in patient risk. With a reconstituted human mammary

organoid system derived from cultured primary cells, I model the steady-state structural dis-

tributions of tissues as a function of cellular mechanical properties, configurational entropies,

and active fluctuations. These experimental results demonstrate a surprising concordance

with equilibrium statistical mechanics. Activating one of the most commonly dysregulated

breast cancer genes, PIK3CA, causes decreased self-organization in mammary organoids via

a change in cells’ mechanical properties. Making targeted changes to parameters of the tissue

energy and active fluctuations with RNA interference and small molecule inhibition corrects

organoid structure. This approach directly connects cell mechanics, cell dynamics, and tissue

geometry to quantitative structural outcomes using a statistical mechanical framework. It

also ties specific physical parameters to phenotypes of risk in breast cancer progression and

lays the groundwork for future studies of the dynamics of tissue structure and state.
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1. Introduction

Self-organization is a fundamental process in living systems, which require well-ordered

structures to function. The initially indistinguishable, unordered cells of an embryo develop

identity and structure through a variety of physical and biochemical self-organizing processes

that specify cell fates and arrange them in specific spatial positions. However, in most

animals, these processes are not so stereotypical as to produce the same structures every

single time. Substructures within tissues frequently differ from one another in size, shape,

and composition. Heterogeneity is a feature of normal tissues, both in vivo and in organotypic

in vitro cultures like organoids. This balance between structural order and disorder that

determines tissue structure is disrupted during disease progression. The transition from in

situ, enclosed lesions to fully invasive cancer is defined by the breakdown of tissue structure

and of the boundaries between tissue compartments. Improving our understanding of the

biological and physical forces driving self-organization and disorganization will allow us to

predict and manage tissue structures in the context of development, disease, and tissue

engineering.

This dissertation demonstrates that the observed distribution of self-organized tissue

structures can be modeled and predicted by combining the principles of statistical mechan-

ics with energetic approaches to cell sorting. In a stable yet fluctuating dynamic tissue, the

addition of a quantitative measure of configurational Boltzmann entropy more accurately

describes the observed distribution of tissues than the traditional approach to cell sorting,

which considers interfacial energies alone. Instead, the free energy of a tissue is a function

both of the interfacial energies and the structural entropy of the cellular arrangement. The-

oretical predictions are tested by directly perturbing the enthalpic and entropic parameters,

causing the resulting structural distribution to shift in predictable ways. These results pro-
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vide support for the statistical mechanical model and suggest that these parameters are key

to understanding structural transitions in tissues.

1.1: Tissue structure in the mammary gland

The mammary gland is a remarkable tissue that develops postnatally in response to cir-

culating hormones, the levels of which drive the expansion, differentiation, and involution

cycles that occur throughout pregnancy, the menstrual cycle, and aging (Parmar and Cunha,

2004) (Fig. 1.1A). Luminal epithelial cells (LEP) are enclosed by a layer of myoepithelial

cells (MEP) at the basal surface in contact with the basement membrane. The basement

membrane is a specialized extracellular matrix (ECM) that is generated by secretion and

remodeling activity of MEP and stromal fibroblasts (Nelson and Larsen, 2015). This thin

(≈ 50 nm to 100 nm) but dense network of proteoglycans and glycogroteins is organized

around a scaffold of laminins and collagen IV, and provides physical and biochemical signals

that modulate the epithelial phenotype (Yurchenco and Patton, 2009; Barcellos-Hoff et al.,

1989; Novaro, 2003). The basement membrane separates the epithelium from the connective

tissue, a molecularly and physically distinct ECM primarily composed of fibrillar collagens

I and III and fibronectin in the loose intralobular stroma and the denser interstitial or in-

terlobular stroma (Fig. 1.1B). This structural organization ensures that apically secreted

milk produced by LEP in the terminal ductal-lobular units (TDLU) can be expelled by the

enclosing contractile MEP and funneled along the ducts towards the nipple. The mammary

gland can create and maintain this cellular arrangement despite the dynamic remodeling

throughout the normal life of the organ, as well as the acquisition of cancer driver genes in

the LEP compartment.
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Figure 1.1: Development and dynamics of mammary gland structure throughout life in (A)
adapted from Srivastava et al. (2020). Branched epithelial trees are composed of luminal and
myoepithelial cells separated by a laminin-rich basement membrane from the fibrous collagen-
I stromal ECM, adapted from Hu et al. (2018) (B). Human tissue sections of TDLU and duct
stained for cytokeratins provided by Sundus Shalabi (City of Hope) and Alexander Borowsky
(UC Davis). MEP, marked by cytokeratin 14 (KRT14), cover LEP (stained with cytokeratin
19, KRT19) more uniformly in ducts than in acini. A variety of cellular arrangements are
visible even within the same tissue of a single patient. Scale bar: 100 µm (C). Most breast
carcinomas originate in the luminal compartment. A significant minority of patients are
diagnosed with non-invasive DCIS, in which transformed cells are still enclosed within the
duct. Progression to invasive disease occurs in a minority of pure DCIS as transformed LEP
bypass the MEP and basement membrane (D).

The transition from the epithelial to the stromal microenvironment is conducive to

cancer invasion. The epithelial compartment is associated with tumor suppressive signals

secreted by MEP (Hu et al., 2008; Cowell et al., 2013), while stromal secreted factors and

ECM remodeling have been implicated in cancer aggressiveness (Bussard et al., 2016). Fur-

thermore, the physical composition of the stroma itself promotes cancer progression. Fibrous

collagen I is known to entrain directed migration along fibers in both normal and invasive

mammary cells and propagate cellular traction forces over long distances, aiding collective
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migration and ECM remodeling (Nguyen-Ngoc and Ewald, 2013; Riching et al., 2014; Shi

et al., 2014). The basement membrane acts as a physical barrier to invasion in the absence

of protease or force-mediated disruption (Chang et al., 2017; Chang and Chaudhuri, 2019).

In addition, live imaging studies in mouse breast cancer organoids show that normal MEP

dynamically self-organize around LEP, greatly decreasing the dissemination of invasive tu-

mor cells in a dose-dependent manner, indicating their direct role in tumor suppression by

dynamic control of tissue architecture (Sirka et al., 2018). Unsurprisingly, it is the transition

to invasive disease – the structural breach of the MEP layer and surrounding basement mem-

brane, and the entry into the stroma – that marks the critical increase in risk for patients

(Onega et al., 2017). In an intact tissue architecture, transformed LEP can hyperprolifer-

ate in the lumen in the commonly diagnosed ductal carcinoma in situ (DCIS) stage, but

the majority of pure DCIS lesions never progress to invasive disease (Sanders et al., 2005)

(Fig. 1.1D). Predicting which DCIS patients are likely or unlikely to progress would reduce

the morbidity associated with prophylactic surgery, radiation, and chemotherapy, and is cur-

rently an active field of research with a paucity of clear molecular markers (Kuerer, 2015;

Groen et al., 2017). Thus, understanding normal tissue architecture in the mammary gland

will provide insight into predicting and preventing its disruption in the transition from in

situ to invasive disease.

1.2: Cell sorting in tissues

Biological systems generate complex, functional structures from initially disorganized or

uniform cells. Cell identities and positions are determined through multiple self-organizing

processes. One such process is cell sorting, where cells of different identities separate into

distinct compartments of the tissue. Cell sorting has been the focus of a long line of investi-

gation, from Wilson’s dissociated sponges in 1907 to Holtfreter’s amphibian embryos in 1939-

1955, which showed that cells from different germ layers would spontaneously re-segregate

from initially randomly ordered cell aggregates (Townes and Holtfreter, 1955). Holtfreter
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concluded that sorting owed to something he termed tissue affinity, “which may serve as a

reminder for the existence of analogous phenomena in chemistry,” laying the groundwork for

a physical understanding of tissue self-organization (Steinberg and Gilbert, 2004). In a series

of experiments investigating tissue sorting in the 1960s, Steinberg proposed that this tissue

affinity corresponded to the quantitative surface tension of a tissue aggregate generated by

adhesion between its component cells. In sorting, contacts between the most cohesive cells

would be maximized, at the expense of weakly cohesive ones, and in 1970, Steinberg showed

that the relative sorting of six different embryonic tissues could be predicted by their relative

strengths of tissue cohesion.

This differential adhesion hypothesis would be further built upon and developed in

the decades to follow, which included the discovery and characterization of the proteins

responsible for cell adhesion, such as cadherins, as well as a growing understanding of the

biomechanics of the cellular actin cytoskeleton. Harris (1976) proposed that rather than cell

adhesion strength, cell sorting owed more to the contractility of the cortical actin network,

coupled to cell adhesion molecules. With the refinement of increasingly sensitive biophysical

techniques, from micropipette aspiration to atomic force microscopy, and specific inhibitors

of actin and myosin, it became easier to quantify and disentangle the relative contributions

of adhesion strength and cell contractility. These quantitative studies found that the weaker

forces associated with adhesion molecules alone must be accompanied by differences in active

contractile forces to drive cell sorting and tissue shape changes (Krieg et al., 2008; Youssef

et al., 2011; Mâıtre et al., 2012). The modern conception of cell sorting considers cell

adhesion proteins to effect sorting by coupling the underlying actomyosin networks to the

cell surface and by signaling changes in cytoskeletal architecture that ultimately provide the

mechanical forces that rearrange cells (Yamada and Nelson, 2007; Winklbauer, 2015). The

resulting differential interfacial tension hypothesis (DITH), formally proposed by Brodland

(2002), harmonizes the combined biophysical contributions of cell cytoskeletal components,

adhesion molecules, and active contractility.
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The DITH remains a widespread and useful concept in understanding how cells reach

and maintain their positions in tissues. A considerable array of different model organisms

and systems have implicated DITH in a variety of morphogenetic processes. For example, the

Drosophila wing antero-posterior compartment boundary is enforced by increased interfacial

tension between cells of different compartments, measured by laser ablation to be approxsi-

mately 2.5-fold higher (Landsberg et al., 2009). Similarly, Eph-ephrin signaling plays a key

role in sharpening the boundary between tissues by decreasing the favorability of heterotypic

contacts. In Xenopus, Eph/Ephrin signaling inhibits cadherin clustering and increases local

actomyosin contractility between the notochord and presomitic mesoderm tissues, forcing

the two tissues to stay distinct and sharply separated (Fagotto et al., 2013). Kindberg et al.

(2021) found that not only was interfacial tension increased at heterotypic EPHB2:EPHRIN-

B1 contacts, but tension at the cell-medium interface was increased in EPHB2 cells, driving

both increased cohesion of EPHB2 cells and decreased contacts between the two cell types.

Increasing the favorability of cohesive interactions between cells of the same type is also

associated with developmental boundary formation. The zebrafish spinal cord initially uses

a sonic hedgehog morphogen gradient to trigger differentiation of three progenitor popu-

lations, roughly located in zones of increasing distance from the morphogen source. The

final, sharply delineated regions of progenitors are ensured by homotypic cell sorting of these

progenitors, each of which has higher homotypic than heterotypic adhesion forces caused by

their type-specific expression profiles of three cell-cell adhesion molecules, cdh2, cdh11, and

pcdh19 (Tsai et al., 2020). Favoring contacts between different cell types has the opposite

morphogenetic outcome. During convergent extension in Drosophila, a Toll receptor code

stabilizes heterotypic adhesion, thereby promoting the intercalation of cells with different

receptor profiles to elongate the body axis (Paré et al., 2014). Dynamic alterations of cell

adhesion in response to cellular neighborhoods can generate cell sorting phenotypes that

change over time, as demonstrated by Toda et al. (2018). This synthetic Notch-driven adhe-

sion system contained cell contact-driven feedback loops such that cells adopted mechanical
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properties, sorted according to their energies, received signals from their new neighboring

cells, then adopted new phenotypes that either reinforced or changed their sorting behavior.

Of additional interest are non-cell autonomous phenomena, where cell collectives develop

different mechanical phenotypes than isolated cells. In Hydra vulgaris, groups of ectodermal

cells develop an epithelialized phenotype with a polarized non-adhesive apical surface and

preferentially engulf other cells via collective cell spreading, including isolated ectodermal

cells that have not undergone epithelialization (Skokan et al., 2020).

Our lab has previously explored the parameters and predictions of the DITH, in partic-

ular its extension to cell-matrix interactions, using microtissues of cultured primary human

mammary epithelial cells (HMEC), which provide an excellent model system for studying

cell sorting. Unlike immortalized lines like MCF10A, these finite-lifespan, early-passage cells

derived from normal reduction mammoplasties retain the two major cell types of the breast

epithelium, luminal and myoepithelial cells (LEP, MEP) (Stampfer et al., 2013). The sep-

aration of outer MEP from inner LEP is driven by a strong difference in the interfacial

energies of each cell type with the surrounding ECM. When reaggregated and embedded in

an adhesion-supportive ECM, LEP and MEP self-organize in hours to days into a core-shell

configuration, with MEP contacting the ECM as they would in the in vivo tissue. LEP

and MEP self-organize by exchanging neighbors and their layered position in the tissue is

due to the relative interfacial energies of each cell-cell and cell-ECM interface. In HMEC,

the interfacial energy between cells and ECM is central to determining tissue structure: the

LEP-ECM interfacial energy is highly unfavorable compared to that of MEP-ECM. Un-

like commonly described cell-cell adhesion-based systems, HMEC organoids organize very

differently depending on the presence or absence of ECM. In the absence of ECM – in a

non-adhesive agarose microwell – the cohesive MEP sort to the center. With an adhesion-

permissive environment, the MEP will sort to the outer layer, as they do in vivo (Cerchiari

et al., 2015).
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Cell sorting is also driven by other processes which have been observed and proposed

in various tissue systems. In particular, the DITH is primarily based on static cell prop-

erties, rather than dynamics, such as directed cell migration or differences in cell motility

or dynamics. Contact-mediated repulsion driven by Delta/Notch has been implicated in

cell sorting in zebrafish stripe formation, forming the long-range inhibition component of

a cellular Turing pattern (Hamada et al., 2014). In HEK293 cells, heterotypic Eph/ephrin

signaling triggers localized collapse of cell processes, or contact inhibition of locomotion,

and repulsive migration between the signaling cells, a mechanism that is predicted to be

more efficient at sharpening tissue borders than DITH alone (Taylor et al., 2017). During

gastrulation, mesoderm involution into the ectoderm is dependent primarily upon directed

cell motility in a Rac-dependent manner, while tension-dependent cell sorting of mesoderm

progenitor and ectoderm progenitor cells in vitro is unaffected by dominant-negative Rac but

strongly affected by the osmolarity of the culture medium (Krens et al., 2017). Undirected

differences in cellular motility have also been modeled to drive sorting in cells and active

particle systems (Stenhammar et al., 2015). Cells with high directional persistence spatially

sort to the ends of a microtissue’s long axis (Mori et al., 2009). In the mouse blastocyst, the

sorting of cells in the inner cell mass may be driven by both a DITH mechanism as well as

differential surface blebbing associated with localized, subcellular heterogeneity in cortical

actin (Yanagida et al., 2020).

Many computational tools have been developed to model cell sorting, including subcel-

lular lattice models, e.g., Cellular Potts (Graner and Glazier, 1992), polyhedral lattice models

(Flenner et al., 2012), finite-element models (Chen and Brodland, 2000; Viens, 2007), vertex-

based meshes (Fletcher et al., 2014; Neumann et al., 2018), and self-propelled particles and

Voronoi tesselations (Belmonte et al., 2008). These models typically incorporate cellular

forces (interfacial tensions, cell motility) and mechanical constraints (area/volume conserva-

tion, tissue boundaries, cell and substrate elasticity and viscosity) into a global Hamiltonian

or energy functional, or into a total force acting on the individual cell for cell-centric meth-
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ods. The resulting energy differences between cell configurations or force imbalances acting

on cells lead to positional changes and sorting towards the minimum energy structure.

