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Abstract

A New Ranking Scheme for High-dimensional and Non-Euclidean Data with Applications

in Hypothesis Testing and Change-point Detection

Due to their robustness and e�ciency, rank-based approaches are among the most popular nonparametric

methods for univariate data in tackling statistical problems such as hypothesis testing and change-point

detection. However, they are less explored for more complex data. In the era of big data, high-dimensional

and non-Euclidean data, such as networks and images, are ubiquitous and pose challenges for statistical

analysis. Existing multivariate ranks such as spatial rank, Mahalanobis rank, and component-wise rank do

not apply to high-dimensional or non-Euclidean data. This dissertation tackles the problem by proposing

novel rank functions applicable to complex data and applying them to the two-sample testing and change-

point detection problem. Instead of dealing with the ranks of observations, we propose two types of ranks

based on the observations’ similarity graph: the graph-induced rank defined by the inductive nature of

the graph and the overall rank defined by the weight of edges in the graph. These two new ranks are

used to construct two sets of statistics for hypothesis testing and change-point detection.

For two-sample testing, we prove that the new test statistic converges to the �2
2 distribution under

the permutation null distribution, enabling an easy type-I error control. The new method exhibits good

power under a wide range of alternatives compared to existing methods, as shown in simulations. The

new test is illustrated on the New York City taxi data for comparing travel patterns in consecutive months

and a brain network dataset comparing male and female subjects.

The graph-induced rank is further used to construct scan statistics for the change-point problem.

We prove the proposed scan statistics are asymptotically distribution-free under the null hypothesis and

derive the analytic p-value approximation. Simulation studies show that the new method works well for

various changes and is robust to heavy-tailed distributions and outliers. The new method is illustrated

by detecting seizures in a functional connectivity network dataset and travel pattern changes in the New

York City taxi dataset.

-viii-
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Chapter 1

Introduction

High-dimensional and non-Euclidean data have become ubiquitous in the era of big data, such as networks,

gene expression, and images, which poses challenges for statistical analysis. Parametric approaches are

limited when many nuisance parameters need to be estimated. Among the nonparametric methods, rank-

based methods are attractive due to their robustness and e�ciency and have been extensively studied

for univariate data. However, they are not well explored for high-dimensional or non-Euclidean data.

This dissertation aims to extend the rank-based methods to high-dimensional and non-Euclidean data,

focusing on the two-sample testing and change-point detection problems.

1.1 Review of multivariate ranks

Univariate ranks are not applicable to multivariate data due to the lack of natural ordering of the data

points. The existing extensions of ranks to multivariate data include component-wise ranks [Bickel, 1965,

Hallin and Puri, 1995, Puri and Sen, 2013], spatial ranks [Chaudhuri, 1996, Oja, 2010], depth-based

ranks [Liu and Singh, 1993, Serfling and Zuo, 2000], Mahalanobis ranks [Hallin and Paindaveine, 2002,

2004, 2006], metric ranks [Pan et al., 2018] and measure transportation-based ranks [Deb and Sen, 2021].

Specifically, given N observations Z1, . . . , ZN 2 Rd:

• The component-wise rank Ri 2 Rd is the rank vector for each dimension of Zi, e.g., Rij is the rank of

Zij among Z1j , . . . , ZNj for j = 1, . . . , d. The component-wise ranks are the natural extension of the

univariate rank, and work well when the multivariate observations with independent components.

However, they su↵er from the correlated covariates and are not invariant to a�ne transformations.

• The spatial rank function is defined as R(Z) =
PN

i=1 U(Z�Zi)/N where U(Z) = Z/kZk for Z 6= 0d

and U(0d) = 0d. Here k · k is the Euclidean norm. The spatial rank can also be implicitly defined

through multivariate L1 type objective function [Oja, 2010]:

1

2N2

NX

i=1

NX

j=1

kZi � Zjk1 =
1

N

NX

i=1

ZT
iR(Zi) ,

1



where the function R(·) : Rd ! Rd makes the equation hold for all possible values of Zi’s. The

spatial ranks are powerful for detecting location di↵erences, however, they are not such useful for

distinguishing scale parameters due to the normalizing procedure involved in U(·).

• The depth-based ranks measure the centrality of the observations and depend on the choice of depth

function. For example, the Mahalanobis’s depth

MhD(Z) =
�
1 + (Z � Z̄)TS�1(Z � Z̄)

 �1
,

where Z̄ =
PN

i=1 Zi/N is the sample mean and S is the sample covariance matrix, and the Tukey’s

depth

TD(Z) = inf
X
{FN (X ) : X is a closed half space containing Z} ,

where FN is the empirical cumulative distribution function. Given a depth function, the depth-

based ranks are decided by the values of data depth of the N observations. The depth MhD is

easy to compute, however, it requires the existence of the second moment and is not robust. Other

depth functions are computational extensive for high-dimensional data, for example, TD has the

computational complexity O(Nd�1 logN) [Liu, 2017].

• The Mahalanobis ranks are designed for multivariate one-sample problem, which are the ranks

of the pseudo-Mahalanobis distances d(Z, ✓0) = (Z � ✓0)T⌃̂
�1

(Z � ✓0), where ✓0 is the location

parameter of interest and specified under H0, and ⌃̂ is a M-estimator of the covariance matrix due

to Tyler [1987]. It is powerful for elliptical symmetric distribution, but is not robust to heavy-tailed

distributions.

• The metric ranks are designed for multivariate two-sample problem and measure the di↵erence

between two probability distributions. Assume the first n observations are from the distribution

FX and the last m = N � n observations are from FY . The metric ranks are then represented by

AX
ij , A

Y
ij , i, j = 1, . . . , n and CX

ij , C
Y
ij , i, j = n+ 1, . . . , N , where nAX

ij is the rank of d(Zi, Zj) among

{d(Zi, Zu), u = 1, . . . , n}, mAY
ij is the rank of d(Zi, Zj) among {d(Zi, Zu), u = j, n + 1, . . . , N},

nCX
ij is the rank of d(Zi, Zj) among {d(Zi, Zu), u = 1, . . . , n, j}, and mCY

ij is the rank of d(Zi, Zj)

among {d(Zi, Zu), u = n + 1, . . . , N}. Then the di↵erences AX
ij � AY

ij and CX
ij � CY

ij are used to

compare the two distributions. However, the limiting distribution of the test statistics is not easy

to approximate, and a Bootstrap or permutation procedure may be applied to obtain p-values.

• The measure transportation-based ranks are defined by the optimization problem

�̂ = arg min
�=(�(1),...,�(N))2SN

NX

i=1

kZi � c�(i)k2 ,
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where SN is the set of all permutations of {1, . . . , N}, the multivariate rank vectors {c1, . . . , cN} are

a sequence of ‘uniform-like’ points in [0, 1]d generated from Halton sequences [Hofer, 2009, Hofer and

Larcher, 2010]. As a result, the rank vector of Zi will be c�̂(i). The measure transportation-based

ranks are also useful to construct distribution-free test statistics and detect location di↵erence.

However, when the dimension is high, it is di�cult to generate ‘uniformly’ distributed rank vectors,

which su↵ers from the curse of dimensionality.

1.2 Graph-based ranks

Here, we propose the definition of the novel graph-based ranks. The graph-based ranks are the rank

defined in the similarity graphs. Instead of treating all edges in the graph equally, we assign the rank

as weights to each edge. For two graphs G1 and G2 with the same vertex set, we use G1 \ G2 as the

graph which has the same vertex set as G1 and G2 and the edges as the overlapping edges of G1 and G2.

With a little abuse of notations, we say G1 \G2 = ; if G1 and G2 have no overlapping edges. Given N

independent observations {Zi}Ni=1, we can construct a sequence of simple similarity graphs1 {Gl}kl=1 in

an inductive way such that G0 = ; and

Gl+1 = Gl [G⇤
l+1 with G⇤

l+1 = arg max
G02Gl+1

X

(i,j)2G0

S(Zi, Zj)

where Gl+1 = {G0 2 G : G0 \ Gl = ;} and G is a graph set whose elements satisfy specific user-defined

constraints. Here S(·, ·) is a similarity measure, for example, S(Zi, Zj) = �kZi�Zjk for Euclidean data,

where k · k is the Euclidean norm. For other choices of the similarity measures, see Chen and Zhang

[2013], Sarkar and Ghosh [2018], Sarkar et al. [2020]. By construction, we have G1 ⇢ G2 . . . ⇢ Gk. Many

widely used similarity graphs can be constructed in this way with di↵erent constraints, for example,

• k-NNG: G = {G0 : for each i, there exists one and only one j 6= i such that (i, j) 2 G0};

• k-MST: G = {G0 : G0 is a tree that connects all observations};

• k-MDP: G = {G0 : G0 is a non-bipartite pairing};

• k-shortest Hamiltonian path (k-SHP) [Biswas et al., 2014]: G = {G0 : G0 is a Hamiltonian path2}.

As a result, for NNGs, Gl is the l-NNG, G⇤
l+1 is the (l + 1)th NNG and Gl+1 is the (l + 1)-NNG. For

MSTs, Gl is the l-MST, G⇤
l+1 is the (l+ 1)th MST and Gl+1 is the (l+ 1)-MST. An illustration of these

graphs is presented in Figure 1.1.

With {Gl}kl=1, we define two types of graph-based rank matrix R = (Rij)Ni,j=1 2 RN⇥N as follows:

1
Simple graph is the graph without self-loops and multiple edges between any two vertices.

2
A Hamiltonian path with N vertices is a connected and acyclic graph with N � 1 edges, where each node has degree at

most two.
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Figure 1.1. Examples of di↵erent similarity graphs.

• Graph-induced rank

Rij =
kX

l=1

�
(i, j) 2 Gl

�
.

where for an event A, (A) is an indicator function that equals to one if event A occurs, and equals

to zero otherwise;

• Overall rank

Rij = rank(S(Zi, Zj), Gk) ,

where rank(S(Zi, Zj), Gk) is the rank of S(Zi, Zj) among {S(Zu, Zv)}(u,v)2Gk
if (i, j) 2 Gk and is

zero if (i, j) /2 Gk.

The two types of ranks are intuitive. The graph-induced rank Rij is the time of the edge (i, j)

appearing in the sequence of graph. For instance, the graph-induced rank of edges in the lth NNG or

the lth MST will be k � l+ 1 for k-NNG and k-MST, respectively. The overall rank of edges will be the

rank of the similarity of edges in the graph. The graph-based ranks impose more weights to the edges

with higher similarity, thus incorporating more similarity information than the unweighted graph. In the

meantime, the robustness property of the ranks makes the weights less sensitive to outliers compared

to the direct utilization of similarity. With the ranks, we are ready to build di↵erent test statistics for

di↵erent problems.

1.3 Overview

1.3.1 RISE: rank in similarity graph edge-count two-sample test

Two-sample hypothesis testing for high-dimensional data is ubiquitous nowadays. Given two independent

random samples X1, . . . , Xm
i.i.d⇠ FX and Y1, . . . , Yn

i.i.d⇠ FY , it takes into the consideration of the test

H0 : FX = FY against H1 : FX 6= FY .
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Rank-based tests are popular nonparametric methods for univariate data. However, they are di�cult to

be extended to high-dimensional or non-Euclidean data. We propose a new non-parametric two-sample

testing procedure, Rank In Similarity graph Edge-count two-sample test (RISE) utilizing the graph-

based ranks. Theoretically, we prove that, under some mild conditions, the new test statistic converges

to the �2
2 distribution under the permutation null distribution, enabling an easy type-I error control.

RISE exhibits good power under a wide range of alternatives compared to existing methods, as shown in

extensive simulations. The new test is illustrated on the New York City taxi data for comparing travel

patterns in consecutive months and a brain network dataset in comparing male and female subjects.

1.3.2 RING-CPD: asymptotic distribution-free change-point detection for

multivariate and non-Euclidean Data

Change-point detection concerns detecting distributional changes in a sequence of independent observa-

tions, which is important for data analysis and processing with diverse applications from finance, business,

and health to engineering. For a sequence of independent observations
�
yi
 n
i=1

, the change-point detection

problem can be formulated as the test of

H0 : yi ⇠ F0, i = 1, . . . , n

against the single change-point alternative

H1 : 91  ⌧ < n, yi ⇠

8
><

>:

F0, i  ⌧,

F1, otherwise

or the changed interval alternative

H2 : 91  ⌧1 < ⌧2 < n, yi ⇠

8
><

>:

F0, i = ⌧1 + 1, . . . , ⌧2,

F1, otherwise,

where F0 and F1 are two di↵erent distribution.

Rank-based methods have been extensively analyzed for univariate models, while insu�cient attention

has been paid to high-dimensional or non-Euclidean data. We propose a new method, Rank INduced

by Graph Change-Point Detection (RING-CPD), based on the graph-induced ranks to handle high-

dimensional and non-Euclidean data. The new method is asymptotically distribution-free under the

null hypothesis with the analytic p-value approximation derived for easy type-I error control. Extensive

simulation studies show that the RING-CPD method works well for a wide range of alternatives and is

robust to heavy-tailed distribution and outliers. The new method is then illustrated by the detection of

seizures in a functional connectivity network dataset and travel pattern changes in the New York City

taxi dataset.

5



Chapter 2

RISE: Rank in Similarity Graph

Edge-Count Two-Sample Test

2.1 Introduction

For two independent random samples X1, . . . , Xm
i.i.d⇠ FX and Y1, . . . , Yn

i.i.d⇠ FY , we consider the test

H0 : FX = FY against H1 : FX 6= FY .

Nowadays, it is common that the data is high-dimensional or non-Euclidean [Bullmore and Sporns, 2012,

Tian et al., 2016, Menafoglio and Secchi, 2017, Jiang et al., 2020]. In many of these problems, one has

little information on FX and FY , which makes parametric approaches not applicable when the dimension

is high. A number of nonparametric tests have been proposed for high-dimensional data such as the

graph-based tests [Friedman and Rafsky, 1979, Schilling, 1986, Henze, 1988, Rosenbaum, 2005, Chen and

Zhang, 2013, Chen and Friedman, 2017, Chen et al., 2018, Zhang and Chen, 2022], the classification-based

tests [Hediger et al., 2019, Lopez-Paz and Oquab, 2016, Kim et al., 2021], the interpoint distances-based

tests [Székely and Rizzo, 2013, Biswas and Ghosh, 2014, Li, 2018], and the kernel-based tests [Gretton

et al., 2008, Eric et al., 2007, Gretton et al., 2009, 2012a, Song and Chen, 2020].

For non-parametric testing, rank-based tests are popular to approach given the success of Wilcoxon’s

rank-sum test [Wilcoxon, 1945] for univariate data. However, the rank for multivariate data is hard

to define. There are some extended definitions of the rank to accommodate multivariate data, such as

the spatial rank [Chaudhuri, 1996, Marden, 1999], the Mahalanobis rank [Hallin and Paindaveine, 2004,

2006], and the component-wise rank [Bickel, 1965, Puri and Sen, 2013]. For instance, Oja [2010] proposed

the multivariate spatial signs and ranks, which can be applied to construct a multivariate a�ne-invariant

family of rank tests for the detection of the location di↵erence. Based on the data depth rank, Liu and

Singh [1993] proposed tests as a multivariate analog of Wilcoxon’s rank-sum test, and Barale and Shirke

[2021] proposed a test that worked both for location and scale di↵erence. However, these tests are mainly

for low-dimensional data.
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Recently, Pan et al. [2018] introduced Ball Divergence (BD) to measure the the di↵erence between

two distributions and proposed a metric rank test procedure. Deb and Sen [2021] proposed to define the

multivariate ranks through the theory of measure transportation [Hallin et al., 2021], based on which

they built the multivariate rank-based distribution-free nonparametric testing. Both tests can be applied

to high-dimensional data and achieved good performance for some useful settings. However, they also

lose power under some common alternatives, which will be detailed in Section 2.4. Besides, they did not

provide any analytic p-value approximations and relied on random permutations to obtain their p-values.

In this chapter, we propose a new framework of two-sample testing procedure, Rank In Similarity

graph Edge-Count two-sample test (RISE), which overcomes the curse of dimensionality [Chen and

Friedman, 2017] and enables an easy type-I error control. Instead of dealing with the ranks of observations,

we consider two types of ranks based on the similarity graph of the observations, the graph-induced rank

defined by the inductive nature of the graph and the overall rank defined by the weight of edges in the

graph. The similarity graph can be built from the pairwise similarity of observations, such as the k-NNG

[Henze, 1988] and k-MST [Friedman and Rafsky, 1979]. As a result, our framework is applicable to

non-Euclidean data as well.

Test statistics based on similarity graphs have attracted a lot of attention recently as they can be

applied to data with an arbitrary dimension and non-Euclidean data and perform well. The first test of

this type was proposed in Friedman and Rafsky [1979] using the k-MST, later Schilling [1986] and Henze

[1988] used the k-NNG, and Rosenbaum [2005] proposed to use the MDP to obtain an exact distribution-

free test, which was extended to k-MDP in Chen and Friedman [2017]. Recently, Chen and Friedman

[2017] proposed a new test statistic, the generalized edge-count test (GET), on similarity graphs that

utilizes a common pattern for high-dimensional data, and the test works well for a variety of alternatives.

The current graph-based tests treat each edge in the graph equally and ignore the di↵erences on edges

[Friedman and Rafsky, 1979, Henze, 1988, Chen and Friedman, 2017], which could lose power. There were

attempts to use ranks in earlier studies [Schilling, 1986, Rosenbaum, 2005], but these tests lack power

for high-dimensional data under some common alternatives. RISE solves the problems by incorporating

weights on the edges of the similarity graphs and proposing a Mahalanobis-type statistic that works well

for a variety of settings where existing methods work poorly. The rest of the chapter is organized as

follows. In Section 2.2, we introduce in detail the new test statistic TR with its moment properties. The

asymptotic property of TR is presented in Section 2.3. Extensive simulations are conducted in Section 2.4

with real data applications presented in Section 2.5. The details of proofs of the theorems are deferred

to Appendix A.
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2.2 A new test statistic

To simplify the notations, let

Zi = Xi, i = 1, . . .m; Zm+j = Yj , j = 1, . . . n

be the pooled samples and N = m + n. Let R = (Rij)Ni,j=1 be the rank matrix defined in Section 1.2

constructed using the pooled sample. We first define two basic quantities based on the graph-based rank:

Ux =
mX

i=1

mX

j=1

Rij and Uy =
NX

i=m+1

NX

j=m+1

Rij .

which are the within-sample rank sums of sample X and sample Y , respectively. We can symmetrize

R by using 1
2 (R + R

T). With a slight notation abuse, in the following, R is used for the symmetric

version. This does not change the values of Ux and Uy by their definitions; while the derivation for their

expectations and variances would be much simpler. Before we propose the test statistic, we illustrate the

behaviors of Ux and Uy under di↵erent scenarios. Here we set n = m = 50 and consider multivariate

Gaussian distribution with dimension d = 100:

(a) Null: FX = FY = N(0d, Id);

(b) Location alternative: FY = N(1d, Id);

(c) Scale alternative: FY = N(0d, 4Id);

(d) Mixed alternative: FY = N(0.50d, 2Id).

