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ABSTRACT OF THE DISSERTATION

On Software Infrastructure for Scalable Graph Analytics

By

Yingyi Bu

Doctor of Philosophy in Computer Science

University of California, Irvine, 2015

Professor Michael J. Carey, Chair

Recently, there is a growing need for distributed graph processing systems that are capable

of gracefully scaling to very large datasets. In the mean time, in real-world applications,

it is highly desirable to reduce the tedious, inefficient ETL (extract, transform, load) gap

between tabular data processing systems and graph processing systems. Unfortunately, those

challenges have not been easily met due to the intense memory pressure imposed by process-

centric, message passing designs that many graph processing systems follow, as well as the

separation of tabular data processing runtimes and graph processing runtimes.

In this thesis, we explore the application of programming techniques and algorithms from

the database systems world to the problem of scalable graph analysis. We first propose

a bloat-aware design paradigm towards the development of efficient and scalable Big Data

applications in object-oriented, GC enabled languages and demonstrate that programming

under this paradigm does not incur significant programming burden but obtains remarkable

performance gains (e.g., 2.5×+).

Based on the design paradigm, we then build Pregelix, an open source distributed graph

processing system which is based on an iterative dataflow design that is better tuned to

handle both in-memory and out-of-core workloads. As such, Pregelix offers improved perfor-

mance characteristics and scaling properties over current open source systems (e.g., we have

xiii



seen up to 15× speedup compared to Apache Giraph and up to 35× speedup compared to

distributed GraphLab).

Finally, we integrate Pregelix with the open source Big Data management system AsterixDB

to offer users a mix of a vertex-oriented programming model and a declarative query language

for richer forms of Big Graph analytics with reduced ETL pains.
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Chapter 1

Introduction

Over the past decade, the increasing demands for data-driven business intelligence have led

to the proliferation of large-scale, data-intensive applications that often have huge amounts

of data (often at terabyte or petabyte scale) to process.

In particular, there are more and more demands today to process Big Graphs for applica-

tions in social networking (e.g., friend recommendations), the web (e.g., ranking pages), and

human genome assembly (e.g., extracting gene sequences). Statistics show that Google has

indexed about 50 billion web pages [23]; Facebook has about 1.44 billion monthly active

users [22]; the de Bruijn graph of human genomes has 3 billion+ nodes and 10 billion+

edges [109]; the knowledge graph which has already been used by Google Search has 570

million objects and more than 18 billion facts [16].

Even with those large numbers, the sizes of Big Graphs are still likely being underestimated

because many huge, real-world graphs are hidden in data that look irrelevant to graphs. In

machine-generated logs from web servers, sensors, and wearable devices, there are usually

causal relationships between different log lines [6] from which we can build a graph. In

Twittter, the relationships of “reply” and “retweet” among billions of tweets (e.g., 200 billion

1



per year [24]) are edges of a gigantic tweet graph. In Google Hangouts [7], huge volumes of

chats and talks contain many, many objects and relationships in the form of text and voice

that can also form a huge knowledge graph. And the list goes on...

Analyzing graphs at such large scales exceeds the capability of a single computer and requires

distributed graph processing platforms that can run on large-scale commodity machine clus-

ters. The required platforms should not only be efficient, scalable, robust, and reliable, but

should also offer a simple yet expressive programming model with support for easy graph

ETL (extract, transform, load) operations.

Motivated by real-world use cases, this thesis focuses on issues and challenges in the design

and implementation of Big Graph analytics platforms and studies the following problems:

• What design principles should we follow to build efficient and scalable Big

Data platforms? Because of today’s rapid development cycles, Java Virtual Machine-

based languages like Java and Scala have become “de facto” programming languages for

building Big Data processing platforms [10, 12, 92, 81, 108, 36, 42, 29]. However, the over-

head of automatic garbage collection provided by those languages is often oppressive for

performance-critical Big Data applications. To address the problem, Chapter 2 proposes

a bloat-aware design paradigm for the development of efficient and scalable Big Data ap-

plications in managed object-oriented languages. Our key observation is that the best way

to collect garbage is not to generate it in the first place, i.e., to keep the number of created

objects bounded or approximately bounded at runtime. Our experimental results show

that this new design paradigm is extremely effective in improving performance — even for

the moderate-size data sets processed, we have observed 2.5×+ performance gains, and

the improvement grows substantially with the size of the data set.

• How should we build a Big Graph analytics platform that always works with its

best effort regardless of cluster memory constraints? Most current open-source
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distributed graph computation platforms [9, 11, 73] follow a process-centric, message-

passing design, which results in a “work if memory is enough, otherwise fail” situation.

This approach wastes a lot of human effort in order to resize clusters and restart graph

computation jobs, and it prevents many budget-limited organizations from analyzing Big

Graphs. To solve this problem, Chapter 3 explores an architectural alternative that ex-

presses message-passing semantics as iterative dataflows that run on a general-purpose

data-parallel runtime. Our key observation is that we can build graph computation plat-

forms using database-style query evaluation techniques that have stood the test of time for

working in memory-constrained environments. Based on this new architecture, we have

built an open source distributed graph processing system called Pregelix. In our exper-

iments, while other graph computation platforms fail jobs in under-resourced settings,

Pregelix always works gracefully. In addition, we have seen that Pregelix offers improved

performance characteristics and scaling properties over other current open source systems

(e.g., up to 35× speedup).

• How should we support integrated, simple analytical pipelines for implicit

Big Graphs? More and more application scenarios [13] require Big Graph computation

platforms to be able to consume tabular data from a data warehouse and to save results

back into the data warehouse as well. In this context, Big Graph analytics are no longer

only about graphs, but also involve complex pipelines such as graph extraction and post-

processing. Unfortunately, most existing solutions require data scientists to manually glue

together tabular data processing systems and graph processing systems, and to manage

data format transformations between them, which distracts the data scientists’ from the

logical analytical task itself. To reduce this burden, we have coupled AsterixDB, an

open source Big Data management system for ingesting and more richly querying semi-

structured data, with our Pregelix system to support such data science use cases. To do

so, we added a non-ACID storage option (i.e., temporary dataset) into AsterixDB, and

we also added a graph computation job entrance capability to AQL, the query language
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of AsterixDB. Chapter 4 presents the design and implementation of the resulting coupled

system. The integration not only improves the user experience for complex graph analytics,

but also enables interactive graph analytics by leveraging the secondary indexing capability

of AsterixDB. Our experimental evaluation results demonstrate that the resulting system

has very good scaling properties.

In this thesis, the design paradigm proposed in Chapter 2 serves as a foundation for the sys-

tem implementations in Chapter 3 and 4. Chapter 3 describes the internals of the Pregelix

system itself, and Chapter 4 presents how Pregelix is integrated with AsterixDB. In addi-

tion to providing an integrated, data-centric platform for Big Data management and graph

analytics — since “one man’s data is another man’s graph” — the resulting architecture

can serve as one potential model for coupling Big Data management with other types of Big

Data analytics as well. In particular, this approach enables a data scientist (or a team of

data scientists) to do end-to-end analysis using a combination of paradigms (e.g., AQL and

Pregel) while doing so with a minimum of “gluing pain”.
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Chapter 2

A Bloat-Aware Design for Big Data

Applications

2.1 Overview

Modern computing has entered the era of Big Data. The massive amounts of information

available on the Internet enable computer scientists, physicists, economists, mathematicians,

political scientists, bio-informaticists, sociologists, and many others to discover interesting

properties about people, things, and their interactions. Analyzing information from Twit-

ter, Google, Facebook, Wikipedia, or the Human Genome Project requires the development

of scalable platforms that can quickly process massive-scale data. Such frameworks often

utilize large numbers of machines in a cluster or in the cloud to process data in a parallel

manner. Typical data-processing frameworks include data-flow and message passing run-

time systems. A data-flow system (such as MapReduce [51], Hadoop [10], Hyracks [42],

Spark [108], or Storm [95]) uses distributed file system to store data and computes results

by pushing data through a processing pipeline, while a message passing system (such as

5



Pregel [75] or Giraph [9]) often loads one partition of data per processing unit (machine,

process, or thread) and sends/receives messages among different units to perform computa-

tions. High-level languages (such as Hive [92], Pig [81], FlumeJava [46], or AsterixDB [29])

are designed to describe data processing at a more abstract level.

An object-oriented programming language such as Java is often the developer’s choice for

implementing data-processing frameworks. In fact, the Java community has already been the

home of many data-intensive computing infrastructures, such as Hadoop [10], Hyracks [42],

Storm [95], and Giraph [9]. Spark [108] is written in Scala, but it relies on a Java Virtual

Machine (JVM) to execute. Despite the many development benefits provided by Java, these

applications commonly suffer from severe memory bloat—a situation where large amounts

of memory are used to store information not strictly necessary for the execution—that can

lead to significant performance degradation and reduced scalability.

Bloat in such applications stems primarily from a combination of the inefficient memory

usage inherent in the run time of a managed language as well as the processing of huge vol-

umes of data that can exacerbate the already-existing inefficiencies by orders of magnitude.

As such, Big Data applications are much more vulnerable to runtime bloat than regular

Java applications. As an interesting reference point, our experience shows that the latest

(Indigo) release of the Eclipse framework with 16 large Java projects loaded can successfully

run (without any noticeable lag) on a 2GB heap; however, a moderate-size application on

Giraph [9]1 with 1GB input data can easily run out of memory on a 12 GB heap. Due to

the increasing popularity of Big Data applications in modern computing, it is important to

understand why these applications are so vulnerable, how they are affected by runtime bloat,

and what changes should be made to the existing design and implementation principles in

order to make them scalable.

1 Note that the version of Giraph that we studied throughout this chapter is svn revision 1232166, a
version at year 2012 when we were doing the work of this chapter. A later version of Giraph (described in
Section 4.5.1) with substantially reduced object creations will be experimentally evaluated in Chapter 3.
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In this chapter, we describe a study of memory bloat using two real-world Big Data ap-

plications: Hive [92] and Giraph [9], where Hive is a large-scale data warehouse software

(Apache top-level project, powering Facebook’s data analytics) built on top of Hadoop and

Giraph is an Apache open source graph analytics framework initiated by Yahoo!. Our study

shows that freely creating objects (as encouraged by object-orientation) is the root cause of

the performance bottleneck that prevents these applications from scaling up to large data sets.

To gain a deep understanding of the bottleneck and how to effectively optimize it away, we

break down the problem of excessive object creation into two different aspects, (1) what is

the space overhead if all data items are represented by Java objects? and (2) given all these

objects, what is the memory management (i.e., GC) costs in a typical Big Data application?

These two questions are related, respectively, to the spatial impact and the temporal impact

that object creation can have on performance and scalability.

On the one hand, each Java object has a fixed-size header space to store its type and the

information necessary for garbage collection. What constitutes the space overhead is not just

object headers; the other major component is from the pervasive use of object-oriented data

structures that commonly have multiple layers of delegations. Such delegation patterns, while

simplifying development tasks, can easily lead to wasteful memory space that stores pointers

to form data structures, rather than the actual data needed for the forward execution. Based

on a study reported in [79], the fraction of the actual data in an IBM application is only 13%

of the total used space. This impact can be significantly magnified in a Big Data application

that contains a huge number of (relatively small) data item objects. For such small objects,

the space overhead cannot be easily amortized by the actual data content. The problem

of inefficient memory usage becomes increasingly painful for highly-parallel data-processing

systems because each thread consumes excessive memory resource, leading to increased I/O

costs and reduced concurrency.
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On the other hand, a typical tracing garbage collection (GC) algorithm periodically traverses

the entire live object graph to identify and reclaim unreachable objects. For non-allocation-

intensive applications, efficient garbage collection algorithms such as a generational GC can

quickly mark reachable objects and reclaim memory from dead objects, causing negligible

interruptions from the main execution threads. However, once the heap grows to be large

(e.g., a few dozens of GBs) and most objects in the heap are live, a single GC call can

become exceedingly longer. In addition, because the amount of used memory in a Big Data

application is often close to the heap size, GC can be frequently triggered and would eventu-

ally become the major bottleneck that prevents the main threads from making satisfactory

progress. We observe that in most Big Data applications, a huge number of objects (repre-

senting data to be processed in the same batch) often have the same lifetime, and hence it

is highly unnecessary for the GC to traverse each individual object every time to determine

whether or not it is reachable.

Switch back to an unmanaged language? Switching back to an unmanaged language

such as C++ appears to be a reasonable choice. However, our experience with many Big

Data applications (such as Hive, Pig, Jaql, Giraph, or Mahout) suggests that a Big Data

application often exhibits clear distinction between a control path and a data path. The

control path organizes tasks into the pipeline and performs optimizations while the data path

represents and manipulates data. For example, in a typical Big Data application that runs

on a shared-nothing cluster, there is often a driver at the client side that controls the data

flow and there are multiple run-time data operators executing data processing algorithms

on each machine. The execution of the driver in the control path does not touch any actual

data. Only the execution of the data operators in the data path manipulates data items.

While the data path creates most of the run-time objects, its development often takes a very

small amount of coding effort, primarily because data processing algorithms (e.g., joining,

grouping, sorting, etc.) can be easily shared and reused across applications.
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One study we have performed on seven open source Big Data applications shows that the

data flow path takes an overage 36.8% of the lines of source code but creates more than 90%

of the objects during execution. Details of this study can be found in Section 2.4.3. Following

the conventional object-oriented design for the control path is often unharmful; it is the data

path that needs a non-conventional design and an extremely careful implementation. As the

control path takes the majority of the development work, it is unnecessary to force developers

to switch to an unmanaged language for the whole application where they have to face the

(old) problems of low productivity, less community resource, manual memory management,

and error-prone implementations.

Although the inefficient use of memory in an object-oriented language is a known problem

and has been studied before (e.g., in [79]), there does not exist any systematic analysis of

its impact on Big Data applications. In this chapter, we study this impact both analytically

and empirically. We argue that the designers of a Big Data application should strictly follow

the following principle: the number of data objects in the system has to be bounded and

cannot grow proportionally with the size of the data to be processed. To achieve this, we

propose a new design paradigm that advocates to merge small objects in the storage and

access the merged objects using data processors. The idea is inspired from old memory

management technique called page-based record management, which has been used widely

to build database systems. We adopt the proposed design paradigm in our “build-from-

scratch” general-purpose Big Data processing framework (called Hyracks) at the application

(Java) level, without requiring the modification of the JVM or the Java compiler. We

demonstrate, using both examples and experience, that writing programs using the proposed

design paradigm does not create much burden for developers.

We have implemented several common data processing tasks by following both this new

design paradigm and the conventional object-oriented design principle. Our experimental

results demonstrate that the implementations following the new design can scale to much
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larger data sizes than those following the conventional design. We believe that this new design

paradigm is valuable in guiding the future implementations of Big Data applications using

managed object-oriented languages. The observations made in this chapter strongly call

for novel optimization techniques targeting Big Data applications. For example, optimizer

designers can develop automated compiler and/or runtime system support (e.g., within a

JVM) to remove the identified inefficiency patterns in order to promote the use of object-

oriented languages in developing Big Data applications. Furthermore, future development

of benchmark suites should consider the inclusion of such applications to measure JVM

performance.

Contributions of this chapter include:

• an analytical study on the memory usage of common Big Data processing tasks such as the

graph link analysis and the relational join. We find that the excessive creation of objects

to represent and process data items is the bottleneck that prevents Big Data applications

from scaling up to large datasets (Section 2.2);

• a bloat-aware design paradigm for the development of highly-efficient Big Data applica-

tions; instead of building a new memory system to solve the memory issues from scratch,

we propose two application-level optimizations, including (1) merging (inlining) a chunk

of small data item objects with the same lifetime into few large objects (e.g., few byte

arrays) and (2) manipulating data by directly accessing merged objects (i.e., at the binary

level), in order to mitigate the observed memory bloat patterns (Section 2.3);

• a set of experimental results (Section 2.5) that demonstrate significant memory and time

savings using the design. We report our experience of programming for real-world data-

processing tasks in the Hyracks platform (Section 2.4). We compare the performance of

several Big Data applications with and without using the proposed design; the experimen-

tal results show that our optimizations are extremely effective (Section 2.5).
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2.2 Memory Analysis of Big Data Applications

In this section, we study two popular data-intensive applications, Giraph [9] and Hive [92],

to investigate the impact of creating of Java objects to represent and process data on perfor-

mance and scalability. Our analysis drills down to two fundamental problems, one in space

and one in time: (1) large space consumed by object headers and object references, leading to

low packing factor of the memory, and (2) massive amounts of objects and references, leading

to poor GC performance. We analyze these two problems using examples from Giraph and

Hive, respectively.

2.2.1 Low Packing Factor

In the Java runtime, each object requires a header space for type and memory management

purposes. An additional space is needed by an array to store its length. For instance, in

the Oracle 64-bit HotSpot JVM, the header spaces for a regular object and for an array

take 8 and 12 bytes, respectively. In a typical Big Data application, the heap often contains

many small objects (such as Integers representing record IDs), in which the overhead in-

curred by headers cannot be easily amortized by the actual data content. Space inefficiencies

are exacerbated by the pervasive utilization of object-oriented data structures. These data

structures often use multiple-level of delegations to achieve their functionality, leading to

large space storing pointers instead of the actual data. In order to measure the space ineffi-

ciencies introduced by the use of objects, we employ a metric called packing factor, which is

defined as the maximal amount of actual data that be accommodated into a fixed amount of

memory. While a similar analysis [79] has been conducted to understand the health of Java

collections, our analysis is specific to Big Data applications where a huge amount of data

flow through a fixed amount memory in a batch-by-batch manner.
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To analyze the packing factor for the heap of a typical Big Data application, we use the

PageRank algorithm [83] (i.e., an application built on top of Giraph [9]) as a running exam-

ple. PageRank is a link analysis algorithm that assigns weights (ranks) to each vertex in a

graph by iteratively computing the weight of each vertex based on the weight of its inbound

neighbors. This algorithm is widely used to rank web pages in search engines.

We ran PageRank on different open source Big Data computing systems, including Giraph [9],

Spark [108], and Mahout [34], using a 6-rack, 180-machine research cluster. Each machine

has 2 quad-core Intel Xeon E5420 processors and 16GB RAM. We used a 70GB web graph

dataset that has a total of 1, 413, 511, 393 vertices. We found none of the three systems could

successfully process this dataset. They all crashed with java.lang.OutOfMemoryError, even

though the data partitioned for each machine (i.e., less than 500MB) should easily fit into

its physical memory.

We found that many real-world developers experienced similar problems. For example, we

saw a number of complaints on OutOfMemoryError from Giraph’s user mailing list, and

there were 13 bloat-related threads on Giraph’s mailing list from January 2012 to September

20122.

In order to locate the bottleneck, we perform a quantitative analysis using PageRank. Gi-

raph contains an example implementation of the PageRank algorithm. Part of its data

representation implementation is shown below.

public abstract class EdgeListVertex<I extends WritableComparable,

V extends Writable,

E extends Writable, M extends Writable>

extends MutableVertex<I, V, E, M> {

private I vertexId = null;

2http://mail-archives.apache.org/mod mbox/giraph-user/
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private V vertexValue = null;

/** indices of its outgoing edges */

private List<I> destEdgeIndexList;

/** values of its outgoing edges */

private List<E> destEdgeValueList;

/** incoming messages from

the previous iteration */

private List<M> msgList;

......

/** return the edge indices starting from 0 */

public List<I> getEdegeIndexes(){

...

}

}

Graphs handled in Giraph are labeled (i.e., both their vertices and edges are annotated with

values) and their edges are directional. Class EdgeListVertex represents a graph vertex.

Among its fields, vertexId and vertexValue store the ID and the value of the vertex,

respectively. Field destEdgeIndexList and destEdgeValueList reference, respectively, a

list of IDs and a list of values of its outgoing edges. msgList contains incoming messages

sent to the vertex from the previous iteration. Figure 2.1 visualizes the Java object subgraph

rooted at an EdgeListVertex object.
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…
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…
..
.

M List$Array[z]

Figure 2.1: Giraph object subgraph rooted at a vertex.

In Giraph’s PageRank implementation, the concrete types for I, V , E, andM are LongWritable,

DoubleWritable, FloatWritable, and DoubleWritable, respectively. Each edge in the

graph is equi-weighted, and thus the list referenced by destEdgeValueList is always empty.

Assume that each vertex has an average of m outgoing edges and n incoming messages.