However, traversing an energy landscape is not without its hazards, as is appreciated in

molecular structure prediction, where metastable states and kinetic bottlenecks are common

(Caves et al., 1998; Jack et al., 2007; Shaffer et al., 2016; Coveney and Wan, 2016). In

deterministic fluctuation-free models of cell sorting, cells only move due to the action of

explicit forces, e.g., imbalances in interfacial tensions, meaning that once a tissue reaches

an energy minimum, it will not randomly exit it (Hutson et al., 2008). These systems are

sensitive to local energy minima: for example, a partially sorted tissue with multiple cores

might have a global energy minimum with all cores merged into one, but in order to connect

the separate cores, the tissue would need to temporarily increase its heterotypic area to

create a bridge. Deterministic energy minimization alone may not be sufficient to lead to

robust sorting, except in small and highly connected systems. Recent work on glass-like

behavior in tissues has shown that highly confluent tissues can be “jammed” by cell shape

constraints and kinetically trapped away from an energy minimum (Bi et al., 2015; Park

et al., 2015; Ilina et al., 2020), even in the presence of collective cell migration (Angelini

et al., 2011). Such a system may not reach a hypothetical equilbrium distribution because

it may be jammed in its initial configuration, and not all microstates are equally accessible

to it.

Tissue activity or energy fluctuation is frequently included in models of cell sorting as a

parameter that enables sampling of the configuration space, even against an energy gradient.

Effectively, it captures the occurrence of random cellular positional changes. In the Cellular

Potts model, for example, it exists as a temperature T that modifies the probability of lattice

site-switching (Graner and Glazier, 1992). Agent-based systems like self-propelled particles

incorporate more complex parameters of cell motility, such as a cell-intrinsic semi-random

driving force with directional persistence (Belmonte et al., 2008). Tissue activity has two

main consequences: first, creating dynamic fluctuations about the steady state, and second,
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allowing the system to adequately sample the configuration space and approach the steady

state from an initially distant state.

1.3: Statistical mechanics in biology

Dynamic, nonequilibrium systems are often of great interest in biology, in particular their

ability to reach and maintain not-so-dynamic homeostatic states. Despite the fact that

active biological systems are inherently nonequilibrium at the molecular level, it has been

observed that nonequilibrium systems can regain equilibrium behavior at the macroscopic

level, including detailed balance, fluctuation dissipation, and Gibbs distributions, given the

appropriate choice of spatiotemporal scale (Egolf, 2000). Dynamic nonequilibrium systems

can develop stable cycles or steady states with significant robustness to fluctuations, and

indeed this behavior is essential for the active maintenance of biological homeostasis (Wang

et al., 2008).

Nonequilibrium steady states (NESS) are stationary (time-invariant) states of nonequi-

librium systems and can be described in similar terms as equilibrium theory (Oono and

Paniconi, 1998). They feature a steady state that is maintained by constant mass or energy

inputs from external driving forces and dissipation of heat energy out of the system. These

forces and fluxes are seen in active systems containing internal motors or periodic driving,

like molecular motors in cells (Battle et al., 2016), or systems with consistent transfer of mass

or energy in and out of the system, like the flow of blood passing through a certain stretch of

blood vessel or populations of cells transitioning between different states while maintaining

the overall population structure (Hayashi et al., 2008; Chang and Marshall, 2019).

Statistical mechanics links the macroscopic observed quantities of a system to the

statistical behavior of its microscopic components (Frigg, 2008; Uffink, 2007). Concepts from

statistical mechanics have been used in describing the behavior of biological systems, from

dynamics to steady states, including protein folding, gene transcription, oncogenic mutations

in protein-protein interaction networks, and cell pluripotency (Frauenfelder et al., 1991; Bintu
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et al., 2005; Vilar and Leibler, 2003; AlQuraishi et al., 2014; Teschendorff and Feinberg, 2021).

It provides a generalizable approach to describing the probability distribution of a system

as a function of the energy of its possible states and the number of microstates consistent

with the macrostate.

A microstate represents the low-level arrangement of the system. Examples of mi-

crostates in biological systems include the locations of ligands in solution, the locations of

transcription factors bound to the genome, the nucleotides of a gene sequence, and the levels

of gene expression in a cell. The relative probability of each possible microstate is the Boltz-

mann weight, e−βε, where ε is the energy of the microstate and β is a measure of the random

fluctuations of the system. Not every individual microstate is of biological interest. Typi-

cally, we are interested in sets of significant microstates, for example: the set of synonymous

mutations, the set of all ligand configurations where one ligand is bound to a receptor, or the

set of all transcriptomic profiles consistent with a particular cell state (Fig. 1.2). These sets

of microstates are macrostates, which capture some “macroscopic” property of interest, such

as receptor occupancy or cell state, by combining many functionally equivalent microstates.

Naturally, the relative probability of such a macrostate i is the sum of the Boltzmann weights

of the component microstates, Pi =
∑
e−βε. This can be stated as

Pi =
Wi

Z
e−βEi (1.1)

where Wi is the number of microstates in the macrostate i, Ei is the relative energy of the

macrostate i, and Z is the partition function defined such that
∑

i Pi = 1.
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Figure 1.2: Some examples of statistical mechanics applied to problems in biology. Biological
phenomena can be considered to take place in different states, such as bound/unbound, or
naive/differentiated. Statistical mechanical analysis can be performed to determine the
relative probabilities of different states of interest by comparing their relative energy costs
and multiplicity. Energy can be directly related to physical energies, like protein-DNA
binding energies (A), or more abstract, like the activating-inhibiting interactions of a gene
regulatory network (B). Figures are reproduced from Bintu et al. (2005) and Teschendorff
and Feinberg (2021).

The “energy” is often estimated using binding rates or molecular interaction energies,

but need not be directly related to kinetic or potential energies at all. For example, the iconic

image of cell differentiation as balls rolling down phenotypic valleys in a three-dimensional

epigenetic landscape was introduced by Waddington (1957). It remains a compelling image

today, as modern techniques and statistical mechanics are applied to characterizing these

“energy” valleys as transcriptional and epigenetic attractors formed by gene regulatory net-

works. For relatively small gene regulatory networks, energy landscapes can be predicted

from known or estimated activating and inhibitory interactions (Bhattacharya et al., 2011; Li

and Wang, 2013). Molecular binding energies can be more literally translated into an energy

landscape. AlQuraishi et al. (2014) applied a statistical mechanical approach to predicting

the functional effects of SH2 domain mutations on protein-protein interaction networks. Be-

ginning with first-principles biophysical data on binding assays and crystal structures, they

developed a Hamiltonian to predict changes in binding affinity for mutant SH2 proteins for

all possible protein configurations. Once combined with bioinformatic network information
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on protein-protein interaction networks and pathways, their model represented a description

of systems-level phenotypic changes based upon the energies and multiplicities of the possible

mutants affecting protein binding, thereby establishing a link between microstates (mutant

proteins and their paired interactions) and macrostates (downstream effects on pathway

activity).

Given the tremendous complexity of the biological processes underlying many energy

landscapes of interest, it is not always feasible to predict their structures from first principles,

so the problem may be inverted in biological practice: given the observed state occupancies,

what is the underlying energy landscape (Chau Nguyen et al., 2017)? Complex cell states

spanning many genes, for which small gene regulatory networks are insufficient, are now being

probed using high-dimensional and single-cell biology. High-dimensional datasets probing

chromatin accessibility or transcript expression of large numbers of single cells can be used to

infer the differentiation potential landscapes underlying observed cell distributions or inferred

cellular trajectories as cells move towards energy minima (Lang et al., 2014; Jenkinson et al.,

2017; Jin et al., 2018; Teschendorff and Feinberg, 2021). Similarly, energy landscape inference

has been used for high-dimensional viral mutation fitness analysis, which lacks a robust

bottom-up approach to estimating functional outcomes. In paired studies, Shekhar et al.

(2013) and Ferguson et al. (2013) used a Boltzmann analysis of the observed prevalance

of HIV strains in patients to infer the fitness landscape associated with specific mutational

states, using the relation Ei − EWT = − ln Pi

PWT
. Their model predictions were comparable

to experimental in vitro HIV replication data generated in-house and from the literature,

and corresponded to clinically relevant features of HIV strains in vivo, including escape

mutants, the pathway of viral evolution in individual patients, and high fitness costs to viral

evolution in elite controller patients. These inferred energy landscapes can supplement or

validate predictions from first principles, and using both approaches together can provide a

compelling description of the putative energetics of the system.
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What about active systems, where the system’s position in state space is influenced not

only by the underlying energy landscape but also by the periodic or stochastic driving forces

it experiences? In gene expression space, such fluctuations can arise from transcriptional

noise that transiently drives the cells away from an attactor steady state. Such systems are

of interest in modeling pluripotency, as stem cells stochastically leaving the steady state may

be differentially susceptible to differentiation, even while the ensemble as a whole maintains

a fluctuation-resistant, stable distribution of cells with dynamically varying states (Chang

et al., 2008; Kalmar et al., 2009). In physical state spaces, cells metabolize chemical energy

and use it to carry out driven motion, which ultimately leads to heat dissipation and entropy

generation in the surroundings. At small length scales, where active motor fluctuations and

thermal fluctuations are of similar orders of magnitude (∼ 1- to 100-fold kBT ), the nonequi-

librium nature of the observed states can only be detected by violations of the equilibrium

requirements of detailed balance or the fluctuation-dissipation theorem, by observing net

probability fluxes in state space or nonlinear relationships between spontaneous and induced

fluctuations respectively (Seifert, 2012). The activity can generate an apparent or effective

temperature very similar to the thermodynamic concept, as though the NESS were a closed

system at equilibrium at Teff, where Teff 6= T indicates a nonequilibrium state maintained

by active processes rather than thermal noise (Cugliandolo, 2011; Gnesotto et al., 2018).

For example, hair cells’ mechanosensitive hair bundles oscillate to amplify sound and adjust

sensitivity. Martin et al. (2001) observed that frequency-stimulated hair bundle fluctuations

displayed active amplification of oscillations at high frequencies, Teff > T , and active damp-

ening at low frequencies, Teff < T , while control hair cells’ motion was consistent with the

external temperature. Similarly, Turlier et al. (2016) used active and passive microrheology

to measure the active contribution to red blood cell membrane flickering, a phenomenon pre-

viously thought to reflect thermal fluctuations. Such studies demonstrate that active inputs

can generate NESS strongly resembling equilibrium behavior.
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2. Methods

2.1: HMEC material and cultivation

De-identified cultured normal finite-lifespan primary HMEC were provided by Drs. Martha

Stampfer and James Garbe (Lawrence Berkeley National Laboratory). The majority of ex-

periments were performed using cells derived from benign surgical discard material from a re-

duction mammoplasty of a 19 year old individual with bilateral breast hypertrophy (specimen

240L). HMEC were cultured in M87A medium with cholera toxin and oxytocin exchanged

every other day as previously described (Stampfer et al., 2013), with penicillin/streptomycin

beginning at passage 4. All cultured primary HMEC were used for experiments at passage

4.

LEP and MEP were isolated by fluorescence-activated cell sorting (FACS), modified

from Cerchiari et al. (2015). Briefly, at 80 − 90% confluence in 10-cm dishes or 6-well

plates, HMEC were gently rinsed once with 4 ml of 0.05% trypsin and incubated with 2

ml trypsin at 37°C until cells were detaching from the substrate, or in half the volume for

6-well plates. Cells were detached by rinsing with 10 ml M87A medium and passed through

a 40-µm nylon filter into a 50-ml centrifuge tube on ice. Cells were centrifuged at 160×g for

4 min then incubated in FACS antibody staining solution in M87A for 30 min on ice. FACS

antibody cocktail comprised 10 µL/ml APC/Fire 750 CD271 and Pacific Blue EpCAM mouse

monoclonal antibodies (BioLegend 345116 and 324218). Cells were washed with 10 ml of PBS

and resuspended in 500 µL FACS buffer per 10-cm dish (PBS + 2% w/v BSA). Cells were

sorted on a BD FACSAria III fitted with a 100-µm nozzle running FacsDiva software using

the 4-way purity setting. GFP-positive cells were gated as GFP+/mCherry− and mCherry-

positive cells were gated as GFP−/mCherry+. LEP were gated as EpCAMhigh/CD271low and

MEP were gated as EpCAMlow/CD271high, as shown in Fig. 2.1.
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Figure 2.1: Representative flow cytometry plot of GFP or mCherry-transduced fourth pas-
sage HMEC (A) stained with APC/Fire 750 CD271 (MEP marker) and Pacific Blue EpCAM
(LEP marker) (B).

2.2: Viral transduction of HMEC

Transgenes were cloned into the pSicoR lentiviral backbone using BsiWI/XbaI restriction

sites under the EF1α promoter and short hairpin RNA (shRNA) sequences under the U6

promoter, as mapped in Fig. 2.2. Enhanced GFP or mCherry reporter fluorescent proteins

were separated from the insert by a P2A ribosomal skipping sequence. Transgene expression

and shRNA knockdown was confirmed by Western blot. Lentiviral vectors with a puromycin

resistance marker were prepared for a subset of shRNA sequences to be co-transduced with

a different transgene marked by GFP.

16



5’ LTR
CMV promoter

U6
shRNA seqWPRE

eGFP
Oncogene CDS

5’ LTR

Ampr

Ori

EF1α promoter

pSicoR-based 
expression 
constructs

Figure 2.2: Vector map of the pSicoR lentiviral backbone. Oncogenes were inserted down-
stream of the EF1α and shRNA sequences were inserted downstream of the U6 promoter.

Concentrated third-generation lentiviral vectors were purchased from UCSF Viracore

or generated in-house by triple transfection of HEK293T/17 cells (UCSF Cell Culture Fa-

cility) grown in DMEM + GlutaMAX (ThermoFisher Scientific 10566016) with 10% FBS

and 1mM sodium pyruvate, and switched to lentivirus packaging medium (Opti-MEM +

GlutaMAX (ThermoFisher Scientific 51985034) with 5% FBS and 1mM sodium pyruvate)

12− 16 hr before transfections. Cells at 80− 90% confluence were transfected with plasmids

for the gene of interest, pCMV-VSV-G (Bob Weinberg, Addgene plasmid 8454) and pCMV

delta R8.2 (Didier Trono, Addgene plasmid 12263) using Lipofectamine 3000 (ThermoFisher

Scientific, L3000015). Supernatant was harvested and filtered after one and two days, then

centrifuged with Lenti-X Concentrator (Takara Bio 631231). Viruses were titered by serial

dilution and infection of 10,000 passage 5 MEP per well of a 96-well plate. Small volumes

were aliquoted and stored at −80°C. Thawed aliquots were stored at 4°C for up to one week.

For transgenic HMEC, frozen ampules of HMEC were thawed into plates at 2500 − 3500

cells/cm2 in a half-volume of M87A medium containing 2 µg/ml polybrene and lentivirus,

initially at 1 MOI based on titer, and afterwards adjusted for real performance to target

50-80% transduction efficiency. After 3 hr, M87A medium was added to full volume. Virus

medium was allowed to remain on cells until 2 days after initial seeding. Puromycin selection

was initiated at 2 days at 1 µg/ml.
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2.3: Photolithography and PDMS stamps

Silicon masters were prepared matching the desired agarose features, either rectangular cell-

cell microwells of dimensions 10 µm × 20 µm × 20 µm, or cylindrical aggregation microwells

of approximately 200 µm depth and 120 or 180 µm diameter. SU-8 UV-curing resin (Mi-

croChem) was distributed on pre-cleaned silicon wafers using a spin coater. SU-8 2050 was

spun 30 seconds at 1000 rpm for 200 µm-high features, while SU-8 2025 was coated at 4000

rpm for approximately 20 µm-high features. The wafer was baked at 95°C to remove excess

resist solvent, then exposed under a 365-nm UV lamp with a printed photomask (CAD Art

Services) for approximately 6 min for thick features and 2 min for thin features. After baking

at 95°C for 1 min, cooled wafers were submerged in PGMEA developer at a depth of 2 cm on

a rotary shaker until uncured resist was dissolved away. Excess was rinsed off with PGMEA

developer, then the wafer was rinsed with isopropanol, dried, and baked for a few minutes at

95°C to remove excess solvent. PDMS polymer and crosslinker at a 10:1 ratio were poured on

the silicon master to a depth of approximately 1 cm, degassed in a vacuum desiccator, and

baked at 60°C overnight. The PDMS was removed, cut into stamps approximately 1 cm ×

0.5 cm, and stored in 75% ethanol. Agarose microwells were cast from 3% w/v high-melting

point agarose (AllStar Scientific 490-050) in PBS by dropping PDMS stamps into molten

agarose and allowing to set at 4°C. PBS was added and the PDMS stamps were removed

with curved-tip tweezers. Agarose microwells were stored under PBS at 4°C and used within

one day of preparation.