Figure 2.1 shows the heatmaps of the graph-induced rank matrix in the 10-NNG and the overall rank

matrix in the 10-MDP. When the two distributions are di↵erent in location parameter, both Ux and Uy

will larger than their null expectations; while for scale alternative, one of Ux and Uy will larger while

the other one will be smaller. For both location and scale di↵erences, Ux and Uy will also be di↵erent

from their null distribution. Thus, Ux and Uy can capture di↵erent scenarios. Hence, the proposed test

statistic is defined as

TR = (Ux � µx, Uy � µy)⌃
�1(Ux � µx, Uy � µy)

T ,

where µx = (Ux), µy = (Uy) and ⌃ = Cov
�
(Ux, Uy)T

�
. Under the null hypothesis, the group labels of

X and Y are exchangeable. Thus, we can work on the permutation null distribution which places 1/
�N
m

�

probability on each of the
�N
m

�
permutations of the group labels where the first group has m observations

and the second group has n observations. We use , , Var, Cov to denote the probability, expectation,

variance, and covariance under the permutation null distribution, respectively. To simplify the notations,
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Figure 2.1. An illustration of the graph-based ranks.

we further denote

R̄i· =
1

N � 1

NX

j 6=i

Rij , r0 =
1

N

NX

i=1

R̄i· , r
2
1 =

1

N

NX

i=1

R̄2
i· , r

2
d =

1

N(N � 1)

NX

i=1

NX

j 6=i

R2
ij ,

eRi· = R̄i· � r0 , Vr =
1

N

NX

i=1

eR2
i· = r21 � r20 , Vd =

1

N(N � 1)

NX

i=1

NX

j 6=i

(Rij � r0)
2 = r2d � r20 .

Remark 2.2.1. The rank used in BD [Pan et al., 2018] has some common grounds with our graph-induced

rank in the k-NNG. They both utilize the rank of pairwise similarity. However, in BD, for each within-

sample pairwise similarity S(Zi, Zj), they consider its rank among {S(Zi, Zu)}mu=1 and {S(Zi, Zu)}Nu=m+1,

respectively, and compare their di↵erence. On the other hand, for each Zi, the graph-induced rank in k-

NNG considers the ranks for {S(Zi, Zu)}Nu=1 and only the top k similarities are kept.

Remark 2.2.2. The new test statistic TR is similar to GET in terms of its formula while GET treats

each edge in the similarity graph equally. Actually, when the weights on the similarity graph are all set

to be one, TR becomes GET when the similarity graph is undirected, and becomes the directed version of

GET [Chu and Chen, 2018, Liu and Chen, 2022] when the similarity graph is directed. For GET, Chen

and Friedman [2017] discussed that under the alternative hypothesis, there are two possible scenarios that

(i) both samples tend to connect with each other within samples and (ii) one sample tends to connect

within sample while the other sample tends to connect between sample. Similarly, for our rank quantities,
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under the alternative hypothesis, we also have two possible scenarios that (i) both Ux and Uy tend to be

large and (ii) one of them tends to be large while the other one tends to be small. Hence, TR can capture

the two di↵erent type of scenarios and is powerful for a wider range of alternatives.

Theorem 2.2.1. Under the permutation null distribution, we have that

µx = (Ux) = m(m� 1)r0 , µy = (Uy) = n(n� 1)r0

Var(Ux) =
2mn(m� 1)

(N � 2)(N � 3)

�
(n� 1)Vd + 2(m� 2)(N � 1)Vr

�
,

Var(Uy) =
2mn(n� 1)

(N � 2)(N � 3)

�
(m� 1)Vd + 2(n� 2)(N � 1)Vr

�
,

Cov(Ux, Uy) =
2m(m� 1)n(n� 1)

(N � 2)(N � 3)

�
Vd � 2(N � 1)Vr

�
.

The proof of Theorem 2.2.1 is in Appendix A.1, which is obtained through combinatorial analysis.

To assure that TR is well-defined, the covariance matrix ⌃ should be invertible. Here we present the

su�cient and necessary conditions.

Theorem 2.2.2. Given m,n � 2, the covariance matrix ⌃ is positive-definite unless (C1) Vr = 0 or

(C2) (N � 2)Vd = 2(N � 1)Vr.

The proof of Theorem 2.2.2 is in Appendix A.2. In the following, we briefly discuss the two cases.

In the following, we briefly discuss the two cases. It is obvious that (C1) happens when R̄i· = r0. For

instance, the graph-induced rank in the k-MDP satisfies (C1) as all vertices are required to have the

exact same degree k for the k-MDP and thus R̄i· = r0 for all i. We can also show that (C2) happens

only for some special graphs. For example, when |Gk|  N � 1 where | · | denotes the cardinality of a set

and the number of edges for a graph, we have

N(N � 1)2r21  N2(N � 1)2

4
r20 +

N(N � 1)

2
r2d

and

(N � 2)Vd � 2(N � 1)Vr = (N � 2)r2d � 2(N � 1)r21 +Nr20

� (N � 2)(N � 1)r21 � 2(N � 1)r21 +Nr20

= N((N � 1)r20 � r21)

� (N � 3)r2d �
N(N � 3)

2
r20

=
N � 3

N(N � 1)

⇣ NX

i=1

NX

j=1

R2
ij �

(
PN

i=1

PN
j=1 Rij)2

2(N � 1)

⌘
� 0

10



by Cauchy–Schwarz inequality and |Gk|  N � 1. The equalities hold if and only if for some i, we have

Rij = Rij = c for some constant c and all j 6= i, and Rjl = 0 for all j, l 6= i. As a result, Gk is perfectly

star-shaped with the hub vertex i, and all other vertices have the same rank c related to the vertex i.

Except for such special graphs, it is rare to have graphs that satisfy (C1) or (C2). For example, the

graph-induced rank in the k-NNG and the overall rank in the k-MDP would hardly ever run into either

(C1) or (C2). We check it through Monte Carlo simulations by generating datasets from the standard

multivariate multivariate Gaussian distribution with di↵erent sample size N ’s and dimension d’s. For

each dataset, we calculate the two ratios r21/r
2
0 and (N � 2)Vd/

�
2(N � 1)Vr

�
. The procedure is repeated

1, 000 times for each combination of N and d. The details and results are in Appendix A.9.1. We find that

neither (C1) nor (C2) happens in any of these simulation runs. In practice, when we apply the method,

we could easily check whether the two cases happen. If it unfortunately happens, we could always use a

di↵erent type of similarity graph to avoid the problem.

Define Uw = n�1
N�2Ux + m�1

N�2Uy and Udi↵ = Ux � Uy, and their standardized statistics

Zw =
Uw � (Uw)

�w
, and Zdi↵ =

Udi↵ � (Udi↵)

�di↵
,

where �w =
p
Var(Uw) and �di↵ =

p
Var(Udi↵).

Theorem 2.2.3. When TR is well-defined, we have

TR = Z2
w + Z2

di↵ and Cov(Zw, Zdi↵) = 0 . (2.1)

The proof of Theorem 2.2.3 is in Appendix A.3. Under the alternative hypothesis, it is possible that

(i) both Ux and Uy are larger than their null expectations (a typical scenario under location alternatives)

and (ii) one of them is larger than while the other one is smaller than its corresponding null expectation

(a typical scenario under scale alternatives). See Chen and Friedman [2017] for more discussions on these

scenarios. For (i), Zw will be large and for (ii), |Zdi↵ | will be large. Thus, TR is powerful for di↵erent

types of alternatives. From Theorem 2.2.1, it is easy to show that

�2
w =

2m(m� 1)n(n� 1)

(N � 2)2(N � 3)
{(N � 2)Vd � 2(N � 1)Vr}

and

�2
di↵ = 4(N � 1)mnVr .

Hence, Zdi↵ or Zw degenerates when (C1) or (C2) happens, respectively.

Remark 2.2.3. Some test statistics other than TR can also be considered. For instance, the weighted

rank sum statistic Zw corresponding to the weighted edge-count test [Chen et al., 2018] that should work

well for the location alternative and unbalanced sample sizes, and the max-rank test statistics Rmax ⌘

max{Zw, |Zdi↵ |} that corresponds to the max-type edge-count test statistic [Chu and Chen, 2019], which

is preferred under the change-point setting.
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2.3 Asymptotic properties

Obtaining the exact p-value of TR by examining all permutations could be feasible for small sample sizes,

but is time-prohibitive when the sample size is large. We thus work on the asymptotic distribution of

TR.

2.3.1 Limiting distribution under the null hypothesis

Before stating the theorem, we define some notations. Let an = o(bn) or an � bn be that an is dominated

by bn asymptotically, i.e., limn!1 an/bn = 0, an = O
�
bn
�
or an ⇣ bn be that an is bounded both above

and below by bn asymptotically, an - bn be that an is bounded above by bn (up to a constant factor)

asymptotically, and ‘the usual limit regime’ be that m,n ! 1 and m/(m+ n) ! p 2 (0, 1).

Theorem 2.3.1. Let R = (Rij)
j2[N ]
i2[N ] 2 RN⇥N be the graph-induced rank or the overall rank matrix

defined in Section 2.2 in the sequence of graphs {Gl}kl=1. In the usual limit regime, under Conditions:

(2.1) r1 � rd; (2.2)
PN

i=1

�PN
j=1 R

2
ij

�2 - N3r4d; (2.3)
PN

i=1

�� eRi·
��3 � (NVr)1.5; (2.4)

PN
i=1

eR3
i· � NrdVr;

(2.5)
��PN

i=1

PN
j 6=s RijRis

eRj· eRs·
�� � N3r2dVr; (2.6)

PN
i=1

PN
j=1

PN
s,l 6=i,j RijRjsRslRli � N4r4d, we have

that
�
Zw, Zdi↵

�T D! N2(02, I2) and TR
D! �2

2

under the permutation null distribution where
D! is convergence in distribution.

Theorem 2.3.1 is proved using the Stein’s method [Chen et al., 2010], with the proof in Appendix A.4

Actually, Theorem 2.3.1 holds for general matrix R with some additional conditions. As a result, we can

use di↵erent ways to weight the similarity graph such as kernel values. A detailed discussion is presented

in Section 4.1. Denote K = maxRij (for example, K = k for the graph-induced rank in the k-NNG

or k-MST and K = Nk/2 for the overall rank in the k-MDP). Usually we have r0 ⇣ K|Gk|/N2 and

r2d ⇣ K2|Gk|/N2 where |Gk| ⇣ Nk, which hold for the four types of graphs in Section 1.2. Conditions

(2.1)-(2.4) essentially require the absence of hubs that nodes with a large degree or a cluster of small

hubs. For instance, assuming the largest degree of Gk is bounded by Ck for some constant C, we have

Conditions (2.1), (2.2) and (2.4) always hold such as

r21 =
1

N(N � 1)2

NX

i=1

(
NX

j 6=i

Rij)
2 . K2k2

N2
� r2d ,

NX

i=1

� NX

j=1

R2
ij

�2 - N(kK2)2 ⇣ N3r4d ⇣ K4|Gk|2/N ,

NX

i=1

eR3
i·  max

i
| eRi·|NVr . NVrkK/N ⇣ NrdVr ,

when k = o(N). For Condition (2.3), by
PN

i=1

�� eRi·
��3 . maxi | eRi·|NVr, it holds if

max
i

| eRi·| �
p
NVr =

� NX

i=1

eR2
i·
�0.5

,
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which may be satisfied unless the variation of the average row-wise ranks Vr is dominated by some vertices

such that
PN

i=1
eR2
i· ⇡ eR2

j· for some vertex j. Condition (2.6) can be viewed the constraint on the number

of squares in Gk, denoted as Nsq. We then have

NX

i=1

NX

j=1

NX

l 6=i,j

NX

s 6=i,j

RijRjlRlsRsi . K4Nsq and N4r4d ⇣ K4|Gk|2 .

Thus, if Nsq � |Gk|2, Condition (2.6) will hold. Condition (2.5) looks more complicated, and it basically

controls the number of triangles in Gk. For k-MDP, all vertices have the same degree k, we thus have

the following lemma.

Lemma 2.3.2. The overall rank in k-MDP satisfy Conditions (2.1), (2.2), (2.4) and (2.6) automatically

when k = o(N).

The proof of Lemma 2.3.2 is in Appendix A.5. For other similarity graphs such as the k-NNG and

k-MST, we provide the following lemma by making assumption on the distribution of eRi·, whose proof

is in Appendix A.6.

Lemma 2.3.3. Suppose that |Gk| = O(kN) with 1 - k � N and . Assume that

max(K2/N2, k2K2/N3) - Vr � k1.5K2N�1.5 (2.2)

and
�
(N � 1)| eRi·|/K � t

�
 2 exp

�
� ct2/Na

�
, t > 0 (2.3)

for some constants c > 0 and 0 < a < 1. Then, in the usual limit regime, TR
D! �2

2 under the permutation

null distribution.

Remark 2.3.1. Overall rank in k-MDP, as shown in the proof of Lemma 2.3.2, satisfies the right hand

side of (2.2) and (2.3) when k � N . When k = 1, it can be shown that the left hand side of (2.2) will

also be satisfied. Specifically, TR constructed on the overall rank in 1-MDP is exactly distribution-free,

while its distribution can be approximated by �2
2 which N large enough.

Remark 2.3.2. The above theoretical results allow the similarity graph to be very dense such as k ⇣ N↵

for some 0 < ↵ < 1. Besides, the conditions in Theorem 2.3.1 are only su�cient conditions. As we

observed in numeric experiments, even if some conditions are violated, the tail probability of TR can still

be well controlled by the tail probability of �2
2 usually.

2.3.2 Consistency

Theorem 2.3.4. For two continuous multivariate distributions FX and FY that di↵er on a set of positive

Lebesgue measure, if the graph-induced rank is used with the k-MST or k-NNG based on the Euclidean

distance, where k = O(1), then RISE will reject the null hypothesis with the probability going to one in

the usual limiting regime.
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The proof is in Appendix A.7, which follows straightforwardly from Schilling [1986] and Henze and

Penrose [1999].

2.4 Simulation studies

In this section, we conduct extensive simulations to examine the newly proposed test RISE. We mainly

focus on the graph-induced rank in the k-NNG and the overall rank in the k-MDP as the representation

of the two types of ranks.

Specifically, we consider a wide range of null and alternative distributions in moderate/high di-

mensions, including multivariate Gaussian distribution, Gaussian mixture distribution, multivariate log-

normal distribution and multivariate t5 distribution. These di↵erent distributions range from light-tails

to heavy-tails, and the alternatives range from location di↵erence, scale di↵erence to mixed alternatives,

with a hope that these simulation settings can cover real world scenarios.

Chen and Friedman [2017] suggested to use k = 5 for GET based on k-MST to achieve moderate

power. For the k-NNG and k-MDP, the largest value of k can be N � 1, while for the k-MST, the largest

value of k can only be N/2. So it is reasonable to choose k for the k-NNG and k-MDP as twice of k for

the k-MST. Hence, we use k = 10 for simplicity in both simulation and real data analysis. We denote

our methods as Rg-NN and Ro-MDP for RISE on the 10-NNG with the graph-based rank and on the

10-MDP with the overall rank, respectively. Besides, a detailed comparison between RISE and GET

including the results of RISE on the k-MST with the graph-induced rank and the overall rank is provided

in Section 2.4.3.

We compare the type-I error and statistical power with seven state-of-art methods, including two

graph-based methods: GET on 5-MST using the R package gTests [Chen and Friedman, 2017], Rosen-

baum’s cross matching test (CM) using the R package crossmatch [Rosenbaum, 2005]; two rank-based

methods: multivariate rank-based test using measure transportation (MT) [Deb and Sen, 2021] and

non-parametric two-sample test based on ball divergence (BD) using the R package Ball [Pan et al.,

2018]; and three other tests: an LP-nonparametric test statistic (GLP) using the R package LPKsample

[Mukhopadhyay and Wang, 2020], a high-dimensional low sample size k-sample tests (HD) using the R

package HDLSSkST [Paul et al., 2021] and a kernel based two-sample test (MMD) using the R package

kerTests [Gretton et al., 2012b]. The tuning parameters of these comparable methods are set as their

default values.

2.4.1 Settings

We consider diverse settings to examine the performance of these methods thoroughly. For each setting,

we fix FX , and choose di↵erent FY ’s for the alternative hypothesis. We set the parameters of the

distributions to make the tests have moderate power to be comparable. Each configuration is repeated

1000 times to estimate the power where the nominal significance level ↵ is set as 0.05. We also check the
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empirical sizes of the tests under 0.01 and 0.05 nominal levels. We denote [x] as the integer closest to x.

The four settings are as follows:

I. FX = Nd(0d,⌃X) is the multivariate Gaussian distribution, where ⌃X,ij = 0.6|i�j|.

(a) Simple location: FY = Nd(�1d,⌃X) where � = 0.5 log d/
p
d.

(b) Directed location: FY = Nd(µ,⌃X) where µ = 0.5 log dµ0/kµ0k2 and µ0 ⇠ Nd(0d, Id) is fixed.

(c) Simple scale: FY = Nd(0d,�2
⌃X) where � = 1 + 0.12 log d/

p
d.

(d) Correlated scale: FY = Nd(0d,⌃Y ) where ⌃Y,ij = 0.15|i�j|.

(e) Location and scale mixed: FY = Nd(µ,⌃Y ) where µ = 0.2 log dµ0/kµ0k2 and µ0 ⇠ Nd(0d, Id)

is fixed.

II. FX = WNd(0.31d, Id) + (1�W )Nd(�0.31d, 2Id) is the Gaussian mixture distribution, where W ⇠

Bernoulli(0.5).

(a) Location: FY = WNd

�
(0.3 + 0.75/ log d)1d, Id

�
+ (1�W )Nd

�
� (0.3 + 0.75/ log d)1d, 2Id

�
.

(b) Scale: FY = WNd(0.31d, (1+�)2Id)+(1�W )Nd(�0.31d, (
p
2+�)2Id), where � = 0.12

p
50/d.