Table 2.1 shows the memory consumption statistics of a vertex data structure in the Oracle

64-bit HotSpot JVM. Each row in the table reports a class name, the number of its objects

Class #Objects Header (b) Pointer (b)
Vertex 1 8 40

List 3 24 24
List$Array 3 36 8(m+ n)

LongWritable m+ 1 8m+ 8 0
DoubleWritable n+ 1 8n+ 8 0

Total m+ n+ 9 8(m+ n) + 84 8(m+ n) + 64

Table 2.1: Numbers of objects per vertex and their space overhead (in bytes) in PageRank
in the Sun 64-bit Hopspot JVM.
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Figure 2.2: The compact layout of a vertex.

needed in this representation, the number of bytes used by the headers of these objects, and

the number of bytes used by the reference-typed fields in these objects. It is easy to calculate

that the space overhead for each vertex in the current implementation is 16(m + n) + 148

(i.e., the sum of the header size and pointer size in Table 2.1).

On the contrary, Figure 2.2 shows an ideal memory layout that stores only the necessary

information for each vertex (without using objects). In this case, the representation of a

vertex requires m + 1 long values (for vertex IDs), n double values (for messages), and two

32-bit int values (for specifying the number of outgoing edges and the number of messages,

respectively), which consume a total of 8(m+n+ 1) + 16 = 8(m+n) + 24 bytes of memory.

This memory consumption is even less than half of the space used for object headers and

pointers in the object-based representation. Clearly, the space overhead of the object-based

representation is greater than 200%.
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2.2.2 Large Volumes of Objects and References

In a JVM, the GC threads periodically iterate all live objects in the heap to identify and

reclaim dead objects. Suppose the number of live objects is n and the total number of edges

in the object graph is e, the asymptotic computational complexity of a tracing garbage

collection algorithm is O(n+e). For a typical Big Data application, its object graph consists

of a great number of isolated object subgraphs, each of which represents either a data item

or a data structure created for processing items. As such, there often exists an extremely

large number of in-memory data objects, and both n and e can be orders of magnitude larger

than those of a regular Java application.

We use an exception example from Hive’s user mailing list to analyze the problem. This

exception was found in a discussion thread named “how to deal with Java heap space errors”3:

FATAL org.apache.hadoop.mapred.TaskTracker:

Error running child : java.lang.OutOfMemoryError:

Java heap space

org.apache.hadoop.io.Text.setCapacity(Text.java:240)

at org.apache.hadoop.io.Text.set(Text.java:204)

at org.apache.hadoop.io.Text.set(Text.java:194)

at org.apache.hadoop.io.Text.<init>(Text.java:86)

......

at org.apache.hadoop.Hive.ql.exec.persistence.Row

Container.next(RowContainer.java:263)

org.apache.hadoop.Hive.ql.exec.persistence.Row

Container.next(RowContainer.java:74)

at org.apache.hadoop.Hive.ql.exec.CommonJoinOperator.

3http://mail-archives.apache.org/mod mbox/Hive-user/201107.mbox/
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checkAndGenObject(CommonJoinOperator.java:823)

at org.apache.hadoop.Hive.ql.exec.JoinOperator.

endGroup(JoinOperator.java:263)

at org.apache.hadoop.Hive.ql.exec.ExecReducer.

reduce(ExecReducer.java:198)

......

at org.apache.hadoop.Hive.ql.exec.persistence.Row

Container.nextBlock(RowContainer.java:397)

at org.apache.hadoop.mapred.Child.main(Child.java:170)

We inspected the source code of Hive and found that the top method Text.setCapacity()

in the stack trace is not the cause of the problem. In Hive’s join implementation, its

JoinOperator holds all the Row objects from one of the input branches in the RowContainer.

In cases where a large number of Row objects is stored in the RowContainer, a single GC run

can become very expensive. For the reported stack trace, the total size of the Row objects

exceeds the heap upper bound, which causes the OutOfMemory error.

Even in cases where no OutOfMemory error is triggered, the large number of Row objects

can still cause severe performance degradation. Suppose the number of Row objects in

the RowContainer is n. Hence, the GC time for traversing the internal structure of the

RowContainer object is at least O(n). For Hive, n grows proportionally with the size of

the input data, which can easily drive up the GC overhead substantially. The following is

an example obtained from a user report at StackOverflow4. Although this problem has a

different manifestation, the root cause is the same.

“I have a Hive query which is selecting about 30 columns and around 400,000 records and

inserting them into another table. I have one join in my SQL clause, which is just an inner

join. The query fails because of a Java GC overhead limit exceeded.”

4http://stackoverflow.com/questions/11387543/performance-tuning-a-Hive-query.
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In fact, complaints about large GC overhead can be commonly seen on either Hive’s mailing

list or the StackOverflow website. What makes the problem even worse is that there is not

much that can be done from the developer’s side to optimize the application, because the

inefficiencies are inherent in the design of Hive. All the data processing-related interfaces in

Hive require the use of Java objects to represent data items. To manipulate data contained

in Row, for example, we have to wrap it into a Row object, as designated by the interfaces.

If we wish to completely solve this performance problem, we would have to re-design and

re-implement all the related interfaces from scratch, a task that any user could not afford

to do. This example motivates us to look for solutions at the design level, so that we would

not be limited by the many (conventional) object-oriented guidelines and principles.

2.3 The Bloat-Aware Design Paradigm

The fundamental reason for the performance problems discussed in Section 2.2 is that the

two Big Data applications were designed and implemented the same way as regular object-

oriented applications: everything is object. Objects are used to represent both data processors

and data items to be processed. While creating objects to represent data processors may not

have significant impact on performance, the use of objects to represent data items creates

a big scalability bottleneck that prevents the application from processing large data sets.

Since a typical Big Data application does similar data processing tasks repeatedly, a group

of related data items often has similar liveness behaviors. They can be easily managed

together in large chunks of buffers, so that the GC does not have to traverse each individual

object to test its reachability. For instance, all vertex objects in the Giraph example have

the same lifetimes; so do Row objects in the Hive example. A natural idea is to allocate them

in the same memory region, which is reclaimed as a whole if the contained data items are

no longer needed.
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Based on this observation, we propose a bloat-aware design paradigm for developing highly

efficient Big Data applications. This paradigm includes the following two important compo-

nents: (1) merging and organizing related small data record objects into few large objects

(e.g., byte buffers) instead of representing them explicitly as one-object-per-record, and (2)

manipulating data by directly accessing buffers (e.g., at the byte chunk level as opposed to

the object level). The central goal of this design paradigm is to bound the number of objects

in the application, instead of making it grow proportionally with the cardinality of the input

data. It is important to note that these guidelines should be considered explicitly at the

early design stage of a Big Data processing system, so that the resulting APIs and imple-

mentations would comply with the principles. We have built our own Big Data processing

framework Hyracks from the scratch by strictly following this design paradigm. We will use

Hyracks a running example to illustrate these design principles.

2.3.1 Data Storage Design: Merging Small Objects

As described in Section 2.2, storing data in Java objects adds much overhead in terms of

both memory consumption as well as CPU cycles. As such, we propose to store a group of

data items together in Java memory pages. Unlike a system-level memory page, which deals

with virtual memory, a Java memory page is a fixed-length contiguous block of memory in

the (managed) Java heap. For simplicity of presentation, we will use “page” to refer to “Java

memory page” in the rest of the chapter. In Hyracks, each page is represented by an object of

type java.nio.ByteBuffer. Arranging records into pages can reduce the number of objects

created in the system from the total number of data items to the number of pages. Hence,

the packing factor in such a system can be much closer to that in the ideal representation

where data are explicitly laid out in memory and no bookkeeping information needs to be

stored. Note that grouping data items into a binary page is just one of many ways to merge
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Figure 2.3: Vertices aligning in a page (slots at the end of the page are to support variable-
sized vertices).

small objects; other merging (inlining) approaches may also be considered in the future to

achieve the same goal.
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Multiple ways exist to put records into a page. The Hyracks system takes an approach called

“slot-based record management” [84] used widely in the existing DBMS implementations.

To illustrate, consider again the PageRank algorithm. Figure 2.3 shows how 4 vertices are

stored in a page. It is easy to see that each vertex is stored in its compact layout (as in

Figure 2.2) and we use 4 slots (each takes 4 bytes) at the end of the page to store the start

offset of each vertex. These offsets will be used to quickly locate data items and support

variable-length records. Note that the format of data records is invisible to developers, so that

they could still focus on high-level data management tasks. Because pages are of fixed size,

there is often a small residual space that is wasted and cannot be used to store any vertex.

To understand the packing factor for this design, we assume each page holds p records on

average, and the residual space has r bytes. The overhead for this representation of a vertex

includes three parts: the offset slot (4 bytes), the amortized residual space (i.e., r/p), and the

amortized overhead of the page object itself (i.e., java.nio.ByteBuffer). The page object

has an 8-byte header space (in the Oracle 64-bit HotSpot JVM) and a reference (8 bytes) to

an internal byte array whose header takes 12 bytes. This makes the amortized overhead of

the page object 28/p. Combining this overhead with the result from Section 2.2.1, we need

a total of (8m+ 8n) + 24 + 4 + r+28
p

bytes to represent a vertex, where (8m+ 8n) + 24 bytes

are used to store the necessary data and 4 + r+28
p

is the overhead. Because r is the size of

the residual space, we have:

r ≤ 8m+ 8n+ 24

and thus the space overhead of a vertex is bounded by 4+ 8m+8n+52
p

. In Hyracks, we use 32KB

(as recommended by literature [63]) as the size of a page, and p ranges from 100 to 200 (as seen

in experiments with real-world data). To calculate the largest possible overhead, consider
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the worst case where the residual space has the same size as a vertex. The size of a vertex

is thus between (32768− 200 ∗ 4)/(200 + 1)=159 bytes and (32768− 100 ∗ 4)/(100 + 1)=320

bytes. Because the residual space is as large as a vertex, we have 159 ≤ r ≤ 320. This leaves

the space overhead of a vertex in the range between 4 bytes (because at least 4 bytes are

required for the offset slot) and (4 + (320 + 28)/100)=7 bytes. Hence, the overall overhead

is only 2 − 4% of the actual data size, much less than the 200% overhead of object-based

representation (as described in Section 2.2.1).

2.3.2 Data Processor Design: Access Buffers

To support programming with the proposed buffer-based memory management, we propose

an accessor-based programming pattern. Instead of creating a heap data structure to contain

data items and represent their logical relationships, we propose to define an accessor structure

that consists of multiple accessors, each to access a different type of data. As such, we need

only a very number of accessor structures to process all data, leading to significantly reduced

heap objects. In this subsection, we discuss a transformation that can transform regular data

structure classes into their corresponding accessor classes. We will also describe the execution

model using a few examples.

2.3.2.1 Design Transformations

For each data item class D in a regular object-oriented design, we transform D into an

accessor class Da. Whether a class is a data item class can be specified by the developer.

The steps that this transformation includes are as follows.
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• S1: for each data item field f of type F in D, we add a field fa of type Fa into Da, where

Fa is the accessor class of F . For each non-data-item field f ’ in D, we copy it directly into

Da.

• S2: add a public method set(byte[] data, int start, int length) into Da. The

goal of this method is to bind the accessor to a specific byte region where the data items of

type D are located. The method can be implemented either by doing eager materialization,

which recursively binds the binary regions for all its member accessors, or by doing lazy

materialization, which defers such bindings to the point where the member accessors are

actually needed.

• S3: for each method M in D, we first create a method Ma which duplicates M in Da. Next,

Ma’s signature is modified in a way so that all data-item-type parameters are changed to

use their corresponding data accessor types. A parameter accessor provides a way for

accessing and manipulating the bound data items in the provided byte regions.

Note that transforming a regular object-oriented design into the above design should be

done at the early development stage of a Big Data application in order to avoid the potential

development overhead of re-designing after the implementation. Future work will develop

compiler support that can automatically transform designs to make them compatible with

our memory system.

2.3.2.2 Execution Model

At run time, we form a set of accessor graphs, and each accessor graph processes a batch

of top-level records. Each node in the graph is an accessor object for a field and each edge

represents a “member field” relationship. An accessor graph has the same skeleton as its

corresponding heap data structure but does not store any data internally. We let pages flow

through the accessor graphs, where a accessor binds to and processes a data item record
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one-at-a-time. For each thread in the program, the number of accessor graphs needed is

equal to the number of data structure types in the program, which is statically bounded.

Different instances of a data structure can be processed by the same accessor graph.

If one uses eager materialization in the accessor implementation, the number of accessor

objects that need to be created during a data processing task is equal to the total number of

nodes in all the accessor graphs. If lazy materialization is chosen to implement accessors, the

number of created accessor objects can be significantly reduced, because a member accessor

can often be reused for accessing several different data times of the same type. In some cases,

additional accessor objects are needed for methods that operate on multiple data items of

the same type. For example, a compare method defined in a data item class compares two

argument data items, and hence, in order to the transformed version of the method would

need two accessor objects at run time to perform the comparison. Despite these different

ways of implementing accessors, the number of accessor objects needed is always bounded

at compile time and does not grow proportionally with the cardinality the dataset.

2.3.2.3 A Running Example

Following the three steps, we manually transform the vertex example in Section 2.2.1 into

the following form.

public abstract class EdgeListVertexAccessor<

/** by S1: */

I extends WritableComparableAccessor,

V extends WritableAccessor,

E extends WritableAccessor,

M extends WritableAccessor>

extends MutableVertexAccessor<I, V, E, M> {
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private I vertexId = null;

private V vertexValue = null;

/** by S1: indices of its outgoing edges */

private ListAccessor<I> destEdgeIndexList = new

ArrayListAccessor<I>();

/** by S1: values of its outgoing edges */

private ListAccessor<E> destEdgeValueList = new

ArrayListAccessor<E>();

/** by S1: incoming messages from

the previous iteration */

private ListAccessor<M> msgList = new

ArrayListAccessor<M>();

......

/** by S2:

* binds the accessor to a binary region

* of a vertex

*/

public void set(byte[] data, int start, int length){

/* This may in turn call the set method

of its member objects. */

......

}

/** by S3: replacing the return type*/

25



EdgeListVertexAccessor

vertexId

destEdgeValueList

msgList

destEdgeIndexList

vertexValue

set(...)

set(...)

set(...)

set(...)

set(...)

set(...)

set(...)

set(...)

set(...)
set(...)

set(...)

set(...)

...

...

...

Pagebyte region 

for a vertex

binding: set(byte[] data, int start, int length)

Figure 2.4: A heap snapshot of the example.

public ListAccessor<I> getEdegeIndexes(){

...

}

}

In the above code snippet, we highlight the modified code and add the transformation steps

as the comments. Figure 2.4 shows a heap snapshot of the running example. The actual data

are laid out in pages while an accessor graph is used to process all the vertices, each-at-a-time.

For each vertex, the set method binds the accessor graph to its byte region.
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2.4 Programming Experience

The bloat-aware design paradigm separates the logical data access and the physical data

storage to achieve both compact in-memory data layout and efficient memory management.

However, it appears that programming with binary data is a daunting task that creates much

burden for the developers. To help reduce the burden, we have developed a comprehensive

data management library in Hyracks. In this section, we describe case studies and report

our own experience with three real-world projects to show the development effort under this

design.

2.4.1 Case Study 1: In-Memory Sort

In this case study, we compare the major parts of two implementations of in-memory sort

algorithms, one in Hyracks manipulating binary data using our library, and the other ma-

nipulating objects using the standard Java library (e.g., Collections.sort()). The code

shown below is the method siftDown, which is the core component of JDK’s sort algorithm.

private static void siftDown(Accessor acc, int start, int end) {

for (int parent = start ; parent < end ; ) {

int child1 = start + (parent - start) * 2 + 1;

int child2 = child1 + 1;

int child = (child2 > end) ? child1

: (acc.compare(child1, child2)

< 0) ? child2 : child1;

if (child > end)

break;

if (acc.compare(parent, child) < 0)

acc.swap(parent, child);
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parent = child;

}

}

A similar implementation using our library is a segment in the sort method, shown as

follows:

private void sort(int[] tPointers, int offset, int length){

......

while(true){

......

while (c >= b) {

int cmp = compare(tPointers, c, mi, mj, mv);

if (cmp < 0) {

break;

}

if (cmp == 0) {

swap(tPointers, c, d--);

}

--c;

}

if (b > c)

break;

swap(tPointers, b++, c--);

}

......

}
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The compare method eventually calls a user-defined comparator implementation in which two

accessors are bound to the two input byte regions once-at-a-time for the actual comparison.

The following code snippet is an example comparator implementation.

public class StudentBinaryComparator implements IBinaryComparator{

private StudentAccessor acc1 = StudentAccessor.getAvailableAccessor();

private StudentAccessor acc2 = StudentAccessor.getAvailableAccessor();

public int compare(byte[] data1, int start1, int len1,

byte[] data2, int start2, int len2){

acc1.set(data1, start1, len1);

acc2.set(data2, start2, len2);

return acc1.compare(acc2);

}

}

Method getAvailableAccessor can be implemented in different ways, depending on the

materialization mode. For example, it can directly return a new StudentAccessor object

or use an object pool to cache and reuse old objects. As one can tell, the data access code

paths in both implementation are well encapsulated with libraries, which allows application

developers to focus on the business logic (when to call compare and swap) rather than writing

code to access data. As such, the two different implementations have comparable numbers

of lines of code.

2.4.2 Case Study 2: Print Records

The second case study is to use a certain format to print data records from a byte array. A

typical Java implementation is as follows.
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private void printData(byte[] data) {

Reader input = new BufferedReader(new InputStreamReader(

new DataInputStream(new ByteArrayInputStream(

data))));

String line = null;

while((line = input.readLine())!= null){

String[] fields = line.split(‘,’);

//print the record

......

}

input.close();

}

}

The above implementation reads String objects from the input, splits them into fields,

and prints them out. In this implementation, the number of created String objects is

proportional to the cardinality of records multiplied by the number of fields per record. The

following code snippet is our printer implementation using the bloat-aware design paradigm.

private void printData(byte[] data) {

PageAccessor pageAcc = PageAccessor.getAvailableAccessor(data);

RecordPrintingAccessor recordAcc = RecordPrintingAccessor.getAvailableAccessor();

while(pageAcc.nextRecord()){

//print the record in the set call

recordAcc.set(toBinaryRegion(pageAcc));

}

}
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In our implementation, we build one accessor graph for printing, let binary data flow through

the accessor graph, and print every record by traversing the accessor graph and calling the

set method on each accessor. It is easy to see that the number of created objects is bounded

by the number of nodes of the accessor graph while the programming effort is not significantly

increased.

2.4.3 Big Data Projects using the Bloat-Aware Design

The proposed design paradigm has already been used in six Java-based open source Big Data

processing systems, listed as follows:

• Hyracks [42] is a data parallel platform that runs data-intensive jobs on a cluster of shared-

nothing machines. It executes jobs in the form of directed acyclic graphs that consist of

user-defined data processing operators and data redistribution connectors.

• Algebricks [41] is a generalized, extensible, data model-agnostic, and language-independent

algebra/optimization layer which is intended to facilitate the implementation of new high-

level languages that process Big Data in parallel.

• AsterixDB [29] is a Big Data management system for semi-structured data, which is built

on-top-of Algebricks and Hyracks.

• VXQuery [27] is data-parallel XQuery processing engine on top of Algebricks and Hyracks

as well.

• Pregelix (will be described Chapter 3) is Big Giraph analytics platform that supports the

bulk-synchronous vertex-oriented programming model [75]. It internally uses Hyracks as

the run-time execution engine.

• Hivesterix [14] is a SQL-like layer on top of Algebricks and Hyracks; it reuses the modules

of the grammar and first-order run-time functions from HiveQL [92].
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Project Overall #LOC Control #LOC Data #LOC Data #LOC Percentage
Hyracks 125930 71227 54803 43.52%
Algebricks 40116 36033 4083 10.17%
AsterixDB 140013 93071 46942 33.53%
VXQuery 45416 19224 26192 57.67%
Pregelix 18411 11958 6453 35.05%
Hivesterix 18503 13910 4593 33.01%

Overall 388389 245323 143066 36.84%

Table 2.2: The line-of-code statistics of Big Data projects which uses the bloat-aware design.

In these six projects, the proposed bloat-aware design paradigm is used in the data pro-

cessing code paths (e.g., the runtime data processing operators such as join, group-by, and

sort, as well as the user-defined runtime functions such as plus, minus, sum, and count)

while the control code paths (e.g., the runtime control events, the query language parser,

the algebra rewriting/optimization, and the job generation module) still use the traditional

object-oriented design. Note that for Big Data applications, usually the control path is well

isolated from the data path changes (e.g., data format changes) because they execute on

different machines — the control path is on the master (controller) machines while the data

path is on the slave machines.