2.4: Reconstituted mammary organoids

Fluorescent protein-expressing HMEC were reconstituted into organoids, modified from Cer-

chiari et al. (2015). Sorted GFP and mCherry cells were combined in M87A media at a 1:1

ratio at a total cell concentration of 300,000 cells/ml. Approximately 100 µL of the cell sus-

pension was pipetted onto agarose microwells in a 24-well plate and centrifuged twice, facing
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opposite directions to distribute cells evenly across the microwells, at 160×g at 4°C at half

acceleration in a swinging-bucket rotor centrifuge. Excess cells were removed by aspiration

of the remaining medium before culturing the cells in microwells in M87A medium until they

formed cohesive cell aggregates, approximately 4 hr for passage 4 HMEC. After aggregation,

cell clusters could be transferred to 3D culture. First, 10 µL of Matrigel was spread in a thin

layer in the center of a glass-bottom culture chamber (either a 24-well plate or an 8-chamber

coverslip), and allowed to gel at 37°C for at least 30 minutes. Microwells were flushed by

pipetting 1 ml of PBS over the microwells and transferring to a 15-ml conical. Trituration

was performed twice with a wide-bore p1000 tip then once with a standard p1000 tip, until

most microwells were empty by visual inspection. The collected aggregates were centrifuged

briefly at 15×g at moderate acceleration and deceleration in a swinging-bucket rotor cen-

trifuge. The supernatant was discarded and the aggregates resuspended in ECM using a

wide-bore p200 tip, typically Matrigel at 9 mg/ml, or Matrigel with 2 mg/ml collagen-I.

The aggregates were distributed over the pre-gelled Matrigel underlay in a 40 µL droplet

and incubated at 37°C for 30 − 45 minutes before being covered in M87A medium. For

drug and growth factor treatments, a 100× concentrated solution was mixed into the ECM,

i.e., 0.4 µL in 40 µL of Matrigel, and mixed thoroughly before plating, in order to reduce

potential for uneven diffusion of compounds through ECM. Aggregates were cultured with

M87A media changes every other day. To generate pre-segregated aggregates, GFP cells

and mCherry cells were spun in separate 120 µm microwells and incubated at 37°C for 3 hr

before the single-color aggregates were flushed out and recombined into 240 µm microwells

and incubated again for 3 hr.

2.5: Microscopy

Organoids were imaged for cytoplasmic fluorescent proteins GFP and mCherry at 2 days

and 7 days on either a spinning disk confocal microscope or a laser scanning confocal micro-

scope running ZEN software. Z-stacks contained approximately 7 to 11 slices spaced 5 µm
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apart. Live imaging was performed under environmental control with 5% CO2 at 37°C with

timepoints every 5 to 20 minutes apart.

Technical limitations generally prevent long time-lapse acquisitions of living organoids,

which experience phototoxicity and declining health after several hours of imaging. Organoids

that have undergone live imaging are typically less sorted than organoids left in the incuba-

tor for the same amount of time. To reduce experimental variability due to cell health, we

restrict our analysis of the approach to steady state to a time window of eight hours, and

for steady state begin analysis after 48 hr.

2.6: Immunofluorescence

For 2D immunofluorescence, cells were fixed in 4% PFA for 15 min at room temperature,

permeabilized with 0.5% Triton X-100 for 5 min at 4°C, blocked with blocking buffer (wash

buffer + 10% heat-inactivated goat serum) for 1 hr at room temperature, incubated with

primary antibody in blocking buffer overnight at 4°C, rinsed in wash buffer (PBS + 0.1%

w/v BSA + 0.2% v/v Triton X-100 + 0.041% v/v Tween-20) 3 times for 10 min at room

temperature, incubated with secondary antibody in blocking buffer for 30 min at room tem-

perature, rinsed in wash buffer 2 times for 10 min at room temperature, and incubated with

DAPI or phalloidin in PBS for 30 min in room temperature. For 3D immunofluorescence,

cells were fixed in 2% PFA warmed to 37°C and allowed to cool to room temperature over 45

min, permeabilized with 0.5% Triton X-100 for 15 min at room temperature, blocked with

blocking buffer for 2 hr at room temperature or overnight at 4°C, incubated with primary

antibody in blocking buffer overnight at 4°C, rinsed in wash buffer 3 times for 1 hr at room

temperature, incubated with secondary antibody in blocking buffer overnight at 4°C, and

rinsed in wash buffer 3 times for 1 hr at room temperature. Samples were stored in PBS at

4°C prior to imaging.
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2.7: Interfacial tension measurements

Cortical tensions were measured by micropipette aspiration of single cells in suspension

(Srivastava and Robinson, 2015). Glass micropipettes of 8 µm to 11 µm inner diameter were

pulled and microforged from glass capillary tubes, then mounted into a Narishige MM-92

micromanipulator and stage mounted to a Zeiss Axiovert 200M running SlideBook software.

Cells were either used immediately after lifting or FACS sorted and held on ice for a total

of no more than 5 hr after initial passaging. Cells were resuspended at 5000 cells/µm2 and

warmed to room temperature before aspiration. A cell was aspirated into a glass micropipette

at inital pressure of 0.03 kPa, and pressure was increased in 0.03 kPa steps until the cell was

sufficiently deformed. At each pressure, after waiting for 30 seconds, three images were

taken using a 40× air objective. The average cellular deformation inside the pipette (Lp)

was measured in FIJI, and critical pressure (∆Pcrit) was identified as the aspiration pressure

where Lp = Rp, pipette inner radius. Any cells that blebbed were discarded. Cortical tension

was calculated as γc = ∆Pcrit

(
1
Rp
− 1

Rc

)−1

.

Contact angle measurements were modified from Cerchiari et al. (2015). For cell-

ECM measurements, 8-chambered coverslips (Nunc Lab-Tek II, ThermoFisher Scientific)

were covered in reduced growth factor Matrigel diluted in M87A medium at 2% v/v (0.18−0.2

mg/ml) at room temperature for at least 2 hr during FACS sorting. The coverslips were

washed once with M87A medium prior to seeding FACS-sorted LEP and MEP at 5,000 cells

per 0.7 cm2 chamber. The coverslips were washed again and cultured until 4 hr, when they

were fixed in 4% PFA and immunostained for cytokeratin 14 and cytokeratin 19. Healthy,

radially symmetric cells not touching nearby cells were imaged with a 63× oil objective (NA

1.4) on a spinning disk confocal Zeiss Cell Observer Z1, Yokagawa spinning disk microscope.

Slices in z-stacks were taken 0.26 µm apart and spanned the cell surface and most of the cell

height. Cytokeratin 14 and cytokeratin 19 were used to verify cell identity of MEP and LEP,

respectively. The contact angle at the cell-ECM interface was measured with the FIJI angle
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tool at four points around the circumference of each cell, taken from coronal and sagittal

projections, using the gross shape of the cell and disregarding thin, flat membrane extrusions.

The four measurements were averaged on a per-cell basis for analysis. Asymmetrical cells

with standard deviation greater than 30° were excluded.

For cell-cell measurements, FACS-sorted GFP and mCherry cells were centrifuged into

small rectangular agarose microwells designed to hold two cells (20 µm × 40 µm × 20 µm)

and cultured for 4 hr. With environmentally controlled live imaging, or after fixing in 4%

PFA for 10 min at room temperature, pairs of similar-size cells were imaged with either a

20× air objective or a 40× water objective on the spinning disk confocal at the center plane

of contact. The FIJI angle tool was used to measure four contact angles at each cell-cell

interface, which were averaged for each cell doublet for analysis.

2.8: Image processing and quantification

Initially, organoid z-stacks were qualitatively categorized as correct, mixed, split, inverted,

and in between, using a random channel-swapping approach to blind the user to the true

identity of LEP and MEP pixels. Center z-slices were visually identified by size. The center

three slices (the center and one above and below, or the center two slices if the center was

at the edge of the z-stack) were isolated from each z-stack and prepared for segmentation

by background subtraction and automatic contrast adjustment in FIJI. The estimated error

associated with using a three-slice average of the organoid center cross-sections (−5, 0, 5 µm,

spanning 10 µm in the z-axis) is discussed in Appendix E. LSM images were additionally

processed with a Gaussian blur to reduce the pixel noise associated with LSM. Channels

were standardized by swapping where reasonable, so that an organoid with mCherry LEP

and GFP MEP would be segmented the same as an organoid with GFP LEP and mCherry

MEP, yielding pixels classifications by cell type, not fluorescent marker.

Separate Ilastik pipelines were generated for each of two microscopes (spinning disk

confocal and laser scanning confocal) and two levels of fluorescent protein expression (bright
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and dim) to account for image variation between microscopes and constructs (Berg et al.,

2019). Ilastik’s pixel classification module uses a Random Forest classifier on pixels with

pre-defined features, allowing for fast interactive annotation. The training datasets were

generated from random samples of images from different outcome categories to ensure an even

representation of different organoid configurations. The training dataset was sparsely labeled

into four pixel categories: MEP, LEP, ECM, and hole. The hole category denotes regions

within the organoid with very low signal, such as lumens, vacuoles, or the interiors of large

organoids where light penetration is weak. Image features were set to two-dimensional filters

of the background-subtracted two-channel fluorescence data. Annotation of the training data

proceeded until regions of uncertainty were localized to boundaries between pixel classes, and

high certainty was established in all other areas.

Segmentations were exported and processed in MATLAB. Due to natural variations in

fluorescence and cell morphology, some regions are very difficult to segment either manually

or automatically. Processing was used to smooth the border of the organoid and reasonably

infer unassigned or ambiguous pixel identities. It removed labeled areas outside of the

main organoid, removed small speckles, reassigned internal holes as either cells or ECM by

interpolation, and used a disk structuring element to smooth out crevices in the organoid

that can be replaced with cell pixels. The majority of images required minimal processing,

unlike the more challenging partially lumenized all-LEP mixed organoid shown in Fig. 2.3,

as an example of these image processing steps. Pixel classifications were in general accurate

enough to describe the overall structure of the organoid and the proportion of the tissue

edge occupied by each cell type.
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Figure 2.3: Image processing involves manually choosing the center slice, background sub-
traction, pixel assignment by a random forest classifier, and morphological operations de-
signed to remove small isolated features, fill in holes, and remove external cell debris.

For the corresponding processing of organoid timelapses, the same automated pixel

classification and processing procedure was applied to each individual z-slice at each time-

point. The center slice was assumed to be the slice with the largest area; in the case of

a contiguous near-tie (within 15% of the largest area), the center slice among those was

selected.

The morphological parameters of each segmented slice were calculated in MATLAB.

A complete list of variables, their purpose, and their derivations are provided in Table 2.1.

Where applicable, absolute lengths and areas were converted from pixels to microns or

microns squared. Quality control cutoffs for cell fraction, area and circularity were defined

to exclude poorly segmented organoids and organoids merged with cell debris. Organoids

were subsetted to have no more than 60% of one cell type, cross-sectional area between

3000 µm2 to 10 000 µm2 inclusive, and circularity greater than 0.7. For live imaging, area

cutoffs were defined to exclude datapoints with area more than 2-fold different from the

mean track area to remove aberrant frames from z drifting and collisions with nearby cells.
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Table 2.1: Morphological parameters recorded for organoid images. Pixel connectivity is
such that each pixel is adjacent to its 8 neighbors (Chebyshev distance 1). [Type] refers to
LEP in heterotypic organoids and the green cells in homotypic organoids.

Name Measures Description

[Type] fraction composition Proportion of [Type] pixels.

Area

shape

Total area in µm2.

Circularity Roundness, defined as 4π·Area
Perimeter2

.

Diameter Effective diameter of the organoid, 2
√

Area/π.

Intermixing

cohesion

Number of pixels adjacent to a pixel of the op-
posite cell type, divided by 2·Area. Higher val-
ues mean less cohesion/segregation.

Blob Size
The mean feature size: the reciprocal of the
mean fast Fourier transform frequency of the
mask with two cell types -1, 1, and 0 elsewhere.

Solidity
Proportion of [Type] pixels in the smallest con-
vex enclosing polygon of [Type]. Higher values
mean more cohesion of [Type].

Intercentroid linear sorting
Distance between the centroids of the cell types,
divided by Diameter. Larger values mean more
separation.

Edge occupancy

radial sorting

Proportion of [Type] in the region. Edge:
directly adjacent to ECM. Outer/Inner: the
lower/upper third of pixels ranked by distance
to ECM.

Outer occupancy

Inner occupancy

Correctness
Proportion of pixels that match the segmen-
tation generated by moving all MEP pixels as
close to the ECM as possible.
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2.9: Three-dimensional nuclear diffusion assay

To quantify the undirected random motion within cell aggregates, we used timelapse imaging

of organoids labeled with cytoplasmic GFP into which were introduced a small number

(comprising 1/10 of the total cells spun into microwells) of doubly transfected GFP and H2B-

mScarlet-expressing cells of the same type. Organoids containing 1− 10 red nuclei with no

neighboring organoids were chosen for live imaging of 7 5-µm slices at 10 min resolution.

For nuclear motility, 7 5-µm slices were analyzed using the TrackMate pipeline in FIJI

to assign spot identities to tracks with manual curation of track assignments. Timepoints

were assigned based on imaging frequency (5, 10, or 20 min intervals). Image scaling in-

formation and centroid Ilastik segmentations were used to define the x and y coordinates

relative to the centroid in µm. Quality control on centroid assignments was performed using

deviation from mean area and mean centroid. Frameshift calculations of x, y, and t were

calculated and used to calculate instantaneous speeds. Extremely high instantaneous speeds

were considered mislabeled spots and removed prior to analysis. Tracks of at least 5 hr

duration and beginning 10 hr after aggregate formation were considered. Lag times were

limited to 2 hr. The limit of detection of cell position fluctuations is close to the fluctua-

tions of the tissue centroid. Comparison of mean squared displacement (MSD) to lag times

across experimental conditions indicate a diffusion coefficient α near 1.2, indicating slightly

super-diffusive behavior, so diffusion coefficients were estimated using the relationship MSD

=
〈

(−→xτ −−→x0)
2
〉
∝ DEFF · τ 1.2. Different dates were analyzed as separate batches.

2.10: Predicted tissue energies

To link the measured mechanical energies of isolated cellular interfaces to the global energy

of a tissue composed of many cellular interfaces, I built a three-dimensional simulated tissue,

representing a cluster of cells as a uniform polyhedral foam of near-minimal surface area.
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Simulated Tissue Cross-sections

×8 ×6
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a a

Simulated Tissue

Figure 2.4: The Voronoi tesselation of the base-centered cubic lattice is a close packing of
cells. Each cell is a truncated octahedron with six square faces along the main axes and
eight hexagonal faces along the diagonals. All polygonal faces have side length a. Lattice
points were chosen by excluding points beyond a specified radial distance from the centroid,
and the outermost layer of points, not pictured, are assigned to be substrate.

The tissue enthalpy can then be quantified in terms of the cell contact angles θ, cell

cortical tension γc, and the areas of the cellular interfaces A, as described in Appendix C.

These calculations allow us to estimate the tissue energies in terms of units of energy (pJ),

based upon the empirical measurement of γc (nN µm or 10−3 pJ µm−2) and the estimated

cellular areas (µm2). Some interfacial tensions not measured were substituted with the most

similar available interfacial tension. For example, the micropipette aspiration assay is ex-

tremely low-throughput and was performed for a minimal set of control and transduced LEP

and MEP with and without drug, the results of which suggested that cell cortical tensions

are very similar across cell types. Additionally, cell-cell contact angles for PIK3CAH1047R

with MK2206 were substituted with those for the same transgene without drug.