(c) Location and scale mixed: FY = WNd(0.351d,⌃Y )+(1�W )Nd(�0.351d, 2⌃Y ), where ⌃Y,ij =

0.5|i�j|.

III. FX = exp
�
Nd(0d,⌃X)

�
is the multivariate log-normal distribution, where ⌃X,ij = 0.6|i�j|.

(a) Simple location: FY = exp
�
Nd(�1d,⌃X)

�
where � = 0.5 log d/

p
d.

(b) Sparse location: FY = exp
�
Nd(µ,⌃X)

�
where µj = (�1)j2.8 log d/

p
d, j = 1, . . . , [0.05d],

µj = 0, j = [0.05d] + 1, . . . , d.

(c) Scale: FY = exp
�
Nd(0d,�2

⌃X)), where � = 1 + 0.15 log d/
p
d.

(d) Location and scale mixed: FY = exp
�
Nd(�1d,�⌃X)

�
where � = 1 + 0.1(50/d)0.25 and � =

0.25 log d/
p
d.

IV. FX = t5
�
0d,⌃X

�
is the multivariate t5 distribution, where ⌃X,ij = 0.6|i�j|.

(a) Simple location: FY = t5
�
�1d,⌃X

�
where � = 0.5 log d/

p
d.

(b) Sparse location: FY = t5
�
µ,⌃X

�
where µj = (�1)j2.1 log d/

p
d, j = 1, . . . , [0.05d], µj = 0, j =

[0.05d] + 1, . . . , d.

(c) Scale: FY = t5
�
0d,⌃Y )), where ⌃Y,ij = 0.7(0.1)|i�j|.

(d) Location and scale mixed: FY = t5
�
�1d,⌃Y )

�
where ⌃Y,ij = (0.8)|i�j| and � = 0.5 log d/

p
d.
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Table 2.1. Empirical sizes of the tests under the four settings when the nominal significance level

↵ = .01 and 0.05, respectively, for m = n = 50 and d = 200, 500, 1000.

d 200 500 1000 200 500 1000 200 500 1000 200 500 1000

↵ = 0.01 Setting I Setting II Setting III Setting IV

Rg-NN 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01

Ro-MDP 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.00 0.01

GET 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01

CM 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01

MT 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01

BD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01

GLP 0.01 0.01 0.01 0.02 0.03 0.03 0.06 0.07 0.06 0.01 0.01 0.01

HD 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00

MMD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

↵ = 0.05 Setting I Setting II Setting III Setting IV

Rg-NN 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.04 0.03 0.06 0.04 0.05

Ro-MDP 0.06 0.05 0.04 0.04 0.06 0.04 0.05 0.06 0.04 0.05 0.04 0.05

GET 0.05 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.04 0.04 0.04 0.05

CM 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.03

MT 0.05 0.05 0.06 0.04 0.05 0.05 0.05 0.06 0.07 0.05 0.05 0.04

BD 0.04 0.05 0.06 0.04 0.06 0.04 0.05 0.05 0.05 0.05 0.05 0.05

GLP 0.06 0.05 0.06 0.07 0.08 0.07 0.10 0.09 0.09 0.06 0.06 0.05

HD 0.03 0.04 0.03 0.03 0.04 0.03 0.02 0.03 0.02 0.02 0.02 0.02

MMD 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01

2.4.2 Results

Here we present the results for m = n = 50 and d 2 {200, 500, 1000}. The results for m = 50, n = 100

show similar patterns and are deferred to Appendix A.9.2.

The empirical sizes are presented in Table 2.1. RISE can control the type-I error well for di↵erent

significant levels and settings, which validates the e↵ectiveness of the asymptotic approximation even for

relatively small sample sizes (m = n = 50). For other tests, MMD seems a little conservative and GLP

has somewhat inflated type-I error for some settings, while all of the other tests can control the type-I

error well.

The estimated power of these tests (in percent) is presented in Tables 2.2-2.4. The highest power for

each setting and those with power higher than 95% of the highest one are highlighted in bold type.

Table 2.2 shows the results for the multivariate Gaussian distribution and the Gaussian mixture
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Table 2.2. Estimated power (↵ = 0.05) under multivariate Gaussian I: (a) simple location, (b) directed

location, (c) simple scale, (d) correlated scale, and (e) location and scale mixed and the Gaussian

mixture II: (a) location, (b) scale, and (c) location and scale mixed.

d 200 500 1000 200 500 1000 200 500 1000 200 500 1000

m = n = 50 Setting I (a) Setting I (b) Setting I (c) Setting I (d)

Rg-NN 68 64 60 89 78 67 64 78 84 94 92 91

Ro-MDP 66 58 53 84 71 57 75 87 91 92 93 91

GET 62 56 50 81 68 56 59 71 80 81 78 75

CM 30 27 22 38 29 24 4 4 4 63 63 63

MT 98 96 93 7 6 7 5 5 4 13 14 14

BD 79 61 41 52 37 23 82 94 97 15 16 14

GLP 55 49 22 15 15 8 6 5 5 7 6 6

HD 4 4 3 3 3 4 55 71 84 8 9 7

MMD 90 54 6 98 54 3 0 0 0 0 0 0

Setting I (e) Setting II (a) Setting II (b) Setting II (c)

Rg-NN 98 96 96 53 69 85 62 63 64 68 57 54

Ro-MDP 97 95 96 41 50 58 23 25 26 48 47 50

GET 91 87 86 44 59 75 63 65 66 51 40 38

CM 71 69 71 14 20 23 4 4 4 53 55 57

MT 16 14 11 49 54 56 4 5 5 7 11 12

BD 20 19 18 37 47 63 39 29 30 6 9 11

GLP 9 9 5 8 8 8 8 8 8 8 8 8

HD 8 8 7 2 4 2 3 4 3 2 4 2

MMD 1 0 0 1 2 1 0 1 0 1 1 0

distribution settings. From Table 2.2, we see that for the multivariate Gaussian distribution, under the

simple location alternative (a), MT performs the best, followed immediately by BD, Rg-NN and Ro-MDP.

MMD is also good for d = 200 and 500. Under the directed location alternative (b), Rg-NN outperforms

all of the other tests, followed immediately by Ro-MDP, then by GET. MMD is also good for d = 200,

while all of other tests have low power. Under the simple sale alternative (c), BD performs the best and

Ro-MDP performs the second best. Rg-NN, GET and HD also have satisfactory performance, while all

of other tests have much lower power. Under the correlated scale alternative (d), Rg-NN and Ro-MDP

exhibit the highest power and GET is also good enough. Under the location and scale mixed alternative

(e), Rg-NN and Ro-MDP perform the best again, CM and GET have moderate power, and all other

tests have low power. In these settings, Rg-NN, Ro-MDP and GET perform well in the multivariate

Gaussian distribution setting, across a wide range of alternatives, while other tests can perform well in
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some alternatives, but have low power in other alternatives.

For the Gaussian mixture distribution setting II, we see that under the location alternative (a), Rg-NN

performs the best. Ro-MDP, GET, MT and BD have moderate power while all of other tests have low

power. Under the scale alternative (b), GET and Rg-NN outperform all other tests. Under the location

and scale mixed alternative (c), Rg-NN and CM perform the best. So the overall performance of Rg-NN

is the best in the Gaussian mixture setting.

Table 2.3. Estimated power (↵ = 0.05) under the multivariate log-normal distribution III: (a) simple

location, (b) sparse location, (c) scale, and (d) location and scale mixed.

d 200 500 1000 200 500 1000 200 500 1000 200 500 1000

m = n = 50 Setting III (a) Setting III (b) Setting III (c) Setting III (d)

Rg-NN 75 71 68 94 86 71 26 30 32 53 59 58

Ro-MDP 94 95 95 85 80 68 46 58 63 80 88 93

GET 68 61 56 85 69 49 24 26 27 49 51 50

CM 18 17 15 32 30 25 6 6 6 9 10 12

MT 97 94 88 11 25 43 17 19 13 68 65 60

BD 91 93 94 17 14 10 56 68 72 82 91 94

GLP 70 65 30 23 36 15 12 9 10 22 18 11

HD 29 36 43 4 4 4 16 19 23 24 34 44

MMD 83 57 20 98 79 8 19 7 0 54 32 10

Table 2.3 shows the result of the multivariate log-normal distribution. We see that under the simple

location alternative (a), MT performs the best when d is 200, and Ro-MDP performs the best when d

is 500 and 1000. Rg-NN, GET, GLP and BD also perform well. Under the sparse location alternative

(b), Rg-NN outperforms all of the other tests, followed by Ro-MDP and GET, especially when d is low

(d = 200 or 500). MMD also performs well for d = 200 while other tests have low power. Under the

scale alternative (c), BD performs the best and Ro-MDP performs the second best, followed immediately

by Rg-NN and GET. Under the mixed alternative (d), Ro-MDP and BD perform the best, followed

immediately by MT, Rg-NN, and GET. So the overall performance of Ro-MDP is the best under the

multivariate log-normal setting.

Finally, Table 2.4 shows the result of the multivariate t5 distribution. MT performs the best under

the simple location alternative (a), while Rg-NN and Ro-MDP are also good and outperform other tests.

Under the sparse location alternative (b), Rg-NN performs the best. Ro-MDP performs the best in the

scale alternative (c) and both Rg-NN and Ro-MDP perform the best in the mixed alternative (d). In

these settings, Rg-NN and Ro-MDP are doing well consistently.

To summarize, we observe that RISE performs well in a wide range of alternatives under di↵erent

distributions. Besides, MT performs well in the simple location alternative, e.g., Setting I (a), III (a), IV
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Table 2.4. Estimated power (↵ = 0.05) under the multivariate t5 distribution IV: (a) simple location,

(b) sparse location, (c) scale and (d) location and scale mixed.

d 200 500 1000 200 500 1000 200 500 1000 200 500 1000

m = n = 50 Setting IV (a) Setting IV (b) Setting IV (c) Setting IV (d)

Rg-NN 82 66 57 81 62 49 81 65 58 88 73 63

Ro-MDP 70 63 53 68 55 44 95 93 93 82 78 74

GET 66 44 33 58 36 24 70 46 39 76 56 43

CM 24 21 18 24 20 17 72 68 67 45 41 42

MT 95 92 88 10 9 6 17 19 19 75 72 67

BD 6 6 5 5 5 5 66 66 69 7 6 5

GLP 52 40 18 8 10 6 39 39 39 51 39 30

HD 2 2 2 3 2 2 13 11 11 2 3 1

MMD 62 17 4 42 8 3 30 29 35 60 20 5

(a), but lacks power in directed or sparse location alternative and scale alternatives, while BD performs

well in the simple scale alternative but lacks power in the location alternatives. GET is doing a good job

overall, but it is outperformed by RISE in most of the settings. Next, we compare RISE and GET in

more details.

2.4.3 A detailed comparison between RISE and GET

Here, we compare the power of RISE and GET by varying k’s. We also explore the graph-induced rank

(denoted by Rg-MST) and the overall rank (denoted by Ro-MST) in the k-MST. To compare di↵erent

graphs in a more unified fashion, for the k-NNG and k-MDP, we set k = 2[N�] while for the k-MST, we

set k = [N�], for � 2 (0, 0.8), since for the k-NNG and k-MDP, the largest value of k can be N � 1, while

for the k-MST, the largest value of k can only be N/2. The results for di↵erent n’s and d’s show similar

patterns, so we only present the results for m = n = 50 and d = 500 here for Settings I-IV in Section

2.4.1 with ↵ = 0.05. Each configuration is repeated 1000 times to estimate the empirical size or power.

The empirical sizes of the five tests under Settings I-IV are presented in Figure 2.2. We see that all

of these tests can control the type-I error well even for large � under all settings. The estimated power

for Settings I and II are presented in Figure 2.3 and the estimated power for Settings III and IV are

presented in Figure 2.4. We observe that for some settings, the power of these tests increases first when

� increases, then decreases when � is too large. The reason is that a denser graph can contain more

similarity information among the observations. However, it can also include noisier information when

it is too dense. For GET, when � = 1 which means the graph is a complete graph, its test statistic is

not well-defined. Its power may approach zero when � approaches one, while RISE still has power for a

complete graph. From these figures, we see that RISE performs better than GET in most of the settings
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for a wide range of k’s.

We notice that Rg-NN has the best performance in most of the settings for all k’s. The improvement

of Rg-NN and Ro-MDP over GET is more significant under the heavy-tailed Setting III and IV. However,

Ro-MDP is less powerful under the Gaussian mixed Setting II, which may be due to the intrinsic property

of MDP. Ro-MST has a moderate performance such that it outperforms GET in the most of the settings

but is dominated by Rg-NN in most instances. Rg-MST seems not very robust as it can achieve high

power in some cases but is outperformed by GET sometimes.

Setting III Setting IV

Setting I Setting II
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Figure 2.2. Empirical sizes of RISE and GET for varying �.

2.5 Real data analysis

2.5.1 New York City taxi data

To illustrate the proposed tests, we here conduct an analysis on whether the travel patterns are di↵erent

in consecutive months in the New York City. We use New York City taxi data from the NYC Taxi

Limousine Commission (TLC) website1. The data contains rich information such as the taxi pickup and

drop-o↵ date/times, longitude and latitude coordinates of pickup and drop-o↵ locations. Specifically, we

are interested in the travel pattern from the John F. Kennedy International Airport of the year 2015.

Similarly to Chu and Chen [2019], we set the boundary of JFK airport from 40.63 to 40.66 latitude and

from �73.80 to �73.77 longitude. Additionally, we set the boundary of New York City from 40.577 to

1
https://www1.nyc.gov/site/ tlc/about/tlc-trip-record-data.page
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Setting I (e) Setting II (a) Setting II (b) Setting II (c)
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Figure 2.3. Estimated power of RISE and GET for varying � under Settings I and II.
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Figure 2.4. Estimated power of RISE and GET for varying � under Settings III and IV.
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Table 2.5. The p-values of the tests showing inconsistent conclusion for the NYC taxi data.

Method Jan/Feb Feb/Mar May/Jun Jun/Jul Jul/Aug Aug/Sep Sep/Oct

Rg-NN 0.007 0.005 0.021 0.000 0.008 0.000 0.011

Ro-MDP 0.002 0.000 0.808 0.000 0.023 0.000 0.001

GET 0.090 0.013 0.018 0.000 0.020 0.000 0.003

MT 0.528 0.053 0.790 0.083 0.001 0.934 0.681

BD 0.340 0.050 0.280 0.040 0.310 0.070 0.030

Table 2.6. The p-values of the tests showing consistent conclusion for the NYC taxi data.

Method Mar/Apr Apr/May Oct/Nov Nov/Dec

Rg-NN 0.000 0.072 0.004 0.069

Ro-MDP 0.008 0.076 0.007 0.316

GET 0.000 0.367 0.008 0.211

MT 0.030 0.093 0.001 0.371

BD 0.020 0.190 0.010 0.270

41.5 latitude and from �74.2 to �73.6 longitude. We only consider those trips that began with a pickup

at JFK and ended with a drop-o↵ in New York City. The New York City is then split into a 30⇥ 30 grid

with equal size and the numbers of taxi drop-o↵s that fall within each cell are counted for each day. Thus

each day is represented by a 30 ⇥ 30 matrix and we use the negative Frobenius norm as the similarity

measure.

We then conduct eleven comparisons over the consecutive months: January vs February, . . . , Novem-

ber vs December. With the aim for illustration, we treat them as eleven separate tests rather than a

multiple testing problem. For simplicity, we only compare our method with GET and two rank-based

methods MT and BD. The five tests provide di↵erent conclusions for seven comparisons at 0.05 sig-

nificance level, which is presented in Table 2.5. The p-values of the four comparisons with the same

conclusion are presented in Table 2.6.

We notice that for these inconsistent conclusions, our methods always have p-values smaller than 0.05

except for May vs June with Ro-MDP. GET also has p-values smaller than 0.05 except for January vs

February. BD only rejects three of the comparisons while MT only rejects June vs July. It indicates that

RISE and GET may be more powerful in this dataset.

Since RISE yields a di↵erent conclusion from all of the other tests in the comparison of January

vs February, we take a closer look at it. We first examine each kth MST and k-MST separately for

k = 1, . . . , 5. The test statistic of GET depends on how far the two within-sample edge-counts deviate

from their expectations under the null distribution, so we check how the two edge-counts statistics change
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Table 2.7. The edge-count statistics on the kth MST and the p-values of GET using the kth MST and

the k-MST, respectively. The expected edges for each MST are 15.76 and 12.81 for Samples Jan and

Feb, respectively.

k 1 2 3 4 5

Edge-count
Jan 15 15 14 14 13

Feb 20 18 19 16 8

p-values
kth MST 0.034 0.112 0.105 0.540 0.109

k-MST 0.034 0.007 0.002 0.003 0.090

when k increases from 1 to 5. Table 2.7 shows the within-sample edge-counts of each sample in each

kth MST. The p-values of GET on the kth MST and the k-MST for di↵erent k’s are also presented. We

notice that for most of the kth MSTs, at least one of the within-sample edge-counts somewhat deviates

from their corresponding expectations. However, since GET treats all MSTs equally, there are two issues:

(i) di↵erent MSTs can contain opposite information and (ii) a kth MST for a large k can contain noisier

information. The first issue is obvious from the edge-counts statistics. For example, the sample February

has the within-sample edge-count above its expectation for the first to the forth MSTs, but below its

expectation for the fifth MST. This makes the p-value increases from 0.003 on the 4-MST to 0.09 on the

5-MST. The second issue can be observed from the p-values of GET on the kth MST. The p-value of the

comparison on the first MST is small, but it can be very large for other kth MSTs. When the kth MST

does not contain useful information but noise, the consequence for GET is to yield a larger p-value. On

the other hand, RISE is less a↵ected by the two issues by incorporating weights.

2.5.2 Brain network data

We here evaluate the performance of RISE in distinguishing di↵erences in brain connectivity between male

and female subjects using brain networks constructed from di↵usion magnetic resonance imaging (dMRI).

The data from the HNU1 study [Zuo et al., 2014] consists of dMRI records of fifteen male and fifteen

female healthy subjects that were scanned ten times each over a period of one month. Processing the

data by the same way as Arroyo et al. [2021], we constructed 300 weighted networks (one per subject and

scan) with 200 nodes registered to the CC200 atlas using the NeuroData’s MRI to Graphs pipeline [Kiar

et al., 2018]. Figure 2.5 plots four networks with two networks from male subjects and two from female

subjects. The networks are then represented by 200⇥200 weighted adjacency matrices. For each subject,

we use the average of their ten networks from di↵erent scans as their brain network representation, then

we obtain fifteen networks for the male and female groups, respectively. Here, we also use the negative

Frobenius norm as the similarity measure.