We show a comparison of the lines-of-code (LOC) of the control paths and the data paths

in those projects, as listed in Table 2.2. On average, the data path takes about 36.84%

of the code base, which is much smaller than the size of the control path. Based on the

feedback from the development teams, programming and debugging the data processing

components consumes approximately 2× as much time as doing that with the traditional

object-orientated design. However, overall, since the data processing components take only

36.84% of the total development effort, the actual development overhead should be much

smaller than 2×.
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2.4.4 Future Work

The major limitation of the proposed technique is that it requires developers to manipulate

low-level, binary representation of data, leading to increased difficulty in programming and

debugging. We are in the process of adding another-level-of-indirection to address this issue—

we are developing annotation and compiler support to allow for the declarative specifications

of data structures. The resulting system will allow developers to annotate data item classes

and provide relational specifications. The compiler will automatically generate code that uses

the Hyracks library from the user specifications. We hope this system will enable developers

to develop high-performance Big Data applications with a low human effort.

2.5 Performance Evaluation

This section presents a set of experiments focusing on performance comparisons between

implementations with and without the proposed design paradigm. All experiments were con-

ducted on a cluster of 10 IBM research machines. Each machine has a 4-core Intel Xeon 2.27

GHz processor, 12GB RAM, and 4 300GB 10,000 rpm SATA disk drives, and runs CentOS

5.5 and Java HotSpot(TM) 64-bit server VM (build17.0-b16, mixed node). JVM command

line option “-Xmx10g” was used for all our experiments. We use a parallel generational GC

in HotSpot, which combines parallel Scavenge (i.e., copying) for the young generation and

parallel Mark-Sweep-Compact for the old generation. We collected the application running

times and the JVM heap usage statistics in all the 10 machines. Their average is reported in

this section. The rest of this section presents experimental studies of our design paradigm on

the overall scalability (Section 2.5.1), the packing factors (Section 2.5.2), and the GC costs

(Section 2.5.3).
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Figure 2.5: PageRank Performance on Pregelix.

2.5.1 Effectiveness On Overall Scalability: Using PageRank

The Pregelix system (will be presented in Chapter 3) supports nearly the same user inter-

faces and functionalities as Giraph, but uses the bloat-aware design paradigm. Internally,

Pregelix employs a Hyracks runtime dataflow pipeline that contains several data processing

operators (i.e., sort, group-by and join) and connectors (i.e., m-to-n hash partitioning merg-

ing connector) to execute graph processing jobs. Pregelix supports out-of-core computations,

as it uses disk-based operators (e.g., external sort, external group-by, and index outer join)

in the dataflow to deal with large amounts of data that cannot be accommodated in the
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main memory. In Pregelix, both the data storage storage design and data processor design

are enabled: it stores all data in pages but employs accessors during data processing. The

code shown in Section 2.3.2 is exactly what we used to process vertices.

In order to quantify the potential efficiency gains, we compared the performance of PageRank

between Pregelix and Giraph. The goal of this experiment is not to understand the out-

of-core performance, but rather to investigate the impact of memory bloat. Therefore, the

PageRank algorithm was performed on a subset of Yahoo!’s publicly available AltaVista

Web Page Hyperlink Connectivity Graph dataset [105], a snapshot of the World Wide Web

from 2002. The subset consists of a total of 561, 365, 953 vertices, each of which represents a

web page. The size of the decompressed data is 27.8GB, which, if distributed appropriately,

should easily fit into the memory of the 10 machines (e.g., 2.78GB for each machine). Each

record in the dataset consists of a source vertex identifier and an array of destination vertex

identifiers forming the links among different webpages in the graph.

In the experiment, we also ran PageRank with two smaller (1/100 and 1/10 of the original)

datasets to obtain the scale-up trend. Figure 2.5 (a), (b), and (c) show, respectively, the

overall execution times for the processing of the three datasets, their GC times, and their

heap usages. It is easy to see that the total GC time for each dataset is less than 3% of

the overall execution time. The JVM heap size is obtained by measuring the overall JVM

memory consumption from the operating system. In general, it is slightly larger than the

raw data size for each machine (i.e., 2.78GB). This is because extra memory is needed to

(1) store object metadata (as we still have objects) and (2) sort and group messages. We

also ran the Giraph PageRank implementation on the same three input datasets, but could

not succeed for any of the datasets. Giraph crashed with java.lang.OutOfMemoryError

in all the cases. We confirmed from the Giraph developers that the crash was because of

the skewness (e.g., www.yahoo.com has a huge number of inbound links and messages) in
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the Yahoo! AltaVista Web Page Hyperlink Connectivity Graph dataset, combined with the

object-based data representation.

2.5.2 Effectiveness On Packing Factor: Using External Sort

As the second experiment, we compared the performance of two implementations of the

standard external sort algorithm [84] on Hyracks. One uses Java objects to represent data

records, while the other employs Java memory pages. The goal here is to understand the

impact of the low packing factor of the object-based data representation on performance as

well as the benefit of the bloat-aware design paradigm.

In the Java object-based implementation, the operator takes deserialized records (i.e., in

objects) as input and puts them into a list. Once the number of buffered records exceeds a

user-defined threshold, method sort is invoked on the list and then the sorted list is dumped

to a run file. The processing of the incoming data results in a number of run files. Next,

the merge phase starts. This phase reads and merges run files using a priority queue to

produce output records. During the merge phase, run files are read into the main memory

one-block(32KB)-at-a-time. If the number of files is too large and one pass can not merge

all of them, multiple merge passes need be performed.

In the page-based implementation, we never load records from pages into objects. Therefore,

the page-based storage removes the header/pointer overhead and improves the packing factor.

We implemented a quick sort algorithm to sort in-memory records at the binary level. In

this experiment, we used the TPC-H5 lineitem table as the input data, where each record

represents an item in a transaction order. We generated TPC-H data at 10×, 25×, 50× and

100× scales, which correspond to 7.96GB, 19.9GB, 39.8GB and 79.6GB line-item tables,

respectively. Each dataset was partitioned among the 10 nodes in a round-robin manner.

5The standard data warehousing benchmark, http://www.tpc.org/tpch/
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Figure 2.6: ExternalSort Performance.

Particularly, it was divided into 40 partitions, one partition per disk drive (recall that each

machine has 4 disk drives).

The task was executed as follows: we created a total of 40 concurrent sorters across the

cluster, each of which reads a partition of data locally, sorted them, and wrote the sorted

data back to the disk. In this experiment, the page-based implementation used a 32MB

sort buffer. The object-based implementation used 5000 the maximal number of in-memory

records. The results of two different external sort implementations are plotted in Figure 2.6.
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Figure 2.7: Hash-based Grouping Performance.

The run-time statistics include the overall execution time (Figure 2.6 (a)), the GC overhead

(Figure 2.6 (b)), and the JVM heap usage (Figure 2.6 (c)). Note that the Scavenge and Mark-

Sweep lines show the GC costs for the young generation and the old generation, respectively.

Because sorting a single memory buffer (either 32MB pages or 5000 records) is fast, most

data objects are short-lived and small, and their lifetimes are usually limited within the

iterations where they are created. They rarely get copied into old generations and thus the

nursery scans dominate the GC effort.
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From Figure 2.6 (a), it is clear to see that as the size of dataset increases, the page-based

implementation scales much better (e.g., 2.5× faster on 79.6GB input) than the object-

based implementation, and the improvement factor keeps increasing with the increase of the

dataset size. The following two factors may contribute to this improvement: (1) due to the

low packing factor, the object-based implementation often has more merge passes (hence

more I/O) than the page-based implementation, and (2) the use of objects to represent data

items leads to increased JVM heap size and hence the operating system has less memory

for the file system cache. For example, in the case where the size of the input data is

79.6GB, the page-based implementation has only one merge pass while the object-based one

has two merge passes. The page-based implementation also has much less GC time than

the object-based implementation (Figure 2.6 (b)). Figure 2.6 (c) shows that the amount of

memory required by the object-based implementation is almost 4× larger than that of the

page-based implementation, even though the former holds much less actual data in memory

(i.e., reflected by the need of an additional merge phase).

2.5.3 Effectiveness On GC Costs: Using Hash-Based Grouping

The goal of the experiment described in this subsection is to understand the GC overhead in

the presence of large volumes of objects and references. The input data and scales for this

experiment are the same as those in Section 2.5.2. For comparison, we implemented a logical

SQL query by hand-coding the physical execution plan and runtime operators, in order to

count how many items there are in each order:

SELECT l_orderkey, COUNT(*) AS items

FROM lineitem

GROUP BY l_orderkey;
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We created two different implementations of the underlying hash-based grouping as Hyracks

operators. They were exactly the same except that one of them used the object-based hash

table (e.g., java.util.Hashtable) for grouping and the other used a page-based hash table

implementation (e.g., all the intermediate states along with the grouping keys were stored in

pages). The hash table size (number of buckets) was 10,485,767 for this experiment, because

larger hash tables are often encouraged in Big Data applications to reduce collisions.

The Hyracks job of this task had four operators along the pipeline: a file scan operator

(FS), a hash grouping operator (G1), another hash grouping operator (G2), and a file write

operator (FW). In the job, FS was locally connected to G1, and then the output of G1

was hash partitioned and fed to G2 (using a m-to-n hash partitioning connector). Finally,

G2 was locally connected to FW. Each operator had 40 clones across the cluster, one per

partition. Note that G1 was used to group data locally and compress the data in order for

it to be sent to the network. G2 performed the final grouping and aggregation.

Figure 2.7 shows the performance of the two different hash-based grouping implementations

over the four input datasets. The measurements include the overall performance (Figure 2.7

(a)), the GC time (Figure 2.7 (b)), and the JVM heap size (Figure 2.7(c)). From Fig-

ure 2.7(a), one can see that the implementation with the page-based hash table scales much

better to the size of data than the other one: in the case where the size of input data is

79.6GB, the former is already 3.5× faster than the latter and the improvement factor keeps

growing. In Figure 2.7 (b), we can clearly see that the use of the object-based hash table

makes the GC costs go up to 47% of the overall execution time while the page-based hash

table does not add much overhead (<3% of the overall execution time). A similar observa-

tion can be made on the memory consumption: Figure 2.7 (c) shows that the object-based

implementation leads to much larger memory consumption than the page-based one.
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Summary Our experimental results clearly demonstrate that, for many data-processing

tasks, the bloat-aware design paradigm can lead to far better performance. The source code

of all the experiments can be found at: http://code.google.com/p/hyracks.

2.6 Related Work

There exists a large body of work on efficient memory management techniques and data

processing algorithms. This section discusses only those that are most closely related to

the proposed work. These techniques are classified into three categories: data-processing

infrastructures implemented in managed languages, software bloat analysis, and region-based

memory management systems.

Java-based data-processing infrastructures Telegraph [88] is a data management

system implemented in Java. It uses native byte arrays to store data and has its own mem-

ory manager for object allocation, deallocation, and memory de-fragmentation. However,

because it is built on top of native memory, developers lose various benefits of a managed

language and have to worry about low-level memory correctness issues such as dangling

pointers, buffer overflow, and memory leaks. Our approach overcomes the problem by build-

ing applications on top of the Java managed memory, providing high efficiency and yet

retaining most of the benefits provided by a managed runtime.

Hadoop [10] is a widely-used open source MapReduce implementation. Although it provides

a certain level of object reuse for sorting algorithms, its (major) map and reduce interfaces

are object-based. The user has to create a great number of objects to implement a new

algorithm on top of Hadoop. For example, the reduce-side join implementation in Hive [92]

uses a Java HashMap in the reduce function to hold the inner branch records, which is very
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likely to suffer from the same performance problem (i.e., high GC costs) as discussed in

Section 2.2.

Other data-processing infrastructures such as Spark [108] and Storm [95] also make heavy use

of Java objects in both their core data-processing modules and their application programming

interfaces, and thus they are vulnerable to memory bloat as reported in this chapter.

Software bloat analysis Software bloat analysis [80, 79, 102, 100, 77, 89, 103, 99, 31, 78,

101, 104, 98] attempts to find, remove, and prevent performance problems due to inefficiencies

in the code execution and the use of memory. Prior work [80, 79] proposes metrics to provide

performance assessment of use of data structures. Their observation that a large portion of

the heap is not used to store data is also confirmed in our study. In addition to measure

memory usage, our work proposes optimizations specifically targeting the problems we found

and our experimental results show that these optimizations are very effective.

Work by Dufour et al. [55] uses a blended escape analysis to characterize and find excessive

use of temporary data structures. By approximating object lifetimes, the analysis has been

shown to be useful in classifying the usage of newly created objects in the problematic areas.

Shankar et al. propose Jolt [89], an approach that makes aggressive method inlining decisions

based on the identification of regions that make extensive use of temporary objects. Work

by Xu et al. [100] detects memory bloat by profiling copy activities, and their later work [99]

looks for high-cost-low-benefit data structures to detect execution bloat. Our work is the first

attempt to analyze bloat under the context of Big Data applications and perform effective

optimizations to remove bloat.

Region-based memory management Region-based memory management was first

used in the implementations of functional languages [94, 28] such as Standard ML [67], and

then was extended to Prolog [74], C [65, 68, 60, 61], and real-time Java [39, 72, 43]. More

recently, some mark-region hybrid methods such as Immix [40] combine tracing GC with
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regions to improve GC performance for Java. Our work uses a region-based approach to

manage pages, but in a different context — the emerging Big Data applications. Data are

stored in pages in the binary form leading to both increased packing factor and decreased

memory management cost.

Value types Expanded types in Eiffel and value types in C# are used to declare data

with simple structures. However, these types cannot solve the entire bloat problem. In

these languages, objects still need to be used to represent data with complicated structures,

such as hash maps or lists. The scalability issues that we found in Big Data applications

are primarily due to inefficiencies inherent in the object-oriented system design, rather than

problems with any specific implementation of a managed language.

2.7 Summary

This chapter presents a bloat-aware design paradigm for Java-based Big Data applications.

The study starts with a quantitative analysis of memory bloat using real-world examples, in

order for us to understand the impact of excessive object creation on the memory consump-

tion and GC costs. To alleviate this negative influence, we propose a bloat-aware design

paradigm, including: merging small objects and accessing data at the binary level. We

have performed an extensive set of experiments, and the experimental results have demon-

strated that implementations following the design paradigm have much better performance

and scalability than the applications that use regular Java objects. The design paradigm

can be applied to other managed languages such as C# as well. We believe that the results

of this work demonstrate the viability of implementing efficient Big Data applications in a

managed, object-oriented language, and open up possibilities for the programming language

and systems community to develop novel optimizations targeting data-intensive computing.
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This chapter provides a foundation for the next two chapters of this thesis — both the Big

Graph analytics system that we will describe in Chapter 3 and the rich(er) graph analytics

support in AsterixDB that we will present in Chapter 4 have used the bloat-aware design

paradigm in their implementations. The details on where and how the design paradigm is

used in those two system works could be found at Section 3.5.4 and Section 4.3.3.
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Chapter 3

Pregelix: Big(ger) Graph Analytics

on A Dataflow Engine

3.1 Overview

The basic toolkits provided by first-generation “Big Data” Analytics platforms (like Hadoop)

lack an essential feature for Big Graph Analytics: MapReduce does not support iteration

(or equivalently, recursion) or certain key features required to efficiently iterate “around”

a MapReduce program. Moreover, the MapReduce programming model is not ideal for

expressing many graph algorithms. This shortcoming has motivated several specialized ap-

proaches or libraries that provide support for graph-based iterative programming on large

clusters.

Google’s Pregel is a prototypical example of such a platform; it allows problem-solvers to

“think like a vertex” by writing a few user-defined functions (UDFs) that operate on ver-

tices, which the framework can then apply to an arbitrarily large graph in a parallel fashion.

Open source versions of Pregel have since been developed in the systems community [9][11].
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Perhaps unfortunately for both their implementors and users, each such platform is a dis-

tinct new system that had to be built from the ground up. Moreover, these systems follow

a process-centric design, in which a set of worker processes are assigned partitions (contain-

ing sub-graphs) of the graph data and scheduled across a machine cluster. When a worker

process launches, it reads its assigned partition into memory, and executes the Pregel (mes-

sage passing) algorithm. As we will see, such a design can suffer from poor support for

problems that are not memory resident. Also desirable, would be the ability to consider

alternative runtime strategies that could offer more efficient executions for different sorts of

graph algorithms, datasets, and clusters.

The database community has spent nearly three decades building efficient shared-nothing

parallel query execution engines [54] that support out-of-core data processing operators (such

as join and group-by [64]), and query optimizers [47] that choose an “optimal” execution plan

among different alternatives. In addition, deductive database systems—based on Datalog—

were proposed to efficiently process recursive queries [37], which can be used to solve graph

problems such as transitive closure. However, there is no scalable implementation of Datalog

that offers the same fault-tolerant properties supported by today’s “Big Data” systems (e.g.,

[75, 10, 38, 42, 108]). Nevertheless, techniques for evaluating recursive queries—most notably

semi-näıve evaluation—still apply and can be used to implement a scalable, fault-tolerant

Pregel runtime.

In this chapter, we present Pregelix, a large-scale graph analytics system that we began

building in 2011. Pregelix takes a novel set-oriented, iterative dataflow approach to imple-

menting the user-level Pregel programming model. It does so by treating the messages and

vertex states in a Pregel computation like tuples with a well-defined schema; it then uses

database-style query evaluation techniques to execute the user’s program. From a user’s per-

spective, Pregelix provides the same Pregel programming abstraction, just like Giraph [9].

However, from a runtime perspective, Pregelix models Pregel’s semantics as a logical query
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plan and implements those semantics as an iterative dataflow of relational operators that

treat message exchange as a join followed by a group-by operation that embeds functions

that capture the user’s Pregel program. By taking this approach, for the same logical plan,

Pregelix is able to offer a set of alternative physical evaluation strategies that can fit various

workloads and can be executed by Hyracks [42], a general-purpose shared-nothing dataflow

engine (which is also the query execution engine for AsterixDB [29]). By leveraging exist-

ing implementations of data-parallel operators and access methods from Hyracks, we have

avoided the need to build many critical system components, e.g., bulk-data network transfer,

out-of-core operator implementations, buffer managers, index structures, and data shuffle.

To the best of our knowledge, Pregelix is the only Pregel-like system that supports the

full Pregel API, runs both in-memory workloads and out-of-core workloads efficiently in a

transparent manner on shared-nothing clusters, and provides a rich set of runtime choices.

This chapter makes the following contributions:

• An analysis of existing Pregel-like systems: We revisit the Pregel programming abstrac-

tion and illustrate some shortcomings of typical custom-constructed Pregel-like systems

(Section 3.2).

• A new Pregel architecture: We capture the semantics of Pregel in a logical query plan

(Section 3.3), allowing us to execute Pregel as an iterative dataflow.

• A system implementation: We first review the relevant building blocks in Hyracks (Sec-

tion 3.4). We then present the Pregelix system, elaborating the choices of data storage

and physical plans as well as its key implementation details (Section 3.5).

• Case studies: We briefly describe several current use cases of Pregelix from our initial user

community (Section 3.6).

• Experimental studies: We experimentally evaluate Pregelix in terms of execution time,

scalability, throughput, plan flexibility, and implementation effort (Section 3.7).
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3.2 Background and Problems

In this section, we first briefly revisit the Pregel semantics and the Google Pregel run-

time (Section 3.2.1) as well as the internals of Giraph, an open source Pregel-like system

(Section 3.2.2), and then discuss the shortcomings of such custom-constructed Pregel archi-

tectures (Section 3.2.3).

3.2.1 Pregel Semantics and Runtime

Pregel [75] was inspired by Valiant’s bulk-synchronous parallel (BSP) model [62]. A Pregel

program describes a distributed graph algorithm in terms of vertices, edges, and a sequence of

iterations called supersteps. The input to a Pregel computation is a directed graph consisting

of edges and vertices; each vertex is associated with a mutable user-defined value and a

boolean state indicating its liveness; each edge is associated with a source and destination

vertex and a mutable user-defined value. During a superstep S, a user-defined function

(UDF) called compute is executed at each active vertex V , and can perform any or all of the

following actions:

• Read the messages sent to V at the end of superstep S − 1;

• Generate messages for other vertices, which will be exchanged at the end of superstep S;

• Modify the state of V and its outgoing edges;

• Mutate the graph topology;

• Deactivate V from the execution.

Initially, all vertices are in the active state. A vertex can deactivate itself by “voting to halt”

in the call to compute using a Pregel provided method. A vertex is reactivated immediately

if it receives a message. A Pregel program terminates when every vertex is in the inactive

state and no messages are in flight.
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In a given superstep, any number of messages may be sent to a given destination. A user-

defined combine function can be used to pre-aggregate the messages for a destination. In

addition, an aggregation function (e.g., min, max, sum, etc.) can be used to compute a

global aggregate among a set of participating vertices. Finally, the graph structure can be

modified by any vertex; conflicts are handled by using a partial ordering of operations such

that all deletions go before insertions, and then by using a user-defined conflict resolution

function.