∆E =
∑

i,j

∆Ecicj +
∑

k

∆Eckx

=
∑

i,j

2γcAcicj
(
cos θcicj − 1

)
+
∑

k

γcAckx (2 cos θckx − 1)

Ahexagon =
3
√

3

2

(
π

6
√

2

) 2
3

R2 ≈ 134 µm2

Asquare =

(
π

6
√

2

) 2
3

R2 ≈ 52 µm2
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As the total estimated tissue energy is a complicated function of the five interfacial

energies (between the two cell types and the substrate), each of which is associated with its

own degree of measurement uncertainty, the point estimate and confidence interval of the

resulting energy landscape was quantified with a bootstrap approach. First, the standard

error for each interfacial energy (∆Ecc or ∆Ecx) was estimated using the Gaussian error

propagation approach,

σ2
∆E

=

∣∣∣∣
∂∆E

∂γc

∣∣∣∣
2

σ2
γ̄c +

∣∣∣∣
∂∆E

∂θ

∣∣∣∣
2

σ2
θ̄ = (2 cos θ − 1)2 σ2

γ̄c + (−2γc sin θ)2 σ2
θ̄

Next, randomized parameter sets of interfacial energies were generated by drawing each of the

five interfacial energies from the corresponding normal distributions with mean and standard

deviation determined by the error propagation. For each of 1000 sets, the energies were

used to calculate the energy landscapes of 1,000,000 randomly generated simulated tissues

randomly subsampled for computational efficiency. Phase space was binned into 25×25 two-

dimensional bins and the configurations were randomly resampled without replacement so

that no bin held more than 50 tissues. The estimated energies generated from ten such

parameter sets based on the wild-type and PIK3CA measurements are shown with respect

to EO in Fig. 2.5. PIK3CA parameter sets have higher variance, resulting in a wider

distribution of estimated slopes. An unweighted least squares linear regression was performed

to calculate dEi as a function of Edge Occupancy and Intermixing Score.
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Figure 2.5: The change in total tissue energy with respect to macrostate i is estimated by
bootstrapped linear regression on randomly drawn parameter sets based on the measured
values and uncertainties of γ. For clarity, only 10 parameter sets on the Edge Occupancy
axis are displayed. Points are mean ± standard deviation.

2.11: Inferred tissue energies

We may solve the inverse Ising problem by comparing the actual data observed from sorting

and non-sorting organoids, Pi and PMEP,i. I approximate Wi from PMEP,i with a normal

distribution fitted to the observed EO frequencies, 1
σ
√

2π
e−(i−µ)2/2σ2

. The MEP-only organoids

are subsetted to match the range of compositions and sizes. The inferred Wi truncated

normal is used to calculate the dimensionless quantity − ln
(
Pi

Wi

)
, which is equal to βEi

within a constant1. Invalid data points due to 0 observed events are omitted.

The propagated uncertainty associated with βEi = − ln Pi

Wi
is expected to contain the

term 1
PiWi

, which is extremely large for many regions of phase space where configurational

entropy is low or where very few organoids have been observed, not to mention the regions

where βEi is undefined due to 0 observed events. Where the inferred βEi is displayed for

visualization purposes it is accompanied by a weighted least squares linear regression with

1βEi = − ln
(
Pi

Wi

)
+ c. The constant c captures terms which are independent of i, such as the partition

function Z, the tissue reference energy E0, and the scaling factor converting the very large numbers of
microstates Wi into values of PMEP,i < 1.
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weights proportional to PiWi to reduce the influence of high variance regions. However, this

results in significant data loss. For inferring the slope term βdEi and estimating its CI, I

take the nonlinear least squares fit of a resampling of the observed events, assuming the form

Pi = Wi

Z
e−βdEi·i and solving for βdEi over 1000 bootstraps resampling 200 points.
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3. Theory

We are interested in the generation and maintenance of tissue structure, where tissue

structure is defined as the spatial arrangement of the component cells with respect to each

other and their surroundings. In the mammary gland, these structural features ensure that

the cells that produce milk and the cells that contract to expel milk are arranged in a core-

shell structure; they also create a cellular barrier to cancer progression (Sirka et al., 2018).

However, not every part of the tissue is found in the ideal configuration, both across different

parts of the same organ and across individuals. Instead, we see a distribution of structures

that is biased towards the sorted, ideal structure, but nonetheless shows a great deal of

variability. In vitro, self-organizing forces create organoids with a LEP core and MEP shell

(Cerchiari et al., 2015), but structures are variable even though so many of the inputs and

constraints of the system can be controlled.

This control over system constraints makes HMEC organoids an attractive model sys-

tem for characterizing and perturbing the driving forces of tissue self-organization. The

ability to analyze large numbers of organoids of defined compositions makes it possible to

isolate and quantitatively explain the observed structural distributions as a function of sta-

tistical mechanical parameters. Furthermore, by using the concepts of the DITH, we can

directly estimate the relative mechanical energies of different structures.

3.1: Statistical mechanics for multicellular tissues

We can begin to define a statistical mechanical framework for tissue self-organization by

establishing tissue-level analogs to microstates, macrostates, energy, and entropy.

• Microstate: The tissue arrangement, or the positions of all cells in an organoid.

• Macrostate: The set of all arrangements of cells consistent with a macroscopic observ-

able. For tissue self-organization, this will be a structural coordinate value.
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• Energy: The global tissue energy is the sum of the interfacial energies, as in DITH.

• Entropy: Boltzmann entropy Si = k lnWi, where Wi is the number of microstates

consistent with macrostate i.

• Activity: The baseline level of energy fluctuations in the system, which manifests in

tissues as random undirected cell motility.

Towards the goal of establishing a tissue Boltzmann distribution, Pi = Wi

Z
e−βEi , this chapter

will define the quantities used to distinguish between the structural macrostates, describe

the derivation of energy and entropy associated with each macrostate, describe the concept

of tissue activity, and discuss the applicability of steady-state and ergodic approximations

to tissue self-organization.

3.2: Defining structural coordinates

The choice of structural coordinates determines the interpretation of all other terms. We

seek a way to identify macrostates that can be quantitatively measured from microscopy

data, and can be associated with a global tissue energy and a set of equivalent microstates.

We begin by considering the expected and observed variations in organoid structure.

HMEC organoids are roughly spherical, and as they are composed of non-invasive cells, do

not extend or invade into the ECM. They are generally solid rather than lumenized, allowing

cells to take on positions throughout the sphere. Given these constraints, two different cell

types can be arranged in some qualitatively distinct patterns. For HMEC organoids, the

most relevant patterns are 1) “GFP core”, with an mCherry shell, 2) “split”, with GFP

and mCherry cores segregated, 3) “mixed”, with GFP and mCherry intermingled, and 4)

“GFP shell”, with mCherry core (Fig. 3.1). Other studies of cell sorting observe similar

structures, using terms like checkerboard, segregated or phase-separated, and engulfment, and

larger groups of cells may display multiple cores or multiple poles (Brodland, 2004; Toda

et al., 2018).
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Figure 3.1: GFP and mCherry cells in a tissue can be organized in core, split, mixed, and
shell arrangements. Scale bar: 100 µm.

I scored a large dataset of organoid images into the four categories alongside image

analysis to extract the morphological information described in Table 2.1. Borderline struc-

tures showing partial engulfment or multiple cores were assigned to the appropriate core-shell

category for clarity of visualization. An initial set of 10,000 organoids was subsampled evenly

across the four categorical outcomes, yielding almost 5,000 images. After initial analysis,

highly correlated redundant variables were removed for the PCA shown in Fig. 3.2. The

qualitative structural categories, despite their significant degree of overlap, can be read-

ily separated using two parameters, the Edge Occupancy (EO) and the Intermixing Score

(IMS), which represent PC1 and PC2 respectively. EO is high for shell, low for core, and

intermediate for split and mixed, while Intermixing Score is high for mixed, low for split,

and intermediate for the core/shell arrangements.
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Figure 3.2: Outcomes can be described with relatively few morphological parameters. Mem-
bers of four categorical structural outcomes were equally subsampled from a large organoid
dataset. Principal components were derived from the most informative morphological vari-
ables (A). The raw values of two parameters, the Edge Occupancy and Intermixing Score,
are shown in (B) and (C) for the full organoid dataset. In (C), points represent technical
replicates (means of experiment dates) and statistics were performed using the Wilcoxon
signed-rank test against the GFP Shell reference.

Edge Occupancy and Intermixing Score are natural choices for defining cell sorting

outcomes, but how well do they perform at defining tissue energy and entropy?

3.3: Quantifying tissue energy

Having identified some potential structural coordinates, we next determine how well these

quantities can predict tissue energy. How does the interfacial energy of a tissue change

between different macrostates? Can each macrostate be assigned an energy level?
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Cerchiari et al. (2015) reported a DITH framework for mammary self-organization that

identified minimum energy configurations. In the DITH, the global tissue energy Hamiltonian

is the sum of the products of all interfacial areas with their corresponding tensions. We

expand on these ideas to estimate the energy landscape by interpolation. The number of

possible arrangements of all the cells and their membranes is unquantifiably large, but it

is not necessary to identify every possible cell arrangement and calculate its tissue energy.

Rather, we can generate a much smaller, discrete subset of arrangements that samples from

a range of possible structures, generated by permutation of polyhedral lattice points in a

simulated tissue, and use this finite set of points to interpolate the tissue energy landscape

as a function of structure and cellular parameters (section 2.10).

These parameters are the cell-cell and cell-ECM energies, which are reflected in the

free energy changes between cells in suspension and adherent cells. These energy changes

can be quantified using various approaches; for example, Shishvan et al. (2018) drew upon

stress fiber formation, traction force microscopy, and cell morphologies to estimate energy

of adhesion for spreading smooth muscle cells with heterogeneous shapes on substrates of

different stiffnesses. Adherent HMEC are approximated in shape by simple spherical caps,

allowing us to measure interfacial tensions by analyzing cell contact angle geometries as a

statics problem, that is, the Young equation for droplet spreading (Cerchiari et al., 2015).

Relative tensions can be scaled to the cell’s actomyosin cortex tension in nN µm or, equiva-

lently, 10−3 pJ µm−2, measured by micropipette aspiration. The derivation of these equations

is detailed in Appendix C. The values of these quantities for the wild-type LEP and MEP

are shown in Fig. 3.3.
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Figure 3.3: Cortical tensions and contact angles of LEP and MEP are used to estimate
tissue interfacial energy (A). For cortical tensions, points indicate individual cells; for contact
angles, points indicate technical replicates (experiments performed on different dates), while
biological replicates (individual cells or cell doublets) are listed at the bottom. P-values
were calculated with the Wilcoxon signed-rank test. Representative images of cell-ECM and
cell-cell contact angles (B). Scale bar: 10 µm.

Combining the polyhedral lattice point model with empirically measured quantities

for cell-cell and cell-matrix interfacial tensions shows that for wild-type tissues containing

LEP and MEP, global tissue energy is best determined by the proportion of the tissue

boundary that is occupied by LEP (Fig. 3.4). This structural coordinate is not only useful

in describing the key disruption during cancer progression but is also nearly linearly related

to total tissue energy. Each EO macrostate is associated with multiple possible energies,

representing differences in cell-cell connectivity, but these differences are small relative to

differences in energy between EO macrostates.

Macrostates with energy distributions can be considered to have a single effective en-

ergy, depending on the nature of the energy distribution across microstates. For a macrostate

i with normally distributed microstate energies εi, the effective energy is the average energy
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minus a term related to variance, Ei = ε̄i − βσ2

2
(Phillips et al., 2019). We observed that ε̄i

is close to a linear function of i in simulated tissues (Fig. 3.4A). It will be the case that

dEi = dε̄i if σ2 and β are not also functions of i. In our simulated tissues, the energy dis-

tributions for each LEO macrostate can be approximated as normal distributions of equal

variance (Fig. 3.4B). The true variance of the energy distributions for real tissues will likely

be broader, as deformable cells can take on larger and smaller interfacial areas, but the geo-

metrical behavior of the cells should be similar and it is unlikely to acquire a dependence on

i. Activity, 1/β, is a property of the system as a whole rather than of a macrostate i. Then,

modeling tissue energy as a linear function of i with derivative dEi = dε̄i, Ei ≈ i · dEi +E0.

As we are interested in relative energy differences between states rather than absolute en-

ergy values, the added E0 reference energy level, which is constant with respect to i, is not

important1 and I use Ei ≈ i · dEi. The calculation of the estimated slope dEi and its associ-

ated 95% confidence interval, accounting for uncertainty in our measurements of interfacial

energies, is described in section 2.10.

1Any constant E0 added to Ei in the exponent of the Boltzmann weight is equivalent to a uniform scalar
multiple eE0 on the probability density, which will be normalized out in the partition function Z by the
constraint that

∑
i Pi = 1.
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Simulated tissue energy distributions by LEO
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Figure 3.4: One million simulated tissues were randomly populated with 50% LEP and 50%
MEP cells using the mean interfacial tensions measured for γcx, γcc, and γc. These tissues
show a strong relationship between Edge Occupancy and relative tissue energy, while the
Intermixing Score is less cleanly associated with energy. Points denote binned means with
bars ±1 standard deviation (A). At each EO or IMS value, there are multiple microstates,
resulting in energy distributions for each macrostate which are approximately normally dis-
tributed (B). The predictive power of IMS is considerably lower than EO, indicating that it
is a less informative single state variable.

3.4: Enumerating structural microstates

The Boltzmann entropy, S = k lnW , is a function of the number of ways (W ) the microscopic

components of a system can be arranged to be compatible with the macroscopic observed

parameters used to define each macrostate2. Of course, the cellular components of a tissue

can take any real value, making the number of possible arrangements uncountably infinite.

Instead, the standard statistical mechanical approach is to use a “coarse-graining” procedure

2Note that this identity leads naturally to a free-energy formulation of the Boltzmann distribution,

Pi ∝Wie
−βEi = e−βEi+lnWi = e−

1
kT Ei+

Si
k = e−

1
kT (Ei−TSi) = e−βGi , which is simply the Boltzmann weight,

where the energy of a microstate is replaced with the free energy of a macrostate.
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to partition the fine-grained true microstates into a finite number of disjoint microstates, or

arrangements (Frigg, 2008; Uffink, 2007). We then define macrostates by grouping together

arrangements with the same macroscopic features.

Consider a lattice that has been partitioned into n core sites and n shell sites. How can

ktot green cells be arranged across these sites so that k green cells are in the shell? For k = 0,

there must be 0 in the shell and ktot in the core; in the case shown in Fig. 3.5, there is only

one possible configuration. For k = 1, we put green cells in 1 shell site and ktot−1 core sites,

choosing from n both times. For k = 2, we choose 2 and ktot − 2; for three, 3 and ktot − 3;

and so on, increasing to a maximum at ktot/2 and decreasing symmetrically until reaching the

structure with all ktot green cells in the shell and none in the core. In this example, for k green

shell cells out of ktot, the number of possible configurations is Wk =
(
nshell

k

)
·
(
ncore

ktot−k

)
, where

(
n
k

)
is the binomial coefficient, n!

k!(n−k)!
. A three-dimensional variant of this combinatoric

example using the surface areas of the truncated octahedral lattice can be calculated with

the appropriate generating function and is described in Appendix D.
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Figure 3.5: Combinatorics of cell arrangements. This simple discrete model demonstrates
that the number of possible arrangements for a given number of green cells in the shell, k,
is a function of the geometry of the system (nshell, ncore, ktot) and can be precisely calculated
with the binomial.

Here, we defined each macrostate by the number of green cells in the shell. Each

macrostate is composed of a multiplicity of microstates, or number of possible cell arrange-
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ments that satisfy the definition of the macrostate. The illustrative example treats each cell

as occupying exactly one site, and the tissue size as equivalent to the number of cells or sites.

However, cells are not actually rigid, discrete objects, nor do they arrange themselves

into idealized polyhedral foams in real tissues. The lattice model, whether two- or three-

dimensional, lacks degrees of freedom associated with the possible configurations of the cells

and their membranes. Hypothetically, cell deformation could be represented as random

variation in the sizes of connected interfaces, convolving the discrete case with a Gaussian

and widening the multiplicity distribution, or by breaking each cell into multiple connected

latttice sites as in the Cellular Potts model. A more straightforward solution, however, is

to directly measure the empirical distribution of real organoids, which implicitly includes

hidden degrees of freedom, in order to infer tissue state multiplicity. In a tissue that has no

self-organizing forces at all, the distribution of tissue structures is purely determined by the

multiplicity of different states. And as we intuit from the example of Fig. 3.5, there should

be statistically fewer well-ordered than disorganized structures, with a distribution similar

to the binomial, which is Gaussian for large n by the Central Limit Theorem.