The results are presented in Table 2.8. Since the sample size is small (N = 30), to check the

validity of the asymptotic p-value approximation, we also show the p-values of GET and RISE from
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Figure 2.5. The brain networks of two male subjects (blue) and two female subjects.

Table 2.8. The p-values of the tests for the brain network data.

Method Rg-NN Ro-MDP GET MT BD

p-values 0.003 (0.007) 0.019 (0.019) 0.005 (0.011) 0.095 0.057

1000 permutations, which are showed in the brackets. We notice that for RISE, the approximate p-values

are very close to the p-values from permutations even in such a small sample size. All of these tests have

small p-values. BD shows some evidence of di↵erence with a p-value slightly larger than 0.05 while MT

shows less evidence of di↵erence, but RISE can provide a more confident conclusion with smaller p-values.

Besides, a heat map of the distance matrix of the 30 subjects is presented in Figure 2.6 where the

first 15 subjects are male and the others female. We see an obvious di↵erence between male and female

subjects from the heat map, where the male subjects have larger within-sample distances but the female

subjects have smaller within-sample distances. This is an evidence for scale di↵erence.

We further plot the entrywise mean and standard deviation of the weighted networks for each sample

as shown in Figure 2.7, which shows that the entrywise means of the two sample are close while significant

di↵erences exist for variances of some covariates. For example, several covariates have standard deviation

near 3000 for male subjects but only near 2000 for female subjects. These results support the conclusion

from RISE that the male and female brain networks are di↵erent.

2.6 Discussion and conclusion

We propose a new framework of asymptotically distribution-free rank-based test, which shows superior

performance under a wide range of alternatives. Specifically, we suggest to use Rg-NN because of its

robust performance and lower computational complexity. In most settings of the paper, we fix k = 10

for Rg-NN, which is already good enough in terms of power. For tests based on similarity graphs, the

choice of graph is still an open question. Some previous works [Friedman and Rafsky, 1979, Zhang and

Chen, 2022, Chen and Friedman, 2017, Chen et al., 2018] suggested to use the k-MST and set k as a

small constant number, e.g., k = 3 or k = 5. Recently, Zhu and Chen [2021] observed that a denser
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Figure 2.6. The heatmap of the distance matrix of the 30 subjects, where the first 15 subjects are
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standard deviation for each entry of their weighted networks.

graph can improve the power of the tests such that k = O(N�) for some 0 < � < 1 where N is the

total number of observations. Following this, Zhang and Chen [2021] compared the power for di↵erent

�’s under various simulation settings and suggested to use � = 0.5 for GET, where it showed adequate

power across di↵erent simulation settings. Here we adopt a similar procedure to explore k for RISE with

details in Appendix A.9.3. Based on these numerical results as well as the results of Section 2.4.3, we

found that using k = [N0.65] for k-NNG or k-MDP could be a good choice when computation is not an
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issue.
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Chapter 3

RING-CPD: Asymptotic Distribution-free

Change-point Detection for Multivariate

and Non-Euclidean Data

3.1 Introduction

Given a sequence of independent observations, an important problem is to decide whether the observations

are from the same distribution or there is a change of distribution at a certain time point. Change-point

detection (CPD) has attracted a lot of interests since the seminal work of Page [1954]. In this big

data era, it has diverse applications in many fields, including functional magnetic resonance recordings

[Barnett and Onnela, 2016, Zambon et al., 2019], healthcare [Staudacher et al., 2005, Malladi et al., 2013],

communication network evolution [Kossinets and Watts, 2006, Eagle et al., 2009, Peel and Clauset, 2015],

and financial modeling [Bai and Perron, 1998, Talih and Hengartner, 2005]. Parametric approaches [see for

example Srivastava and Worsley, 1986, Zhang et al., 2010, Siegmund et al., 2011, Chen and Gupta, 2012,

Wang et al., 2018] are useful to address the problem for univariate and low-dimensional data, however,

they are limited for high-dimensional or non-Euclidean data due to a large number of parameters to be

estimated unless strong assumptions are imposed.

A few nonparametric methods have been proposed, including kernel-based methods [Desobry et al.,

2005, Li et al., 2015, Garreau and Arlot, 2018, Arlot et al., 2019, Chang et al., 2019], interpoint distance-

based methods [Matteson and James, 2014, Li, 2020] and graph-based methods [Chen and Zhang, 2015,

Shi et al., 2017, Chu and Chen, 2019, Chen, 2019, Song and Chen, 2021, Zhang and Chen, 2022, Liu and

Chen, 2022, Nie and Nicolae, 2021]. For kernel-based and distance-based methods, many su↵ered from

the curse of dimensionality for high-dimensional data [Chen and Friedman, 2017], thus losing power for

some common types of changes. With this observation, Li [2020] proposed an asymptotic distribution-

free approach utilizing all interpoint distances that worked well for detecting both location and scale

changes. However, their test statistics are time and memory consuming, and implicitly requires the
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existence of the second moment of the underlying distribution, which can be violated by heavy-tailed

data or outliers that are common in many applications. The graph-based CPD methods are promising

approaches due to their flexibility and e�ciency in analyzing high-dimensional and non-Euclidean data.

Chen and Zhang [2015] proposed the graph-based test that can be applied to generic graphs with analytical

p-value approximations for type I error control, then Chu and Chen [2019] proposed new test statistics

that take the curse of dimensionality into account and can detect various types of changes. However, the

graph-based methods focused on unweighted graphs, which may cause information loss.

Among the nonparametric methods, rank-based methods are attractive due to their robustness and

e�ciency. For univariate data, rank tests for CPD have been extensively studied [Bhattacharyya and

Johnson, 1968, Darkhovskh, 1976, Pettitt, 1979, Schechtman, 1982, Lombard, 1987, 1983, Gerstenberger,

2018, Wang et al., 2020], however, they are less explored for high-dimensional or non-Euclidean data.

Specifically, existing multivariate rank-based methods do not apply to high-dimensional data. For in-

stance, Lung-Yut-Fong et al. [2015] proposed to use the component-wise rank, which requires the dimen-

sion of the data to be smaller than the number of observations. Zhang et al. [2020] and Shu et al. [2022]

proposed the spatial rank-based methods, which were designed mainly for the shift in the mean. Chenouri

et al. [2020] proposed to use the ranks obtained from data depths, which is often used for low-dimensional

data and is computation-extensive when the dimension is large.

Noticing the gap between the potential benefit of the rank-based method and the scarce exploration

for multivariate/high-dimensional data, we propose a new rank-based method called Rank INduced

by Graph Change-Point Detection (RING-CPD), which can be applied to high-dimensional and non-

Euclidean data. Unlike previous works dealing with the ranks of observations that are often limited to

low-dimensional distributions, we propose to use the rank induced by similarity graphs. The new test

is presented in Section 3.2. We prove that our scan statistics are asymptotic distribution-free and check

the asymptotic approximation accuracy in finite samples by simulation. The consistency of the statistics

defined on some special similarity graphs is also presented in Section 3.3. The proposed statistics can work

for a wide range of alternatives. Specifically, they are robust to heavy-tailed distribution and outliers, as

illustrated by extensive simulation in Section 3.4 and two real data examples in Section 3.5. The details

of proofs of the theorems are in Appendix B.

3.2 Method

For a sequence of independent observations
�
yi
 n
i=1

, we consider testing

H0 : yi ⇠ F0, i = 1, . . . , n
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against the single change-point alternative

H1 : 91  ⌧ < n, yi ⇠

8
><

>:

F0, i  ⌧

F1, otherwise

or the changed interval alternative

H2 : 91  ⌧1 < ⌧2 < n, yi ⇠

8
><

>:

F0, i = ⌧1 + 1, . . . , ⌧2

F1, otherwise

where F0 and F1 are two di↵erent distribution. Let R = (Rij)ni,j=1 be the graph-induced rank matrix

defined in Section 1.2 constructed using {yi}ni=1. Based on the ranks, we define the two basic quantities

U1(t1, t2) =
nX

i=1

nX

j=1

Rij (t1 < i, j  t2) and U2(t1, t2) =
nX

i=1

nX

j=1

Rij (i, j  t1 or i, j > t2) .

We assume that R is symmetric, otherwise, it can be replaced by 1
2 (R+R

T), which does not change the

values of U1(t1, t2) and U2(t1, t2). We propose the Mahalanobis-type statistic

TR(t1, t2) =

0

@U1(t1, t2)�
�
U1(t1, t2)

�

U2(t1, t2)�
�
U2(t1, t2)

�

1

A
T

⌃(t1, t2)
�1

0

@U1(t1, t2)�
�
U1(t1, t2)

�

U2(t1, t2)�
�
U2(t1, t2)

�

1

A ,

where ⌃(t1, t2) = Cov
�
(U1(t1, t2), U2(t1, t2))T

�
and the max-type statistic

MR(t1, t2) = max
�
Zw(t1, t2), |Zdi↵(t1, t2)|

�

where

Zw(t1, t2) =
Uw(t1, t2)�

�
Uw(t1, t2)

�
q
Var
�
Uw(t1, t2)

� and Zdi↵(t1, t2) =
Udi↵(t1, t2)�

�
Udi↵(t1, t2)

�
q

Var
�
Udi↵(t1, t2)

�

with Udi↵(t1, t2) = U1(t1, t2)� U2(t1, t2) and

Uw(t1, t2) =
n� t2 + t1 � 1

n� 2
U1(t1, t2) +

t2 � t1 � 1

n� 2
U2(t1, t2) .

The explicit expressions of
�
U1(t1, t2)

�
,
�
U2(t1, t2)

�
and ⌃(t1, t2) can be obtained through combina-

torial analysis and are presented in Lemma 3.2.1. Let

R̄i· =

Pn
j=1 Rij

n� 1
, r0 =

Pn
i=1 R̄i·

n
, eRi· = R̄i· � r0 , r

2
1 =

Pn
i=1 R̄

2
i·

n
, r2d =

Pn
i=1

Pn
j=1 R

2
ij

n(n� 1)
.

Besides, we let Vd = r2d � r20 and Vr = r21 � r20.

Lemma 3.2.1. Under the permutation null distribution, we have

�
U1(t1, t2)

�
= (t2 � t1)(t2 � t1 � 1)r0 ,

�
U2(t1, t2)

�
= (n� t2 + t1)(n� t2 + t1 � 1)r0

Var
�
U1(t1, t2)

�
= f1(t2 � t1)Vd + f2(t2 � t1)Vr ,

Var
�
U2(t1, t2)

�
= f1(n� t2 + t1)Vd + f2(n� t2 + t1)Vr ,

Cov
�
U1(t1, t2), U2(t1, t2)

�
= f1(t2 � t1)

�
Vd � 2(n� 1)Vr

�
,
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where

f1(t) =
2t(t� 1)(n� t)(n� t� 1)

(n� 2)(n� 3)
and f2(t) =

4t(n� t)(t� 1)(t� 2)(n� 1)

(n� 2)(n� 3)
.

The proof of Lemma 3.2.1 is through combinatorial analysis. It can be done similarly to the proof of

Theorem 2.1 in Zhou and Chen [2021] and thus omitted here.

Remark 3.2.1. Following Theorem 2.3 of Zhou and Chen [2021], we have TR(t1, t2) = Z2
w(t1, t2) +

Z2
di↵(t1, t2). So TR(t1, t2) and MR(t1, t2) are closely related. Under the alternative hypothesis, it is

possible that (i) both U1(t1, t2) and U2(t1, t2) are larger than their null expectations (a typical scenario

under location alternatives) and (ii) one of them is larger than while the other one is smaller than its

corresponding null expectation (a typical scenario under scale alternatives). See Chen and Friedman

[2017] for more discussions on these scenarios. For (i), Zw(t1, t2) will be large and for (ii), |Zdi↵(t1, t2)|

will be large. Thus, TR and MR are powerful for di↵erent types of alternatives.

Let TR(t) = TR(0, t) and MR(t) = MR(0, t). We consider two sets of scan statistics, one based on

TR’s and the other based on MR’s. For simplicity, we focus on MR in the following, but all quantities for

TR can be defined similarly. We reject H0 against H1, if the scan statistic

max
n0tn1

MR(t)

exceeds the critical value for a given nominal level. We reject H0 against H2, if the scan statistic

max
1t1<t2n

n0t2�t1n1

MR(t1, t2)

is large enough. Here n0 and n1 are pre-specified integers. A common choice of n0 and n1 is n0 = [0.05n]

and n1 = n� n0.

3.3 Asymptotic distribution of the scan statistics

For decision-making, the critical values should be determined. Alternatively, we consider the tail proba-

bilities
�

max
n0tn1

MR(t) > b
�

(3.1)

for the single change-point alternative and

�
max

1t1<t2n
l0t2�t1l1

MR(t1, t2) > b
�

(3.2)

for the changed interval alternative, respectively, where denotes the probability under the permutation

null distribution. When n is small, we can apply the permutation procedure. However, it is time-

consuming when n is large. Hence, we derive the asymptotic distribution of the scan statistics for

analytic approximations of the tail probabilities.
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3.3.1 Asymptotic null distributions of the basic processes

By the decomposition of TR(t) and TR(t1, t2) and the definition of MR(t) and MR(t1, t2), it is su�cient

to derive the limiting distributions of

�
Zdi↵(bnuc) : 0 < u < 1

 
and

�
Zw(bnuc) : 0 < u < 1

 
(3.3)

for the single change-point alternative where Zdi↵(t) = Zdi↵(0, t) and Zw(t) = Zw(0, t), and

�
Zdi↵(bnuc, bnvc) : 0 < u < v < 1

 
and

�
Zw(bnuc, bnvc) : 0 < u < v < 1

 
(3.4)

for the changed-interval alternative, where bxc denotes the largest integer less than or equal to x.

Theorem 3.3.1. Under Conditions

(3.1) r1 � rd; (3.2)
Pn

i=1

�Pn
j=1 R

2
ij

�2 - n3r4d; (3.3)
Pn

i=1

�� eRi·
��3 � (nVr)1.5; (3.4)

Pn
i=1

eR3
i· � nrdVr;

(3.5)
��Pn

i=1

Pn
j 6=s RijRis

eRj· eRs·
�� � n3r2dVr; (3.6)

Pn
i=1

Pn
j=1

Pn
s,l 6=i,j RijRjsRslRli � n4r4d, we have

1.
�
Zdi↵(bnuc) : 0 < u < 1

 
and

�
Zw(bnuc) : 0 < u < 1

 
converge to independent Gaussian

processes in finite dimensional distributions, which we denote as
�
Z⇤
di↵(u) : 0 < u < 1

 
and

�
Z⇤
w(u) : 0 < u < 1

 
, respectively.

2.
�
Zdi↵(bnuc, bnvc) : 0 < u < v < 1

 
and

�
Zw(bnuc, bnvc) : 0 < u < v < 1

 
converge to indepen-

dent two-dimension Gaussian random fields in finite dimensional distributions, which we denote as
�
Z⇤
di↵(u, v) : 0 < u < v < 1

 
and

�
Z⇤
w(u, v) : 0 < u < v < 1

 
, respectively.

Remark 3.3.1. The Conditions (3.1)-(3.6) are the same as Zhou and Chen [2021] and are discussed in

detail there. These conditions essentially require that there are not too much hub nodes in the similarity

graph. Particularly, they are mild and allow the non-zero entries to be the order of n1+↵ for some

0 < ↵ < 1. The result is inspiring as we do not need extra conditions when we extend the statistics from

two-sample testing to the scan statistics for the CPD.

The proof of Theorem 3.3.1 is deferred to Appendix B.1. Let ⇢⇤w(u, v) = Cov
�
Z⇤
w(u), Z

⇤
w(v)

�
and

⇢⇤di↵(u, v) = Cov
�
Z⇤
di↵(u), Z

⇤
di↵(v)

�
. We give the explicit formula of ⇢⇤w(u, v) and ⇢⇤di↵(u, v) in Theorem

3.3.2, whose proof is in Appendix B.2.

Theorem 3.3.2. The exact expressions for ⇢⇤di↵(u, v) and ⇢⇤w(u, v) are

⇢⇤w(u, v) =
(u ^ v)(1� (u _ v))

(u _ v)(1� (u ^ v))
,

⇢⇤di↵(u, v) =
(u ^ v)(1� (u _ v))p

(u ^ v)(1� (u ^ v))(u _ v)(1� (u _ v))
,

where u ^ v = min(u, v) and u _ v = max(u, v).

Theorems 3.3.1 and 3.3.2 together show that the limiting distributions of (3.3) and (3.4) are indepen-

dent of R, thus asymptotically distribution-free. As a result, the proposed statistics based on (3.3) and

(3.4) are also asymptotically distribution-free.
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3.3.2 Tail probabilities

Based on Theorems 3.3.1 and 3.3.2, following the routine of Chu and Chen [2019], we can approximate

(3.1) by

�
max

n0tn1

TR(t) > b
�
⇡ be�b/2

2⇡

Z 2⇡

0

Z n1
n

n0
n

u(x,!)⌫
�p

2bu(x,!)/n
�
dxd! , (3.5)

�
max

1t1<t2n
l0t2�t1l1

TR(t1, t2) > b
�

⇡ b2e�b/2

2⇡

Z 2⇡

0

Z l1
n

l0
n

u(x,!)⌫
�p

2bu(x,!)/n
�2
(1� x)dxd! , (3.6)

where u(x,!) = hw(n, x) sin
2(!) + hdi↵ (x) cos2(!) with

hw(n, x) =
(n� 1)(2nx2 � 2nx+ 1)

2x(1� x)(nx� 1)(nx� n+ 1)
and hdi↵(n, x) =

1

2x(1� x)
.