The Google Pregel runtime consists of a centralized master node that coordinates superstep

executions on a cluster of worker nodes. At the beginning of a Pregel job, each worker

loads an assigned graph partition from a distributed file system. During execution, each

worker calls the user-defined compute function on each active vertex in its partition, passing

in any messages sent to the vertex in the previous superstep; outgoing messages are ex-

changed among workers. The master is responsible for coordinating supersteps and detecting

termination. Fault-tolerance is achieved through checkpointing at user-specified superstep

boundaries.

3.2.2 Apache Giraph

Apache Giraph [9] is an open source project that implements the Pregel specification in Java

on the Hadoop infrastructure. Giraph launches master and worker instances in a Hadoop

map-only job1, where map tasks run master and worker instances. Once started, the master

and worker map tasks internally execute the iterative computation until completion, in

a similar manner to Google’s Pregel runtime. Figure 3.1 depicts Giraph’s process-centric

runtime for implementing the Pregel programming model. The vertex data is partitioned

across worker tasks (two in this case). Each worker task communicates its control state (e.g.,

how many active vertices it owns, when it has completed executing a given superstep, etc.)

1Alternatively, Giraph can use YARN [96] for resource allocation.

49



Vertex { id: 1
    halt: false
    value: 3.0
    edges: (3,1.0), 

(4,1.0) 
 }
Vertex { id: 3
    halt: false
    value: 3.0
    edges: (2,1.0), 

(3,1.0)
 }<5, 1.0>

<4, 3.0>

worker-1 worker-2

master

message <id, payload> control signal

superstep:3
halt: false

Vertex { id: 2
    halt: false
    value: 2.0 
    edges: (3,1.0), 

(4,1.0)
}
Vertex{ id: 4
    halt: false
    value: 1.0
    edges: (1,1.0)
}

<3, 1.0><2, 3.0>

Figure 3.1: Giraph process-centric runtime.

to the master task. The worker tasks establish communication channels between one another

for exchanging messages that get sent during individual vertex compute calls; some of these

messages could be for vertices on the same worker, e.g., messages <2, 3.0> and <3,1.0> in

Figure 3.1.

3.2.3 Issues and Opportunities

Most process-centric Pregel-like systems have a minimum requirement for the aggregate

RAM needed to run a given algorithm on a particular dataset, making them hard to configure

for memory intensive computations and multi-user workloads. In fact, Google’s Pregel only

supports in-memory computations, as stated in the original paper [75]. Hama [11] has limited

support for out-of-core vertex storage using immutable sorted files, but it requires that the

messages be memory-resident. The latest version of Giraph has preliminary out-of-core

support; however, as we will see in Section 3.7, it does not yet work as expected. Moreover,

in the Giraph user mailing list2 there are 26 cases (among 350 in total) of out-of-memory

2http://mail-archives.apache.org/mod mbox/giraph-user/
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related issues from March 2013 to March 2014. The users who posted those questions were

typically from academic institutes or small businesses that could not afford memory-rich

clusters, but who still wanted to analyze Big Graphs. These issues essentially stem from

Giraph’s ad-hoc, custom-constructed implementation of disk-based graph processing. This

leads to our first opportunity to improve on the current state-of-the-art.

Opportunity (Out-of-core Support) Can we leverage mature database-style storage man-

agement and query evaluation techniques to provide better support for out-of-core work-

loads?

Another aspect of process-centric designs is that they only offer a single physical layer imple-

mentation. In those systems, the vertex storage strategy, the message combination algorithm,

the message redistribution strategy, and the message delivery mechanism are each usually

bound to one specific implementation. Therefore, we cannot choose between alternative

implementation strategies that would offer a better fit to a particular dataset, algorithm,

cluster or desktop. For instance, the single source shortest paths algorithm exhibits sparsity

of messages, in which case a desired runtime strategy could avoid iterating over all vertices

by using an extra index to keep track of live vertices. This leads to our second opportunity.

Opportunity (Physical Flexibility) Can we better leverage data, algorithmic, and clus-

ter/hardware properties to optimize a specific Pregel program?

The third issue is that the implementation of a process-centric runtime for the Pregel model

spans a full stack of network management, communication protocol, vertex storage, mes-

sage delivery and combination, memory management, and fault-tolerance; the result is a

complex (and hard-to-get-right) runtime system that implements an elegantly simple Pregel

semantics. This leads to our third, software engineering opportunity.
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Relation Schema
Vertex (vid, halt, value, edges)
Msg (vid, payload)
GS (halt, aggregate, superstep)

Table 3.1: Nested relational schema that models the Pregel state.

Opportunity (Software Simplicity) Can we leverage more from existing data-parallel platforms—

platforms that have been improved for many years—to simplify the implementation of a

Pregel-like system?

We will see how these opportunities are exploited by our proposed architecture and imple-

mentation in Section 3.5.8.

3.3 The Pregel Logical Plan

In this section, we model the semantics of Pregel as a logical query plan. This model will

guide the detailed design of the Pregelix system (Section 3.5).

Our high level approach is to treat messages and vertices as data tuples and use a join

operation to model the message passing between vertices, as depicted in Figure 3.2. Table 3.1

defines a set of nested relations that we use to model the state of a Pregel execution. The

input data is modeled as an instance of the Vertex relation; each row identifies a single vertex

with its halt, value, and edge states. All vertices with a halt = false state are active in the

current superstep. The value and edges attributes represent the vertex state and neighbor

list, which can each be of a user-defined type. The messages exchanged between vertices in

a superstep are modeled by an instance of the Msg relation, which associates a destination

vertex identifier with a message payload. Finally, the GS relation from Table 3.1 models
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1.0

vid edges

vid msg

vid=vid

2
4

halt
false
false

value
2.0
1.0

(3,1.0),(4,1.0)
(1,1.0)

2
4 3.0

Msg

Vertex

5
3

3.0

1.0

1 false 3.0 (3,1.0),(4,1.0)
3 false 3.0 (2,1.0),(3,1.0)

3

vid edges

1

halt

false
false

value

3.0
3.0

(3,1.0),(4,1.0)
(2,1.0),(3,1.0)

msg

NULL
1.0

5 1.0 NULL NULL NULL
2 false 2.0 (3,1.0),(4,1.0)3.0
4 false 1.0 (1,1.0)3.0

Figure 3.2: Implementing message-passing as a logical join.

the global state of the Pregel program; here, when halt = true the program terminates3,

aggregate is a global state value, and superstep tracks the current iteration count.

Figure 3.2 models message passing as a join between the Msg and Vertex relations. A full-

outer-join is used to match messages with vertices corresponding to the Pregel semantics as

follows:

• The inner case matches incoming messages with existing destination vertices;

• The left-outer case captures messages sent to vertices that may not exist; in this case, a

vertex with the given vid is created with other fields set to NULL.

• The right-outer case captures vertices that have no messages; in this case, compute still

needs to be called for such a vertex if it is active.

3This global halting state depends on the halting states of all vertices as well as the existence of messages.
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UDF Description
compute Executed at each active vertex in every superstep.
combine Aggregation function for messages.
aggregate Aggregation function for the global state.
resolve Used to resolve conflicts in graph mutations.

Table 3.2: UDFs used to capture a Pregel program.

The output of the full-outer-join will be sent to further operator processing steps that im-

plement the Pregel semantics; some of these downstream operators will involve UDFs that

capture the details (e.g., compute implementation) of the given Pregel program.

Table 3.2 lists the UDFs that implement a given Pregel program. In a given superstep, each

active vertex is processed through a call to the compute UDF, which is passed the messages

sent to the vertex in the previous superstep. The output of a call to compute is a tuple that

contains the following fields:

• The possibly updated Vertex tuple.

• A list of outbound messages (delivered in the next superstep).

• The global halt state contribution, which is true when the outbound message list is empty

and the halt field of the updated vertex is true, and false otherwise.

• The global aggregate state contribution (tuples nested in bag).

• The graph mutations (a nested bag of tuples to insert/delete to/from the Vertex relation).

As we will see below, this output is routed to downstream operators that extract (project)

one or more of these fields and execute the dataflow of a superstep. For instance, output

messages are grouped by the destination vertex id and aggregated by the combine UDF.

The global aggregate state contributions of all vertices are passed to the aggregate function,

which produces the global aggregate state value for the subsequent superstep. Finally, the

resolve UDF accepts all graph mutations—expressed as insertion/deletion tuples against
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…
D2 D4,D5,D6

vid combine

UDF Call (compute)

M.vid=V.vid

Vertexi(V)Msgi(M)

Vertexi+1 Msgi+1

(V.halt =false || M.payload != NULL)

D3

D7 Flow Data

D2 Vertex tuples

D3 Msg tuples

D7 Msg tuples 
after 
combination

D1

Figure 3.3: The basic logical query plan of a Pregel superstep i which reads the data gen-
erated from the last superstep (e.g., Vertexi, Msgi, and GSi) and produces the data (e.g.,
Vertexi+1, Msgi+1, and GSi+1) for superstep i + 1. Global aggregation and synchronization
are in Figure 3.4, and vertex addition and removal are in Figure 3.5.

the Vertex relation—as input, and it resolves any conflicts before they are applied to the

Vertex relation.

We now turn to the description of a single logical dataflow plan; we divide it into three figures

that each focus on a specific application of the (shared) output of the compute function. The

relevant dataflows are labeled in each figure. Figure 3.3 defines the input to the compute

UDF, the output messages, and updated vertices. Flow D1 describes the compute input for

superstep i as being the output of a full-outer-join between Msg and Vertex (as described

by Figure 3.2) followed by a selection predicate that prunes inactive vertices. The compute

output pertaining to vertex data is projected onto dataflow D2, which then updates the

Vertex relation. In datafow D3, the message output is grouped by destination vertex id and

aggregated by the combine function4, which produces flow D7 that is inserted into the Msg

relation.

4The default combine gathers all messages for a given destination into a list.
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D1

Agg(aggregate)Agg(bool-and)
D4 D5

UDF Call (compute)

GSi+1

GSi(G)

superstep=G.superstep+1
D10

Flow Data

D4 The global halting state 
contribution

D5 Values for aggregate

D8 The global halt state

D9 The global aggregate value

D10 The increased superstep

D9D8

D2,D3,D6 …

Figure 3.4: The plan segment that revises the global state.

D2,D3,D4,D5

D1

vid(resolve)

UDF Call (compute)

Vertexi+1
Flow Data

D6 Vertex tuples for 
deletions and 
insertions

D6
…

Figure 3.5: The plan segment for vertex addition/removal.

The global state relation GS contains a single tuple whose fields comprise the global state.

Figure 3.4 describes the flows that revise these fields in each superstep. The halt state and

global aggregate fields depend on the output of compute, while the superstep counter is simply

its previous value plus one. Flow D4 applies a boolean aggregate function (logical AND) to

the global halting state contribution from each vertex; the output (flow D8) indicates the

global halt state, which controls the execution of another superstep. Flow D5 routes the

global aggregate state contributions from all active vertices to the aggregate UDF which

then produces the global aggregate value (flow D9) for the next superstep.
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Graph mutations are specified by a Vertex tuple with an operation that indicates insertion

(adding a new vertex) or deletion (removing a vertex)5. Flow D6 in Figure 3.5 groups these

mutation tuples by vertex id and applies the resolve function to each group. The output is

then applied to the Vertex relation.

3.4 The Runtime Platform

The Pregel logical plan could be implemented on any parallel dataflow engine, including

Stratosphere [38], Spark [108] or Hyracks [42]. As we argue below, we believe that Hyracks is

particularly well-suited for this style of computation; this belief is supported by Section 3.7’s

experimental results (where some of the systems studied are based on other platforms).

The rest of this section covers the Hyracks platform [42], which is Pregelix’s target runtime

for the logical plan in Section 3.3. Hyracks is a data-parallel runtime in the same general

space as Hadoop [10] and Dryad [70]. Jobs are submitted to Hyracks in the form of DAGs

(directed acyclic graphs) that are made up of operators and connectors. Operators are

responsible for consuming input partitions and producing output partitions. Connectors

perform redistributions of data between operators. For a submitted job, in a Hyracks cluster,

a master machine dictates a set of worker machines to execute clones of the operator DAG in

parallel and orchestrates data exchanges. Below, we enumerate the features and components

of Hyracks that we leverage to implement the logical plan described in Section 3.3.

User-configurable task scheduling. The Hyracks engine allows users to express task

scheduling constraints (e.g., count constraints, location choice constraints, or absolute lo-

cation constraints) for each physical operator. The task scheduler of Hyracks is a con-

straint solver that comes up with a schedule satisfying the user-defined constraints. In

Section 3.5.3.4, we leverage this feature of Hyracks to implement sticky, iterative dataflows.

5Pregelix leaves the application-specific vertex deletion semantics in terms of integrity constraints to
application programmers.
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Access methods. B-trees and LSM B-trees are part of the Hyracks storage library. A

B-tree [50] is a commonly used index structure in most commercial databases; it supports

efficient lookup and scan operations, but a single tree update can cause random I/Os. In

contrast, the LSM B-tree [82] puts updates into an in-memory component (e.g., an in-memory

B-tree); it merges the in-memory component with disk components in a periodic manner,

which turns random I/Os for updates into sequential ones. The LSM B-tree thus allows fast

updates but may result in slightly slower lookups.

Group-by operators. The Hyracks operator library includes three group-by operator

implementations: sort-based group-by, which pushes group-by aggregations into both the

in-memory sort phase and the merge phase of an external sort operator; HashSort group-by,

which does the same thing as the sort-based one except using hash-based group-by for the

in-memory processing phase; and preclustered group-by, which assumes incoming tuples are

already clustered by the group-by key and hence just applies the aggregation operation in

sequence to one group after the other.

Join operators. Merge-based index full outer join and probe-based index left-outer join

are supported in the Hyracks operator library. The full outer join operator merges sorted

input from the outer relation with an index scan on the inner relation; tuples containing

NULL values for missing fields will be generated for no-matches. The left-outer join operator,

for each input tuple in the outer relation, consults an index on the inner relation for matches

that produce join results or for no-matches that produce tuples with NULL values for the

inner relation attributes.

Connectors. Hyracks connectors define inter-operator data exchange patterns. Here, we

focus on the following three communication patterns: an m-to-n partitioning connector

repartitions the data based on a user-defined partitioning function from m (sender-side)

partitions to n (receiver-side) partitions; the m-to-n partitioning merging connector does the

same thing but assumes tuples from the sender-side are ordered and therefore simply merges
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the input streams at the receiver-side; the aggregator connector reduces all input streams to

a single receiver partition.

Materialization policies. We use two materialization policies that Hyracks supports for

customizing connectors: fully pipelined, where the data from a producer is immediately

pushed to the consumer, and sender-side materializing pipelined, where the data transfer

channel launches two threads at the sender side, one that writes output data to a local

temporary file, and another that pulls written data from the file and sends it to the receiver-

side.

3.5 The Pregelix System

In this section, we describe our implementation of the logical plan (Section 3.3) on the

Hyracks runtime (Section 3.4), which is core of the Pregelix system. We elaborate on data-

parallel execution (Section 3.5.1), data storage (Section 3.5.2), physical query plan alterna-

tives (Section 3.5.3), memory management (Section 3.5.4), fault-tolerance (Section 3.5.5),

and job pipelining (Section 3.5.6). We conclude by summarizing the software components

of Pregelix (Section 3.5.7) and revisiting our three opportunities (Section 3.5.8).

3.5.1 Parallelism

To parallelize the logical plan of the Pregel computation described in Section 3.3 at runtime,

one or more clones of a physical plan—that implements the logical plan—are shipped to

Hyracks worker machines that run in parallel. Each clone deals with a single data partition.

During execution, data is exchanged from the clones of an upstream operator to those of

a downstream operator through a Hyracks connector. Figure 3.6 shows an example, where

the logical join described in Figure 3.2 is parallelized onto two workers and message tuples
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Figure 3.6: The parallelized join for the logical join in Figure 3.2.

are exchanged from producer partitions (operator clones) to consumer partitions (operator

clones) using an m-to-n partitioning connector, where m and n are equal to two.

3.5.2 Data Storage

Given a graph analytical job, Pregelix first loads the input graph dataset (the initial Vertex

relation) from a distributed file system, i.e., HDFS, into a Hyracks cluster, partitioning it

by vid using a user-defined partitioning function6 across the worker machines. After the

eventual completion of the overall Pregel computation, the partitioned Vertex relation is

scanned and dumped back to HDFS. During the supersteps, at each worker node, one (or

more) local indexes—keyed off of the vid field—are used to store one (or more) partitions

of the Vertex relation. Pregelix leverages both B-tree and LSM B-tree index structures

6By default, we use hash partitioning.
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from the Hyracks storage library to store partitions of Vertex on worker machines. The

choice of which index structure to use is workload-dependent and user-selectable. A B-tree

index performs well on jobs that frequently update vertex data in-place, e.g., PageRank. An

LSM B-tree index performs well when the size of vertex data is changed drastically from

superstep to superstep, or when the algorithm performs frequent graph mutations, e.g., the

path merging algorithm in genome assemblers [109].

The Msg relation is initially empty; it is refreshed at the end of a superstep with the result

of the message combine function call in the (logical) dataflow D7 of Figure 3.3; the phys-

ical plan is described in Section 3.5.3.1. The message data is partitioned by destination

vertex id (vid) using the same partitioning function applied to the vertex data, and is thus

stored (in temporary local files) on worker nodes that maintain the destination vertex data.

Furthermore, each message partition is sorted by the vid field.

Lastly, we leverage HDFS to store the global state of a Pregelix job; an access method is

used to read and cache the global state at worker nodes when it is referenced by user-defined

functions like compute.

3.5.3 Physical Query Plans

In this subsection, we dive into the details of the physical plans for the logical plan described

in Figures 3.3, 3.4, and 3.5. Our discussion will cover message combination and delivery,

global states, graph mutations, and data redistribution.

3.5.3.1 Message Combination

Figure 3.3 uses a logical group-by operator for message combination. For that, Pregelix lever-

ages the three group-by operator implementations mentioned in Section 3.4. A preclustered

61



vidcombine

vidcombine

(Sort-based)

(Sort-based)

(Sort-based)

(Sort-based)

(Sort-based)

(Sort-based)

Sort-Groupby-M-to-N-Partitioning HashSort-Groupby-M-to-N-Partitioning

Sort-Groupby-M-to-N-Merge-Partitioning HashSort-Groupby-M-to-N-Merge-Partitioning

M-to-N Partitioning Connector M-To-N Partitioning Merging Connector

vidcombine vidcombine

vidcombine vidcombine

vidcombine

vidcombine

(Preclustered)

(Sort-based)

(Preclustered)

(Sort-based)

(Preclustered)

(Sort-based)

vidcombine vidcombine

vidcombine vidcombine vidcombine

vidcombine

(Preclustered)

(HashSort)

(Preclustered)

(HashSort)

(Preclustered)

(HashSort)

vidcombine vidcombine

vidcombine vidcombine

vidcombine

vidcombine

(HashSort)

(HashSort)

(HashSort)

(HashSort)

(HashSort)

(HashSort)

vidcombine vidcombine

vidcombine vidcombine

Figure 3.7: The four physical group-by strategies for the group-by operator which combines
messages in Figure 3.3.

group-by can only be applied to input data that is already clustered by the grouping key. A

HashSort group-by operator offers better performance (over sort-based group-by) when the

number of groups (the number of distinct message receivers in our case) is small; otherwise,

these two group-by operators perform similarly. In a parallel execution, the grouping is done

by two stages—each producer partitions its output (message) data by destination vid, and

the output is redistributed (according to destination vid) to each consumer, which performs

the final grouping step.

Pregelix has four different parallel group-by strategies, as shown in Figure 3.7. The lower

two strategies use an m-to-n partitioning merging connector and only need a simple one-

pass pre-clustered group-by at the receiver-side; however, in this case, receiver-side merging

needs to coordinate the input streams, which takes more time as the cluster size grows.
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Figure 3.8: Two physical join strategies for forming the input to the compute UDF. On the
left is an index full outer join approach. On the right is an index left outer join approach.

The upper two strategies use an m-to-n partitioning connector, which does not require such

coordination; however, these strategies do not deliver sorted data streams to the receiver-

side group-bys, so re-grouping is needed at the receiver-side. A fully pipelined policy is used

for the m-to-n partitioning connector in the upper two strategies, while in the lower two

strategies, a sender-side materializing pipelined policy is used by the m-to-n partitioning

merging connector to avoid possible deadlock scenarios mentioned in the query scheduling

literature [64]. The choice of which group-by strategy to use depends on the dataset, graph

algorithm, and cluster. We will further pursue this choice in our experiments (Section 3.7).