Organoids composed of only MEP labeled with different fluorophores have no differ-

ences between cell types that could cause self-organization. The EO distribution of the

resulting all-MEP tissues closely resembles the distribution of tissue structures predicted

by the combinatoric approach, a bell curve centered at 50/50 (Fig. 3.6). Supposing that

the observed all-MEP tissues are drawn from the underlying entropy-driven distribution, we

will approximate Wi as the truncated normal distribution with support [0, 1] with mean and

standard deviation fitted to the MEP-only data.
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Figure 3.6: Structural distributions of MEP-only organoids in both Matrigel and agarose
environments show that the distribution is approximately Gaussian with respect to Edge
Occupancy. Curves are truncated normal fits with median 0.487, σ = 0.156 for Matrigel and
median 0.509, σ = 0.164 for agarose (A). Unlike sorted LEP+MEP organoids (blue), MEP-
only organoids (gray) have high Intermixing Scores, indicating that the two cell populations
are interspersed rather than segregated (B).

3.5: Steady state and activity

With statistical mechanics, we wish to predict the steady-state distribution of an ensemble

of organoids on a phase space of structural states, where the probability of observing a

system in a given energy state is given by Eq. (1.1). In the case of tissue self-organization,

it is reasonable to treat self-organized tissues as a quasi-steady system if the constraints

of the system (such as cell proportion, state, and physical properties) are stable over the

timeframe of interest, even if they are expected to change over the long term. Maintaining

these constraints is analogous to treating the tissue as a closed system conserving “particle

number” (cells) while exchanging metabolic energy with its environment, over a timescale

of interest during which the energy and entropy landscapes are preserved.

We estimated the time it takes for organoids to reach the steady-state mean structure

after initial seeding by quantifying organoid structures from initial configurations that are far

from the predicted steady-state distribution. This experiment can be designed in two ways:

first, by measuring the cell mixing (Intermixing Score) of MEP-only pre-segregated tissues,
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and second, by measuring the cell sorting (EO) of wild-type MEP and LEP aggregates from

initially mixed aggregates.
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Figure 3.7: Timelapse montage of a pre-sorted MEP organoid from 1-12 hr after embedding
in Matrigel, segmentation mean over 3 center cross-sections. Scale bar: 50 µm. Live imaging
shows initially split MEP+MEP organoids (n = 15) quickly mix over several hours, while
initially mixed LEP+MEP organoids (n = 35) demix over a similar time period. After
reaching the steady state after half a day of culture, initially split MEP-only organoids have
high Intermixing Scores indistinguishable from initially mixed MEP-only organoids. Dotted
lines indicate mean IMS of organoids at day 2.

Pre-segregated MEP-only tissues were generated by allowing GFP MEP and mCherry

MEP to aggregate in separate 180-µm wells, transferring them to shared 240-µm wells, and

incubating them together for approximately 3 hr to allow initial adhesions to form before

transferring to Matrigel. These pre-sorted tissues mixed extremely quickly, reaching an In-

termixing Score like that of standard MEP-only tissues after only a few hours, while initially

mixed LEP+MEP organoids segregated more slowly (Fig. 3.7). Sorting of LEP+MEP

organoids along the Edge Occupancy coordinate tends to take longer than feasible for live

imaging, but static timepoint measurements of organoids over time show that LEP+MEP

aggregates in Matrigel approach the steady-state distribution over two days of culture, and

the distribution is maintained after one week of culture. In agarose, the sorted distribution

is also stable from day 1 through 3, though for cell viability reasons they cannot be cultured

in suspension much longer without undergoing anoikis (Fig. 3.8).
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Figure 3.8: Static timepoint measurements show that LEP+MEP tissues reach the steady-
state configuration over one to two days of culture in Matrigel. Dotted line indicates mean
EO of LEP+MEP organoids on day 2. For days 0, 1, 2, 3, and 7, n = 167, 1174, 1475, 72
and 98. Comparison of the means was performed against timepoint 7 with the Wilcox test
and Holm post-hoc correction. Agarose LEP+MEP organoids appear to maintain a stable
structural distribution after 1 day (n = 575, 1138 and 409). Points are mean ± standard
deviation.

To what extent can each individual system evenly explore the configuration space? In

an ergodic system, the trajectory of a single organoid, in the limit of infinite time, would lie

densely (pass arbitrarily close to every point) on the entire accessible configuration space,

spending an amount of time in each region proportional to the probability of observing

that configuration in an ensemble of many organoids. The ergodic hypothesis is useful as

it implies that a organoid initially anywhere in the phase space will eventually be able to

reach the steady state, rather than becoming trapped in a local energy minimum. It also

implies that the stationary probability distribution of a single isolated system must be the

microcanonical ensemble, and has historically been used to justify various arguments in both

the Boltzmann and Gibbs frameworks of statistical mechanics (Uffink, 2007).

In practice, it is extremely difficult to prove that even the simplest realistic physical

systems meet the requirements of ergodicity (Moore, 2015; Uffink, 2017), but we can make a

number of less-stringent observations consistent with ergodicity in our system. For example,

we have shown that a MEP-only tissue’s final steady-state distribution is not dependent on
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its initial conditions, but rather that trajectories initiated in either the initially mixed or the

initially split regions of configuration space both converge to a mixed distribution (Fig. 3.7).

Furthermore, we performed analyses of LEP+MEP timelapses taken after reaching steady

state (40 hr to 60 hr) (Fig. 3.9). The LEP EO of this small ensemble does not change over

10 hr, indicating that the steady-state structure is stable over time. The steady state is

dynamic, with random fluctuations as cells exchange positions. Individual organoids’ EO

can vary despite spending the majority of the time close to the mean. These fluctuations

tend to return to the mean: an organoid far below the mean EO will typically increase,

whereas an organoid with unusually high EO will decrease (Fig. 3.9A).
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Figure 3.9: After two days of culture in Matrigel, LEP+MEP organoids have reached their
steady state structural distribution, but this steady state is dynamic and varies across in-
dividual organoids. LEP Edge Occupancy of individual organoids fluctuates near the mean
(dashed line) (A). Organoid trajectories rapidly lose autocorrelation over a couple hours in
Matrigel and in agarose, though the decay is slower in agarose (B). Traces are colored by
their mean Edge Occupancy value.

We also observe that HMEC organoids are readily able to exchange cell positions and

explore the configurational space from their initial state and at their steady state. Strikingly,

cells appear to swirl and diffuse through the bulk of the tissue, and even after an initially
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mixed organoid reaches a sorted state, cells frequently move to different locations or shift

in and out of sorted positions (Fig. 3.9A). Dynamic changes in organoid structure, cellular

rearrangements, and full-organoid collective rotation, termed coherent angular motion, have

also been observed in mammary organoids by other groups (Sirka et al., 2018; Neumann

et al., 2018; Tanner et al., 2012). Despite the important role of DITH and cell mechanics in

determining the most energetically favorable structure, cells in HMEC organoids make cell

position changes that are not determined solely by favorable energy changes. Indeed, even

organoids composed of MEP alone will display active cell migration despite the absence of

any forces driving sorting (Fig. 3.7). A dynamic system like the actively moving cells in an

HMEC organoid can explore the structural energy landscape even in its steady state as a

result of active fluctuations, which we term activity. Activity represents the random cellular

energy fluctuations that are large enough to drive cell position changes in the absence of or

even against mechanical energy gradients. This parameter is analogous to thermal energy,

kBT , in a microscopic system and functions similarly in tuning the influence of energy relative

to entropy in determining the steady-state distribution. The term β in Eq. (1.1) corresponds

to the inverse of activity, or 1
kbT

in a thermodynamic system.

We can easily show that the activity of an organoid structure cannot be the ther-

modynamic temperature. The thermodynamic temperature kBT ≈ 4× 10−21 J while the

energy associated with cortical tension alone in a single cell is approximately 5× 10−13 J

(Fig. 3.3A), a separation of 8 orders of magnitude. This distinction between thermal and

active fluctuations is more difficult to make at smaller scales, where, for example, a molecu-

lar motor may use energy on the order of 10kBT per step (Ritort, 2007; Milo and Phillips,

2015).
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4. Results

Given the definitions of microstates and macrostates and their relationships to energy

and entropy we established in chapter 3, we proceed to experiments manipulating these

parameters and demonstrate that tissue structural distributions are well described using this

framework. I first describe experiments demonstrating how tissue structural distributions are

influenced by cell ratio (configurational entropy), adhesion knockdowns (tissue energy), and

activity, then describe experimental work using breast cancer oncogene PIK3CA to generate

a new disordered tissue steady state, and targeted perturbations that revert this phenotype.

4.1: Organoid structures follow a Boltzmann distribution

The Boltzmann distribution for our organoid structures is

Pi =
Wi

Z
e−βdE·i

where:

• i : The Edge Occupancy (EO) of the organoid, the proportion of its outer boundary

that is LEP (or GFP). Estimated as a weighted average of the EO of the boundaries

of the three center cross-sections.

• Pi : The probability of observing an organoid with EO = i.

• Ei ≈ i · dE : The relative energy of a tissue with EO = i, approximated as a linear

function of i. Estimated by linear regression on the total tissue energies of simulated

tissues parameterized with measured interfacial tensions.

• Wi ∝ PMEP,i : The relative frequency of tissue arrangements with EO = i, equal to

the probability of observing an equivalent MEP-only organoid with EO = i. Esti-
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mated by fitting a truncated normal distribution to the observed MEP-only organoid

distribution.

• 1/β (activity): The tissue activity, or random energy fluctuations that drive cell position

changes independent of the average energy landscape defined by Ei.

• Z: The partition function, a scaling factor that ensures
∑

i Pi = 1.

The points are very close to linear, as predicted by energy simulations, and slope of

the regression is approximately βdE. We find that the Boltzmann distribution generated

from the inferred value of the regression constant, Wi

Z
e−βdE·i, demonstrates a good fit to our

data, Pi. The numerical values of βdE will be inferred by nonlinear regression directly on

Pi (section 2.11).
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Figure 4.1: Organoids of GFP LEP and mCherry MEP generate a structural distribution,
representing Pi. GFP and mCherry MEP-only tissues generate the probability distribution
PMEP,i, which is proportional to Wi. The MEP-only distribution is matched to a normal

distribution, and βEi is calculated as − ln
(
Pi

Wi

)
. These parameters can be used to calcu-

late a Boltzmann distribution, Wi

Z
e−βdE·i, that is similar to the original organoid structure

distribution Pi.

4.2: Cell ratio and tissue entropy

The underlying structural entropy is determined by the geometrical constraints of the system,

particularly the cellular composition. Changing the ratio of green to red cells causes a corre-

sponding shift in the structural distribution, both for MEP-only tissues and for LEP/MEP
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tissues, and the magnitude of that shift is consistent with the Boltzmann model Pi = Wi

Z
e−βEi ,

changing Wi while maintaining βEi.

Sets of organoids with defined GFP fractions were generated by seeding aggregates

with different ratios of GFP and mCherry cells, and by subsetting the images by the total

proportion of GFP pixels (Fig. 4.2). For 25%, 50%, and 75% tissues, subset bounds were

defined as [0.15, 0.35], [0.4, 0.6], and [0.65, 0.85]. For MEP-only tissues, GFP and mCherry

fluorophores were considered interchangeable, so the same tissues are used for 25% and

75% with colors reversed as needed. The observed Pi LEP+MEP distributions produce

inferred energies that show that these distributions are indeed consistent with changing Wi

while maintaining βEi (Fig. 4.2A-B). Both simulated and observed PMEP,i distributions are

centered on 25%, 50%, and 75% Edge Occupancy (Fig. 4.2C).

One feature I anticipated, but that did not appear to have a prominent role in either

the inferred or predicted energies, was an increasing expected slope with increasing LEP

fraction. A relationship between LEP fraction and dEi would arise from the slightly larger

predicted energy cost of moving a MEP from the shell to the core if the MEP-ECM interaction

is replaced with MEP-LEP rather than MEP-MEP interactions due to a higher baseline

probability of attaching to a LEP. Our energy parameters, which have minimal differences

between cell-cell energies, do not display this effect, but it appears in simulated tissues

with larger variations in cell-cell energies, as shown in a simulated example with all other

interfaical tensions set to 0 and only the LEP-LEP set to -0.1 (Fig. 4.2D). In HMEC, we are

likely unable to detect any difference between dE between tissues of differing LEP fractions,

but it is possible that other self-organizing cell combinations will have cell-cell interfacial

energies that make cell ratio a critical factor in determining the energies, Ei, rather than

primarily the entropy, Wi, as in HMEC organoids.

48



0

3

6

9

12

0.00 0.25 0.50 0.75 1.00
LEP Edge Occupancy

Pr
ob

ab
ilit

y 
de

ns
ity

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
GFP Edge Occupancy

Pr
ob

ab
ilit

y 
de

ns
ity

βE

Pi

  

  

−6

−3

0

3

6

0.00 0.25 0.50 0.75 1.00
LEP Edge Occupancy

0

3

6

9

0.25 0.50 0.75

Pr
ob

ab
ilit

y 
de

ns
ity

GFP Edge Occupancy

PMEP,i

A

B

C               D

LEP+MEP tissues

MEP-only tissues

Inferred energies

MEP-only simulated tissues

Predicted energies

Inferred slope (βdE) Predicted slope (dE)n
25% LEP
50% LEP
75% LEP

2.72 (1.93, 3.59)
2.86 (2.09, 3.65)
3.05 (2.26, 3.86)

13.13 (10.87, 16.08)
10.76 (9.33, 12.06)
13.06 (11.46, 14.53)

426
464
52

 
 

 

−0.6

−0.3

0.0

0.3

0.6

0.25 0.50 0.75
GFP Edge Occupancy

R
el

at
ive

 ti
ss

ue
 e

ne
rg

y 
(p

J)

25%: dE = 0.84
50%: dE = 1.62
75%: dE = 2.41

−0.6

−0.3

0.0

0.3

0.6

0.25 0.50 0.75
GFP Edge Occupancy

R
el

at
ive

 ti
ss

ue
 e

ne
rg

y 
(p

J)

PMEP

Ei

Predicted energies for 
LEP-LEP cohesive tissues

Figure 4.2: The probability distributions of the LEP/MEP tissues of varying cell ratios have
entropies, but not energies, that are dependent on cell ratio. Inferred βdE slopes are shown
with 95% CI envelope. Simulated tissues predict very little change in dE (A). Bootstrapped
predicted and inferred slopes with 95% CI. Point estimates of dE increase with increasing
LEP proportion (B). Randomly generated simulated tissues have Gaussian distributions
centered at the total proportions of green cells, much like the observed MEP-only tissue
distributions (C). LEP fraction has a stronger influence on dE if the relative importance of
cell-cell cohesion is increased, as in simulated tissues where LEP-LEP is the only favorable
interface (D).

4.3: Estimated tissue energies predict experimental outcomes

In our system, differences in energy between tissue configurations derive from different in-

terfacial energies of cell-cell and cell-ECM interfaces. In an adhesive microenvironment,
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the large difference in cell-ECM interfacial energies between MEP and LEP drives tissue

self-organization, an energy gradient that can be estimated by tissue simulations and in-

ferred from the observed structural distribution of LEP/MEP organoids relative to MEP-

only organoids. A set of estimated and inferred energy slopes from across experimental

conditions is reproduced in Appendix B.

MEP-only organoids have no differences between cells other than fluorophore, but we

can synthetically generate an energy gradient by knocking down proteins involved in cell

adhesion. As individual integrins are often dispensable in the mammary gland (Klinowska

et al., 2001; Naylor et al., 2005), we used talin-1 knockdown to disrupt cell-ECM adhesion

in MEP. Talin-1 is a protein that plays a critical role in integrin function by coupling the

actin cytoskeleton to integrins’ cytoplasmic tails and by triggering activating conformational

change upon binding (Tadokoro, 2003; Calderwood, 2004). As previously demonstrated,

targeting talin-1 in MEP with a silencing short hairpin RNA (shRNA) construct dramatically

decreases MEP-ECM contact angle without affecting cell-cell adhesions (Cerchiari et al.,

2015). GFP TLN1 sh MEP and normal MEP sort similarly to GFP LEP and normal MEP

in Matrigel because both are characterized by a large difference in cell-ECM interfacial

tensions. By contrast, the same cell combinations have moderate to high EO steady states

in non-adherent agarose microenvironments, where cell-cell interactions dominate (Fig. 4.3).
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Figure 4.3: MEP-ECM contact angles for control and TLN1 sh MEP (A). In the presence of
ECM, the difference in cell-substrate interfacial tension (γcx) between control and TLN1 sh
MEP causes the TLN1 sh MEP to sort to the interior of the tissue due to a predicted positive
slope of the tissue energy, dE ≈ 3.5; βdE ≈ 10.22 (B). However, in nonadherent agarose
conditions, with no predicted energy difference, tissues are indistinguishable from MEP-only
aggregates (C).