Here v(x) is approximated [Siegmund and Yakir, 2007] as

v(x) ⇡ (2/x)(�(x/2)� 0.5)

(x/2)�(x/2) + �(x/2)
,

where �(·) and �(·) denote the standard normal cumulative density function and standard normal density

function, respectively. We also have

�
max

n0tn1

MR(t) > b
�
⇡ 1�

�
max

n0tn1

Zw(t) < b
� �

max
n0tn1

|Zdi↵(t)| < b
�
, (3.7)

�
max

1t1<t2n
l0t2�t1l1

MR(t1, t2) > b > b
�

(3.8)

⇡ 1�
�

max
l0t2�t1l1

Zw(t1, t2) < b
� �

max
l0t2�t1l1

|Zdi↵(t1, t2)| < b
�
,

where

�
max

n0tn1

Zw(t) > b
�
⇡ b�(b)

Z n1
n

n0
n

hw(n, x)⌫
�
b
p
2hw(n, x)/n

�
dx , (3.9)

�
max

l0t2�t1l1
Zw(t1, t2) > b

�
(3.10)

⇡ b3�(b)

Z l1
n

l0
n

⇣
hw(n, x)⌫

�
b
p
2hw(n, x)/n

�⌘2
(1� x)dx ,

�
max

n0tn1

Zdi↵(t) > b
�
⇡ b�(b)

Z n1
n

n0
n

hdi↵(n, x)⌫
�
b
p
2hdi↵(n, x)/n

�
dx , (3.11)

�
max

l0t2�t1l1
Zdi↵(t1, t2) > b

�
(3.12)

⇡ b3�(b)

Z l1
n

l0
n

⇣
hdi↵(n, x)⌫

�
b
p
2hdi↵(n, x)/n

�⌘2
(1� x)dx .

3.3.3 Skewness correction

As observed by Chen and Zhang [2015], Chu and Chen [2019], the analytical approximations can be

improved by skewness correction when n0 and n � n1 decrease, while the skewness correction of (3.5)
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Figure 3.1. Plots of skewness �j(t) =
�
Z3

j (t)
�
, j = 2, di↵ against t with the graph-induced rank in

10-NNG constructed on Euclidean distance on a sequence of 1000 points.

and (3.6) rely heavily on extrapolation, thus not suggested. This can be seen clearly in Figure 3.1, as

Zw(t) and Zdi↵(t) are more skewed toward the two ends. To be specific, instead of using (3.9)-(3.12) to

approximate (3.7) and (3.8), we use

�
max

n0tn1

Zw(t) > b
�
⇡ b�(b)

Z n1
n

n0
n

Kw(nx)hw(n, x)⌫
�
b
p

2hw(n, x)/n
�
dx , (3.13)

�
max

l0t2�t1l1
Zw(t1, t2) > b

�
(3.14)

⇡ b3�(b)

Z l1
n

l0
n

Kw(nx)
⇣
hw(n, x)⌫

�
b
p

2hw(n, x)/n
�⌘2

(1� x)dx ,

�
max

n0tn1

Zdi↵(t) > b
�
⇡ b�(b)

Z n1
n

n
n

Kdi↵(nx)hdi↵(n, x)⌫
�
b
p
2hdi↵(n, x)/n

�
dx , (3.15)

�
max

l0t2�t1l1
Zdi↵(t1, t2) > b

�
(3.16)

⇡ b3�(b)

Z l1
n

l0
n

Kdi↵(nx)
⇣
hdi↵(n, x)⌫

�
b
p
2hdi↵(n, x)/n

�⌘2
(1� x)dx ,

where for j = w, di↵,

Kj(t) =
exp

⇣
1
2

�
b� ✓̂b,j(t)

�2
+ 1

6�j(t)✓̂b,j(t)
3
⌘

q
1 + �j(t)✓̂b,j(t)

with ✓̂b,j(t) =
�1+

p
1+2�j(t)b

�j(t)
and �j(t) =

�
Z3
j (t)

�
. The only unknown quantities in the above expressions

are �w(t) and �di↵(t), whose exact analytic expressions are quite long and provided in Appendix B.3.

3.3.4 Assessment of finite sample approximations

Here we assess the the performance of the asymptotic approximations with finite samples. For a constant

⇢, we define the first-order auto-regressive correlation matrix ⌃(⇢) = (⇢|i�j|)di,j=1 2 Rd⇥d. We consider

three distributions for three di↵erent dimensions d = 20, 100 and 1000 with n = 1000:

(i) the multivariate Gaussian distribution yi ⇠ Nd

�
0d,⌃(0.6)

�
;

(ii) the multivariate t5 distribution yi ⇠ t5
�
0d,⌃(0.5)

�
;
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Table 3.1. Empirical size of Tg-NN at 0.05 nominal level with n = 1000 under settings (i), (ii) and

(iii). The k-NNG for various k’s is considered. Here k1 = [n0.5
], k2 = [n0.65

] and k3 = [n0.8
].

Setting
n0 = [0.1n] n0 = [0.05n] n0 = [0.025n]

k
d 20 100 1000 20 100 1000 20 100 1000

(i)

5 0.06 0.04 0.05 0.06 0.06 0.06 0.07 0.08 0.10

10 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.08 0.08

k1 0.05 0.05 0.04 0.06 0.05 0.05 0.07 0.06 0.07

k2 0.05 0.05 0.05 0.06 0.05 0.06 0.06 0.06 0.06

k3 0.08 0.06 0.06 0.09 0.06 0.06 0.10 0.07 0.06

(ii)

5 0.05 0.05 0.09 0.04 0.07 0.14 0.06 0.10 0.21

10 0.05 0.06 0.06 0.05 0.08 0.11 0.06 0.10 0.17

k1 0.07 0.06 0.06 0.07 0.08 0.08 0.07 0.10 0.10

k2 0.08 0.07 0.06 0.08 0.08 0.07 0.10 0.09 0.09

k3 0.11 0.09 0.06 0.12 0.09 0.06 0.13 0.10 0.07

(iii)

5 0.05 0.06 0.07 0.06 0.07 0.12 0.08 0.10 0.17

10 0.04 0.06 0.08 0.06 0.07 0.11 0.07 0.08 0.13

k1 0.07 0.06 0.06 0.08 0.07 0.08 0.09 0.09 0.11

k2 0.09 0.07 0.06 0.09 0.08 0.06 0.11 0.09 0.08

k3 0.12 0.08 0.05 0.13 0.08 0.04 0.15 0.09 0.04

(iii) the multivariate log-normal distribution yi ⇠ exp
�
Nd

�
0d,⌃(0.4)

��
.

We report the empirical sizes estimated by 1, 000 Monte Carlo simulations. Here, we focus on the graph-

induced rank in k-NNG. For all numeric experiments in the paper, we use the negative Euclidean norm

as the similarity measure unless specifically noted. We denote the scan statistics TR(t) and MR(t) on

the graph-induced rank in k-NNG by Tg-NN and Mg-NN. We set n1 = n � n0 and consider n0 =

[0.025n], [0.05n], [0.1n]. The nominal level is set to be 0.05. In Table 3.1, we show the empirical sizes

of Tg-NN with its p-values approximated by (3.5). When the data is generated from the multivariate

Gaussian distribution, the empirical size of Tg-NN is well controlled for n0 � [0.05n] and k not too large

(k  [n0.65]). However, when the data is from a heavy-tailed distribution ( (ii) and (iii)), the empirical

size of Tg-NN is not that well controlled when the dimension is high or k is large. For Mg-NN, we could

perform skewness correction (Table 3.2). We see that the empirical sizes are much better controlled under

all settings even for n0 as small as [0.025n].
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Table 3.2. Empirical size of Mg-NN after skewness correction at 0.05 nominal level with n = 1000

under settings (i), (ii) and (iii). The k-NNG for various k’s is considered. Here k1 = [n0.5
], k2 = [n0.65

]

and k3 = [n0.8
].

Setting
n0 = [0.1n] n0 = [0.05n] n0 = [0.025n]

k
d 20 100 1000 20 100 1000 20 100 1000

(i)

5 0.04 0.02 0.02 0.04 0.03 0.02 0.05 0.04 0.04

10 0.03 0.02 0.03 0.04 0.03 0.03 0.05 0.03 0.04

k1 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03

k2 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03

k3 0.04 0.03 0.04 0.05 0.04 0.04 0.06 0.04 0.03

(ii)

5 0.03 0.03 0.04 0.02 0.03 0.06 0.04 0.04 0.08

10 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.04 0.06

k1 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.03

k2 0.04 0.04 0.03 0.05 0.03 0.03 0.05 0.04 0.04

k3 0.06 0.05 0.03 0.06 0.05 0.03 0.07 0.05 0.03

(iii)

5 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.06

10 0.03 0.04 0.03 0.03 0.04 0.04 0.05 0.04 0.05

k1 0.04 0.03 0.02 0.05 0.03 0.02 0.05 0.03 0.03

k2 0.04 0.03 0.02 0.05 0.03 0.02 0.06 0.04 0.03

k3 0.05 0.04 0.03 0.06 0.03 0.03 0.07 0.04 0.03

3.3.5 Consistency

We here examine the consistency of TR and MR for the k-NNG and k-MST. At first, we define the limits

T (�1, �2) = lim
n!1

TR

�
[�1n], [�2n]

�

n
and T (�) = T (0, �) and

M(�1, �2) = lim
n!1

MR

�
[�1n], [�2n]

�
p
n

and M(�) = M(0, �) .

Theorem 3.3.3. Consider two continuous multivariate distributions F0 and F1 which di↵er on a set of

positive Lebesgue measure, and the graph-induced rank is used with the k-MST or k-NNG based on the

Euclidean distance, where k = O(1).

• For the change-point alternative H1: let ! = limn!1 ⌧/n 2 (0, 1), !̂T = ⌧̂T /n and !̂M = ⌧̂M/n.

Assume that

sup
�2(0,1)

���
TR([�n])

n
� T (�)

��� P! 0 and sup
�2(0,1)

���
MR([�n])p

n
�M(�)

��� P! 0 , (3.17)

Then the scan statistics of TR(t) and MR(t) are consistent in that they will reject H0 against H1
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with probability goes to one for any significance level 0 < ↵ < 1 and

B

�
|!̂T � !| > ✏

�
! 0 and B

�
|!̂M � !| > ✏

�
! 0 for any ✏ > 0 .

• For the changed interval alternative H2: let !i = limn!1 ⌧i/n 2 (0, 1), !̂Ti = ⌧̂Ti/n and !̂Mi =

⌧̂Mi/n for i = 1, 2. Assume that !2 � !1 > 0 and

sup
0<�1<�2<1

���
TR([�1n], [�2n])

n
� T (�1, �2)

��� P! 0 and

sup
0<�1<�2<1

���
MR([�1n], [�2n])p

n
�M(�1, �2)

��� P! 0 ,

(3.18)

then the scan statistics of TR(t1, t2) and MR(t1, t2) are consistent in that they will reject H0 against

H2 with probability goes to one for any significance level 0 < ↵ < 1 and

B

�
[2
i=1 {|!̂Ti � !i| > ✏}

�
! 0 and B

�
[2
i=1 {|!̂M � !| > ✏}

�
! 0 for any ✏ > 0 .

The proof of this theorem is in Appendix B.4. Although Assumptions 3.17 and 3.18 are reasonable,

their verification of is di�cult and is left for future work. Here we check them numerically through

Monte Carlo simulations. Specifically, we consider the following combinations of (F0, F1) with ! = 0.5

and d = 500:

(i) the multivariate Gaussian distribution
�
Nd(0d, Id), Nd(0.11d, Id)

�
;

(ii) the multivariate t3 distribution
�
t3(0d, Id), t3(0.11d, 1.022Id

�
;

(iii) the multivariate Cauchy distribution
�
Cauchyd(0d, Id),Cauchyd(21d, Id)

�
.

We generate 10 independent sequences for each setting and the plots of TR([�n])/n and MR([�n])/
p
n

against � for various values of n are presented Figures 3.2 and 3.3. These plots verify the assumption

that TR([�n])/n and MR([�n])/
p
n converge when n ! 1.

3.4 Simulation studies

3.4.1 The choice of k

The choice of graphs remains an open question for CPD based on similarity graphs [Friedman and Rafsky,

1979, Zhang and Chen, 2022, Chen and Friedman, 2017, Chen et al., 2018]. We adapt the method in

Zhang and Chen [2021] and Zhou and Chen [2021]. Specifically, they compare the empirical power of the

method for di↵erent choice of k = [n�] by varying � from 0 to 1. Zhang and Chen [2021] suggested to use

k = [n0.5] for GET when the k-MST is used, while Zhou and Chen [2021] recommended k = [n0.65] for

TR with graph-induced rank on the k-NNG for the two sample test setting. We follow the same way in

choosing k for Tg-NN and Mg-NN. We generate independent sequences form three di↵erence distribution

pairs of (F0, F1):
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Figure 3.2. Ten independent sequences (represented by di↵erent colors) of TR([�n])/n against � for

n = 200, 800, 1600 and 6400 for the three settings.
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Figure 3.3. Ten independent sequences (represented by di↵erent colors) of MR([�n])/
p
n against �

for n = 200, 800, 1600 and 6400 for the three settings.

(i) the multivariate Gaussian distribution
�
Nd(0d, Id), Nd(

30p
Nd

1d, Id)
�
;

(ii) the multivariate t3 distribution
�
t3(0d, Id), t3(

30p
Nd

1d, (1 +
30p
Nd

)2Id)
�
;

(iii) the multivariate Cauchy distribution
�
Cauchyd(0d, Id),Cauchyd(

30p
N
1d, Id)

�
.

The parameters are set to make these tests have moderate power. The change-point ⌧ = n/2, the
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dimension d = 500 and n = 50, 100, 200. We set n0 = d0.05ne and n1 = n � n0, which will also be our

choice by default in the latter experiments, where dxe denotes the smallest integer larger than or equal

to x. For comparison, we also show the result of GET and MET using k-MST. The detection power

is defined as the ratio of successful detection where the p-value is smaller than 0.05. For fairness, the

p-values are obtained through 1, 000 permutations for all methods.

Figure 3.4 shows the power of these tests for k = [n�]. First, we see that Tg-NN and Mg-NN have

similar performance. The power of these tests first increase quickly when k or � increase. If k continues to

increase, the power of GET and MET decreases dramatically, but the performance of Tg-NN and Mg-NN

seems more robust. The reason may be that a denser graph can contain more similarity information, while

noisier information can also be incorporated when more edges are included. However, Tg-NN and Mg-NN

alleviate the problem by and gain benefit from incorporating ranks on edges. The overall performances of

Tg-NN and Mg-NN are the best, with a significant improvement of the power over heavy-tailed settings

(the multivariate t3 and Cauchy distributions) and the robustness over a wide range choice of k. Finally,

we choose � = 0.65 for Tg-NN and Mg-NN, and � = 0.5 for GET and MET in the following analysis,

which is reasonable for these methods to achieve adequate power and coincides with previous choices

[Zhang and Chen, 2021, Zhou and Chen, 2021].

3.4.2 Performance comparison

We compare the proposed method to GET and MET on k-MST using the R package gSeg [Chu and Chen,

2019] with k = [n0.5], the method using Bayesian-type statistic based on the shortest Hamiltonian path

[Shi et al., 2017] (SWR), the method based on Fréchet means and variances [Dubey and Müller, 2020]

(DM). We also compare with three interpoint distance-based methods, the widely used distance-based

method E-Divisive (ED) [Matteson and James, 2014] implemented in the R package ecp, and the other two

methods proposed recently by Li [2020] and Nie and Nicolae [2021]. Li [2020] proposed four statistics and

we compare the statistic C2N that had the satisfactory performance in most of their simulation settings.

Nie and Nicolae [2021] proposed three test statistics, which preform well for location change, scale change

and general change, respectively. Here we compare with their statistic S3, which they concluded to have

relative robust performance across various alternative. For fairness, the p-values of these methods are

decided by 1, 000 permutations.

We set n = 200 and the change-point ⌧ = [n/3] and consider the dimension of the distributions

d = 200, 500, 1000. Before the change-point, yi ⇠ F0 and after the change-point, yi ⇠ F1. We consider

both the empirical power and the detection accuracy estimated from 1000 trails for each scenario. The

empirical power is the ratio of the successfully detection defined as p-value smaller than the nominal level

0.05. The detection accuracy is provided in parentheses, which is the ratio of trials that the detected

change-point is located in [⌧ � 0.05n, ⌧ + 0.05n] and the p-value smaller than 0.05. We consider various

settings which cover the light-tailed, heavy-tailed, skewed, mixture distributions for location, scale, and
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Figure 3.4. Estimated power of Tg-NN, Mg-NN, GET, and MET over 1000 times of repetitions under

each setting.

mixed alternatives. Specifically, we consider six settings for Fi, i = 0, 1:

(I) the multivariate Gaussian distribution Nd(µi,⌃i);

(II) the multivariate t5 distribution t5(µi,⌃i);

(III) the multivariate Cauchy distribution Cauchy(µi,⌃i);

(IV) the multivariate �2
5 distribution �2

5(µi,⌃i) (generated as ⌃
1
2
i (X�51d+µi) where the d components

of X are i.i.d. �2
5);

(V) the Gaussian mixture distribution WNd(µi,⌃i) + (1�W )Nd(�µi,⌃i) with W ⇠ Bernoulli(0.5);

(VI) the multivariate normal distribution with t7 outliers WNd(µi,⌃i) + (1�W )t7
�
µi,⌃i) with W ⇠

Bernoulli(0.9).
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Table 3.3. The specific changes for di↵erent settings and alternatives.

Alternative

Setting
H0 (a) (b) (c) (d) (e)

⌃0 � � ⌃1 � � � ⌃1

(I) ⌃(0.6) 2 log d
5
p
d

q
log d
16d ⌃(0.16) log d

10
p
d

q
log d
16d

q
log d
4d ⌃(0.3)

(II) ⌃(0.6) 5 log d
4
p
d

3 log d
10

p
d

0.6⌃(0.1) log d
3
p
d

3 log d
10

p
d

log d
2
p
d

⌃(0.8)

(III) ⌃(0.4) 11 log d
20

p
d

6 log d
5d2/5 ⌃(0.85) 6 log d

25d2/5

q
log d
25d

6 log d
25d2/5 ⌃(0.6)

(IV) A0
5 log d
2
p
d

9
10

p
d

A1

q
49 log d
16d

3
4
p
d

q
49 log d
16d A2

(V) Id
3

5 log d

q
log d
25d ⌃(0.55) 3

10 log d

q
log d
25d

3
10 log d ⌃(0.48)

(VI) ⌃(0.5) 7 log d
20

p
d

log d
5
p
d

⌃(0.1) log d
5
p
d

log d
5
p
d

log d
5
p
d

⌃(0.15)

We set µ0 = 0d for F0 and µ1 = �1d for F1, where � is di↵erent for di↵erent settings. For each setting,

we consider five di↵erent changes:

(a) location (� 6= 0 and ⌃1 = ⌃0);

(b) simple scale (� = 0 and ⌃1 = (1 + �)2⌃0);

(c) complex scale (� = 0 and ⌃1 6= ⌃0);

(d) location and simple scale mixed (� 6= 0 and ⌃1 = (1 + �)2⌃0);

(e) location and complex scale mixed (� 6= 0 and ⌃1 6= ⌃0).