3.5.3.2 Message Delivery

Recall that in Figure 3.3, a logical full-outer-join is used to deliver messages to the right

vertices and form the data needed to call the compute UDF. For that, we use index-based

joins because (a) vertices are already indexed by vid, and (b) all four group-by strategies in

Figure 3.7 flow the (combined) messages out of their receiver-side group-bys in vid-sorted

order, thereby producing vid-sorted Msg partitions.
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Pregelix offers two physical choices for index-based joins—an index full outer join approach

and an index left outer join approach, as shown in Figure 3.8. The full outer join plan scans

the entire vertex index to merge it with the (combined) messages. This join strategy is suit-

able for algorithms where most vertices are live (active) across supersteps (e.g., PageRank).

The left outer join plan prunes unnecessary vertex scans by first searching the live vertex

index for each (combined) incoming message, and it fits cases where messages are sparse and

only few vertices are live in every superstep (e.g., single source shortest paths). A user can

control which join approach Pregelix uses for a given job. We now briefly explain the details

of the two join approaches.

Index Full Outer Join. As shown in left side of Figure 3.8, this plan is straightforwardly

mapped from the logical plan. The join operator simply merges a partition of Msg and Vertex

using a single pass.

Index Left Outer Join. As shown in right of Figure 3.8, this plan initially bulk loads

another B-tree Vid with null messages (vid, NULL) that are generated by a function NullMsg.

This index serves to represent the set of currently active vertices. The dataflows D11 and

D12 in Figure 3.8 are (vid, halt) tuples and (vid, NULL) tuples respectively. Note that Vid

is partitioned in the same way as Vertex. In the next superstep, a merge operator merges

tuples from Msg and Vid based on the equivalence of the vid fields, and the choose function

inside the operator selects tuples from Msg to output when there are duplicates. Output

tuples of the merge operator are sent to an index left outer join operator that probes the

Vertex index. Tuples produced by the left outer join operator are directly sent to the compute

UDF. The original filter operator σ(V.halt=false||M.payload!= NULL) in the logical plan is

logically transformed to the merge operator where tuples in Vid satisfy halt=false and tuples

in Msg satisfy M.payload!= NULL.
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To minimize data movements among operators, in a physical plan, we push the filter operator,

the UDF call of compute, the update to Vertex, and the extraction (project) of fields in the

output tuple of compute into the upstream join operator as Hyracks “mini-operators.”

3.5.3.3 Global States and Graph Mutations

To form the global halt state and aggregate state—see the two global aggregations in Fig-

ure 3.4—we leverage a standard two-stage aggregation strategy. Each worker pre-aggregates

these state values (stage one) and sends the result to a global aggregator that produces the

final result and writes it to HDFS (stage two). The incrementing of superstep is also done

by a trivial dataflow.

The additions and removals of vertices in Figure 3.5 are applied to the Vertex relation by an

index insert-delete operator. For the group-by operator in Figure 3.5, we only do a receiver-

side group-by because the resolve function is not guaranteed to be distributive and the

connector for D6 (in Figure 3.3) is an m-to-n partitioning connector in the physical plan.

3.5.3.4 Data Redistribution

In a physical query plan, data redistribution is achieved by either the m-to-n hash partition-

ing connector or the m-to-n hash partitioning merging connector (mentioned in Section 3.4).

With the Hyracks provided user-configurable scheduling, we let the location constraints of

the join operator (in Figure 3.8) be the same as the places where partitions of Vertex are

stored across all the supersteps. Also, the group-by operator (in Figure 3.7) has the same

location constraints as the join operator, such that in all supersteps, Msg and Vertex are

partitioned in the same (sticky) way and the join between them can be done without ex-

tra repartitioning. Therefore, the only necessary data redistributions in a superstep are (a)

redistributing outgoing (combined) messages from sender partitions to the right vertex par-
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titions, and (b) sending each vertex mutation to the right partition for addition or removal

in the graph data.

3.5.4 Memory Management

Hyracks operators and access methods already provide support for out-of-core computations.

The default Hyracks memory parameters work for all aggregated memory sizes as long as

there is sufficient disk space on the worker machines. To support both in-memory and out-

of-core workloads, B-trees and LSM-trees both leverage a buffer cache that caches partition

pages and gracefully spills to disk only when necessary using a standard replacement policy,

i.e., LRU. In the case of an LSM B-tree, some number of buffer pages are pinned in memory

to hold memory-resident B-tree components.

The majority of the physical memory on a worker machine is divided into four parts: the

buffer cache for access methods of the Vertex relation; the buffers for the group-by operator

clones; the buffers for network channels; and the file system cache for (a) temporary run

files generated by group-by operator clones, (b) temporary files for materialized data redis-

tributions, and (c) temporary files for the relation Msg. The first three memory components

are explicitly controlled by Pregelix and can be tuned by a user, while the last component

is (implicitly) managed by the underlying OS. Although the Hyracks runtime is written in

Java, it uses the bloat-aware design that we proposed in Chapter 2 to avoid unnecessary

memory bloat and to minimize the performance impact of garbage collection in the JVM.

3.5.5 Fault-Tolerance

Pregelix offers the same level of fault-tolerance as other Pregel-like systems [75, 9, 11] by

checkpointing states to HDFS at user-selected superstep boundaries. In our case, the states
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to be checkpointed at the end of a superstep include Vertex and Msg (as well as Vid if the left

outer join approach is used). The checkpointing of Msg ensures that a user program does not

need to be aware of failures. Since GS stores its primary copy in HDFS, it need not be part

of the checkpoint. A user job can determine whether or not to checkpoint after a superstep.

Once a node failure or disk failure happens, the failed machine is added into a blacklist.

During recovery, Pregelix finds the latest checkpoint and reloads the states to a newly selected

set of failure-free worker machines. Reloading states includes two steps. First, it kicks off

physical query plans to scan, partition, sort, and bulk load the entire Vertex and Vid (if any)

from the checkpoint into B-trees (or LSM B-trees), one per partition. Second, it executes

another physical query plan to scan, partition, sort, and write the checkpointed Msg data to

each partition as a local file.

3.5.6 Job Pipelining

Pregelix can accept an array of jobs and pipeline between compatible contiguous jobs without

HDFS writes/reads nor index bulk-loads. Two compatible jobs should have a producer-

consumer relationship regarding the output/input data and share the same type of vertex—

meaning, they interpret the corresponding bits in the same way. This feature was motivated

by the genome assembler [109] application which runs six different graph cleaning algorithms

that are chained together for many rounds. A user can choose to enable this option to get

improved performance with reduced fault-tolerance.

3.5.7 Pregelix Software Components

Pregelix supports the Pregel API introduced in Section 3.2.1 in Java, which is very similar

to the APIs of Giraph [9] and Hama [11]. Internally, Pregelix has a statistics collector,
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failure manager, scheduler, and plan generator which run on a client machine after a job is

submitted; it also has a runtime context that stays on each worker machine. We describe

each component below.

Statistics Collector. The statistics collector periodically collects statistics from the target

Hyracks cluster, including system-wide counters such as CPU load, memory consumption,

I/O rate, network usage of each worker machine, and the live machine set, as well as Pregel-

specific statistics such as the vertex count, live vertex count, edge count, and message count

of a submitted job.

Failure Manager. The failure manager analyzes failure traces and recovers from those

failures that are indeed recoverable. It only tries to recover from interruption errors (e.g., a

worker machine is powered off) and I/O related failures (e.g., disk I/O errors); it just forwards

application exceptions to end users. Recovery is done as mentioned in Section 3.5.5.

Scheduler. Based on the information obtained by the statistics collector and the failure

manager, the scheduler determines which worker machines to use to run a given job. The

scheduler assigns as many partitions to a selected machine as the number of its cores. For each

Pregel superstep, Pregelix sets location constraints for operators in the manner mentioned

in Section 3.5.3.4. For loading Vertex from HDFS [10], the constraints of the data scanning

operator (set by the scheduler) exploit data locality for efficiency.

Plan Generator. The plan generator generates physical query plans for data loading,

result writing, each single Pregel superstep, checkpointing, and recovery. The generated

plan includes a physical operator DAG and a set of location constraints for each operator.

Runtime Context. The runtime context stores the cached GS tuple and maintains the

Pregelix-specific implementations of the Hyracks extensible hooks to customize buffer, file,

and index management.
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3.5.8 Discussion

Let us close this section by revisiting the issues and opportunities presented in Section 3.2.3

and evaluating their implications in Pregelix:

• Out-of-core Support. All the data processing operators as well as access methods we

use have out-of-core support, which allows the physical query plans on top to be able to

run disk-based workloads as well as multi-user workloads while retaining good in-memory

processing performance.

• Physical Flexibility. The current physical choices spanning vertex storage (two options),

message delivery (two alternatives), and message combination (four strategies) allow Pregelix

to have sixteen (2× 2× 4) tailored executions for different kinds of datasets, graph algo-

rithms, and clusters.

• Software Simplicity. The implementations of all the described functionalities in this section

leverage existing operator, connector, and access method libraries provided by Hyracks.

Pregelix does not involve modifications to the Hyracks runtime.

3.6 Pregelix Case Studies

In this section, we briefly enumerate several Pregelix use cases, including a built-in graph

algorithm library, a study of graph connectivity problems, and research on parallel genome

assembly.

The Pregelix Built-in Library. The Pregelix software distribution comes with a li-

brary that includes several graph algorithms such as PageRank, single source shortest paths,

connected components, reachability query, triangle counting, maximal cliques, and random-

walk-based graph sampling. Figure 3.9 shows the single source shortest paths implementation
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public class ShortestPathsVertex extends Vertex<VLongWritable, DoubleWritable,                 
                      FloatWritable, DoubleWritable> {
    /** The source id key */
    public static final String SOURCE_ID = "pregelix.sssp.sourceId";
    /** The value to be sent to neighbors*/
    private DoubleWritable outputValue = new DoubleWritable();
    /** the source vertex id */
    private long sourceId = -1;

    @Override
    public void configure(Configuration conf) {
        sourceId = conf.getLong(SOURCE_ID, 1);
    }

    @Override
    public void compute(Iterator<DoubleWritable> msgIterator) {
        if (getSuperstep() == 1) {
            getVertexValue().set(Double.MAX_VALUE);
        }
        double minDist = getVertexId().get() == sourceId? 0.0 : Double.MAX_VALUE;
        while (msgIterator.hasNext()) {
            minDist = Math.min(minDist, msgIterator.next().get());
        }
        if (minDist < getVertexValue().get()) {
            getVertexValue().set((minDist);
            for (Edge<VLongWritable, FloatWritable> edge : getEdges()) {
                outputValue.set(minDist + edge.getEdgeValue().get());
                sendMsg(edge.getDestVertexId(), outputValue);
            }
        }
        voteToHalt();
    }

    public static void main(String[] args) throws Exception {
        PregelixJob job = new PregelixJob(ShortestPathsVertex.class.getSimpleName());
        job.setVertexClass(ShortestPathsVertex.class);
        job.setVertexInputFormatClass(SimpleTextInputFormat.class);
        job.setVertexOutputFormatClass(SimpleTextOutputFormat.class);
        job.setMessageCombinerClass(DoubleMinCombiner.class);

        /** Hints for the Pregelix plan generator */        
        job.setMessageVertexJoin(Join.LEFTOUTER);
        job.setMessageGroupBy(GroupBy.HASHSORT);
        job.setMessageGroupByConnector(Connector.UNMERGE);

        Client.run(args, job);
    }
}

Figure 3.9: The implementation of the single source shortest paths algorithm on Pregelix.
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on Pregelix, where hints for the join, group-by, and connector choices are set in the main

function. Inside compute, the method calls to set a vertex value and to send a message

internally generate output tuples for the corresponding dataflows.

Graph Connectivity Problems. Using Pregelix, a graph analytics research group in Hong

Kong has implemented several graph algorithm building blocks such as BFS (breath first

search) spanning tree, Euler tour, list ranking, and pre/post-ordering. These building blocks

have been used to develop advanced graph algorithms such as bi-connected components for

undirected graphs (e.g., road networks) and strongly connected components for directed

graphs (e.g., the Twitter follower network) [106] . The group also scale-tested all of their

algorithms on a 60 machine cluster with 480 cores and 240 disks, using Pregelix as the

infrastructure.

Genome Assembly. Genomix [8] is a data-parallel genome assembler built on top of

Pregelix. It first constructs a (very large) De Bruijn graph [109] from billions of genome

reads, and then (a) cleans the graph with a set of pre-defined subgraph patterns (described

in [109]) and (b) merges available single paths into vertices iteratively until all vertices can

be merged to a single (gigantic) genome sequence. Pregelix’s support for the addition and

removal of vertices is heavily used in this use case.

3.7 Experiments

This section compares Pregelix with several other popular parallel graph processing systems,

including Giraph [9], Hama [11], GraphLab [73], and GraphX [97]. Our comparisons cover

execution time (Section 3.7.2), scalability (Section 3.7.3), throughput (Section 3.7.4), plan

flexibility (Section 3.7.5), and software simplicity (Section 3.7.6). We conclude this section

by summerizing our experimental results (Section 3.7.7).

71



3.7.1 Experimental Setup

We ran the experiments detailed here on a 32-node Linux IBM x3650 cluster with one

additional master machine of the same configuration. Nodes are connected with a Gigabit

Ethernet switch. Each node has one Intel Xeon processor E5520 2.26GHz with four cores,

8GB of RAM, and two 1TB, 7.2K RPM hard disks.

In our experiments, we leverage two real-world graph-based datasets. The first is the

Webmap dataset [105] taken from a crawl of the web in the year 2002. The second is

the BTC dataset [49], which is a undirected semantic graph converted from the original Bil-

lion Triple Challenge 2009 RDF dataset [1]. Table 3.3 (Webmap) and Table 3.4 (BTC) show

statistics for these graph datasets, including the full datasets as well as several down-samples

and scale-ups7 that we use in our experiments.

Our evaluation examines the platforms’ performance characteristics of three algorithms:

PageRank [83], SSSP (single source shortest paths) [56], and CC (connected components) [56].

On Pregelix and Giraph, the graph algorithms were coded in Java and all their source code

can be found in the Pregelix codebase8. The implementations of the three algorithms on

Hama, GraphLab, and GraphX are directly borrowed from their builtin examples. The

Pregelix default plan, which uses index full outer join, sort-based group-by, an m-to-n hash

partitioning connector, and B-tree vertex storage, is used in Sections 3.7.2, 3.7.3, and 3.7.4.

Pregelix’s default maximum buffer cache size for access methods is set to 1
4

the physical RAM

size, and its default maximum allowed buffer for each group-by operator instance is set to

64MB. These two default Pregelix memory settings are used in all the experiments. For the

local file system for Pregelix, we use the ext3 file system; for the distributed file system, we

use HDFS version 1.0.4. In all experiments, we use Giraph trunk version (git revision 770

7We used a random walk graph sampler built on top of Pregelix to create scaled-down Webmap sample
graphs of different sizes. To scale up the BTC data size, we deeply copied the original graph data and
renumbered the duplicate vertices with a new set of identifiers.

8https://code.google.com/p/hyracks/source/browse/pregelix
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Name Size #Vertices #Edges Avg. Degree
Large 71.82GB 1,413,511,390 8,050,112,169 5.69

Medium 31.78GB 709,673,622 2,947,603,924 4.15
Small 14.05GB 143,060,913 1,470,129,872 10.27

X-Small 9.99GB 75,605,388 1,082,093,483 14.31
Tiny 2.93GB 25,370,077 318,823,779 12.02

Table 3.3: The Webmap dataset (Large) and its samples.

Name Size #Vertices #Edges Avg. Degree
Large 66.48GB 690,621,916 6,177,086,016 8.94

Medium 49.86GB 517,966,437 4,632,814,512 8.94
Small 33.24GB 345,310,958 3,088,543,008 8.94

X-Small 16.62GB 172,655,479 1,544,271,504 8.94
Tiny 7.04GB 107,706,280 607,509,766 5.64

Table 3.4: The BTC dataset (X-Small) and its samples/scale-ups.

in May 2014), Hama version 0.6.4, GraphLab version 2.2 (PowerGraph), and Spark [108]

version 0.9.1 for GraphX. Our GraphLab setting has been confirmed by its primary author.

We tried our best to let each system use all the CPU cores and all available RAM on each

worker machine.

3.7.2 Execution Time

In this experiment, we evaluate the execution times of all systems by running each of the

three algorithms on the 32-machine cluster. As the input data for PageRank we use the

Webmap dataset because PageRank is designed for ranking web pages, and for the SSSP

and CC algorithms we use the BTC dataset. Since a Giraph user needs to explicitly specify

apriori whether a job is in-memory or out-of-core, we measure both of these settings (labeled

Giraph-mem and Giraph-ooc, respectively) for Giraph jobs regardless of the RAM size.

Figure 3.10 plots the resulting overall Pregel job execution times for the different sized

datasets, and Figure 3.11 shows the average per-iteration execution time for all iterations.
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In both figures, the x-axis is the input dataset size relative to the cluster’s aggregated RAM

size, and the y-axis is the execution time. (Note that the volume of exchanged messages can

exhaust memory even if the initial input graph dataset can fit into memory.)

Figure 3.10 and Figure 3.11 show that while Pregelix scales to out-of-core workloads, Giraph

fails to run the three algorithms once the relative dataset size exceeds 0.15, even with its out-

of-core setting enabled. Figures 3.10(a)(c) and 3.11(a)(c) show that when the computation

has sufficient memory, Pregelix offers comparable execution time to Giraph for message-

intensive workloads such as PageRank and CC. For PageRank, Pregelix runs up to 2× slower

than Giraph on relatively small datasets, e.g., Webmap-X-Small. For CC, Pregelix runs upto

1.7× faster than Giraph for relatively small datasets like BTC-Small. Figure 3.10(b) and

Figure 3.11(b) further demonstrate that the Pregelix default plan offers 3.5× overall speedup

and 7× per-iteration speedup over Giraph for message-sparse workloads like SSSP even for

relatively small datasets. All sub-figures in Figure 3.10 and Figure 3.11 show that for in-

memory workloads (when the relative dataset size is less than 0.15), Giraph has steeper

(worse) size-scaling curves than Pregelix.

Compared to Giraph, GraphLab, GraphX, and Hama start failing on even smaller datasets,

with even steeper size-scaling curves. GraphLab has the best average per-iteration execution

time on small datasets (e.g., up to 5× faster than Pregelix and up to 12× faster than Giraph,

on BTC-Tiny), but performs worse than Giraph and Pregelix on larger datasets (e.g., up

to 24× slower than Pregelix and up to 6× slower than Giraph, on BTC-X-Small). GraphX

cannot successfully load the BTC-Tiny dataset on the 32-machine cluster, therefore its results

for SSSP and CC are missing.
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Figure 3.10: Overall execution time (32-machine cluster). Neither Giraph-mem nor Giraph-
ooc can work properly when the ratio of dataset size to the aggregated RAM size exceeds
0.15; GraphLab starts failing when the ratio of dataset size to the aggregated RAM size
exceeds 0.07; Hama fails on even smaller datasets; GraphX fails to load the smallest BTC
dataset sample BTC-Tiny.

3.7.3 System Scalability

Our system scalability experiments run the different systems on varying sized clusters for

each of the different dataset sizes. Figure 3.12(a) plots the parallel speedup for PageRank

on Pregelix going from 8 machines to 32 machines. The x-axis is the number of machines,

and the y-axis is the average per-iteration execution time relative to the time on 8 machines.

As the number of machines increases, the message combiner for PageRank becomes less
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Figure 3.11: Average iteration execution time (32-machine cluster).

effective and hence the total volume of data transferred through the network gets larger,

though the CPU load of each individual machine drops. Therefore, in Figure 3.12(a), the

parallel speedups are close to but slightly worse than the “ideal” case in which there are no

message overheads among machines. For the other systems, the PageRank implementations

for GraphLab and GraphX fail to run Webmap samples beyond the 9.99GB case when the

number of machines is 16; Giraph has the same issue when the number of machines is 8.

Thus, we were only able to compare the parallel PageRank speedups of Giraph, GraphLab,

GraphX, and Pregelix with the Webmap-X-Small dataset. The results of this small data

case are in Figure 3.12(b); Hama is not included because it cannot run even the Webmap-
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Figure 3.12: Scalability (run on 8-machine, 16-machine, 24-machine, 32-machine clusters).

X-Small dataset on our cluster configurations. The parallel speedup of Pregelix is very close

to the ideal line, while Giraph, GraphLab, and GraphX exhibit even better speedups than

the ideal. The apparent super-linear parallel speedups of Giraph, GraphLab, and GraphX

are consistent with the fact that they all perform super-linearly worse when the volume of

data assigned to a slave machine increases, as can be seen in Figures 3.10 and 3.11.