4.4: Agarose microenvironment decreases activity

Using both a forward and inverse approach to estimate the tissue energy landscape for control

organoids in Matrigel and agarose yields different estimates of the strength of the energy

gradient (Fig. 4.4A). These differences can be reconciled because of the presence of the

activity term, β, which scales the strength of the energy gradient. Intuivitely, the positional

spread of marbles in a dish can be controlled both by the steepness of its walls and by how

vigorously the dish is shaken. Random positional fluctuations driven by cell motility play
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an important role in allowing the tissue to sample the state space in order to reach the

steady state, but also cause transient movements in and out of the steady state. To capture

this random, undirected cell motion, we used live imaging of sparsely labeled nuclei within

homotypic aggregates of single cell types, ensuring that the measured cell motility is only

a function of random fluctuations and not driven by sorting along an energy gradient. In

both LEP and MEP, the diffusion coefficient is decreased in agarose relative to Matrigel,

suggesting that βMatrigel > βagarose (Fig. 4.4B). This decreased cell neighbor exchange can

also be observed in pre-sorted MEP-only organoids, which relax towards a high Intermixing

Score steady state over a few hours. The mixing process is slower in agarose than in Matrigel,

indicating reduced cell position fluctuations (Fig. 4.4C).
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Figure 4.4: Based upon predicted tissue energies for the parameters measured from cell
contact angles and cortical tensions, cells in agarose should barely sort, or not sort at all.
However, organoids in Matrigel and agarose sort to a similar degree and have inferred βdE
values that are very close in magnitude (A). Nuclear tracking of cell diffusion in homotypic
aggregates indicate that LEP and MEP differ substantially in their capacity to move through
a tissue, but for both cell types, cell position exchange is lower in agarose. Points are paired
by experiment date and bars show bootstrapped estimates of the standard error (B). The
Intermixing Score of pre-sorted MEP organoids in Matrigel (blue) increases more rapidly
than in agarose (yellow) (C). Points are mean ± standard deviation.

Similarly, we used a p120-catenin (CTNND1 sh) knockdown to target cell-cell adhesion

in MEP to make MEP-only tissues predicted to sort with the less-cohesive CTNND1 sh

MEP in the shell. This adapter protein is a master regulator of cadherin stability and

membrane localization. While bound to the cytoplasmic tail of cadherins, it is thought to

regulate cell-cell junctions by inhibiting cadherin degradation; it also regulates cytoskeletal

dynamics via interactions with small GTPases (Xiao et al., 2007). In addition to the expected

reduction of cell-cell adhesion, CTNND1 sh MEP are also less adhesive to ECM. Together
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these perturbations lead to a modest energy gradient predicting sorting in both Matrigel

and agarose. However, only tissues in agarose demonstrate sorting behavior, indicating a

difference between the inferred βdE and the predicted dE (Fig. 4.5).
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Figure 4.5: Despite the weak energy gradient predicted for CTNND1 sh MEP, these tissues
demonstrate noticeable sorting in agarose. On the other hand, sorting is not observed in
Matrigel, where high activity and/or low dE together cause the structural distribution to be
indistinguishable from the MEP-only distribution. MEP-only histogram is outlined in black
to improve its visibility under the overlying CTNND1 sh MEP agarose distribution.

The predicted dE in CTNND1 sh MEP Matrigel is extremely modest, however, and

these data are also consistent with a model where downregulation of p120-catenin, through

decreased cadherin stability and decreased actin cytoskeletal dynamics, alters both cell-

cell and cell-ECM interfacial interactions to a similar magnitude, with the net effect of

no predicted sorting in Matrigel. Accordingly, while the predicted and inferred dE and

βdE slopes are statistically significantly different from 0 in CTNND1 sh MEP agarose, the

CTNND1 sh MEP Matrigel slope 95% CIs contain 0.
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4.5: Oncogenic PI3K shifts the steady-state distribution

In the context of breast cancer, this framework implies that among dysregulations associated

with breast cancer, some perturbations or combinations of perturbations should potentiate

LEP invasion by stabilizing the structure with LEP at the tissue edge. We tested a panel of

the most commonly dysregulated genes in breast cancer by lentiviral transduction in LEP

mixed with wild-type MEP, and discovered that expression of PI3K bearing the H1047R or

E545K point mutations had a marked effect on self-organization capacity. This decrease in

tissue organization correlated with an increase in LEP-ECM contact angle, indicating an

alteration of LEP-ECM interfacial energy (Fig. 4.6).
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Figure 4.6: A panel of the most commonly dysregulated driver genes in breast cancer was
transduced individually into passage 4 LEP. Organization frequency was measured as a
proportion of tissues observed in the LEP core class. Constitutively active PI3K (either of
two p110α point mutants, H1047R and E545K) had the strongest effect on organoid structure
and the strongest corresponding increase in LEP-ECM contact angle. Points mark means of
different experiment dates and error bars indicate standard deviation of experiment means.
Multiple Wilcox comparisons were performed against wild-type organoids and GFP LEP
references with the Holm post-hoc correction.

PIK3CAH1047R-expressing LEP have a cell-ECM contact angle and interfacial tension

intermediate between wild-type LEP and MEP, which predicts a decrease in the magnitude of

the predicted energy slope dE, but not a change in its sign. Indeed, measuring the GFP Edge

Occupancy of PIK3CA organoids confirmed that although the structures were disrupted, the

distribution as a whole was still slightly more organized than expected from random chance,
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e.g. Pi 6= Wi

Z
. Inferring the exponent term βdE from the observed distributions confirmed

the prediction that for PIK3CA, dE is reduced but still positive (Fig. 4.7).
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Figure 4.7: Characterization of the effect of PIK3CAH1047R expression on cell mechanical
phenotype and tissue structural outcomes. Transformed LEP adopt high cell-ECM contact
angles, reflecting their decreased interfacial tension at that interface (A). The new energies
predict a statistically significantly moderated energy landscape where tissues are no longer
driven to sort to the same extent, which corresponds to separations between wild-type and
PIK3CA observed structural distributions and their inferred energies (B).

4.6: Reversion to the steady state by altering energy and activity

PI3K sits at the head of a major signaling pathway with many downstream effects, including

cell growth and proliferation, metabolism, migration, and secretion (Hemmings and Restuc-

cia, 2012; Lien et al., 2017). It is reasonable to wonder whether the increased cell-ECM

contact angle is in fact necessary for the structural disruption, or if it is merely a side effect

and some other PI3K-related phenotype is responsible. To determine the importance of

cell-ECM interaction in maintaining tissue structure, we used TLN1 sh, which we previously

described as inducing a cell-ECM energy change sufficient to drive cell sorting in MEP-only

tissues. As it interacts directly with integrins and the actin cytoskeleton, talin-1 knockdown is

a good candidate for an orthogonal perturbation that specifically targets cell-ECM adhesion

rather than more general aspects of PI3K/AKT signaling. Talin-1 knockdown in PIK3CA

LEP was performed by co-transfection of two lentiviruses containing GFP and puromycin
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markers. Control cells were transduced with the empty puromycin vector and treated with

the same puromycin selection (Fig. 4.8). The knockdown successfully reduced cell-ECM

energy, restoring the predicted energies, structural distributions, and inferred energies to

near wild-type levels.
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Figure 4.8: Co-transduction of shRNA targeting talin-1 in PIK3CAH1047R LEP causes a drop
in cell-ECM contact angle. Points represent means of different experiment dates. Signifcance
testing by Wilcox test with Holm correction for multiple comparisons against the H1047R
LEP reference group (A). The predicted energy gradient of PIK3CA TLN1 sh organoids
increases to be similar to the wild type. The observed tissue distribution returns close to
the control, with an inferred energy slope βdE that is not statistically different from that of
wild type (B).

We tested several small-molecule inhibitors to determine if they could revert the

PIK3CA phenotype, including inhibitors of PI3K, AKT, RAC, PDK, WNT/GSK3β, MEK,

ROCK, MTOR, and TGFβ, which were validated by suppression of phosphorylation of down-

stream targets in Western blots. We determined that MK-2206, an allosteric inhibitor of

AKT, induced a restoration of tissue structural distribution (Hirai et al., 2010). However,

no change in the predicted energies was observed. This implicates activity in restoring the

probability distribution back towards the lower energy tissue configurations, and indeed,

cell diffusion assays demonstrate that MK-2206 decreases activity in homotypic aggregates

(Fig. 4.9). These results show that the probability distribution of an ensemble of organoids
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at the steady state can be shifted by altering either energy or activity even when the initial

perturbation was due to altering only the system’s energetics.
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Figure 4.9: MK-2206, an inhibitor of AKT, restores self-organization of PIK3CA LEP with-
out altering the cell-ECM energies. Predicted energy gradients remain the same for MK-2206
and DMSO conditions, despite there being a difference in the structural distributions and
the inferred energies for MK-2206 (A). Instead, MK-2206 appears to act by suppressing tis-
sue activity, as indicated by a decrease in cell diffusion in LEP-only and PIK3CA LEP-only
aggregates treated with DMSO vehicle control or MK-2206. Points are paired by experiment
date and bars show standard deviation across different individual aggregates (B).

59



5. Discussion

5.1: Cell sorting in the context of cancer

These results provide a unique perspective on a number of clinically relevant observations,

viewed through the lens of tissue self-organization and the active processes that maintain

normal tissue structure. Tissue structure itself is maintained by the activity of normal MEP,

both as a physical barrier and a source of tumor-suppressive biochemical signals. It is re-

ported that alterations to and loss of normal MEP may increase risk of DCIS progression

(Allinen et al., 2004; Hilson et al., 2009; Russell et al., 2015; Sirka et al., 2018), and these

changes to cell ratio and MEP-ECM phenotype have direct consequences for increasing con-

figurational entropy and reducing energetic barriers to structural distruption. Similarly, inva-

sive LEP are associated with phenotypes such as hyperproliferation, epithelial-mesenchymal

transition, altered cell-cell and cell-ECM interactions, and increased cellular tension, which

reflect changes in cell proportion and cell interfacial tensions (Choi et al., 2013). Environ-

mental factors, such as post-pregnancy involution and hormone replacement therapy, are

known to increase breast cancer risk through involution, pro-inflammatory signals, ECM

remodeling, and cell proliferation, suggestive of links to increased tissue activity or dynam-

ics, altered cell-ECM interfacial energies, cell state changes, and cell ratio changes (Schedin,

2006; Narod, 2011). These cellular and tissue changes associated with cancer progression

could be considered to cause changes in Ei,Wi, and β, altering the underlying parameters

determining the steady-state tissue configuration, and ultimately leading to increased occu-

pancy of LEP at the tissue edge. These parameters describe specific phenotypes that render

the breast more susceptible to progression from DCIS to invasive disease, a significant clinical

and conceptual contribution to understanding this critical transition.

In our panel of driver perturbations, while many other oncogenes are associated with

hallmarks of cancer, such as cell proliferation and survival (i.e., MYC, TP53, CCND1,
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CDKN2A, RB1 ), direct structural changes were only observed in the oncogene that also

changed the cell-ECM interaction (Fig. 4.6). Interestingly, ERBB2 did not have a simi-

lar effect, although HER2-overexpressing breast cancers are known to have increased risk

of metastasis and are associated with ECM adhesion and remodeling phenotypes (Eccles,

2001). Rather than the constitutively active mutant NEU-NT traditionally used in mouse

tumorigenesis (Ursini-Siegel et al., 2007; Fry et al., 2017), we chose to overexpress wild-type

HER2, as breast cancer patients rarely (≈ 4%) show activating mutations in HER2 (Cocco

et al., 2019). However, transduction of only the coding sequence excludes splice isoforms

known to increase aggressiveness in patients, such as ∆16HER-2 (Jackson et al., 2013; Volpi

et al., 2019), and we do not co-transduce with HER3, which is considered to be critical in

heterodimerizing with HER2 to activate PI3K/Akt pathway signaling (Junttila et al., 2009;

Ruiz-Saenz et al., 2018). A different choice of construct or a co-expression strategy may show

a stronger transforming phenotype. We also observed that shRNA targeting of E-cadherin

(CDH1 ) was insufficient to induce a structural change in mammary organoids, though one

might expect decreased cell-cell adhesion to play a role in cell positioning. However, as

previously described, LEP-LEP interactions are relatively weak and play very little role in

DITH-driven cell sorting of HMEC organoids in three-dimensional aggregates. Others have

observed a role for E-cadherin-dependent cohesion of LEPs in PDMS microwells (Chanson

et al., 2011); my closer examination of HMEC in these wells suggests these results are con-

sistent with delamination of MEP and LEP in PDMS, with MEP spreading on the PDMS

walls as a 2D substrate and LEP forming a detached central aggregate (data not shown).

Loss of E-cadherin is a hallmark of epithelial-to-mesenchymal transition (EMT) and is par-

ticularly prevalent in lobular carcinomas, which often exhibit diffusive growth and metastasis

patterns rather than collective migration (Cowin et al., 2005). E-cadherin downregulation

alone is not sufficient to disrupt HMEC cell positioning, and its loss may be less relevant to

cell sorting in the context of a noninvasive tissue than other EMT-associated changes, such

as acquisition of mesenchymal phenotypes like migration and ECM remodeling (Felipe Lima
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et al., 2016). Overall, genetic perturbations must be interpreted in light of their phenotypic

outcomes. In our finite-lifespan HMEC, single perturbations rarely affected cell mechanical

or organization phenotypes; in the in vivo context of multiple hits, it is likely the case that

many disparate genetic and epigenetic alterations and their combinations can converge to

similar mechanical phenotypes.

The particular PIK3CAH1047R used in our study was also reported in a mouse model

of breast cancer, with a very similar cell-sorting phenotype (Van Keymeulen et al., 2015;

Koren et al., 2015). Tamoxifen-inducible mouse Pik3caH1047R was expressed in luminal or

basal (myoepithelial) cells. Transformed MEP produced a non-representative spectrum of

tumor types, while transformed LEP gave rise to a variety of heterogeneous tumor types.

Interestingly, prior to tumorigenesis, low levels (5-30%) of transformed LEP were found

within the basal MEP tissue compartment, suggesting the acquisition of MEP-like cell sorting

properties. These cells also displayed phenotypic plasticity, adopting MEP molecular markers

as they translocated to the basal compartment, suggesting that cell fate decisions could be

influenced by their position within the mammary gland and prompting another interesting

avenue of future work.

5.2: Structural steady states in development and differentiation

Cell identity and plasticity are tied to their microenvironment. In the mammary gland, it

has been shown that adult basal stem cells give rise to only one lineage under physiological

conditions, where cells experience a full complement of neighboring cell types. However, these

progenitor cells can reactivate multipotency when transplanted into epithelium-free fat pads

or when luminal cells are ablated in situ. This context-specific plasticity is also observed

in other bilayered epithelia like prostate, salivary gland, and sweat glands (Centonze et al.,

2020). The arrangement of cells within a tissue relative to one another and their extracellular

matrix is an essential feature of the stem cell niche, as cell potency and fate are controlled

by paracrine cues, cell-cell contact, and ECM signaling (Walker et al., 2009; Chen et al.,
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2013; Ottone et al., 2014; Pinho and Frenette, 2019). The self-organizing organoid model

system has the potential to integrate these physical and biological features of development

and stem cell biology.

Because of cell motility, proliferation, and death, stem cell niches can be dynamic,

involving changes in the relative strengths of these cues over time as cells stochastically

sample different local microenvironments. Using live intravital imaging of intestinal crypts,

Ritsma et al. (2014) showed that the cells of the crypt base dynamically “compete” for limited

niche access, and that stem cells positioned near the boundary are more likely to be lost or

replaced, whereas stem cells spatially distant from the edge are more likely to be maintained.