The choice of �, � and ⌃i, i = 1, 2 are specified di↵erently for the settings and alternatives, summarized in

Table 3.3, where the changes in signal are set so that the best test has moderate power to be comparable.

Here for Setting IV, the covariance matrices Ai = VBiV, for i = 0, 1, 2, where V is a diagonal matrix

with the diagonal elements sampled independently from U(1, 3), Bi = diag(Bi1, . . . ,Bi d
10
) is a block-

diagonal correlation matrix. Each diagonal block Bij is a 10 ⇥ 10 matrix with diagonal entries being 1

and o↵-diagonal entries equal to ⇢ij ⇠ U(aj , bj) independently. We set a0 = 0, b0 = 0.5, a1 = 0.3, b1 = 0.8

and a3 = 0.2, b3 = 0.7. We present the result of Settings I-III in Tables 3.4 and 3.5, and the result of

Settings IV-VI in Tables 3.6 and 3.7. The best method of each setting and those better than 95% of the

best one are highlighted in bold type.

From Table 3.4, we see that for the multivariate Gaussian distribution, under (a) the location change,

ED and C2N perform the best, followed immediately by Tg-NN and Mg-NN. S3 performs the best for

the (b) simple scale change, followed immediately by C2N , Tg-NN and Mg-NN. For (c) the complex scale

change, Tg-NN and Mg-NN outperform other methods, and SWR also performs well, while other methods

have low power. From Table 3.5, for (d) the location and simple scale mixed change, S3 performs the
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Table 3.4. The empirical powers (detection accuracy) in percentile under Settings I-III: (a)-(c).

Setting I (Gaussian) Setting II (t5) Setting III (Cauchy)

d 200 500 1000 200 500 1000 200 500 1000

(a) Location change

Tg-NN 73(55) 63(46) 55(37) 86(67) 74 (56) 60(41) 96(85) 81(69) 55(42)

Mg-NN 76(58) 67(49) 59(40) 89(71) 79(59) 67(49) 99(88) 91(78) 72(55)

GET 63(46) 52(36) 40(25) 68(48) 41(26) 20(12) 85(72) 54(40) 28(17)

MET 68(50) 58(39) 46(30) 75(52) 50(32) 31(18) 90(75) 67(50) 44(26)

SWR 21(8) 18(6) 16(4) 19(6) 19(6) 15(4) 44(23) 40(18) 32(15)

DM 7(0) 6(0) 7(0) 6(0) 5(0) 4(0) 5(0) 4(0) 5(0)

ED 97(85) 96(83) 95(80) 73(57) 28(19) 12(4) 6(1) 5(0) 4(1)

C2N 95(81) 93(81) 90(75) 53(34) 19(7) 8(2) 5(0) 5(0) 6(0)

S3 5(1) 5(1) 6(0) 6(0) 5(0) 4(0) 5(0) 4(0) 5(0)

(b) Simple scale change

Tg-NN 62(33) 72(43) 77(47) 99(76) 93(63) 79(45) 98(70) 90(56) 76(43)

Mg-NN 65(38) 74(46) 80(51) 99(78) 94(68) 82(47) 98(70) 90(56) 81(46)

GET 61(33) 71(40) 74(44) 99(75) 86(56) 69(35) 97(68) 83(46) 63(32)

MET 63(36) 72(42) 76(47) 99(76) 91(63) 76(42) 98(68) 90(56) 77(43)

SWR 5(0) 5(0) 5(0) 33(14) 19(7) 13(3) 23(10) 20(5) 12(3)

DM 63(36) 50(21) 32(4) 72(47) 57(34) 43(24) 4(0) 4(0) 4(0)

ED 5(2) 6(1) 6(1) 98(78) 93(69) 83(56) 30(12) 19(8) 18(6)

C2N 73(41) 84(53) 88(57) 73(42) 66(27) 54(11) 5(0) 5(0) 4(0)

S3 83(54) 90(64) 92(67) 66(42) 49(28) 37(19) 4(0) 4(0) 4(0)

(c) Complex scale change

Tg-NN 99(87) 98(86) 98(85) 99(85) 93(70) 82(54) 95(83) 77(60) 61(44)

Mg-NN 96(73) 96(73) 95(72) 97(85) 85(61) 70(39) 95(80) 86(67) 76(55)

GET 84(63) 79(56) 79(56) 90(76) 35(2) 14(1) 96(84) 77(61) 54(38)

MET 78(48) 77(44) 76(46) 81(60) 37(10) 24(1) 94(78) 83(64) 70(50)

SWR 80(61) 84(64) 82(64) 96(84) 97(84) 96(83) 99(92) 98(88) 96(84)

DM 8(0) 6(0) 7(0) 70(46) 70(43) 68(40) 5(0) 5(0) 5(0)

ED 10(2) 10(2) 8(2) 95(72) 97(74) 95(75) 5(1) 6(0) 4(1)

C2N 7(1) 7(1) 7(2) 74(40) 77(27) 75(15) 5(0) 4(0) 6(0)

S3 8(1) 9(1) 8(1) 67(43) 67(41) 66(39) 5(0) 5(0) 5(0)
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Table 3.5. The empirical powers (detection accuracy) in percentile under Settings I-III: (d)-(e).

Setting I (Gaussian) Setting II (t5) Setting III (Cauchy)

d 200 500 1000 200 500 1000 200 500 1000

(d) Location and simple scale mixed change

Tg-NN 67(40) 70(42) 78(50) 72(51) 54(34) 36(19) 58(41) 46(31) 34(20)

Mg-NN 69(44) 73(46) 80(53) 69(48) 54(34) 37(21) 70(52) 60(43) 47(32)

GET 64(37) 67(39) 76(46) 53(34) 28(13) 12(4) 37(24) 23(14) 16(8)

MET 66(39) 71(43) 77(49) 51(30) 28(12) 16(5) 49(32) 34(20) 28(14)

SWR 5(0) 5(0) 5(0) 13(3) 12(3) 11(3) 20(7) 22(8) 19(6)

DM 66(40) 47(19) 32(5) 14(4) 8(2) 7(1) 5(0) 4(0) 4(0)

ED 9(2) 9(3) 8(2) 60(39) 32(18) 19(6) 6(1) 5(1) 4(1)

C2N 77(44) 83(54) 89(61) 37(16) 16(4) 10(2) 6(0) 5(0) 5(0)

S3 84(56) 88(63) 92(69) 11(2) 7(1) 6(1) 5(0) 4(0) 4(0)

(e) Location and complex scale mixed change

Tg-NN 88(68) 81(59) 78(55) 98(87) 95(83) 90(76) 66(50) 50(36) 38(26)

Mg-NN 84(56) 77(50) 74(45) 98(87) 96(84) 92(78) 78(59) 66(48) 54(39)

GET 68(45) 60(37) 54(31) 93(80) 80(64) 57(43) 49(34) 31(20) 20(11)

MET 65(38) 58(30) 53(27) 94(78) 85(67) 67(50) 60(43) 46(29) 34(18)

SWR 47(24) 42(22) 42(21) 65(41) 68(47) 64(43) 29(13) 29(13) 30(13)

DM 8(0) 8(0) 7(0) 3(0) 5(0) 5(0) 5(0) 4(0) 5(0)

ED 40(25) 33(17) 25(12) 90(72) 62(46) 22(15) 6(1) 4(0) 4(1)

C2N 40(20) 28(11) 22(8) 61(40) 22(10) 10(3) 5(0) 5(0) 6(0)

S3 6(0) 8(1) 6(0) 4(0) 5(0) 5(0) 5(0) 4(0) 5(0)

best, C2N , Tg-NN, Mg-NN, GET and MET also have satisfactory performance. For (e) the location and

complex scale mixed change, Tg-NN and Mg-NN perform the best again. The overall performances of

Tg-NN and Mg-NN are the best in the multivariate Gaussian setting.

For the multivariate t5 and Cauchy distributions, Tg-NN and Mg-NN show the highest power under

the changes (a), (b), (d), and (e). SWR performs the best for (c) the complex scale change, followed

immediately by Tg-NN and Mg-NN. GET and MET also have moderate power. On the contrary, DM,

ED, C2N and S3 fail for most of the alternatives under the multivariate t5 and Cauchy distributions

with the power near the significance level. It shows that Tg-NN and Mg-NN are robust to heavy-tailed

distributions, while other methods such as C2N and S3 can not work well as they require the existence

of the second moment.

From Tables 3.6 and 3.7, we see that ED and C2N perform the best for (a) the location change under
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Table 3.6. The empirical powers (detection accuracy) in percentile under Settings IV-VI: (a)-(c).

d Setting IV (�2
5) Setting V (Gaussian mixture) Setting VI (Outlier)

200 500 1000 200 500 1000 200 500 1000

(a) Location change

Tg-NN 73(54) 60(44) 48(32) 30(17) 41(27) 56(41) 59(43) 48(32) 38(22)

Mg-NN 74(56) 65(46) 54(37) 32(18) 42(27) 58(42) 61(44) 50(34) 42(24)

GET 60(43) 46(30) 33(21) 29(17) 39(25) 51(34) 44(30) 30(17) 21(09)

MET 64(47) 52(35) 39(25) 30(18) 41(28) 54(37) 48(33) 34(19) 27(13)

SWR 20(7) 18(6) 15(3) 20(6) 24(9) 31(13) 18(7) 15(4) 13(4)

DM 6(0) 5(0) 5(0) 7(0) 6(0) 7(0) 4(0) 6(0) 7(0)

ED 94(80) 93(79) 91(76) 6(1) 5(1) 6(1) 93(8) 90(73) 87(7)

C2N 95(80) 92(78) 88(73) 87(53) 83(24) 84(11) 78(61) 44(26) 19(06)

S3 5(1) 4(0) 6(1) 7(0) 6(0) 7(0) 4(0) 4(0) 6(0)

(b) Simple scale change

Tg-NN 88(59) 86(56) 82(55) 70(46) 80(54) 88(65) 84(57) 78(48) 71(43)

Mg-NN 90(64) 89(61) 86(58) 71(49) 81(58) 88(69) 84(61) 77(52) 70(47)

GET 85(57) 84(53) 80(51) 65(40) 76(51) 84(60) 87(61) 83(57) 75(51)

MET 88(61) 87(57) 83(54) 66(45) 76(55) 83(64) 85(59) 78(51) 72(44)

SWR 5(1) 6(0) 6(0) 5(0) 5(0) 5(1) 5(0) 5(0) 5(1)

DM 90(65) 82(52) 55(25) 6(0) 5(0) 5(0) 69(50) 59(40) 43(25)

ED 6(1) 8(2) 6(2) 5(1) 4(1) 5(1) 11(4) 13(4) 11(3)

C2N 86(57) 91(63) 91(63) 6(1) 6(1) 6(0) 65(40) 56(31) 42(16)

S3 93(68) 96(72) 96(72) 6(0) 5(0) 5(0) 53(38) 39(26) 24(14)

(c) Complex scale change

Tg-NN 82(67) 72(55) 66(48) 70(53) 61(48) 63(47) 73(52) 67(50) 65(48)

Mg-NN 74(49) 62(36) 58(33) 49(31) 42(28) 47(30) 72(50) 69(50) 66(47)

GET 57(40) 44(26) 37(20) 24(13) 18(9) 21(10) 44(28) 40(25) 37(24)

MET 52(29) 41(20) 36(15) 21(9) 15(6) 17(6) 45(27) 43(26) 44(25)

SWR 64(43) 63(43) 64(42) 92(77) 92(79) 94(81) 58(36) 57(33) 57(34)

DM 4(0) 4(0) 4(0) 5(0) 5(0) 6(0) 5(1) 4(0) 4(0)

ED 8(1) 7(1) 8(1) 5(0) 5(1) 4(1) 8(1) 7(1) 7(0)

C2N 3(0) 4(1) 5(0) 5(0) 5(0) 6(0) 5(0) 5(0) 6(0)

S3 4(0) 4(0) 5(0) 5(0) 5(0) 6(0) 5(0) 5(0) 5(0)
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Table 3.7. The empirical powers (detection accuracy) in percentile under Settings IV-VI: (d)-(e).

Setting IV (�2
5) Setting V (Gaussian mixture) Setting VI (Outlier)

d 200 500 1000 200 500 1000 200 500 1000

(d) Location and simple scale mixed change

Tg-NN 67(38) 65(35) 60(33) 70(44) 81(54) 86(61) 90(66) 83(55) 79(49)

Mg-NN 70(42) 67(39) 63(38) 68(45) 81(56) 86(63) 86(62) 78(52) 74(47)

GET 66(37) 62(32) 58(31) 70(45) 81(56) 87(65) 93(71) 86(62) 80(60)

MET 66(39) 66(36) 60(34) 67(44) 79(57) 84(62) 88(64) 81(52) 75(50)

SWR 6(1) 5(0) 6(0) 7(1) 6(1) 7(1) 7(1) 8(2) 9(1)

DM 76(46) 57(27) 34(9) 7(0) 6(0) 6(0) 73(50) 59(37) 44(26)

ED 14(5) 10(3) 8(3) 5(1) 5(1) 4(1) 44(26) 38(22) 37(20)

C2N 73(41) 77(44) 79(46) 52(22) 38(10) 38(5) 76(51) 57(32) 43(22)

S3 82(54) 85(55) 85(56) 6(0) 6(0) 6(0) 55(38) 36(22) 24(14)

(e) Location and complex scale mixed change

Tg-NN 59(41) 48(32) 42(26) 53(37) 52(34) 53(39) 82(65) 75(59) 73(57)

Mg-NN 52(30) 41(23) 39(21) 42(25) 40(24) 45(29) 81(64) 76(59) 74(56)

GET 39(22) 25(12) 24(11) 19(9) 19(7) 20(10) 58(42) 49(32) 43(28)

MET 37(16) 26(11) 25(10) 15(6) 16(5) 18(7) 60(41) 52(34) 48(30)

SWR 42(22) 40(21) 40(19) 74(53) 76(54) 79(60) 56(33) 53(32) 50(29)

DM 4(0) 4(0) 5(0) 5(0) 5(0) 5(0) 4(0) 5(0) 4(0)

ED 10(2) 7(1) 7(1) 4(0) 5(1) 6(1) 43(25) 34(19) 28(14)

C2N 8(2) 6(1) 5(0) 8(1) 9(1) 11(1) 20(9) 11(2) 4(0)

S3 4(0) 4(0) 4(0) 5(0) 5(0) 5(0) 4(0) 6(0) 4(0)

the multivariate �2
5 distribution, while Tg-NN and Mg-NN perform the second best. In addition, under

the same distribution, Tg-NN and Mg-NN outperform other methods for the changes (b), (c), and (e),

while DM, S3 and C2N are well for the change (b) but lose power for the changes (c) and (e). For (b)

the scale change, S3 exhibits the highest power, and Tg and Mg also perform well.

For the Gaussian mixture distribution, C2N has the highest power for (a) the location change, while

Tg-NN and Mg-NN are the second best. For changes (b) and (d), Tg-NN and Mg-NN have the best

performance, followed immediately by GET and MET, while all other methods have unsatisfactory per-

formance. For changes (c) and (e), SWR achieves the highest power, while Tg-NN and Mg-NN are also

good with the performance better than other methods.

For the multivariate normal distribution with t7 outliers, ED is the best for the location alternative,

while for d = 1000, it is outperformed by Tg-NN and Mg-NN in the detection accuracy. For other
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alternatives, Tg-NN and Mg-NN dominate other methods, followed by GET and MET. It shows that

Tg-NN and Mg-NN are robust to outliers.

In summary, the distance-based methods ED, C2N , and S3, as well as DM, are powerful for the

light-tailed distribution. Specifically, ED exhibits superior power for the location alternative, S3 and

DM are more powerful for the simple scale alternative, while C2N covers both the location and the

scale alternatives. Nevertheless, these methods su↵er from outliers and are less powerful for heavy-tailed

distributions. On the contrary, the graph-based methods GET, MET, and SWR are less sensitive to

outliers and show good performance for the complex scale alternative. The problem with these methods is

that they use less information than distance-based methods, thus su↵ering from the lack of power for light-

tailed distribution and the location alternative. In particular, SWR uses the least information compared

to GET and MET, so it has almost no power in many settings and alternatives when other methods attain

moderate power. However, Tg-NN and Mg-NN possess good power for light-tailed distributions and show

robustness for heavy-tailed distributions and outliers. Between Tg-NN and Mg-NN, their performance is

similar. Since Mg-NN can have better analytic p-value approximations (Section 3.3.4), we recommend to

use Mg-NN in general.

3.5 Real data examples

3.5.1 Seizure detection from functional connectivity networks

We illustrate RING-CPD for the identification of epileptic seizures, which over two million Americans are

su↵ering from [Iasemidis, 2003]. As a promising therapy, responsive neurostimulation requires automated

algorithms to detect seizures as early as possible. Besides, to identify seizures, physicians have to review

abundant electro-encephalogram (EEG) recordings, which in some patients may be quite subtle. Hence,

it is important to develop methods with low false positive and false negative rates to detect seizures from

the EEG recordings. We use the “Detect seizures in intracranial EEG (iEEG) recordings” database by

the UPenn and Mayo Clinic (https://www.kaggle.com/c/seizure-detection), which consists of the EEG

recordings of 12 subjects (eight patients and four dogs). For each subject, both the normal brain activity

and the seizure activity are recorded multiple times, which are one-second clips with various channels

(from 16 to 72), reducing to a multivariate stream of iEEGs. Following the procedure of Zambon et al.

[2019], we represent the iEEG data as functional connectivity networks using Pearson correlation in

the high-gamma band (70-100Hz) [Bastos and Scho↵elen, 2016]. Functional connectivity networks are

weighted graphs, where the vertexes are the electrodes, and the weights of edges correspond to the

coupling strength of the vertexes. An illustration of the networks is in Figure 3.5. The sample sizes of the

12 subjects are also di↵erent, and the true change-point ⌧ ’s are also known - before the change-point, the

networks are generated from the seizure period, while after the change-point, the networks are generated

from the normal brain activity.
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Figure 3.5. The functional connectivity networks of a dog (circle) and a human (square) during the

period of seizure (red) and the normal period (blue). The networks are drawn by only keeping the

edges with weights larger than 0.2.