Figure 3.12(c) shows the parallel scale up of the three algorithms for Pregelix. Giraph,

GraphLab, GraphX, and Hama results are not shown because they could not run all these

cases. In this figure, the x-axis is the ratio of the sampled (or scaled) dataset size over the

largest (Webmap-Large or BTC-Large) dataset size. The number of machines is proportional
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to this ratio and 32 machines are used for scale 1.0. The y-axis is the average per-iteration

execution time relative to the time at the smallest scale. In the ideal case, the y-axis value

would stay at 1.0 for all the scales, while in reality, the three Pregel graph algorithms all

have network communication and thus cannot achieve the ideal. The SSSP algorithm sends

fewer messages than the other two algorithms, so it is the closest to the ideal case.

3.7.4 Throughput

In the current version of GraphLab, Hama, and Pregelix, each submitted job is executed im-

mediately, regardless of the current activity level on the cluster. Giraph leverages Hadoop’s

admission control; for the purpose of testing concurrent workloads, we let the number of

Hadoop map task slots in each task tracker be 3. GraphX leverages the admission control

of Spark, such that jobs will be executed sequentially if available resources cannot meet the

overall requirements of concurrent jobs. In this experiment, we compare the job throughput

of all the systems by submitting jobs concurrently. We ran PageRank jobs on the 32-machine

cluster using four different samples of the Webmap dataset (X-Small, Small, Medium, and

Large) with various levels of job concurrency. Figure 3.13 reports how the number of com-

pleted jobs per hour (jph) changes with the number of concurrent jobs. The results for the

four Webmap samples represent four different cases respectively:

• Figure 3.13(a) uses Webmap-X-Small. Moving from serial job execution to concurrent job

execution, data processing remains in-memory but the CPU resources go from dedicated to

shared. In this case, Pregelix achieves a higher jph when there are two or three concurrent

jobs than when job execution is serial.

• Figure 3.13(b) uses Webmap-Small. In this case, serial job execution does in-memory

processing, but concurrent job execution introduces a small amount of disk I/O due to

spilling. When two jobs run concurrently, each job incurs about 1GB of I/O; when three
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jobs run concurrently, each does about 2.7GB of I/O. In this situation, still, the Pregelix

jph is higher in concurrent execution than in serial execution.

• Figure 3.13(c) uses Webmap-Medium. In this case, serial job execution allows for in-

memory processing, but allowing concurrent execution exhausts memory and causes a

significant amount of I/O for each individual job. For example, when two jobs run con-

currently, each job incurs about 10GB of I/O; when three jobs run concurrently, each

job does about 27GB of I/O. In this case, jph drops significantly at the boundary where

I/O significantly comes into the picture. The point with two concurrent jobs is such a

boundary for Pregelix in Figure 3.13(c).

• Figure 3.13(d) uses the full Webmap (Webmap-Large). In this case, processing is always

disk-based regardless of the concurrency level. For this case, Pregelix jph once again

increases with the increased level of concurrency; this is because the CPU utilization is

increased (by about 20% to 30%) with added concurrency.

These results suggest that it would be worthwhile to develop intelligent job admission control

policies to make sure that Pregelix runs with the highest possible throughput all the time in

our future work. In our experiments, the Spark scheduler for GraphX always runs concurrent

jobs sequentially due to the lack of memory and CPU resources. Giraph, GraphLab, and

Hama all failed to support concurrent jobs in our experiments for all four cases due to lim-

itations regarding memory management and out-of-core support; they each need additional

work to operate in this region.

3.7.5 Plan Flexibility

In our final experiment, we compare several different physical plan choices in Pregelix

to demonstrate their usefulness. We ran the two join plans (described in Section 3.5.3.2)

for the three Pregel graph algorithms. Figure 3.14 shows the results. For message-sparse
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Figure 3.13: Throughput (multiple PageRank jobs are executed in the 32-machine cluster
with different sized datasets).

algorithms like SSSP (Figure 3.14(a)), the left outer join Pregelix plan is much faster than

the (default) full outer join plan. However, for message-intensive algorithms like PageRank

(Figure 3.14(b)), the full outer join plan is the winner. This is because although the probe-

based left outer join can avoid a sequential index scan, it needs to search the index from the

root node every time; this is not worthwhile if most data in the leaf nodes will be qualified

as join results. The CC algorithm’s execution starts with many messages, but the message

volume decreases significantly in its last few supersteps, and hence the two join plans result

in similar performance (Figure 3.14(c)). Figure 3.15 revisits the relative performance of the
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systems by comparing Pregelix’s left outer join plan performance against the other systems.

As shown in the figure, SSSP on Pregelix can be up to 15× faster than on Giraph and up

to 35× faster than on GraphLab for the average per-iteration execution time when Pregelix

is run with its left outer join plan.

In addition to the experiments presented here, an earlier technical report [44] measured the

performance difference introduced by the two different Pregelix data redistribution policies

(as described in Section 3.5.3.1) for combining messages on a 146-machine cluster in Yahoo!

Research. Figure 9 in the report [44] shows that the m-to-n hash partitioning merging

connector can lead to slightly faster executions on small clusters, but merging input streams

at the receiver side needs to selectively wait for data to arrive from specific senders as dictated

by the priority queue, and hence it becomes slower on larger clusters. The tradeoffs seen here

and in [44] for different physical choices are evidence that an optimizer is ultimately essential

to identify the best physical plan to use in order to efficiently execute Pregel programs.

3.7.6 Software Simplicity

To highlight the benefit of building a Pregel implementation on top of an existing dataflow

runtime, as opposed to writing one from scratch, we can count lines of code for both the

Pregelix and Giraph systems’ core modules (excluding their test code and comments). The

Giraph-core module, which implements the Giraph infrastructure, contains 32,197 lines of

code. Its counterpart in Pregelix contains just 8,514 lines of code.

3.7.7 Summary

Our experimental results show that Pregelix can perform comparably to Giraph for memory-

resident message-intensive workloads (like PageRank), can outperform Giraph by over an or-
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Figure 3.14: Index full outer join vs. index left outer join (run on an 8 machine cluster) for
Pregelix.

der of magnitude for memory-resident message-sparse workloads (like single source shortest

paths), can scale to larger datasets, can sustain multi-user workloads, and also can outper-

form GraphLab, GraphX, and Hama by over an order of magnitude on large datasets for

various workloads. In addition to the numbers reported in this chapter, an early technical

report [44] gave speedup and scale-up results for the first alpha release of Pregelix on a

146-machine Yahoo! Research cluster in March 2012; that study first showed us how well

the Pregelix architectural approach can scale9.

9Unfortunately, our Yahoo! collaborators have since left the company, so we no longer have access to a
cluster of that scale.
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Figure 3.15: Pregelix left outer join plan vs. other systems (SSSP on BTC datasets). GraphX
fails to load the smallest dataset.

3.8 Related Work

The Pregelix system is related to or built upon previous works from three areas.

Parallel data management systems such as Gamma [53], Teradata [21], and GRACE [59]

applied partitioned-parallel processing to SQL query processing over two decades ago. The

introduction of Google’s MapReduce system [52], based on similar principles, led to the

recent flurry of work in MapReduce-based data-intensive computing. Systems like Dryad [70],

Hyracks [42], and Nephele [38] have successfully made the case for supporting a richer set

of data operators beyond map and reduce as well as a richer set of data communication

patterns. REX [76] integrated user-defined delta functions into SQL to support arbitrary

recursions and built stratified parallel evaluations for recursions. The Stratosphere project

also proposed an incremental iteration abstraction [57] using working set management and

integrated it with parallel dataflows and job placement. The lessons and experiences from

all of these systems provided a solid foundation for the Pregelix system.

Big Graph processing platforms such as Pregel [75], Giraph [9], and Hama [11] have

been built to provide vertex-oriented message-passing-based programming abstractions for
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distributed graph algorithms to run on shared-nothing clusters. Sedge [107] proposed an

efficient advanced partitioning scheme to minimize inter-machine communications for Pregel

computations. Surfer [48] is a Pregel-like prototype using advanced bandwidth-aware graph

partitioning to minimize the network traffic in processing graphs. In seeming contradiction

to these favorable results on the efficacy of smart partitioning, literature [69] found that

basic hash partitioning works better because of the resulting balanced load and the low par-

titioning overhead. We seem to be seeing the same with respect to GraphLab, i.e., the pain

is not being repaid in performance gain. GPS [86] optimizes Pregel computations by dynam-

ically repartitioning vertices based on message patterns and by splitting high-degree vertices

across all worker machines. Giraph++ [93] enhanced Giraph with a richer set of APIs for

user-defined partitioning functions so that communication within a single partition can be

bypassed. GraphX [97] provides a programming abstraction called Resident Distributed

Graphs (RDGs) to simplify graph loading, construction, transformation, and computations,

on top of which Pregel can be easily implemented. Different from Pregel, GraphLab [73] pro-

vides a vertex-update-based programming abstraction and supports an asynchronous model

to increase the level of pipelined parallelism. Trinity [90] is a distributed graph process-

ing engine built on top of a distributed in-memory key-value store to support both online

and offline graph processing; it optimizes message-passing in vertex-centric computations for

the case where a vertex sends messages to a fixed set of vertices. Our work on Pregelix is

largely orthogonal to these systems and their contributions because it looks at Pregel at a

lower architectural level, aiming at better out-of-core support, plan flexibility, and software

simplicity.

Iterative extensions to MapReduce like HaLoop [45] and PrIter [110] were the first to

extend MapReduce with looping constructs. HaLoop hardcodes a sticky scheduling policy

(similar to the one adopted here in Pregelix and to the one in Stratosphere [57]) into the

Hadoop task scheduler so as to introduce a caching ability for iterative analytics. PrIter uses

a key-value storage layer to manage its intermediate MapReduce state, and it also exposes
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user-defined policies that can prioritize certain data to promote fast algorithmic conver-

gence. However, those extensions still constrain computations to the MapReduce model,

while Pregelix explores more flexible scheduling mechanisms, storage options, operators,

and several forms of data redistribution (allowed by Hyracks) to optimize a given Pregel

algorithm’s computation time.

3.9 Summary

This chapter has presented the design, implementation, early use cases, and evaluation

of Pregelix, a new dataflow-based Pregel-like system built on top of the Hyracks parallel

dataflow engine. Pregelix combines the Pregel API from the systems world with data-

parallel query evaluation techniques from the database world in support of Big Graph An-

alytics. This combination leads to effective and transparent out-of-core support, scalability,

and throughput, as well as increased software simplicity and physical flexibility. To the best

of our knowledge, Pregelix is the only open source Pregel-like system that scales to out-of-

core workloads efficiently, can sustain multi-user workloads, and allows runtime flexibility.

This sort of architecture and methodology could be adopted by parallel data warehouse

vendors (such as Teradata [21], Pivotal [18], or Vertica [26]) to build Big Graph process-

ing infrastructures on top of their existing query execution engines. Last but not least, we

have made several stable releases of the Pregelix system (http://pregelix.ics.uci.edu) in open

source form since the year 2012 for use by the Big Data research community, and we invite

others to download and try the system.

This chapter has primarily focused on processing large amounts of explicit graph data, but

in real-world, graph topologies are often hidden in large volumes of tabular data which seem

irrelevant to graphs. In the next chapter, the Pregelix system we have described in this
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chapter will be used as a build block for adding more complex graph analytical pipeline

support in AsterixDB.
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Chapter 4

Rich(er) Graph Analytics in

AsterixDB

4.1 Overview

Chapter 3 has proposed and evaluated a dataflow approach for building a scalable Big Graph

analytics platform. However, Big Graph analytics are not only about graphs. Many real-

world applications do not have a pre-loaded graph dataset for analysis, and instead, graphs

are often constructed by querying the data that are dynamically ingested into an enterprise

data lake [4], i.e., a storage repository (e.g., HDFS [10]) that holds a vast amount of raw data.

Figure 4.1 shows a dataflow for rich(er) forms of graph analytics, i.e., end-to-end analytical

pipelines spanning from the raw data to the final mined insights. As the figure indicates,

various data from web, mobile, and IoT (internet of things) applications are continuously

ingested into a data lake. In the meantime, data scientists run SQL [20] queries using typical

SQL-on-Hadoop systems (e.g., Hive [92], Impala [71], or Tez [36]) to extract graphs (e.g., in

the adjacency list representation) of interests from the raw data, put the intermediate graph
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Figure 4.1: The current Big Graph analytics flow.

data onto HDFS, run distributed graph algorithms using typical graph analytical systems

(e.g., Pregel [75], Giraph [9], GraphLab [73], or Pregelix [19]), and finally run another set of

SQL queries over the graph computation results to generate user-readable reports [13]. In

this process, a data scientist needs to figure out the physical locations of the intermediate

results, manage their life-cycles, determine their formats, and write customized client scripts

to glue SQL-on-Hadoop systems and graph analytical systems together through HDFS. All

these tedious ETL (extract, transform, load) tasks draw the data scientist’s energy from

thinking of the analytical task at a logical level.

Let us use a motivating example to illustrate the problem. The example analytical task we

use is to find the top 50 most influential people on Twitter, using their tweets, with Hive [92]

and Giraph [9]. We first create an external table in Hive for the tweet dataset as follows:
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1 CREATE EXTERNAL TABLE TwitterMessage

2 (

3 tweetid: int64 ,

4 user: string ,

5 sender_location: point ,

6 send_time: datetime ,

7 reply_from: int64 ,

8 retweet_from: int64 ,

9 referred_topics: array <string >,

10 message_text: string

11 )

12 ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’ COLLECTION ITEMS TERMINATED BY ‘%’

13 LINES TERMINATED BY ’\n’ STORED AS TEXTFILE LOCATION ‘/tw_message ’;

In this analysis, we treat each reply or retweet as a graph vertex in which either the

reply from field or the retweet from field is extracted as an outgoing edge. If a given tweet

message gets replied to more or retweeted more, we will say that the message has a larger

impact. Thus, we create an intermediate table for such a graph and run a SQL query to

populate it, as follows.

1 CREATE EXTERNAL TABLE MsgGraph

2 (vertexid int64 , double rank , dests array <int64 >)

3 ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’

4 COLLECTION ITEMS TERMINATED BY ‘%’ LINES TERMINATED BY ’\n’

5 STORED AS TEXTFILE LOCATION ‘/msggraph ’;

6

7 INSERT OVERWRITE TABLE MsgGraph

8 SELECT

9 T.tweetid ,

10 1.0/10000000000.0 , /* Assign a very small initial rank to every tweet. */

11 CASE

12 /* Each selected tweet can only be one of the three cases */

13 WHEN T.reply_from >=0 RETURN array(T.reply_from)

14 ELSE RETURN array(T.forward_from)

15 END CASE

16 FROM TwitterMessage AS T

17 WHERE T.reply_from >=0 OR T.forward_from >=0 /*Only replies and retweets are retained .*/
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Note that, the insert statement only adds replies and retweets into table MsgGraph without

their original tweets — this is because a Pregel runtime (described in Section 3.3) will add

those original tweets (vertexes) if there are messages sent to them in a Pregel computation

superstep. Before running the above query, we should make sure that the HDFS directory

/msggraph is not used for other purposes. After loading the graph, we need to implement the

InputFormat/OutputFormat interfaces to let Giraph be able to read the CSV (comma sepa-

rated values) files in directory /msggraph and write result files in the form of CSV text as well.

Given the InputFormat/OutputFormat classes as well as the input path (i.e., /msggraph) and

output path (let us assume that the output path is /results) as the arguments, we next run

a Giraph job to do PageRank 1. From there, we run yet-anther SQL query to get the top

influencers by considering the aggregated message rank values of each user:

1 CREATE EXTERNAL TABLE Result

2 (vertexid int64 , rank double)

3 ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘,’ COLLECTION ITEMS TERMINATED BY ‘%’

4 LINES TERMINATED BY ’\n’ STORED AS TEXTFILE LOCATION ‘/ r e s u l t s ;

5

6 SELECT T.user , SUM(R.rank) as influence

7 FROM Result AS R JOIN TwitterMessage AS T

8 ON R.vertexid = T.tweetid

9 GROUP BY T.user

10 ORDER BY influence DESC

11 LIMIT 50

Finally, we should decide to either erase the intermediate temporary directories such as

/msggraph and /results or keep them for a while for other uses.

As we can see from this example, in order to do such a SQL-Pregel combined analysis, a data

scientist has to take ownership of the following physical details that are logically irrelevant

to the analytical task:

1In all the queries in this chapter, we set the “damping factor” of the PageRank algorithm [83] to be 1.0
to obtain the relative rank value of each vertex.
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• the safety and lifecycle of intermediate files;

• the DDLs and parsers that understand the physical formats of the intermediate data;

• the script that glues the clients of different systems together.

To address these issues, in this chapter, we add Big Graph analytics support into AsterixDB,

a Big Data management system for ingesting and querying semi-structured data [29]. We

improve the user experience in the example by integrating a Pregelix job entrance into

a declarative query language, i.e., AQL (AsterixDB Query Language), and by exposing an

AsterixDB input/output converter API in Pregelix that separates out the physical details for

the intermediate data. The resulting combination not only allows a data scientist to stay at

the logical level for solving analytical problems, but it also enables interactive graph analytics

by leveraging the secondary indexing capability of AsterixDB [30]. The contributions of this

chapter include:

• We describe and add the support for temporary datasets, which are logging- and locking-

free, into AsterixDB (Section 4.2).

• We design and build an external connector framework for Pregelix and implement an

AsterixDB connector on top of the framework (Section 4.3).

• We add a Pregel job entrance capability in AQL (Section 4.4).

• We experimentally evaluate the efficiency of temporary datasets as well as the scaling

properties of rich(er) graph analytical queries in AsterixDB (Section 4.5).

It is worth nothing that the resulting framework, while applied here to graph analytics,

is more general. Other analytics platforms can (and will) also be lossely coupled with

AsterixDB in this manner.
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4.2 Temporary Datasets In AsterixDB

This section describes the motivation, design, and implementation of temporary datasets

in AsterixDB. We first revisit storage management in AsterixDB (Section 4.2.1), then we

discuss the needs of temporary datasets, and finally we dive into the details of temporary

datasets, including their DDL (Section 4.2.3), runtime implementation (Section 4.2.4), and

lifecycle (Section 4.2.5).

4.2.1 Storage Management in AsterixDB

AsterixDB [30] takes component-based Log-Structured Merge-trees [82] as the storage tech-

nology for all of its index structures, including its B+-tree, R-Tree, inverted keyword, and

inverted ngram indexes. With LSM-indexes, writes are batched in in-memory components

(e.g., in-memory B+-trees) first until they are full. Full in-memory components are flushed

to disks and become on-disk components (e.g., on-disk B+-trees). On-disk components are

merged at a certain point based on a certain merge policy [30]. AsterixDB provides record-

level ACID (atomicity, consistency, isolation, durability) transactions — transactions begin

and end implicitly for each inserted, deleted, or searched record when an insert, delete, or

query statement is being executed. Transaction read/write locks are only acquired on pri-

mary keys for primary index accesses, based on two-phase locking (2PL) [25]. Secondary

index accesses are not locked. To guarantee record-level read consistency, secondary in-

dex searches are post-validated when accessing records from the primary index. AsterixDB

employs a no-steal and no-force update policy according to which in-memory components

cannot be flushed until the log records of the corresponding batched modifications are safely

on the log disk. Group commits are used to optimize log I/O.
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Let us consider two example AQL [29] queries to walk through the mechanisms. The first is

an insert query:

1 use dataverse graph;

2

3 insert into dataset Test2

4 (

5 for $t in dataset Test1 return $t

6 )

In this query, let us assume that datasets Test1 and Test2 have identical record types and

identical primary keys. Figure 4.2 shows the query plan. In the resulting AsterixDB query

plan, which is best read bottom-up. As annotated in the query plan, a read lock (on a primary

key in Test1) will be acquired before reading a record from the source dataset Test1 and a

write lock (on the primary key in Test2) will be acquired before inserting the record into

destination dataset Test2. Also, before inserting the record into an in-memory component

of dataset Test2, a write counter associated with the component will be incremented and a

write-ahead log record will be appended to the log buffer of the log manager. In the commit

operator, a commit log record for each inserted record’s primary key will be appended to

the log buffer too. The log manager writes the log records to the log disk in a batch-based

asynchronous manner (a.k.a., group commit). Once a commit log record has reached the log

disk, the read and write locks on the primary key contained in the commit log record are both

released and the write counter in the corresponding in-memory component is decremented.

If a state is reached when all in-memory components of dataset Test2 are full, further inserts

will be blocked until one of the in-memory components is flushed to become an on-disk

component — and a component can only be flushed when its write counter is zero (i.e.,

when it contains no un-committed writes).