Similarly, live lineage tracing in the hair follicle niche revealed position-dependent stem cell

fate decisions, while also demonstrating that more differentiated epithelial cells repopulate

the stem cell compartment after laser ablation (Rompolas et al., 2013). These results suggest

that cell potency and plasticity are regulated by cell position. Cell position, in turn, is

regulated by cell mechanical phenotypes through sorting phenomena. In the generation of

intestinal organoids from single LGR5-positive stem cells, prior to the generation of distinct

crypt zones, the initially identical cells break symmetry through transient fluctuations in

YAP1 expression (Serra et al., 2019). These first symmetry-breaking events give rise to

the first Paneth cell and the morphogenesis of the crypt, a spatially defined stem cell niche

that then concentrates and maintains secreted niche cues, demonstrating how cell state can

trigger tissue morphogenesis that then reinforces cell state.

It would be fascinating to use organoids as individual miniature stem cell niches, where

cells actively and transiently sample different positions with a frequency based on their

relative mechanical properties. If a stem cell is retained at the tissue edge for a longer period,

does its increased exposure to ECM lead it to differentiate toward a more MEP-like state?

Conversely, if a stem cell spends more time buried within the tissue, does it differentiate

toward a more LEP-like state? The time evolution of such a tissue model would follow

the cell sorting process, but also incorporate a time-varying Hamiltonian due to changes
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in phenotype that could then stabilize or alter the original steady state, reminescent of

the cell position and adhesion feedback loops developed by Toda et al. (2018). We could

quantitatively measure the probability distributions of these fate decisions, generating a

potency landscape composed not only of gene regulatory networks, but also of cell structural

coordinates.

5.3: Organoids as a model of active matter

This work has generated a number of exciting future directions in developing an active matter

model of multicellular tissue. We have proposed a macroscopic model system which appears

to behave according to statistical mechanical principles, with experimental accessibility to

previously inferred values such as the state of an individual system, the mechanical energies

forming the energy landscape, and the configurational entropy of a non-sorting system.

Despite the experimental and technical challenges and variability inherent to dealing with

living cells, it has the appealing property that we are able to directly measure probability

distributions (on discrete bins and with sufficiently large sample sizes) of organoid structures

in addition to physically or genetically perturbing the system parameters.

We defined a short timescale for steady state to allow for the analysis of systems that

change over longer timescales. A number of processes could occur over several days to a

week that could disrupt the parameters of self-organization or the geometrical constraints of

the system. For example, the energetic constraints of the system could be altered by changes

in cell mechanical properties or phenotype. LEP in organoid culture for an extended period

can polarize and begin to develop lumens, representing a change in cell state and an altered

interfacial tension at the apical surface (Camelo and Luschnig, 2020). In addition, MEP

can secrete their own basement membrane proteins and appear to remodel the surrounding

ECM, potentially creating a new substrate surface whose properties depend on its exposure to

MEP and which can serve to physically constrain a growing tissue and guide morphogenesis

(Wang et al., 2013; Morrissey and Sherwood, 2015; Haigo and Bilder, 2011). The overall
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composition and size of the organoid can also change over time, if there are unequal cell

proliferation rates or enough total cell proliferation to change the total size of the tissue.

If these disruptions or “reactions” occur slowly compared to the rate of self-organization

and the neighbor exchanges between cells in tissues, they can be approximated as negligible

over the timecourses of interest. A typical timescale for reaching a steady-state organization

for LEP and MEP is in the range of a few hours to a few days (Fig. 3.7), and has been

the focus of the investigations in this dissertation. However, the dynamics of this process

could be explored in further detail by embracing its nonequilibrium properties and applying

principles from stochastic thermodynamics.

The role of tissue activity is of particular interest, and our analysis would be greatly

improved with experimental approaches for perturbing cell dynamics independently of cell

mechanics, and for measuring activity or TEFF more directly. Large datasets of ensemble

measurements have been very useful for developing our understanding of steady-state distri-

butions, but there is much yet to discover with dynamic information. Live organoid imaging

data with technique refinements to improve cell viability and imaging resolution will be

important to future investigations. For example, with additional timelapse data, we may

be able to demonstrate detailed balance at steady state, or identify timescales over which

detailed balance is satisfied or broken (Gnesotto et al., 2018). The fluctuation-dissipation

theorem (FDT) of linear responses to perturbations is a requirement of equilibrium. With

sufficiently high-resolution timelapse imaging, we may be able to measure deviations from

FDT to infer an effective temperature, or to quantify the degree to which the tissue activity

resembles an effective temperature (Kubo, 1966; Loi et al., 2008; Turlier et al., 2016). Using

a photopatterning approach, we can pattern cells with single-cell spatial resolution in a high-

thoughput manner, essentially generating “perturbed” tissues of arbitrary distance from the

steady state (Cabral et al., 2021). Following their trajectories through state space should

allow us to better understand the dynamics of tissue self-organization towards a steady state

attractor. Further characterization of the time-dependent portion of self-organization, the
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approach to steady state, and the response to being perturbed far from steady state may

allow us to connect tissue structure transitions to a quantitative measure of entropy pro-

duction as a function of the statistical time-irreversibility of forward and reverse transitions

(Parrondo et al., 2009; Ciliberto, 2017; Li et al., 2019; Mart́ınez et al., 2019).

5.4: Caveats and alternative approaches

The mammary organoid cell sorting system sits at the edge of the “small” systems. It is

small enough to approximate a Hamiltonian for tissue energy from physical principles, in

this case from the cell interfacial tensions, but large enough that simplifications are required

to distill the complex mechanobiology into quantifiable components. Rather than modeling

each molecule involved in the cell adhesion machinery, the contributions of many microscopic

biological processes are averaged into single terms with the expectation that across interfaces

spanning many molecular complexes and over a tissue composed of many cells, average values

are appropriate approximations.

However, it is possible that individual cells will have intrinsic, non-transient differences

in mechanics from other cells of ostensibly the same type. Cell to cell variation, in particular,

anti-correlated variations across multiple parameters, could have significant impacts on the

structures of individual organoids. For example, if a LEP were both unusually less cohesive

to other LEP and more adhesive to ECM, it would have a strong energetic push to the tissue

edge, shifting the minimum energy structure to higher EO. We could detect persistent cell

to cell heterogeneity with more long-term live imaging of individual organoid trajectories, as

unusual cells would cause their organoids to fluctuate around a different steady state struc-

ture from the population. On the other hand, because cortical tension, cell-cell contacts,

and cell-matrix contacts share molecular machinery and pathways, it is possible that these

parameters are positively correlated with each other on the level of individual cells. Similar

to the p120 catenin knockdown experiments (Fig. 4.5), correlated variations tend to cancel

themselves out in our system; the combined increase in γcc and γcx resulted in a very shallow
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dE for CTNND1 sh MEP + MEP aggregates. In such an adhesion hierarchy, heterogeneity

at the cellular level would play a limited role. Alternatively, cellular heterogeneity could

contribute to structural disorder in conjunction with configurational entropy, analogous to

transcriptional noise in a gene expression state space (Chang et al., 2008). Indeed, spa-

tiotemporally heterogeneous deviations in the energy Hamiltonian would cause fluctuations

in cell position, essentially representing an activity term.

A linear relationship between EO and tissue energy is predicted by simulations and

supported by our inferred energies, − ln Pi

Wi
. Yet, there are some reasons we might expect

to see nonlinearity. First, in systems where differences in cell-cell interfacial energies are

significant relative to differences in cell-ECM, the energy gradient is accordingly steeper along

the IMS coordinate, which will affect the intermediate values of EO, which are dominated by

high IMS mixed structures. Such curves are visible in a number of our parameter sets, such as

those in agarose, with a slight concavity near EO = 0.5. Second, the use of an effective energy

term Ei = ε̄i− βσ2

2
introduces two potential sources of nonlinearity, β and σ2. Variance may

be more pronounced at low values of IMS because we sample only a range of the center of

each organoid slice, which may by chance exclude or include the segregated region. Activity

may also be dependent on structure, as we have observed that activity differs dramatically

between LEP and MEP (Fig. 4.4). Although we typically observe intermediate levels of

diffusion in mixed organoids for nuclei of either cell type, it is also possible that activity

will be inhomogeneously distributed in highly segregated, low IMS tissues, preventing cell

exchange between the low and high activity tissue compartments in a manner reminiscent of

motility-driven active matter sorting or motility transitions in jammed tissues (Stenhammar

et al., 2015; Angelini et al., 2011). Third, the predicted energy landscape developed from the

use of a simulated tissue does not span the parameter space due to cell shape limitations.

The high and low extremes of EO are geometrically inaccessible to non-deformable cells.

With the inclusion of deformable or off-lattice cells, the energy landscape may be similar to

the linear interpolation, or it may differ, for example if cell deformation incurs an energy cost.
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While we found the linear approximation to perform well for our system, more significant

observed deviations could easily be incorporated into a new nonlinear formulation for Ei.

Cutoffs for size, cell ratio, and circularity ensure that the inputs to the strucutral dis-

tribution analysis are controlled and uniform in their overall constraints. However, they also

can lead to low numbers of observations, which hampers an analysis based on sometimes sub-

tle shifts in probability distributions. This analysis would benefit from methods development

to reduce organoid variability and increase imaging throughput, such that more organoids

can be imaged per experiment. Future approaches could incorporate membrane-anchored

oligonucleotide-assisted cell micromolding, where cells are immediately and temporarily con-

densed within microwells upon centrifugation and can be moved to Matrigel directly rather

than after a few hours (Weber et al., 2016). Another appealing approach involves microwells

that are integrated directly into the microscopy workflow (Zhao et al., 2019; Brandenberg

et al., 2020), though some optimization will be required to determine whether dilute ECM

added over the top will provide a sufficiently homogenous and stable substrate for cell-

ECM interface-driven cell sorting (Kakni et al., 2020), or if the fully enclosed organoids can

generate their own ECM in a short timeframe (Todhunter et al., 2021). Alternatively, micro-

tissues may be spun directly into micromolded ECM wells (Mori et al., 2009). Maintaining

the culture in microwells would remove the aggregate transfer step and thus the chance of

destroying weakly condensed organoids, which is particularly marked for cells with weak

cell-cell interactions, like LEP and CTNND1 sh cells.

Organoid culture is typically manual, introducing the potential for handling variability.

Brain and kidney organoid researchers have also observed batch variability of cell differen-

tiation and state between experiment dates (Quadrato et al., 2017; Phipson et al., 2019).

However, in an automated, high-throughput assay platform for brain organoids, the donor

and clone source were more significant sources of variability than batch (Shah et al., 2020),

suggesting that even in stem cell-derived organoids, which are highly sensitive to small de-

viations in cell number and identity, automation is a powerful tool for reducing organoid
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variability. The process for generating HMEC organoids could be automated by bioprinting

cell-dense suspensions directly into or on top of ECM (Brassard et al., 2021; Lawlor et al.,

2021), or by encapsulating cells in Matrigel droplets with microfluidics (Dolega et al., 2015;

Jiang et al., 2020), which can generate organoids with uniform size and cell number.

That said, it is critical to ensure that added complexity does not lead to longer handling

times or extended periods on ice. In our experience, these cells are sensitive and day-to-day

variability in culture stress or handling stress can negatively affect their ability to be FACS

sorted, condense, and self-organize. Furthermore, care must be taken to avoid introducing

local heterogeneities into the ECM, which could manifest as a local energy gradient attracting

cells into cracks or along aligned ECM fibers. For example, some optimization may be

necessary before using a multi-step gelation process where organoids sit at the exposed face

of one hydrogel surface before being fully embedded.
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Conclusion

Reaching and maintaining a steady state is a critical element of life. Variations on the

theme of stability, fluctuations, and attractor states have been applied to biological systems

across length scales, though they take their most concrete and rigorous form for small systems

for which the interaction energies can be defined in terms of molecular binding energies. For

larger biological systems, energy landscape approaches have generally been abstract, inferring

“energy” as a measure of cell potency or organismal fitness from the distribution of observed

states, usually of the form E = − lnP , derived from a simple Boltzmann weight of e−E

without considering entropy and temperature, equivalent to using a free energy (Shekhar

et al., 2013; Jenkinson et al., 2017).

By contrast, our system has distinctive features with measureable influences from en-

tropy and activity (“temperature”). Our choice of structural coordinate, which compresses

the full dimensionality of the spatial position of each individual cell into an informative

structural macrostate, allowed us to make an explicit combinatorics argument from tradi-

tional statistical mechanics, which we confirmed by generating an energy-neutral non-sorting

system (section 3.4). Building upon the extensive pre-existing theory and experimental evi-

dence of the DITH, we defined a tissue-scale Hamiltonian from “first principles”. Empirical

measurements of isolated cell interactions and a simplified three-dimensional lattice model

were used to estimate the energy landscape (section 2.10), while observations of ensembles

of organoids with varying parameters were quantified and transformed into inferred energy

landscapes with an included activity term (section 2.11). It does not merely infer a deter-

ministic energy landscape, but also defines the entropic role of random chance in steady-state

tissue structure. Here, random chance is neither unpredicable nor unquantifiable. Configura-

tional entropy represents a baseline level of heterogeneity in a system imposed by geometrical

constraints, which can be quantified and estimated under controlled conditions. Live imag-
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ing verified that β, the difference between predicted and inferred energy in Matrigel and

agarose, could be attributed to differences in cell neighbor exchange throughout the tissue,

which we quantified by nuclear diffusion, an approach similar to the use of tracer particles

in active matter systems.

Together these experiments verified the applicability of statistical mechanical concepts

to cell sorting and highlighted parameters important in determining and maintaining the

steady-state structure of tissues. These parameters were borne out in practice, as the second-

most dysregulated gene in breast cancer, PIK3CA, demonstrated its ability to shift the

steady state away from the bilayered core-shell and towards a more mixed configuration.

This change arose from altered cell-ECM interactions and could be reverted by tuning the

Boltzmann parameters. Specifically targeting the cell-ECM interface with TLN1 sh could

directly reverse the energetic phenotype imposed by PIK3CA activation, but consistent with

the Boltzmann parameters, an alternative, indirect approach was also effective. Reducing

tissue activity, which we achieved using an inhibitor of AKT, restored the structural steady

state to wild-type levels without changing the energetics of the system. Together these results

verify the importance of all three components of the Boltzmann weight in determining the

probability of a state: energy, entropy, and activity.

Tissue self-organization is a dynamic and integrated process in which cell identity,

mechanical properties, position, and signaling regulate each other to generate tissue struc-

ture and function. We used the organoid system to define the relationships between cell

mechanical properties and position at the steady state in this work, but it is exciting to

consider applying similar ideas to the wide variety of processes that determine tissue struc-

ture. Our system could be amenable to studying the kinetics of self-organization or the

reciprocity between cell position, niche, and state in an evolving tissue architecture. The

Boltzmann equation has been remarkably useful in describing, predicting, and perturbing

the steady-state structure of a macroscopic multicellular system, demonstrating the potential

for physical principles to guide our understanding of biological development.
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Heisenberg, C.P. Tensile forces govern germ-layer organization in zebrafish. Nature Cell

Biology, 10(4):429–436, 2008. DOI: 10.1038/ncb1705.

81

https://dx.doi.org/https://doi.org/10.1002/adbi.202000126
https://dx.doi.org/https://doi.org/10.1002/adbi.202000126
https://dx.doi.org/10.1371/journal.pbio.1000149
https://dx.doi.org/10.1371/journal.pbio.1000149
https://dx.doi.org/10.1083/jcb.202005216
https://dx.doi.org/10.1083/jcb.202005216
https://dx.doi.org/10.1006/dbio.2001.0204
https://dx.doi.org/10.1038/nature14669
https://dx.doi.org/10.1242/dev.144964
https://dx.doi.org/10.1038/ncb1705


Kubo, R. The fluctuation-dissipation theorem. Reports on Progress in Physics, 29:255–283,

1966. DOI: 10.1088/0034-4885/29/1/306.

Kuerer, H.M. Ductal carcinoma in situ : treatment or active surveillance? Expert Review

of Anticancer Therapy, 15(7):777–785, 2015. DOI: 10.1586/14737140.2015.1043897.

Landsberg, K.P., Farhadifar, R., Ranft, J., Umetsu, D., Widmann, T.J., Bittig, T., Said, A.,
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A. Selected interfacial tensions

Table A.1: Parameters for different cell combinations are composed of the five interfacial
energies. L and M represent the two cell types, typically LEP and MEP. For MEP-only
aggregates, the first named MEP type is considered L. X represents extracellular substrate,
either Matrigel or agarose.