We do not include SWR in the comparison here since SWR does not perform well in the simulation

studies and is time-consuming. Besides, C2N is not only time-consuming but also memory-consuming

(e.g., it requires at least 17Gb size of memory when n = 1320); we are only able to run it for n  600,

thus only showing its result for Dog 1, and Patients 1 and 4. We use the Frobenius norm to measure the

distance between the observations represented by the weighted adjacency graphs. Since the sample size

of each subject is large enough, we use the asymptotic p-value approximation for Mg-NN and MET. We

omit the result of Tg-NN and GET since their p-value approximations are not as exact as Mg-NN and

MET, respectively. For DM, ED and S3, we still use 1, 000 permutations to obtain the p-values. The

results are summarized in Table 3.8, where the absolute di↵erence between the true change-point and the

detected change-point |⌧̂ � ⌧ | is reported. The p-values are not reported as they are smaller than 0.01 for

all methods and subjects. Our method achieves the same detection error as MET, which is very small

for all subjects. ED also performs well, but with a slightly large error for Patient 4. Although DM and

S3 achieve small errors for most subjects, they attain large detection errors for Patients 3 and 4. The

performance of C2N is not robust in that it shows a large detection error for Patient 4.

3.5.2 Changed interval detection for New York City taxi data

We here illustrate our methods for changed interval detection in studying travel pattern changes in New

York Central Park. We use the public dataset on the NYC Taxi and Limousine Commission (TLC)

website ( https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page). We use the yellow taxi trip

records in the year 2014, which contain the city’s taxi pickup and drop-o↵ times (date) and locations

(longitude and latitude coordinates). We set the latitude range of New York Central Park as 40.77 to

40.79 and the longitude range as �73.97 to �73.96. The boundary of New York City is set as 40.67

to 41.82 in latitude and �74.02 to �73.86. We only consider those trips that began with a pickup in

New York City and ended with a drop-o↵ in New York Central Park. We split the New York City into

a 30 ⇥ 30 grid with equal size cells. Then we represent each day by a 30 ⇥ 30 matrix, whose elements

are the numbers of taxi pickups in the corresponding cells. An visualisation of the data is presented in
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Table 3.8. The absolute di↵erence between the true change-point and the detected change-point

(|⌧̂ � ⌧ |). The p-values of all methods for all subjects are smaller than 0.05.

Subject n ⌧ Mg-NN MET DM ED C2N S3

Dog 1 596 178 0 0 0 1 0 0

Dog 2 1320 172 4 4 1 3 - 1

Dog 3 5240 480 0 0 1 1 - 1

Dog 4 3047 257 3 3 3 2 - 3

Patient 1 174 70 1 1 1 0 7 1

Patient 2 3141 151 7 7 13 1 - 13

Patient 3 1041 327 0 0 162 1 - 162

Patient 4 210 20 0 0 67 11 137 67

Patient 5 2745 135 3 3 5 2 - 5

Patient 6 2997 225 0 0 0 1 - 0

Patient 7 3521 282 2 2 3 4 - 3

Patient 8 1890 180 0 0 0 1 - 0

Figure 3.6. We use the Frobenius norm to construct the similarity graphs in the subsequent analysis.

The p-values of all methods are obtained through 1000 random permutations.
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Figure 3.6. Density heatmap of taxi pick-ups for dates 12/01 and 12/25 in year 2014.

We first compare our methods with GET and MET. We set n0 = max{5, [0.05n]} and n1 = n � n0.

The significance level ↵ is set as 0.05. All methods detect the same changed interval 06/17-09/02 with

p-values< 0.001, which almost overlaps totally with the summer break.

Since there may be multiple changed intervals, we apply the methods sequentially. Specifically, we

apply the methods to the three segments divided by the detected changed interval. All methods report p-

47



Table 3.9. The detected changed intervals and corresponding p-values of Tg-NN, Mg-NN, GET and

MET for the NYC taxi data.

Time period Tg-NN Mg-NN GET MET Nearby Events

01/01-12/31 06/17-09/02
Summer break

p-value < 0.001 < 0.001 < 0.001 < 0.001

01/01-06/16 03/21-04/02
Spring break

p-value < 001 < 0.001 < 0.001 < 0.001

06/17-09/02 07/01-09/02 07/01-09/02 07/03-09/02 07/03-09/02
Independence Day

p-value < 0.001 < 0.001 0.009 0.015

09/03-12/31 11/14-12/31
Thanksgiving

p-value 0.001 < 0.001 < 0.001 < 0.001

01/01-03/20 02/12-02/16 02/12-02/16 03/01-03/05 02/12-02/16
-

p-value 0.263 0.279 0.384 0.352

04/03-06/16 05/03-05/07 05/03-05/07 05/03-05/07 04/05-04/09
-

p-value 0.101 0.110 0.471 0.529

07/01-09/02 07/07-08/15 07/07-08/15 07/07-08/15 07/07-08/15
-

p-value 0.062 0.051 0.209 0.207

09/03-11/13 09/06-11/13 09/06-11/13 09/22-09/27 09/22-09/27
-

p-value 0.102 0.088 0.108 0.096

11/14-12/31 12/25-12/30
Christmas

p-value 0.029 0.028 0.038 0.054

11/14-12/24 11/27-12/01 11/27-12/01 11/27-12/01 11/27-12/01
-

p-value 0.152 0.249 0.115 0.215

values< 0.05 for the three segments. In the period 01/01-06/16, the four methods all detect the changed

interval 03/21-04/02, which is around the spring break of most American universities. In the period

06/17-09/02, GET and MET detect the changed interval 07/03-09/02, while Tg-NN and Mg-NN detect

the changed interval 07/01-09/02, both of them covers the Independence Day. Tg-NN and Mg-NN are

more significant than GET and MET with p-values< 001. In the period 09/03-12/31, the four methods

detect the changed interval 11/14-12/31, which is around the beginning day of the fall term/quarter to

the midterm, and 11/14 is about ten days before the Thanksgiving day.

We further perform the four methods in the segments longer than 40 days. The only detected changed

interval is 12/25-12/30 in the segment 11/14-12/31, which is the week of Christmas where GET, Tg-NN

and Mg-NN report p-values< 0.05, but MET reports the p-value= 0.054. Finally, we apply the methods

to the period 11/14-12/14, and no changed interval is detected anymore. The result is summarized in

Table 3.9.
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Table 3.10. The detected change-points and corresponding p-values of ED, S3 and C2N for the NYC

taxi data.

Method

ED
CP 04/05 06/18 09/09

p-values 0.029 0.001 0.001

S3

CP 07/04 07/11 09/02 12/25

p-values 0.003 0.035 < 0.001 < 0.001

C2N

CP 01/03 06/17 08/22 09/02 12/25

p-values 0.014 < 0.001 0.025 < 0.001 0.006

We then show the performance of other methods. Since both ED and S3 can detect multiple change-

points, we apply them directly to the whole sequence 01/01-12/31. We also compare with C2N . Although

C2N is not designed for multiple change-points detection, we can apply it sequentially similarly to the

above procedure, which is the binary segmentation procedure also used by Nie and Nicolae [2021].

ED detects three change-points 04/05, 06/18 and 09/09 with p-values 0.029, 0.001 and 0.001, respec-

tively. S3 detects four change-points, which are 07/04, 07/11, 09/02, and 12/25, with p-values 0.003,

0.035, < 0.001 and < 0.001, respectively. C2N detects five change-points, which are 01/03, 06/17, 08/22,

09/02, and 12/25, with p-values 0.014, < 0.001, 0.025, < 0.001 and 0.006. The result is summarized in

Table 3.10.

To see what results make more sense, we plot the distance matrix of the whole year in Figure 3.7

(a). It is clear that there are two changed intervals around the days 80-90, 175 to 250, which match the

changed intervals of spring break and summer break. We further plot the distance matrices of the three

segments divided by the summer break (Figure 3.7 (b), (c), and (d)). The detected changed intervals by

our methods and MET and GET can be observed from the pairwise distance matrices, while ED, C2N

and S3 miss some important changes. For example, ED misses the change of Christmas, and C2N and

S3 miss the changes of the spring break and Thanksgiving.

3.6 Conclusion

In this chapter, we introduce the new rank-based approach RING-CPD for single change-point detection

and changed interval detection. Both Tg-NN and Mg-NN work well for various alternatives with similar

performance. We suggest using Mg-NN based on its accurate finite sample approximation to the asymp-

totic distribution, thus enabling an easy and accurate control of type I error. Although the proposed

method is designed for single change-point and changed interval detection, it can be extended to find

multiple change-points similarly to Zhang and Chen [2021], using the idea of wild binary segmentation

[Fryzlewicz, 2014] or seeded binary segmentation [Kovács et al., 2020].
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Figure 3.7. The heat map of the distance matrix of days from 01/01-12/31 (a), 01/01-06/16 (b),

06/17-09/02 (c) and 09/03-12/31 (d).
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Chapter 4

Discussion

4.1 Kernel and Distance IN Graph

The approach proposed in this paper can also be extended to weights other than ranks in weighting the

edges in the similarity graph. For example, kernel-based methods are popular since they can be applied

to any data and distance-based methods are intuitive. Here we discuss how to extend our framework to

kernel-based and distance-based methods for the two-sample testing and CPD problems. Specifically, we

can define

Kij = K(yi, yj)
�
(i, j) 2 Gk

�
,

where K is a kernel function or a negative distance function, for example, the Gaussian kernel K(yi, yj) =

exp
�
�kyi�yjk2/(2�2)

�
with the kernel bandwidth � or the negative l1 distance K(yi, yj) = �kyi�yjk1,

and Gk is a similarity graph such as the k-NNG and the k-MST. We then define statistics based on Kernel

IN Graph (KING) or Distance IN Graph (DING). By Theorem 4.1.1, the asymptotic property of the two-

sample test statistic TR holds when replacing Rij by Kij . The proof of Theorem 4.1.1 is in Appendix

A.4.

Theorem 4.1.1. Let R = (Rij)
j2[N ]
i2[N ] 2 RN⇥N be a symmetric matrix with non-negative entries and zero

diagonal elements. Suppose further Rij � 1 if Rij > 0 and maxi,j Rij = o
�
N2r2d

�
. In the usual limit

regime, under Conditions (2.1)-(2.6), we have that

�
ZP
w, Z

P
di↵

�T D! N2(02, I2) and TR
D! �2

2

under the permutation null distribution.

The existing kernel-based methods and distance-based methods for CPD can not provide the easy

type I error control. Our approach provides a possible way to incorporate the kernel or distance by

the following Kernel IN by Graph Change-Point Detection (KING-CPD) and Distance IN by Graph

Change-Point Detection (DING-CPD) methods.
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Theorem 4.1.2. Replacing Rij by Kij in Conditions (3.1)-(3.6), and the definition of Zdi↵ and Zw,

then under Conditions (3.1)-(3.6) and maxi,j Kij = o
�
n2r2d

�
, we have

1.
�
Zdi↵(bnuc) : 0 < u < 1

 
and

�
Zw(bnuc) : 0 < u < 1

 
converge to independent Gaussian

processes in finite dimensional distributions, which we denote as
�
Z⇤
di↵(u) : 0 < u < 1

 
and

�
Z⇤
w(u) : 0 < u < 1

 
, respectively.

2.
�
Zdi↵(bnuc, bnvc) : 0 < u < v < 1

 
and

�
Zw(bnuc, bnvc) : 0 < u < v < 1

 
converge to indepen-

dent two-dimension Gaussian random fields in finite dimensional distributions, which we denote as
�
Z⇤
di↵(u, v) : 0 < u < v < 1

 
and

�
Z⇤
w(u, v) : 0 < u < v < 1

 
, respectively.

Besides, Theorem 3.3.2 also holds by replacing Rij by Kij.

The proof of Theorem 4.1.2 follows straightforwardly from the proof of Theorems 3.3.1 and 3.3.2, thus

omitted here.

4.1.1 Computational E�ciency

Another important property of the is the potential computational e�ciency by avoiding computing the

pairwise distance of the n observations, which has a computational complexity of O(dn2) for d-dimensional

data. Specifically, if the approximate k-NNG [Beygelzimer et al., 2013] is used for the graph-based ranks,

the computational complexity is O
�
dn(log n + k log d) + nk2

�
, which is usually faster than O(dn2). A

detailed discussion of the procedure and time complexity can be found in Liu and Chen [2022].
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Appendix A

Appendix for Chapter 2

A.1 Proof of Theorem 2.2.1

Let gi = 1 if the ith sample is from FX and gi = 0 if from FY . Then Ux and Uy can be rewritten as

Ux =
NX

i=1

NX

j=1

gigjRij and Uy =
NX

i=1

NX

j=1

(1� gi)(1� gj)Rij .

Under the permutation null distribution, for i, j, s, k all di↵erent, we have

(gi) =
m

N
, (gigj) =

m(m� 1)

N(N � 1)
,

(gigjgk) =
m(m� 1)(m� 2)

N(N � 1)(N � 2)
, (gigjgkgs) =

m(m� 1)(m� 2)(m� 3)

N(N � 1)(N � 2)(N � 3)
.

Recall that R is symmetric with zero diagonal elements, then

(Ux) =
NX

i=1

NX

j 6=i

Rij (gigj) =
m(m� 1)

N(N � 1)

NX

i=1

NX

j 6=i

Rij = m(m� 1)r0 ,

and similarly (Uy) = n(n� 1)r0. Then we have

(U2
x) =

NX

i=1

NX

j=1

NX

s=1

NX

l=1

RijRsl (gigjgsgl)

=2
NX

i=1

NX

j=1

R2
ij (gigj) + 4

NX

i=1

NX

j=1

NX

s 6=i,j

RijRis (gigjgs)

+
NX

i=1

NX

j=1

NX

s 6=i,j

NX

l 6=i,j,s

RijRsl (gigjgsgl)

=
m(m� 1)n

⇣
2(n� 1)r2d + 4(m� 2)(N � 1)r21 +

N(N�1)(m�2)(m�3)
n r20

⌘

(N � 2)(N � 3)
.

Combing with Var(Ux) = (U2
x)� (Ux)2, we can obtain the variance of Ux under the permutation null

distribution. Similar result can be obtained for Var(Uy). Finally, we have Cov(Ux, Uy) = (UxUy) �
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(Ux) (Uy), where

�
UxUy

�
=

NX

i=1

NX

j=1

NX

s=1

NX

l=1

RijRsl

�
gigj(1� gs)(1� gl)

�

=
NX

i=1

NX

j=1

NX

s=1

NX

l=1

RijRsl

�
(gigj)� (gigjgs)� (gigjgl) + (gigjgsgl)

�

=m(m� 1)N(N � 1)r20 � 2
m(m� 1)

N

NX

i=1

NX

j=1

Rij(R̄i· + R̄j·)

� 2
m(m� 1)

N

NX

i=1

NX

j=1

Rij(R̄i· + R̄j·) + Var(Ux)

=m(m� 1)N(N � 1)r20 � 4m(m� 1)(N � 1)r21

� 2
m(m� 1)(m� 2)

N(N � 1)(N � 2)

�
N2(N � 1)2r20 � 2N(N � 1)2r21

�
+Var(Ux) .

We then finish the proof by plugging in the expression of Var(Ux).

A.2 Proof of Theorem 2.2.2

Proof. We have

det(⌃) = Var(Ux)Var(Uy)� Cov(Ux, Uy)
2

=
32m2n2(m� 1)2(n� 1)2(N � 1)Vr

�
(N � 2)Vd � 2(N � 1)Vr

�

(N � 2)2(N � 3)

6= 0 if Vr 6= 0 and (N � 2)Vd � 2(N � 1)Vr 6= 0.

A.3 Proof of Theorem 2.2.3

Denote U = (Ux � µx, Uy � µy)T and A =

0

@ 1 �1

n�1
N�2

m�1
N�2

1

A. Since A is invertible, we have

TR = U
T
⌃

�1
U = U

T
A

T(A⌃A
T)�1

AU .

It is easy to see that

A⌃A
T =

0

@�2
di↵ 0

0 �2
w

1

A

and AU =
�
Udi↵ � (Udi↵), Uw � (Uw)

�T
, thus finishing the proof.

A.4 Proof of Theorems 2.3.1 and 4.1.1

At first, we consider the bootstrap null distribution, which places probability 1/2N on each of the 2N

assignments of N observations to either of the two samples, i.e., each observation is assigned to sample X
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with probability m/N and to sample Y with probability n/N , independently from any other observations.

Let B, VarB, CovB be expectation, variance and covariance under the bootstrap null distribution. It’s

not hard to see that the number of observations assigned to sample X may not be m. Let nX be

this number and ZX = (nX � m)/�B where �B is the standard deviation of nX under the bootstrap

null distribution. Notice that the bootstrap null distribution becomes the permutation null distribution

conditioning on nX = m.

By applying Theorem 2.2.1 and making simplifications, we have that

µw = (Uw) =
N(n� 1)(m� 1)

N � 2
r0 ; µdi↵ = (Udi↵) = (N � 1)(m� n)r0 ;

�2
w = Var(Uw) =

2m(m� 1)n(n� 1)

(N � 2)2(N � 3)
{(N � 2)(r2d � r20)� 2(N � 1)(r21 � r20)}

and

�2
di↵ = Var(Udi↵) = 4(N � 1)mn(r21 � r20) .

Since gi’s are independent under the bootstrap null distribution, it’s not hard to derive that

B(Ux) =
m2(N � 1)

N
r0 ; B(Uy) =

n2(N � 1)

N
r0 ,

VarB(Ux) =
2m2n2(N � 1)

N3
r2d +

4nm3(N � 1)2

N3
r21 ,

VarB(Uy) =
2m2n2(N � 1)

N3
r2d +

4n3m(N � 1)2

N3
r21 ,

CovB(Ux, Uy) =
2m2n2(N � 1)

N3
r2d �

4n2m2(N � 1)2

N3
r21 ,

which implies that

µB
w = B(Uw) =

N � 1

N(N � 2)
(Nmn�m2 � n2)r0 ,

µB
di↵ = B(Udi↵) = (N � 1)(m� n)r0 ,

and

(�B
w)

2 = VarB(Uw) =
2(N � 1)m2n2

N3
r2d +

4(N � 1)2nm(m� n)2

(N � 2)2N3
r21 ,

(�B
di↵)

2 = VarB(Udi↵) =
4(N � 1)2nm

N
r21 , and (�B)2 = VarB(nX) =

mn

N
.