The second query is a search query:
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Log Manager

Disk

commit
-- COMMIT  |PARTITIONED|
  project ([$$26])
  -- STREAM_PROJECT  |PARTITIONED|
    exchange 
    -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
      insert into graph:Test2 from %0->$$2 partitioned by [%0->$$26]
      -- INSERT_DELETE  |PARTITIONED|
        exchange 
        -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
          data-scan []<-[$$26, $$2] <- graph:Test1
          -- DATASOURCE_SCAN  |PARTITIONED|
            exchange 
            -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
              empty-tuple-source
              -- EMPTY_TUPLE_SOURCE  |PARTITIONED|

Accquire read lock

Accquire write lock
and increment the 
write counter

Release locks and decrement the write counter of an in-memory component
$$26: the primary key $$2: the payload record

Log records

Figure 4.2: The query plan of a scan-insert query.

1 use dataverse graph;

2

3 let $p := create -point (46.4208 , 76.4114 )

4 let $r := create -circle($p, 0.05)

5

6 for $tm in dataset TwitterMessages

7 where spatial -intersect($tm.sender -location , $r)

8 return $tm;

Let us assume that there is a secondary R-Tree index on the field sender-location on the

dataset TwitterMessages. The query plan is shown in Figure 4.3. As we can see from the

query plan, the R-Tree search is not locked at all, but each primary index lookup for a

fetched primary key from the R-tree is protected by a read lock. Also, for consistency, each

retrieved record from the primary index will be checked again against the query predicate

in the Select operator as a post validation step before it is added as a search result.
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R-Tree Search

Acquire read lock, Primary index lookup, 
Release read lock

Post-validation

distribute result [%0->$$8]
-- DISTRIBUTE_RESULT  |PARTITIONED|
  exchange 
  -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
    project ([$$2])
    -- STREAM_PROJECT  |PARTITIONED|
        select (function-call: asterix:spatial-intersect, Args:[function-call: asterix:field-access-by-index, Args:[%0->$$2, 
AInt32: {2}], ACircle: { center: APoint: { x: 46.4208, y: 76.4114 }, radius: 0.01}])
        -- STREAM_SELECT  |PARTITIONED|
          project ([$$2])
          -- STREAM_PROJECT  |PARTITIONED|
            exchange 
            -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
              unnest-map [$$11, $$2] <- function-call: asterix:index-search, Args:[AString: {TwitterMessages}, AInt32: {0}, 
AString: {graph}, AString: {TwitterMessages}, ABoolean: {false}, ABoolean: {false}, ABoolean: {false}, AInt32: {1}, %0-
>$$23, AInt32: {1}, %0->$$23, TRUE, TRUE, TRUE]
              -- BTREE_SEARCH  |PARTITIONED|
                exchange 
                -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
                  order (ASC, %0->$$23) 
                  -- STABLE_SORT [$$23(ASC)]  |PARTITIONED|
                    exchange 
                    -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
                      project ([$$23])
                      -- STREAM_PROJECT  |PARTITIONED|
                        exchange 
                        -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
                          unnest-map [$$19, $$20, $$21, $$22, $$23] <- function-call: asterix:index-search, Args:[AString: 
{twmSndLocIx}, AInt32: {1}, AString: {graph}, AString: {TwitterMessages}, ABoolean: {false}, ABoolean: {false}, ABoolean: 
{false}, AInt32: {4}, %0->$$15, %0->$$16, %0->$$17, %0->$$18]
                          -- RTREE_SEARCH  |PARTITIONED|
                            exchange 
                            -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
                              assign [$$15, $$16, $$17, $$18] <- [function-call: asterix:create-mbr, Args:[ACircle: { center: APoint: { 
x: 46.4208, y: 76.4114 }, radius: 0.01}, AInt32: {2}, AInt32: {0}], function-call: asterix:create-mbr, Args:[ACircle: { center: 
APoint: { x: 46.4208, y: 76.4114 }, radius: 0.01}, AInt32: {2}, AInt32: {1}], function-call: asterix:create-mbr, Args:[ACircle: { 
center: APoint: { x: 46.4208, y: 76.4114 }, radius: 0.01}, AInt32: {2}, AInt32: {2}], function-call: asterix:create-mbr, Args:
[ACircle: { center: APoint: { x: 46.4208, y: 76.4114 }, radius: 0.01}, AInt32: {2}, AInt32: {3}]]
                              -- ASSIGN  |PARTITIONED|
                                empty-tuple-source
                                -- EMPTY_TUPLE_SOURCE  |PARTITIONED|

Figure 4.3: The query plan of a secondary index search query.

In the distributed case, a dataset has its primary and secondary indexes partitioned by the

primary key. The metadata of datasets and indexes are recorded in the system’s metadata

datasets.

4.2.2 Motivation

Record-level ACIDity guarantees that AsterixDB will work correctly in mission-critical envi-

ronments. However, in real-world data science use cases, data scientists often do experimental
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and exploratory analysis — temporary, intermediate datasets are created from time to time,

to be used repeatedly for visualizations and summarizations or for gluing together different

analytical systems. For instance, in the Twitter influence ranking example in Section 4.1,

the intermediate tables (datasets) MsgGraph and Result are used as a data exchange media

between a tabular data processing runtime (Hive) and a graph processing runtime (Giraph),

and they are only accessed by one data scientist in a serial fashion. The two materialized

temporary tables might be accessed again later for other analytical tasks. In this case, ACID-

ity becomes an overkill that brings in few benefits but will hurt performance, both for this

data scientist and for competing the cluster’s physical resources. In order to give users an

alternative “unsafe” but useful option for the scenario. We have added AsterixDB support

for temporary datasets which do not have the same ACID guarantees. In addition, regular

datasets are logically “heavy” — including registration in the overall system catalogs, and

logically potentially polluting the system’s persistent namespace. This is avoided with a new

temporary dataset support mechanism.

4.2.3 Temporary Dataset DDL

We add the “temporary” keyword to the create dataset statement of AsterixDB [29]. For

instance, similar to the example in Section 4.1, we can create a temporary dataset for the

constructed graph from tweets in AsterixDB by executing the following DDL statements:
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1 use dataverse graph;

2

3 drop type VertexType if exists;

4 drop dataset MsgGraph if exists.

5

6 create type VertexType as{

7 vertexid: int64 ,

8 value: double ,

9 edges: [int64]

10 };

11

12 create temporary dataset MsgGraph(VertexType) primary key vertexid;

Other DDLs like create index and drop dataset for temporary datasets are then the same

as for regular datasets.

4.2.4 Runtime Implementation

At the logical level, a temporary dataset is different from a regular dataset in three aspects:

• it is not locked, either for reads or writes;

• there is no transaction log for writes, hence there is no restorative crash recovery;

• an indexes (primary or secondary) are not forced to disk after a bulk load (i.e., a load

dataset statement, or an internal merge of its on-disk components).

AsterixDB internally has already used a pluggable architecture for locking and logging,

where the locking and logging behaviors associated with the index point search operator,

index range search operator, and index insert/delete operator can be plugged-in by providing

them logging- and locking- related hook interface implementations. Hence, we can use this

to add temporary dataset-specific implementations that include no locking nor WAL (write-

ahead log) activities. We must also add a branch in the commit operator for temporary
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commit
-- COMMIT  |PARTITIONED|
  project ([$$26])
  -- STREAM_PROJECT  |PARTITIONED|
    exchange 
    -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
      insert into graph:Test2 from %0->$$2 partitioned by [%0->$$26]
      -- INSERT_DELETE  |PARTITIONED|
        exchange 
        -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
          data-scan []<-[$$26, $$2] <- graph:Test1
          -- DATASOURCE_SCAN  |PARTITIONED|
            exchange 
            -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
              empty-tuple-source
              -- EMPTY_TUPLE_SOURCE  |PARTITIONED|

Increment the write 
counter

Decrement the write counter of an in-memory component
$$26: the primary key $$2: the payload record

Figure 4.4: The query plan of a scan-insert query for temporary datasets.

datasets, one where instead of appending a commit log record to the log buffer of the log

manager, it just decrements the writer count of the in-memory component that stores the

insert (or delete).

If the datasets Test1 and Test2 in the example of Section 4.1 are replaced with temporary

datasets, the query plans of the scan-insert query and the secondary index search query

become the ones in Figures 4.4 and 4.5 respectively. (Note that in Figure 4.5, a post-

validation step is still necessary to guarantee that the returned results of the R-tree search

query do not contain false positives.)

While locks are avoided, latches are still required for temporary datasets in the current im-

plementation, as temporary datasets share the same disk buffer cache with regular datasets.

4.2.5 Temporary Dataset Lifecyle

A temporary dataset has the following lifecyle properties:
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R-Tree Search

Primary index lookup

Post-validation

distribute result [%0->$$8]
-- DISTRIBUTE_RESULT  |PARTITIONED|
  exchange 
  -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
    project ([$$2])
    -- STREAM_PROJECT  |PARTITIONED|
        select (function-call: asterix:spatial-intersect, Args:[function-call: asterix:field-access-by-index, Args:[%0->$$2, 
AInt32: {2}], ACircle: { center: APoint: { x: 46.4208, y: 76.4114 }, radius: 0.01}])
        -- STREAM_SELECT  |PARTITIONED|
          project ([$$2])
          -- STREAM_PROJECT  |PARTITIONED|
            exchange 
            -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
              unnest-map [$$11, $$2] <- function-call: asterix:index-search, Args:[AString: {TwitterMessages}, AInt32: {0}, 
AString: {graph}, AString: {TwitterMessages}, ABoolean: {false}, ABoolean: {false}, ABoolean: {false}, AInt32: {1}, %0-
>$$23, AInt32: {1}, %0->$$23, TRUE, TRUE, TRUE]
              -- BTREE_SEARCH  |PARTITIONED|
                exchange 
                -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
                  order (ASC, %0->$$23) 
                  -- STABLE_SORT [$$23(ASC)]  |PARTITIONED|
                    exchange 
                    -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
                      project ([$$23])
                      -- STREAM_PROJECT  |PARTITIONED|
                        exchange 
                        -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
                          unnest-map [$$19, $$20, $$21, $$22, $$23] <- function-call: asterix:index-search, Args:[AString: 
{twmSndLocIx}, AInt32: {1}, AString: {graph}, AString: {TwitterMessages}, ABoolean: {false}, ABoolean: {false}, ABoolean: 
{false}, AInt32: {4}, %0->$$15, %0->$$16, %0->$$17, %0->$$18]
                          -- RTREE_SEARCH  |PARTITIONED|
                            exchange 
                            -- ONE_TO_ONE_EXCHANGE  |PARTITIONED|
                              assign [$$15, $$16, $$17, $$18] <- [function-call: asterix:create-mbr, Args:[ACircle: { center: APoint: { 
x: 46.4208, y: 76.4114 }, radius: 0.01}, AInt32: {2}, AInt32: {0}], function-call: asterix:create-mbr, Args:[ACircle: { center: 
APoint: { x: 46.4208, y: 76.4114 }, radius: 0.01}, AInt32: {2}, AInt32: {1}], function-call: asterix:create-mbr, Args:[ACircle: { 
center: APoint: { x: 46.4208, y: 76.4114 }, radius: 0.01}, AInt32: {2}, AInt32: {2}], function-call: asterix:create-mbr, Args:
[ACircle: { center: APoint: { x: 46.4208, y: 76.4114 }, radius: 0.01}, AInt32: {2}, AInt32: {3}]]
                              -- ASSIGN  |PARTITIONED|
                                empty-tuple-source
                                -- EMPTY_TUPLE_SOURCE  |PARTITIONED|

Figure 4.5: The query plan of a secondary index look on a temporary dataset.

• It cannot sustain an AsterixDB instance restart — each slave node clears the directory for

temporary datasets at node startup or restart time;

• It will be garbage-collected if it has not been accessed in the last 30 (or other chosen

interval) days — a background garbage collector thread is in charge of that. (A data

scientist may need to create a large number of temporary datasets and may forget to drop

some of them from time to time.)
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• Its metadata (including the metadata of all its secondary indexes) is not stored in the

AsterixDB metadata store [29]. Instead, it is only kept in the master machine’s memory,

so an instance restart will lose the metadata.

In summary, temporary datasets offer an AsterixDB user a more lightweight way of gener-

ating, storing, and scanning temporary data as are supported, but still provide support for

more flexible access patterns for the temporary data, e.g., full queries including secondary

index searches are supported. We will investigate their performance benefits in Section 4.5.

4.3 The External Connector Framework

The temporary datasets proposed in Section 4.2 offer an “unsafe” but lightweight option for

storing data in AsterixDB for data science use cases. This section explores the other side

of rich(er) graph analytics — how to build an extensible architecture for a special-purpose

Big Data analytics engine like Pregelix to process data from various data sources, e.g.,

HDFS, AsterixDB, and many others. Section 4.3.1 explains the motivation, Section 4.3.2

introduces a generalized connector framework for Pregelix, and Section 4.3.3 describes the

implementation of an AsterixDB connector for Pregelix on top of the generalized connector

framework.

4.3.1 Motivation

Nowadays, there are more and more available storage options for enterprise data lakes. For

example, distributed file systems like HDFS [10] are typically used for storing archived raw

data, e.g., machine logs, click streams, and browse histories; NoSQL stores like HBase [12],

Cassandra [2], MongoDB [17], and Couchbase [3] are usually used to support fast point
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reads and writes for online applications, such as mobile games, transportation apps, and

e-commerce websites; distributed search engines like Elastic Search [5] are often used for

storing and searching textual data; AsterixDB is also an option for ingesting and more richly

querying semi-structured data. Each storage option fits a particular category of applications.

The Pregelix system we described in Chapter 3 only supports HDFS as its data source and

sink. A näıve way to allow Preglix to interact with different storage systems is to simply

adopt HDFS as the glue media, similar to the example in Section 4.1. However, that approach

has two drawbacks:

• it adds extra HDFS read-write round trips;

• simply using the client query API (e.g., REST API [58]) offered by a storage system may

limit the parallelism of loading data into Pregelix.

These shortcomings have motivated us to build an extensible connector framework (Sec-

tion 4.3.2) for Pregelix to directly read from and write to external storage systems. To

demonstrate the usefulness of the framework and allow AsterixDB users to enjoy graph

analytics capabilities, we have used it to implement an AsterixDB connector for Pregelix

(Section 4.3.3).

4.3.2 The Connector Framework

To support various data sources and sinks for Pregelix, we abstract its data readers, writers,

and data transformers as parallel operators. A parallel operator encapsulates two aspects:

• what actual work should be done at a single parallel partition level;

• where its actual worker threads should be run.
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Besides parallel operators, we encapsulate how the external data is partitioned and sorted as

physical properties. Physical properties can be used to generate partitioners and sorters

at runtime for each partition of the corresponding external data.

For the parallel operator abstraction, the read connector interface is as follows:

1 public interface IReadConnector {

2 /** Returns the data read parallel operator. */

3 public ParallelOperator getReadOperatorDescriptor ();

4

5 /** Returns the data transformation(from "external" to Pregelix) parallel operator. */

6 public ParallelOperator getReadTransformOperatorDescriptor ();

7 }

Similarly, the write connector interface is as follows. In addition to the write and transform

parallel operators, a write connector should also encapsulate information about physical

properties required by the sink storage system.

1 public interface IWriteConnector {

2 /** Returns the physical properties of the data sink. */

3 public PhysicalProperties getPhysicalProperties ();

4

5 /** Returns the data write parallel operator. */

6 public ParallelOperator getWriteOperatorDescriptor ();

7

8 /** Returns the data transformation (from Pregelix to "external ") parallel operator. */

9 public ParallelOperator getWriteTransformOperatorDescriptor ();

10 }

Figure 4.6 demonstrates how the generated runtime operators of read and write connectors

are articulated with a Pregelix job. In the figure, readers 1-3 and transformers 11-13 are

generated from a read connector, while transformers 21-23 and writers 1-3 are generated from

a write connector. How data is redistributed from transformers 11-13 to Pregelix partitions

is dictated by the Pregelix computation’s partitioning requirement. Differently, how data
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Figure 4.6: The connector runtime dataflow.

is redistributed from transformers 21-23 to writers 1-3 are determined by the sink storage

system’s requirement, i.e., by the physical properties of the write connector. Note that

sorting operators may need to be injected before the writers to sort data locally, depending

on the requirement of the destination storage system, which is also contained as part of the

physical properties of the write connector. The connector framework is flexible enough to

generate different dataflows based on the physical properties of different write connectors.

In the example of Figure 4.6, inside the Pregelix job, the redistributed output of transformers

11-13 are sorted and bulk-loaded into partitioned Pregelix vertex B-trees (as described in

Section 3.5.2); the inputs of transformers 21-23 come from scanning partitioned vertex B-

Trees in Pregelix. Other than the data loading and result writing parts, the main Pregelix

computation dataflows (i.e., supersteps) remain the same as those described in Chapter 3.

4.3.3 The AsterixDB Connector

For the purpose of implementing the read and write connectors of AsterixDB, knowledge

of where an AsterixDB dataset is partitioned and stored, as well as how the binary repre-

sentation of a record in the dataset should be parsed (or constructed), should be able to

be obtained from outside of AsterixDB. Thus, we have added a REST API [58] in Aster-

ixDB to enable outside connector implementations to retrieve this meta information for a
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dataset. The API’s input includes a dataverse name (i.e., the AQL equivalent of a database

in SQL [20]) and a dataset name (i.e., the AQL equivalent of table in SQL). The API’s

output is a JSON [15] object with four fields:

• record type, the type description of records in the dataset;

• primary key, the name(s) of the primary key field(s) of the dataset;

• temporary dataset flag, indicating whether the dataset is temporary or not;

• partitioned files, a list of file descriptors with each containing an absolute file path and

the IP address of its hosting machine.

Using this new API, our AsterixDB/Pregelix read and write connector implementations pull

the meta information of a dataset from the REST API and then construct parallel operators

and physical properties based on the retrieved information. With the partitioned files, the

read (or write) connector is able to create LSM B+-tree scanners (or bulk-loaders) to read

(or write) those files. With the record type, the read (or write) connector can create read

(or write) transformation operators that parse (or build) AsterixDB records correctly. With

the primary key, the write connector can create its physical properties, which can then

generate partitioners and sorters for bulk loading the target AsterixDB dataset. In our

implementation, both the read and write connectors check the temporary dataset flag and

error out accesses on regular datasets; this protects the ACIDity of regular datasets.

In addition to this new metadata API, AsterixDB exposes another REST API to allow

outsiders to request to a synchronous flush of the in-memory components of a dataset to the

OS file system. The read connector issues such a request before the Pregelix data loading

runtime starts to make sure that the latest, in-memory batched updates of the dataset can

be read.

From a Pregelix user’s perspective, in order to read an input graph from AsterixDB, s/he

needs to provide a VertexInputConverter interface implementation (as follows). Similarly, in
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order to write an output graph states to AsterixDB, s/he needs to provide a VertexOutput-

Converter interface implementation.

1 public interface VertexInputConverter {

2 /** A user -defined function to covert an AsterixDB record to a vertex. */

3 public void convert(ARecordVisitablePointable recordPointable , Vertex vertex );

4 }

5

6 public interface VertexOutputConverter {

7 /** A user -defined function to covert a vertex to an AsterixDB record. */

8 public void convert(Vertex vertex , RecordBuilder recordBuilder );

9 }

The convert methods in the two interfaces above are called from read and write transforma-

tion operators respectively. The two operators follow the design paradigm that we propose

in Chapter 2 to avoid unnecessary Java object creations. A user can implement arbitrary

conversions, however, so s/he must guarantee that both the resulting vertex ids and the

resulting primary key values are globally unique.

In Pregelix, we provide a default implementation of the two converters for user convenience.

The default VertexInputConverter can parse a AsterixDB record of the form (vertexid, value,

edgelist) into a vertex, and the default VertexOutputConverter can build a record of the form

(vertexid, value) from an input vertex. Users with more sophisticated needs can then replace

these with their own customized implementations.

With the AsterixDB connector, a Pregelix job can take either an AsterixDB temporary

dataset or a HDFS path as the input data source, and it can take either of them as the

output data sink. If an AsterixDB temporary dataset is taken as the data sink, any pre-

existing records in the dataset will be erased as a result of executing the new Pregelix job.
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4.4 Running Pregel from AsterixDB

With the infrastructures built in Section 4.2 and Section 4.3, we have added a run pregel

statement into the DML of AQL [29]. The syntax of the statement is as follows:

1 run pregel ( <jar -path >, <full -class -name >, <args >)

2 from dataset <dataset -name >

3 to dataset <dataset -name >

This new statement is compiled into a Pregelix job that takes the dataset after from as the

data source and the dataset after to as the data sink. The jar path specifies the location of

the job’s binary, the full class name points to a user-defined job client entrance class, and

the argument string is for the main method in the job client entrance class.