Parameters γLL γLM γLX γMM γMX

GFP −0.105 −0.107 −0.052 −0.131 −0.154

PIK3CAH1047R −0.123 −0.114 −0.129 −0.131 −0.154

GFP agarose −0.105 −0.107 0.000 −0.131 0.000

PIK3CAH1047R agarose −0.123 −0.114 0.000 −0.131 0.000

MEP+MEP −0.131 −0.131 −0.154 −0.131 −0.154

TLN1 sh MEP+MEP −0.131 −0.131 −0.045 −0.131 −0.154

CTNND1 sh MEP+MEP −0.090 −0.110 −0.123 −0.131 −0.154

TLN1 sh MEP+MEP agarose −0.131 −0.131 0.000 −0.131 0.000

CTNND1 sh MEP+MEP agarose −0.090 −0.110 0.000 −0.131 0.000

LEP+TLN1 sh MEP −0.105 −0.107 −0.052 −0.131 −0.045

LEP+TLN1 sh MEP agarose −0.105 −0.107 0.000 −0.131 0.000

GFP DMSO −0.105 −0.107 −0.060 −0.131 −0.174
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Parameters γLL γLM γLX γMM γMX

GFP copanlisib −0.105 −0.107 −0.045 −0.131 −0.147

GFP MK2206 −0.105 −0.107 −0.061 −0.131 −0.142

PIK3CAH1047R DMSO −0.123 −0.114 −0.121 −0.131 −0.174

PIK3CAH1047R TLN1 sh −0.116 −0.114 −0.033 −0.131 −0.154

PIK3CAH1047R LEP+CTNND1 sh MEP −0.123 −0.082 −0.129 −0.090 −0.123

PIK3CAH1047R copanlisib −0.123 −0.114 −0.090 −0.131 −0.147

PIK3CAH1047R MK2206 −0.123 −0.114 −0.084 −0.131 −0.142

PIK3CAH1047R LEP+LEP −0.123 −0.105 −0.129 −0.105 −0.052

PIK3CAH1047R MEP+MEP −0.171 −0.141 −0.241 −0.131 −0.154
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Figure A.1: Bootstrapping of 1000 random draws from each of 5 interfacial tensions, used
for predicting tissue energies from simulated cell arrangements (section 2.10). Lower values
are more energetically favorable. Cell-substrate (X) interactions with agarose are set to 0,
assuming nonadherence.
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B. Predicted and inferred tissue energy gradients

Table B.1: Interfacial tension measurements were used to parameterize simulated tissues to
predict dE (section 2.10). Observed organoid structure frequencies were used to infer βdE
(section 2.11). A subset of predicted and inferred slopes with 95% CI are shown for cell
combinations with at least 30 observed events. CI which span 0 may be considered to be
predicted or inferred to be non-sorting. Agarose conditions are noted with (a).

Parameters dE (95% CI) βdE (95% CI) n

GFP 2.864 (2.092, 3.649) 10.736 (9.244, 12.061) 503

PIK3CAH1047R 0.660 (-0.301, 1.666) 4.171 (2.376, 5.751) 414

GFP (a) −0.413 (-0.765, -0.083) −15.567 (-17.161, -13.776) 75

MEP+MEP −0.007 (-1.004, 1.012) −0.087 (-1.43, 1.149) 378

TLN1 sh MEP+MEP 3.501 (2.574, 4.407) 10.219 (8.945, 11.413) 119

CTNND1 sh MEP+MEP 0.341 (-0.771, 1.471) −0.146 (-1.211, 0.934) 131

TLN1 sh MEP+MEP (a) −0.003 (-0.4, 0.372) 1.460 (-0.449, 3.04) 36

CTNND1 sh MEP+MEP (a) −0.659 (-1.08, -0.244) −8.418 (-9.882, -7.06) 41

LEP+CTNND1 sh MEP 2.571 (1.566, 3.534) 2.826 (2.228, 3.392) 55

LEP+TLN1 sh MEP −0.627 (-1.279, 0.047) −3.997 (-4.701, -3.353) 40

GFP DMSO 3.257 (1.78, 4.806) 10.055 (8.434, 11.625) 109

PIK3CAH1047R DMSO 1.650 (-0.294, 3.412) 5.163 (3.516, 6.731) 202
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Parameters dE (95% CI) βdE (95% CI) n

PIK3CAH1047R TLNsh 3.691 (2.858, 4.513) 7.772 (6.122, 9.473) 57

PIK3CAH1047R copanlisib 1.708 (0.208, 3.285) 3.406 (1.648, 5.035) 66

PIK3CAH1047R MK2206 1.813 (0.606, 2.951) 8.873 (7.802, 9.946) 130
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C. Estimation of interfacial energies in tissues

Using cell doublets and individual cells to calculate the relative energies associated with

cellular interfaces requires that we calculate the change in energy associated with forming

each type of interface. In general terms, E =
∑

` γ`A`, so we need to determine γ` and

A` for cells before and after adhesion. First, we use micropipette aspiration to measure

the cell-intrinsic cortical tension γc, using established methods (Srivastava and Robinson,

2015). Then, we use the Young equation for droplet wetting to express the other interfacial

tensions in terms of the steady-state contact angle of each interface, θcc and θcx, and the

cortical tension γc, as previously shown (Cerchiari et al., 2015). These are diagrammed in

Fig. C.1.

γc =
∆Pcrit

2
(

1
Rp

+ 1
Rc

)

γcc = γc cos θcc

γcx = γc cos θcx + γx

φ

Rc

Ri

Rf

h φ

Ainterface

Acap

180−φ
r

Ri

h

Rf r Acap Ainterface

2Rp
L
ΔP

cc

cx

cc

c

cx

c

x

c
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Figure C.1: Cell interfacial tensions. Cortical tension γc is calculated by micropipette aspira-
tion. Cell-cell and cell-matrix interfacial tensions γcc and γcx are calculated by force balance
of steady-state cell doublets or single adherent cells, respectively. γx is the substrate-medium
tension.

Note that for a sufficiently large difference in the cortical tensions of two cells in

contact with one another, the contact interface will be asymmetrical and the stiffer cell may
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be partially engulfed by the other. In our assays, we do not see engulfment and cell cortical

tensions are very close to each other, so we use the contact geometry shown.

To estimate the global tissue energy, or the total change in surface energies during the

adhesion of the component cells to each other and the surrounding substrate, we will make

the following assumptions1:

• Each type of cell interface can be assigned a characteristic interfacial tension or inter-

facial energy density. This characteristic tension emerges from the combined molecular

mechanisms of cell contractility, cell adhesion molecule binding, cell membrane tension,

and so on.

• Cell adhesion reaches a steady state within a few hours and the underlying interfacial

tension does not change over the timescale of interest (hours to days).

• Cell interfacial tensions are unaffected by multiple cells interacting simultaneously.

• The total surface energy of the cell can be expressed as the sum of the products of each

interfacial area with the interfacial tension characteristic of that area, E =
∑

i γiAi.

• Cell volume is conserved during adhesion over the timescale of hours.

For simplicity, cell shapes are approximated by a bitruncated cubic honeycomb, a structure

with one of the most efficient packings of equal-volume cells in a three-dimensional volume

(Fig. C.2). While a less symmetrical, 0.3% more efficient solution exists, this lattice has

the convenient property that all cells have the same shape (bitruncated cube or truncated

octahedron) and the cells are evenly spaced in a body-centered cubic lattice.

1These assumptions resemble coarse graining or mean field approximations commonly used to reduce
the degrees of freedom in spin glass Hamiltonians and protein structure prediction, namely the treatment
of the microscopically complex cell interface as behaving with a single macroscopic mean tension, and the
assumption that multiple contacts are independent (Völkel and Noolandi, 2001; Janǐs, 2015).
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Truncated octahedronBody-centered cubic lattice

Simulated Tissue Cross-sections

×8 ×6

1 layer 2 layers 3 layers

a a

Simulated Tissue

Figure C.2: The Voronoi tesselation of the base-centered cubic lattice is a highly efficient
packing of cells into a volume. Each cell is a truncated octahedron with six square faces
along the main axes and eight hexagonal faces along the diagonals, all with side length a.
Cells are spaced a

√
3 apart.

In order to assign an enthalpy value to a tissue configuration, we can consider the

reference state to be the equivalent number and type of cells floating in suspension, making

no contacts at all. Then the enthalpy of any given tissue is the change in surface energy

associated with forming every cell-cell and cell-substrate interface. As we assume that con-

tacts are independent, we assign every contact in the tissue an energy value ∆E equal to

the change in energy associated with forming a single such contact (Fig. C.3).

Truncated octahedronBody-centered cubic lattice

Simulated Tissue Cross-sections

×8 ×6

1 layer 2 layers 3 layers

a a

Simulated Tissue

Figure C.3: The change in surface energy associated with forming a cell-matrix or a cell-cell
interface is dependent on the area of the interface and the interfacial tension associated with
it. The total surface energy of a tissue can be calculated as the sum of the ∆E for all cell-cell
and cell-matrix contacts.
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Recall that γcc = γc cos θcc and γcx = γc cos θcx+γx. Then the energy change associated

with the creation of a new interface, ∆E = Ef − Ei, for either a cell-cell or cell-substrate

interface, is:

∆Ecx = 2γcxAinterface − (γxAinterface + γcAinterface)

= Ainterface (2γcx − γx − γc)

= Ainterface (2γc cos θcx + 2γx − γx − γc)

= γcAinterface (2 cos θcx − 1) + γxAinterface

∆Ec1c2 = 2γc1c2Ainterface − (γc1Ainterface + γc2Ainterface)

= Ainterface (2γc1c2 − γc1 − γc2)

= Ainterface (2γc cos θc1c2 − 2γc) for γc1 = γc2 = γc

= 2γcAinterface (cos θc1c2 − 1)

Therefore, the total energy of the tissue is

E =
∑

`

∆E` =
∑

i,j

∆Ecicj +
∑

k

∆Eckx

where ckx = each interface with the substrate

and cicj = each interface between a unique pair of adhered cells

=
∑

i,j

2γcAcicj
(
cos θcicj − 1

)
+
∑

k

(γcAckx (2 cos θckx − 1) + γxAckx)

=
∑

i,j

2γcAcicj
(
cos θcicj − 1

)
+
∑

k

γcAckx (2 cos θckx − 1) + γxAouter

We find a constant term, γxAouter, which is the surface energy of the substrate alone, with

no cells attached to it. Because this value is independent of tissue configuration, we can
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consider it to be a reference energy E0 and redefine tissue energy as

∆E = E − E0 =
∑

i,j

2γcAcicj
(
cos θcicj − 1

)
+
∑

k

γcAckx (2 cos θckx − 1)

For the special case where the substrate is non-adherent (e.g., agarose), the final and initial

states of cell-substrate surfaces are both cell-media interfaces. Since there is no change in

interface, the energy change associated with cell-substrate interfaces
∑

k ∆Eckx = 0. Tissue

energy in suspension is simply calculated as

∆E =
∑

i,j

2γcAcicj
(
cos θcicj − 1

)

This approach leaves only terms that we can measure empirically using contact angle

and micropipette aspiration assays (θckx, θcicj , γc), and the areas of each interface. These

areas can be estimated for our cells, which typically have a radius of 10 µm. Assuming that

a cell does not change in volume when it takes the shape of a truncated octahedron,

Vsphere =
4π

3
R3 = Vtrunc. octa. = 8

√
2a3

a3 =
4π

24
√

2
R3 =

π

6
√

2
R3

Ahexagon =
3
√

3

2
a2 =

3
√

3

2

(
π

6
√

2

) 2
3

R2 ≈ 134 µm2

Asquare = a2 =

(
π

6
√

2

) 2
3

R2 ≈ 52 µm2
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D. Combinatoric microstate enumeration in polyhedral lattice

The truncated octahedral honeycomb can also more closely approximate the expected

multiplicity of microstates in a three-dimensional tissue. Rather than merely quantifying site

occupancy in two categories, core and shell, cells can now occupy sites with varying amounts

of their surface in contact with the substrate, the combination of the 14 hexagonal and square

faces determined by the geometry of the tissue. In general, there will be m different possible

areas that any given cell has exposed: A1, A2, · · ·Am. Distinct lattice sites that have these

areas can be grouped into sets with sizes S1, S2, · · ·Sm. If the number of LEP in each such

group is Li, the total LEP area in contact with the outside will be AL =
∑m

i Ai · Li. What

are the possible values of AL, and how many arrangements exist for each possible value of

AL? We seek the generating function

G(x, y) =
∑

AL,Ltot

gAL,Ltotx
ALyLtot

which takes the form

G(x, y) =
m∏

i=1

(
Si∑

j=0

(
Si
i

)
xj·Aiyj

)

where the coefficient of xALyLtot is the number of ways to arrange Ltot LEP into m groups

such that the sum of their exposed surface areas is AL.

The polyhedral lattices were generated and quantified in MATLAB, and the expansion

of the polynomial was performed using SAGE after converting areas to integer values for

efficient calculation in the integer polynomial ring. The resulting multiplicity data were

plotted as histograms in Fig. D.1.
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Figure D.1: Combinatorics of cell arrangements in a polyhedral lattice. The number of
possible arrangements for a given edge occupancy can be calculated precisely given the
geometry of the lattice sites, the size of the tissue, and the composition. Shown here are
the probabilities of edge occupancies for 156-cell tissues with 25, 50, and 75% LEP total,
demonstrating the predicted Gaussian-like distributions centered at LEP proportion.
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E. Cross-sectional sampling of organoid features

Due to limited imaging resolution and acquisition in the z-axis, it is impractical to

quantify the full three-dimensional organoid. While our choice of the organoid’s center is

random in the sense that the organoid’s orientation in the Matrigel or agarose microwell is

arbitrary, it is naturally only a partial sampling of the cells. In this section, I use simulated

tissues to characterize the error associated with using a weighted average of the three center

slices in a z-stack to quantify the full organoid, specifically comparing the values calculated

for Edge Occupancy, Intermixing Score, and predicted energy gradient.

Using a polyhedral lattice tissue with 156 total points (76 cells and 80 ECM), I made

cross-sectional layers through the center planes by selecting all points with x = bR/2e, and

similarly for y and z. For any cross-section, only the fully enclosed interfaces (i.e., existing

between two points both included in the cross-section) were analyzed. For a close-packed

lattice, this is highly restrictive due to the loss of secondary neighbor connectivity, and each

cell only makes 4 contacts rather than 14. A two-layer cross-section additionally includes

the points with coordinate bR/2e + 1. A three-layer cross-section also adds bR/2e − 1, and,

similarly, the four-layer cross-section contains all the points −1, 0, 1 and 2 away from the

central plane. These cross-sections contain 13, 26, 39 and 59 cells, respectively, out of a total

of 76 cells in the entire tissue. The cells of first three cross-sections in the (x, y) plane are

shown in Fig. E.1.
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Figure E.1: Simulated organoid cross-sections for the tissue with radius 6. ECM points are
not shown for clarity.

To populate the phase space, green and red cells fixed at a 1:1 ratio were randomly

assigned to cell points in the tissue to generate a total of 1 000 000 random tissues. Edge

Occupancy, Intermixing Score, and E were calculated for each cross-section and total tissue

as usual. Similar to the quality control step for image processing, I excluded cross-sections

with more than 60% of one cell type. For one-layered cross-sections, which contain only 14

cells total, this had a significant effect on the allowed structures, as only 6, 7, and 8 are legal

numbers of any one cell type. Metrics calculated from all cross-section sizes were correlated

with the corresponding tissue metrics but noticeably deviate from EO near high and low

values, underestimating and overestimating, respectively, primarily due to missing the end

caps of the tissue.
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Figure E.2: Comparison between cross-section metrics and the corresponding full tissue
metric for Edge Occupancy, Intermixing Score, and E calculated using control LEP and
MEP parameters. Binned means ± standard deviation are shown.

The effect of undersampling the total organoid should be related to the total size of

the organoid, which suggests that this will be more pronounced in larger organoids. Using

different size cutoffs for analysis of wild-type tissues demonstrates a noticeable trend of larger

organoids having lower LEP Edge Occupancy (Fig. E.3).
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Figure E.3: Comparison between GFP tissues subsetted to have small, medium, and large
areas. The apparent energy gradient of large tissues is higher, potentially because the center
slices of a very large organoid take up a smaller fraction of its total volume.
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