Let us revisit the example in Section 4.1. To achieve the same analytical task in AQL, we

first run several DDLs to create a TwitterMessages dataset as well as the data types for two

temporary intermediate datasets as follows.
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1 use dataverse graph;

2

3 // Creates the Twitter message type.

4 create type TwitterMessageType as {

5 tweetid: int64 ,

6 user: string ,

7 sender -location: point ,

8 send -time: datetime ,

9 reply -from: int64 ,

10 retweet -from: int64 ,

11 referred -topics: {{ string }},

12 message -text: string

13 }

14

15 // Creates the TwitterMessages dataset.

16 create dataset TwitterMessages(TwitterMessageType) primary key tweetid;

17

18 // Loads the TwitterMessages dataset.

19 ......

20

21 // Creates the data types for the intermediate temporary datasets.

22 create type VertexType as{vertexid: int64 , value: double , edges: [int64 ]};

23 create type Result as {vertexid: int64 , rank: double };

Having the run pregel statement, we can now implement the example in Section 4.1 as

follows in AQL (GQ1).
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GQ1: Twitter Impact Ranking

1 use dataverse graph;

2

3 // DDLs that cleans up and creates temporary datasets.

4 drop dataset MsgGraph if exists;

5 drop dataset results if exists;

6 create temporary dataset MsgGraph(VertexType) primary key vertexid;

7 create temporary dataset results(Result) primary key vertexid;

8

9 // Populate temporary dataset MsgGraph.

10 insert into dataset MsgGraph

11 (

12 for $tm in dataset TwitterMessages

13 let $edge:=switch -case($tm.reply -from >=0, true , $tm.reply -from , false , $tm.retweet -from)

14 where $edge >=0

15 return { "vertexid ": $tm.tweetid , "value": 1.0/10000000000.0 , "edges ": [$edge] }

16 )

17

18 // Runs a Pregelix job. The job uses default input/output converters.

19 run pregel (" examples/pregelix -example -jar -with -dependencies.jar",

20 "edu.uci.ics.pregelix.example.PageRankVertex", "-num -iteration 5")

21 from dataset MsgGraph

22 to dataset results;

23

24 // Final query that ranks users.

25 for $tm in dataset TwitterMessages

26 for $r in dataset results

27 where $r.vertexid = $tm.tweetid

28 group by $un := $tm.user with $r

29 let $rank := sum(for $i in $r return $i.rank)

30 order by $rank desc limit 50

31 return { "name": $un , "rank": $rank };

In this example, the logic of both querying tabular data and running graph algorithms from

a Pregelix library are written in AQL. A data scientist does not know how datasets like

MsgGraph and results are physically stored, no longer need to think about gluing different

systems through HDFS, and can just focus on writing the right queries and implementing
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and then employing the right “think-as-a-vertex” graph algorithms. (Speedup and scale-up

properties of GQ1 will be experimentally evaluated in Section 4.5.3.)

In addition to the improved user experience, the secondary index support provided by Aster-

ixDB could make the following graph query use cases (GQ2) run at an interactive speed (i.e.

within-a-minute response time) if there is a R-Tree secondary index on the sender-location

field of tweets.

GQ2: Twitter Impact Ranking in a Given Spatial Region

1 use dataverse graph;

2

3 // DDLs that cleans up and creates temporary datasets.

4 drop dataset MsgGraph if exists;

5 drop dataset results if exists;

6 create temporary dataset MsgGraph(VertexType) primary key vertexid;

7 create temporary dataset results(Result) primary key vertexid;

8

9 // Populates temporary dataset MsgGraph.

10 insert into dataset MsgGraph

11 (

12 let $p := create -point (46.4208 , 76.4114 )

13 let $r := create -circle($p, 0.05)

14

15 for $tm in dataset TwitterMessages

16 let $edge:=switch -case($tm.reply -from >=0, true , $tm.reply -from , false , $tm.retweet -from)

17 where $edge >= 0 and spatial -intersect($tm.sender -location , $r)

18 return { "vertexid ": $tm.tweetid , "value ": 1.0/10000000000.0 , "edges ": [$edge] }

19 );

20

21 // The Pregel job and the final query are the same as that in GQ1.

22 ......

Since we know upfront that dataset results would not be very large and that field tweetid

is the primary key for the TwitterMessages dataset, the indexnl hint in the last ranking

query lets the AsterixDB query optimizer generate an index nested loop join which avoids
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redistributing the entire TwitterMessages dataset for a hash join. The combination of the

indexing capability and the Pregel abstraction makes interactive graph analytics possible.

(Performance results will be reported in Section 4.5.4.)

Last but not least, there is another category of applications where the graph extraction query

can be more complex than that in GQ1 and GQ2. The following query (GQ3) is such an example,

which is to analyze and rank people’s instant influences on Twitter. This query only extracts

replies and retweets that are posted within a day from the time when their referred messages

are posted. With the join capabilities as well as temporal data types in AsterixDB, this

query could also be simply expressed and efficiently evaluated. (Experimental results will

be discussed in Section 4.5.5.)

GQ3: Twitter Instant Impact Ranking

1 use dataverse graph;

2

3 // DDLs that cleans up and creates temporary datasets.

4 drop dataset MsgGraph if exists;

5 drop dataset results if exists;

6 create temporary dataset MsgGraph(VertexType) primary key vertexid;

7 create temporary dataset results(Result) primary key vertexid;

8

9 // Populates temporary dataset MsgGraph.

10 insert into dataset MsgGraph

11 (

12 for $tm2 in dataset TwitterMessages

13 for $tm1 in dataset TwitterMessages

14 let $edge:=switch -case($tm1.reply -from >=0,true ,$tm1.reply -from ,false ,$tm1.retweet -from)

15 let $d := duration -from -interval(interval -from -datetime($tm1.send -time , $tm2.send -time))

16 where $edge >=0 and $edge=$tm2.tweetid and $d <= day -time -duration ("P1D")

17 return { "vertexid ": $tm1.tweetid , "value": 1.0/10000000000 , "edges": [$tm2.tweetid] }

18 );

19

20 // The Pregel job and the final query are the same as that in GQ1.

21 ......
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Name Size Number of Records
1× 440 GB 1,711,777,760
0.5× 220 GB 855,829,620

Table 4.1: The tweet dataset and its scale-downs.

4.5 Experiments

This section reports an initial experimental evaluation of the techniques developed in this

chapter. Section 4.5.1 describes the experimental settings; Section 4.5.2 compares temporary

datasets and regular datasets with respect to write performance; Section 4.5.3, Section 4.5.4,

and Section 4.5.5 report the scaling properties of a long-running graph analytical query (GQ1,

as described in Section 4.4), an interactive graph query (GQ2, as described in Section 4.4),

and a graph query with a complex ETL (GQ3, as described in Section 4.4) respectively;

finally, Section 4.5.6 summarizes the numbers.

4.5.1 Experimental Setup

We ran the experiments detailed here on a 16-node Linux IBM x3650 cluster with one

additional master machine of the same configuration. Nodes are connected with a Gigabit

Ethernet switch. Each node has one Intel Xeon processor E5520 2.26GHz with four cores,

8GB of RAM, and two 1TB, 7.2K RPM hard disks.

In the experiments, we used a synthetic tweet dataset in JSON format of the record type

TwitterMessageType as described in Section 4.4. In the dataset, 10% of the tweets are

retweets and another 10% are replies. If a tweet is an original message, the reply-from field

and the retweet-from field are both −1. Table 4.1 shows size statistics for the synthetic

datasets, including the full dataset (1×) as well as a scale-down sample (0.5×).
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Parameter Value
Memory budget (for LSM in-memory components) per dataset 256 MB
Data page size 128 KB
Disk buffer cache size 1GB
Bloom filter target false positive rate 1%
Log buffer size (for regular datasets) 4MB
Number of data partitions 4
JVM maximum heap size 6GB

Table 4.2: AsterixDB per-machine settings used throughout these experiments.

For all the experiments in this section, we used the AsterixDB per-machine settings listed

in Table 4.2. Before running the evaluation queries, we loaded the generated tweets into

the dataset TwitterMessages (as described in Section 4.4) and created an R-Tree secondary

index on the sender-location field for the dataset.

4.5.2 Evaluations of Temporary Datasets

In this experiment, we ran the following insert query on a 16-machine AsterixDB instance

with the 1× dataset:

1 insert into dataset MsgGraph2{

2 for $m in dataset MsgGraph

3 return $m

4 }

In the query, dataset MsgGraph is a temporary dataset that resulted from the insert query in

GQ1 (described in Section 4.4) — it contains 342,366,948 records and has 23.36 GB. Both

MsgGraph and MsgGraph2 have identical record types and primary keys. Before the insert,

dataset MsgGraph2 is empty. We compared the two cases when dataset MsgGraph2 is a regular

dataset versus when it is a temporary dataset. We also compared the two cases when the

semantics of insert mean “insert if not exists, else raise an error if the key exists” (the default
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Metric Temporary Dataset Regular Dataset
Insert Time (ms) 256,224 712,552
Insert TPS (per partition) 20,876 7,507
Insert TPS (on cluster) 1,336,097 480,479
Upsert Time (ms) 127,068 642,369
Upsert TPS (per partition) 42,099 8,327
Upsert TPS (on cluster) 2,694,360 532,953

Table 4.3: Insert/Upsert performance: temporary datasets V.s. regular datasets.

AsterixDB semantics) versus when the semantics of insert mean “insert if not exists, else

update” (via a private change of a flag in the AsterixDB source code). We will use the

term insert to represent the former semantics and use the term upsert to represent the

latter semantics. We evaluated the upsert option in addition to the default insert option

because we wanted to understand relative overhead of logging and searching (for duplicates)

and upsert delivers the same semantics for this particular query as insert (it is guaranteed

to have no duplicates in the input stream and a temporary dataset is only used in a serial

manner). Table 4.3 shows all of the results.

As we can see from Table 4.3, temporary datasets obtain a 2.78× speedup here for insert and

a 5.05× speedup for upsert; these are because of the reduced logging and locking overheads.

Interestingly, going from insert to upsert, regular datasets do not enjoy significant speedups.

One reason is that in upsert, though the search overhead is removed, the system is not bound

by CPU time but by the I/Os for forcing the transaction log. The other reason is that in

our experiments, we did not use dedicated log disk devices, which consequently caused much

more random I/Os.

4.5.3 Evaluation of GQ1 (Long-Running Analytics)

In this experiment, we tested the parallel speedup and scale-up of GQ1 (described in Sec-

tion 4.4) using two AsterixDB instances — one had 16 slave machines and the other had 8
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Figure 4.7: The parallel speedup and scale-up of GQ1 (insert).
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Figure 4.8: The parallel speedup and scale-up of GQ1 (upsert).

slave machines. In the speedup experiment, we ran GQ1 using the 1× dataset on the two

AsterixDB instances. In the scale-up experiment, GQ1 was run with the 1× dataset on the

16-machine AsterixDB instance and with the 0.5× dataset on the 8-machine AsterixDB in-

stance. We report numbers with both insert and upsert for the graph extraction AQL insert

query. Figure 4.7(a) shows the parallel speedup and Figure 4.7(b) plots the parallel scale-up,

both with the insert semantics. Figure 4.8(a) and Figure 4.8(b) are the corresponding results

for the upsert semantics. The numbers show that the parallel speedup and scale-up of GQ1

is very good.
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Figure 4.9: The parallel speedup and scale-up of GQ2 (insert).

4.5.4 Evaluation of GQ2 (Interactive Analytics)

In this experiment, we ran GQ2 (described in Section 4.4)) using the same settings as

Section 4.5.3. The spatial-intersect filter predicate in GQ2 selects 3,354 matched tweets,

and the Pregel computation results contain 6,708 vertices. With the insert semantics, the

parallel speedup and scale-up of the query are shown in Figures 4.9(a) and 4.9(b) respectively.

Figures 4.10(a) and 4.10(b) report the numbers for the upsert semantics. As we can see from

the results, with the help of the indexing capabilities in AsterixDB, queries like GQ2 can be

answered much more quickly by avoiding scanning the entire TwitterMessages dataset.

While GQ2 is faster than GQ2, in our current implementation the run pregel statement is

compiled to a shell command that kicks off a Pregelix job; this adds a constant client JVM

startup time (taking from 10 to 20 seconds) into the picture. In future work, we would like to

avoid this overhead by integrating a native Pregelix job client into AsterixDB. Additionally,

Pregelix treats the jar file in a submitted job as a new jar, deploys it to the whole cluster

when the job starts, and then erases it when the job finishes. Jar deployment adds another

5 to 10 seconds for each job. We can potentially reduce this cost by allowing a Pregelix job

to reuse old deployments for cases when a given graph computation is used multiple times.
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Figure 4.10: The parallel speedup and scale-up of GQ2 (upsert).

4.5.5 Evaluation of GQ3 (Complex Graph ETL)

In this experiment, we ran GQ3 (described in Section 4.4) using the same settings as Sec-

tion 4.5.3. GQ3 inserts 65,353 matched tweets into temporary dataset MsgGraph, and the

Pregel computation results contain 130,702 vertices. With the insert semantics, the parallel

speedup and scale-up of the query are shown in Figures 4.11(a) and 4.11(b) respectively.

Figures 4.12(a) and 4.12(b) report the numbers for the upsert semantics. The numbers show

very good speedup and scale-up properties of GQ3. The reason is that the insert statement

in GQ3 dominates the execution time and AsterixDB supports parallel joins well [29] — which

is the bulk of the query inside the insert statement.

4.5.6 Discussions

From the numbers reported for GQ1, GQ2, and GQ3, we can see that the combination of

AsterixDB and Pregelix can fit a wide-range of use cases. We also find that in these queries,

insert and upsert do not make significant difference for the end-to-end query response time,

though upsert is shown to be 2× faster than insert for temporary datasets in Table 4.3.
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Figure 4.11: The parallel speedup and scale-up of GQ3 (insert).
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Figure 4.12: The parallel speedup and scale-up of GQ3 (upsert).

The reason is that in each of the three queries, first, the performance of the insert statement

is not dominated by the actual inserts or upserts but by other parts in the physical query

plan, e.g., scanning, filtering, searching, or joining; second, the end-to-end query response

time is not always dominated by the insert statement.
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4.6 Related Work

Real-world, large-scale, complex graph analytics have led to significant interest, both in

industry and in academia to build efficient and scalable graph processing platforms that can

tightly interact with tabular data processing systems. There are extensions from data-parallel

platforms to support graph processing as well as extensions from graph computing platforms

to support tabular data processing. On one side, GraphX [97], which is built on top of

the data-parallel platform Spark [108], provides a programming abstraction called Resident

Distributed Graphs (RDGs) to simplify graph loading, construction, transformation, and

computations. The integration with Spark allows a user to run a GraphX program together

with a wide range of Spark ecosystem tools, such as SparkSQL [35], DataFrames [33], Spark-

R [32] and so on. Similarly, in Aster Data, Pregel-like, user-defined graph analytics functions

could be invoked from SQL queries [91]. On the other side, distributed GraphLab [73]

is adding more and more tabular data processing capabilities into its runtime [87], and

Giraph [9] has built connectors for Hive [92] and HBase [12]. However, those latter two graph

processing systems still require users to interact with multiple data processing platforms to

achieve a complex analytical task, while the GraphX/Spark ecosystem offers users a single,

unified entry at the logical level. This chapter has worked towards a similar convergence too,

but starting from the Big Data management system (BDMS) side. Similar to GraphX and

Aster Data, the integration of Pregelix (Chapter 2) and AQL [29] (as described in Section 4.4)

also offers users a single, logical entry for rich(er) graph analytics. However, the indexing

capability of AsterixDB, as well its built-in support for semi-structured data and its ability

to work against data that does not fit into main memory, further expends the landscape of

well-supported analytics — GQ2 is such an example.
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4.7 Summary

Complementary to Chapter 3 that investigated how to build a scalable Big Graph analytics

platform, the chapter has studied the problem that “graph analytics are not only about

graphs” — i.e., a complex graph analytical pipeline often needs to extract graphs, execute

distributed graph algorithms, and then run further post-processing queries. We first added

an “unsafe” but lightweight storage option, temporary datasets, into AsterixDB, for data

science use cases. We then built an external connector framework for Pregelix to access

various data sources and we implemented an AsterixDB connector on top of it. Finally, we

extended AQL, the query language of AsterixDB, to have a run pregel statement. Those

techniques combine to offer users a simple, unified way to run rich(er) graph analytical

queries. Preliminary experimental evaluations demonstrated that the resulting system has

good speedup and scale-up properties for both long-running, offline graph queries and fast,

interactive graph queries.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis, we have studied several issues and challenges in building a scalable software

infrastructure for end-to-end Big Graph analytics.

We first investigated a foundational issue for building Big Data platforms — how to write

efficient and scalable programs in managed languages. The bloat-aware design paradigm

that we described in Chapter 2 is used throughout the entire system stack that we have

been building, e.g., Hyracks [42], Algebricks [41], Pregelix (Chapter 3), AsterixDB [29],

VXQuery [27], and IMRU [85]. By following this design paradigm, these systems all incur

a very limited amount garbage collection overhead and use their memory resources in an

economical fashion.

We next explored a new architectural approach to building a Big Graph analytics plat-

form in Chapter 3, where we implemented the Pregel message-passing semantics as iterative

dataflows but kept its user-friendly “think-like-a-vertex” client programming abstraction
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unchanged. Based on this architecture, we built a new open source Big Graph analytics

platform called Pregelix. In contrast to other current open source Big Graph analytics plat-

forms, the dataflow-based architecture and the Hyracks data-parallel runtime together give

Pregelix the ability to work gracefully with any given level of resources, ranging from a single

memory-constrained machine to a large cluster.

Last but not least, we designed and built an integration of Pregelix and AsterixDB in Chapter

4; it provides users a simple, unified logical entry point for richer forms of graph analytics

with less ETL pain. With the resulting system, data scientists can work at the logical

level of analytical problems without worrying about the physical details of gluing together

tabular data processing platforms and graph processing platforms. This exploration also

lays a foundation for AsterixDB to incorporate more specialized analytics runtimes to enrich

its range of supported analytics.

Based on the design paradigm, architecture, and methodology that we have proposed and

evaluated in this thesis, the resulting open-source systems Pregelix (http://pregelix.ics.uci.edu)

and AsterixDB (htpp://asterixdb.ics.uci.edu) are available for download and use in support

of efficient, scalable, robust, and simple end-to-end Big Graph Analytics.

5.2 Future Work

Further along the path of this thesis, we believe there are several exciting and challenging

directions to be explored:

• Currently, the Pregelix system described in Chapter 3 directly generates Hyracks runtime

dataflows. It would be interesting to re-architect the system to be based on Algebricks [41],

a data model agnostic algebra layer that is now available on top of the Hyracks runtime.

With a recursion extension [44], Algebricks should be able to serve as a substrate for
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Pregelix. Building the “think-like-a-vertex” programming abstraction on top of a logical

algebra layer will further increase the system’s physical flexibility, and once Algebricks

has a cost-based optimizer, Pregelix can enjoy the benefits as well. Moreover, such an

architecture would allow a even tighter and more natural integration with AsterixDB

than what Chapter 4 describes; the Pregel semantics could be captured as a function in

the AQL query language at the logical level, without requiring materialized temporary

datasets.

• The external connector framework (described in Section 4.3) was designed to be gen-

eral enough to let Pregelix work with any other Hyracks-based systems. Given that, two

broadening directions would be interesting. First, we could build Pregelix connector imple-

mentations for a broader range of ecosystems, such as HBase [12], Hive [92], Cassandra [2],

MongoDB [17], and Couchbase [3]. Those connectors would expand the landscape that

Pregelix can work in. Second, we could reuse the current AsterixDB connector for other

Hyracks-based systems, e.g., IMRU [85] or the Hadoop-compatibility layer [42]. We could

then build a machine learning job entrance capability as well as a Hadoop job entrance

capability in AsterixDB, which would further enrich the supported range of analytic tasks

in AsterixDB.

• Temporary datasets (described in Section 4.2) are conceptually similar to materialized

views [66] and to Spark RDDs (resilient distributed datasets) [108]. On one side, the

internal mechanism of temporary datasets could be further extended to support material-

ized views in AsterixDB. Thanks to the indexing capability of AsterixDB, the materialized

views would also be indexable. On the other side, similar to Spark RDDs, we could po-

tentially build fault-tolerance mechanisms for temporary datasets for the case of slave

machine failures, e.g., for recovering a lost partition from using its lineage data.
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