By defining ZB
w ⌘ (Uw � µB

w)/�
B
w, Z

B
di↵ ⌘ (Udi↵ � µB

di↵)/�
B
di↵ , we express (Zw, Zdi↵) in the following way:

0

@ Zw

Zdi↵

1

A =

0

@�B
w/�w 0

0 �B
di↵/�di↵

1

A

0

@ ZB
w

ZB
di↵

1

A+

0

@ (µB
w � µw)/�w

(µB
di↵ � µdi↵)/�di↵

1

A

=

0

@�B
w/�w 0

0
p
(N � 1)/N

1

A

0

@ ZB
w

p
TZB

di↵

1

A+

0

@ (µB
w � µw)/�w

(µB
di↵ � µdi↵)/�di↵

1

A ,

(A.1)

where T = r21/(r
2
1 � r20). Since the distribution of (Zw, Zdi↵) under the permutation null distribution is

equivalent to the distribution of (ZB
w , Z

B
di↵) | ZX = 0 under the bootstrap null distribution, we only need

show following two statements for proving Theorems 2.3.1 and 4.1.1:
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1.
�
ZB
w ,

p
T (ZB

di↵ �
p
1� 1/TZX), ZX

�
is asymptotically multivariate Gaussian distributed under the

bootstrap null distribution and the covariance matrix of the limiting distribution is of full rank.

2. �B
w/�w ! cw; (µB

w � µw)/�w ! 0; (µB
di↵ � µdi↵)/�di↵ ! 0 where cw is a positive constant.

From Statement (1), the asymptotic distribution of
�
ZB
w ,

p
TZB

di↵

�
conditioning on ZX = 0 is a bivariate

Gaussian distribution under the bootstrap null distribution, which further implies that the asymptotic

distribution of
�
ZB
w ,

p
TZB

di↵

�
under the permutation null distribution is a bivariate Gaussian distribution.

Then, with Statement (2) and equation (A.1), we have
�
Zw, Zdi↵

�
is asymptotically bivariate Gaussian

distributed under the permutation null distribution. Finally, plus the fact that Var
�
Zw

�
= Var

�
Zdi↵

�
= 1

and Cov
�
Zw, Zdi↵

�
= 0, we have that TR

D! �2
2.

Since r2d � r21 � r20 by Cauchy–Schwarz inequality, we have

�2
w ⇣ N2(r2d + r20) ⇣ N2r2d; (�

B
w)

2 ⇣ N2r2d; �
2
di↵ ⇣ N3(r21 � r20); (�

B
di↵)

2 ⇣ N3r21 .

Since µB
di↵ � µdi↵ = 0 and

µB
w � µw =

mn

N
r0 ⇣ Nr0,

by Condition (2.1), we have
µB
w � µw

�w
⇣ r0/rd - r1/rd ! 0 .

We then finish the proof of Statement (2). The proof of Statement (1) is deferred to Supplement A.8.

A.5 Proof of Lemma 2.3.2

Proof. A k-MDP is an undirected graph where each vertex has degree k, thus it has Nk/2 edges in total

(assuming that N is even for simplicity). We then have

r0 =
2

N(N � 1)

Nk/2X

l=1

l =
k(1 +Nk/2)

2(N � 1)
⇣ k2 ,

r2d =
2

N(N � 1)

Nk/2X

l=1

l2 =
k(1 +Nk/2)(1 +Nk)

6(N � 1)
⇣ Nk3 ,

r21 =
1

N

NX

i=1

R̄2
i· 2 [r20,

1

N(N � 1)2

NX

i=1

(2ki+ 1)2k2] ⇣ k4 ,

which implies Condition (2.1) since k � N . For Condition (2.2), we have

NX

i=1

� NX

j=1

R2
ij

�2  N
�
k(Nk/2)2

�2 ⇣ N5k6 ⇣ N3r4d .

For Condition (2.4), by

R̄i· 2 [
1

N � 1

kX

l=1

l,
1

N � 1

kX

l=1

(Nk/2� l + 1)] = [O(k2/N), O(k2)] ,
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we have
NX

i=1

�� eRi·
��3  max

i
| eRi·|

NX

i=1

eR2
i·  k2NVr  N0.5k1.5NVR � NrdVr .

Finally, for Condition (2.6), we have

NX

i=1

NX

j=1

NX

l 6=i,j

NX

s 6=i,j

RijRjlRlsRsi - kN2
NX

i=1

NX

j=1

NX

s 6=i,j

RijRsi min{R̄j· R̄s·}

 kN2
NX

i=1

NX

j=1

NX

s 6=i,j

RijRsiR̄j·  kN3
NX

i=1

NX

j=1

RijR̄i·R̄j·

 kN3

vuut
⇣ NX

i=1

NX

j=1

RijR̄2
i·

⌘⇣ NX

i=1

NX

j=1

RijR̄2
j·

⌘
= kN4

NX

i=1

R̄3
i·

- N5k7 � N6k6 ⇣ N4r4d .

A.6 Proof of Lemma 2.3.3

Proof. First, by checking the proof of Statement (2) in Supplement A.8, we notice that Condition

(2.2) can be relaxed by the following two conditions: (2.2.1)
PN

i=1

�PN
j=1 R

2
ij

�2 � N4r4d and (2.2.2)
PN

i=1 Ri·
PN

j=1 R
2
ij � N3r3d. We only need to show that the current assumptions imply Conditions (2.1),

(2.2.1) (2.2.2) and (2.3)-(2.6). By definition we have r0 ⇣ K|Gk|/N2 ⇣ Kk/N and r2d ⇣ K2|Gk|/N2 ⇣

K2k/N where K = maxij Rij . We then have

r21 = Vr + r20 � K2

N2
(k1.5N0.5 + k2) � r2d ,

which implies Condition (2.1). For Condition (2.2.1), we have

NX

i=1

� NX

j=1

R2
ij

�2  K2N3r21 � K4k1.5N1.5 � N4r4d ⇣ K4k2N2 .

For Condition (2.2.2), we have

NX

i=1

Ri·

NX

j=1

R2
ij  K

NX

i=1

R2
i· ⇣ N3Kr21 � N3K3k1.5/N1.5 ⇣ N3r3d .

For Conditions (2.3) and (2.4), it is enough to show that

1

N

NX

i=1

eR3
i· 

1

N

NX

i=1

| eRi·|3 = | eRi·|3 � min{N0.5V 1.5
r ,K

p
k/NVr} .

By Cauchy–Schwarz inequality, we have, for any integer L � 1,

|(N � 1) eRi·/K|3 
�

|(N � 1) eRi·/K|4
� 1

2
�

|(N � 1) eRi·/K|2
� 1

2

 . . . 
�

|(N � 1) eRi·/K|2
L+2

� 1
2L
�

|(N � 1) eRi·/K|2
�PL

l=1
1
2l .
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The quantity |(N � 1) eRi·/N |2L+1 can be bounded as follows:

|(N � 1) eRi·/K|2
L+2 =

Z 1

0
(|(N � 1) eRi·/K|2

L+2 � t)dt

 2

Z 1

0
exp

�
� ct

1
2L�1+1 /Na

�
dt

=

Z 1

0
(2L + 2)t2

L�1

exp
�
� ct/Na

�
dt

= (2L + 2)
�(2L�1 + 1)

c2L�1+1
Na(2L�1+1) ⇣ Na(2L�1+1) .

By the fact a < 1, we can let L take some su�ciently large value to get

�
|(N � 1) eRi·/K|2

L+2
� 1

2L � N0.5 .

Combining with the fact that |(N � 1) eRi·/K|2 = N2Vr/K2 ⌫ 1, we thus have

| eRi·|3 = o(KN�0.5Vr) � min{N0.5V 1.5
r ,K

p
k/NVr} .

For Condition (2.5), we have

��
NX

i=1

NX

j 6=s

RijRis
eRj· eRs·

�� 

vuut
⇣ NX

i=1

NX

j 6=s

RijRis
eR2
j·

⌘⇣ NX

i=1

NX

j 6=s

RijRis
eR2
s·

⌘
=

NX

i=1

NX

j 6=s

RijRis
eR2
j·


NX

i=1

NX

j=1

(N � 1)R̄i· eR2
j·Rij 

vuut
⇣ NX

i=1

NX

j=1

eR4
j·Rij

⌘⇣ NX

i=1

NX

j=1

(N � 1)2R̄2
i·Rij

⌘

= (N � 1)3
q�

( eR5
i·) + r0 ( eR4

i·)
��

( eR3
i·) + 3r0Vr + r30

�
.

We have shown that | eRi·|3 � KN�0.5Vr. Now we show the bounds of | eRi·|4 and | eRi·|5. By

Cauchy–Schwarz inequality, we have, for any integer L � 1,

|(N � 1) eRi·/K|4 
�

|(N � 1) eRi·/K|2⇤2
L+2

� 1
2L
�

|(N � 1) eRi·/K|2
�PL

l=1
1
2l ,

|(N � 1) eRi·/K|5 
�

|(N � 1) eRi·/K|3⇤2
L+2

� 1
2L
�

|(N � 1) eRi·/K|2
�PL

l=1
1
2l .

Besides,

|(N � 1) eRi·/K|2⇤2
L+2  2

Z 1

0
exp

�
� ct

1
2⇤2L�1+1 /Na

�
dt ⇣ Na(2⇤2L�1+1) ,

|(N � 1) eRi·/K|3⇤2
L+2  2

Z 1

0
exp

�
� ct

1
2⇤2L�1+1 /Na

�
dt ⇣ Na(3⇤2L�1+1) .

We then have | eRi·|4 = o(K2N�1Vr) and | eRi·|5 = o(K3N�1.5Vr). As a result, we get

( eR5
i·) + r0 ( eR4

i·) � K3N�1.5Vr(kN
�0.5 + 1) ,

( eR3
i·) + 3r0Vr + r30 � KN�0.5Vr(1 + kN�0.5 + kN�0.5 min{k2, N})
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by the fact that r20 ⇣ K2k2/N2 � Vr min{k2, N} and hence

�
( eR5

i·) + r0 ( eR4
i·)
��

( eR3
i·) + 3r0Vr + r30

�
� K4N�2V 2

r o(1 + k2N�1 min{k2, N} � r4dV
2
r ,

thus showing Condition (2.5). Finally, for Condition (2.6), we have

NX

i=1

NX

j=1

NX

l 6=i,j

NX

s 6=i,j

RijRjlRlsRsi  K(N � 1)
NX

i=1

NX

j=1

NX

s 6=i,j

RijRsi min{R̄j· R̄s·}

 K(N � 1)
NX

i=1

NX

j=1

NX

s 6=i,j

RijRsiR̄j·  K(N � 1)2
NX

i=1

NX

j=1

RijR̄i·R̄j·

 K(N � 1)2

vuut
⇣ NX

i=1

NX

j=1

RijR̄2
i·

⌘⇣ NX

i=1

NX

j=1

RijR̄2
j·

⌘
= K(N � 1)3

NX

i=1

R̄3
i·

⇣ KN4
�

(R̄3
i·) + r0 (R̄2

i·) + r30
�
� N4r4d .

A.7 Proof of Theorem 2.3.4

Proof. Let fx and fy be the density function of FX and FY , respectively. When k = O(1), if the similarity

graph is the k-MST or the k-NNG, following the approach of Henze and Penrose [1999] or Schilling [1986],

we have
Uj

N
! k(k + 1)

2

Z
p2jf

2
j (z)P

i=x,y pifi(z)
dz almost surely,

where j = x, y, px = limm,n!1
m

m+n and py = 1 � py. Let �j = limN!1
Uj�µj

N for j = x, y. We then

have

lim
N!1

TR

N
= lim

N!1
(�x, �y)

⇣
⌃

N

⌘�1
(�x, �y)

T = a(�x � �y)
2 + b(py�x + px�y)

2 ,

where a = limN!1
N

�2
diff

and b = limN!1
N
�2
w
. By Theorem 2.2.1, Var(Uw) = O(N), so b > 0. It can be

showed that py�x + px�y > 0 when f1 and f2 di↵er on a set of positive measure:

py�x + px�y =
k(k + 1)pxpy

2

⇣Z P
i=x,y pifi(z)

2

P
i=x,y pifi(z)

dz � 1
⌘

=
k(k + 1)p2xp

2
y

2

Z �
fx(z)� fy(z)

�2
P

i=x,y pifi(z)
dz > 0 .

Thus, RISE is consistent.

A.8 Proof of Statement (i)

Let

W = a1Z
B
w + a2

p
T (ZB

di↵ �
p
1� 1/TZX) + a3ZX

= a1Z
B
w + a2

p
TZB

di↵ + (a3 � a2
p
T � 1)ZX .
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We firstly show that, in the usual limit regime,

lim
N!1

VarB(W ) = 0 i↵ a1 = a2 = a3 = 0.

By the independence of gi’s under the bootstrap null distribution, it is easy to see that

CovB(Z
B
w , Z

B
di↵) =

4mn(n�m)

(N � 2)N2

(N � 1)2r21
�B
w�

B
di↵

,

CovB(Z
B
w , ZX) =

2(N � 1)mn(n�m)

(N � 2)N2

r0
�B
w�

B
,

and CovB(Z
B
di↵ , ZX) =

2(N � 1)mnr0
N�B

di↵�
B

=
r0
r1

.

As a result, we have
p
TCovB(ZB

di↵ , ZX) =
p
T � 1 and

VarB(W ) =a21 + a22(2T � 1) + a23 � 2a2a3
p
T � 1 + 2a1a2

p
TCovB(Z

B
w , Z

B
di↵)

+ 2a1(a3 � a2
p
T � 1)CovB(Z

B
w , ZX)

+ 2a2(a3 � a2
p
T � 1)

p
TCovB(Z

B
di↵ , ZX)

=a21 + a22 + a23 + 2a1a3CovB(Z
B
w , ZX)

+ 2a1a2
�p

TCovB(Z
B
w , Z

B
di↵)�

p
T � 1CovB(Z

B
w , ZX)

�
.

Besides, we have

CovB
�
ZB
w , ZX

�
⇣ r0p

Nrd
! 0 ,

p
TCovB

�
ZB
w , Z

B
di↵

�
�

p
T � 1CovB

�
ZB
w , ZX

�

=
2(N � 1)mn(n�m)

(N � 2)N2�B
w

p
r21 � r20

⇣2(N � 1)r31
�B
di↵

� r20
�B

⌘

=
2(N � 1)mn(n�m)

(N � 2)N2�B
w

p
r21 � r20

r
N

mn

�
r21 � r20

�

-
p
r21 � r20p
N3rd

! 0 ,

by Cauchy–Schwarz inequality r2d � r21 � r20. Thus, we have limN!1 VarB(W ) = a21 + a22 + a23 > 0 in

the usual limit regime. This implies that the covariance matrix of the joint limiting distribution is of full

rank. Then by Cramér-Wold device, Statement (i) holds if W is is asymptotically Gaussian distributed

under the bootstrap null distribution when at least one of constants a1, a2, a3 is nonzero. We use the

Stein’s method [Chen et al., 2010], in particular, the following theorem.

Theorem A.8.1 (Stein’s Method, Chen et al. [2010], Theorem 4.13). Let
�
⇠i, i 2 J

 
be a random field

with mean zero, W =
P

i2J ⇠i and Var(W ) = 1, for each i 2 J there exits Ki ⇢ J such that ⇠i and ⇠Kc
i

are independent, then

sup
h2Lip(1)

�� h(W )� h(Z)
�� 

r
2

⇡

���
X

i2J

�
⇠i⌘i � (⇠i⌘i)

 ���+
X

i2J

��⇠i⌘2i
�� (A.2)

where ⌘i =
P

j2Ki
⇠j , Z is the standard normal random variable.
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As long as we show that the right-hand side of (A.2) goes to zero when N ! 1, W converges to the

standard normal distribution by Stein’s Theorem. We can represent the graph by

Gk ⌘
�
V = N , E = {(i, j) : Rij > 0, i, j 2 N}

�
,

where N = {1, . . . , N}. To simplify notations, we let p = m/N, q = n/N , and for each edge e = (e+, e�) 2

Gk, let

Je =

8
>>><

>>>:

0 if ge+ 6= ge� ,

1 if ge+ = ge� = 1 ,

2 if ge+ = ge� = 0 .

We can reorganize W in the following way:

W =
a1
⇣

n�1
N�2

�
Ux � p2N(N � 1)r0

�
+ m�1

N�2

�
Uy � q2N(N � 1)r0

�⌘

�B
w

+
a2
p
T
�
Ux � Uy � (p2 � q2)N(N � 1)r0

�

�B
di↵

+
(a3 � a2

p
T � 1)

�
nX �m

�

�B

=
X

e2G

2Rea1
N � 2

⇣ N

�B
w

�
(ge+ = 1)� p

��
(ge� = 1)� p)� (Je = 1) + (Je = 2)� p2 � q2

�B
w

⌘

+
X

e2G

2Re
a2
p
T

�B
di↵

�
(ge+ = 1) + (ge� = 1)� 2p

�

+
NX

i=1

(a3 � a2
p
T � 1)

�
(gi = 1)� p

�

�B
.

Define the function h : N ! R such that h(i) = (gi = 1)� p, i 2 N . Then,

�
(ge+ = 1)� p

��
(ge� = 1)� p) = h(e+)h(e�) ,

(Je = 1) + (Je = 2)� p2 � q2 = 2h(e+)h(e�) + (p� q)
�
h(e+) + h(e�)

�
,

(ge+ = 1) + (ge� = 1)� 2p = h(e+) + h(e�) .

Thus, W can be expressed as

W =
X

e2Gk

2Re

 
a1
�B
w

h(e+)h(e�) +

 
a2
p
T

�B
di↵

� a1(p� q)

�B
w(N � 2)

!
�
h(e+) + h(e�)

�
!

+
NX

i=1

(a3 � a2
p
T � 1)h(i)

�B

=
X

e2Gk

2Rea1
�B
w

h(e+)h(e�) +

 
a2
p
T

�B
di↵

� a1(p� q)

�B
w(N � 2)

!
NX

i=1

2Ri·h(i)

+
NX

i=1

(a3 � a2
p
T � 1)h(i)

�B

=
X

e2Gk

2Rea1
�B
w

h(e+)h(e�)

+
NX

i=1

 
a2p

pqN(r21 � r20)

✓
Ri·

N � 1
� r0

◆
� 2a1(p� q)Ri·

�B
w(N � 2)

+
a3p
pqN

!
h(i) ,
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where Ri· = (N � 1)R̄i·. Let

b0 =
2a1
�B
w

, bi =
a2
�
R̄i· � r0

�
p
pqN(r21 � r20)

� 2a1(p� q)Ri·
�B
w(N � 2)

+
a3p
pqN

for i 2 N

and ⇠e = b0Reh(e
+)h(e�) , ⇠i = bih(i) .

We then have

W =
X

e2Gk

⇠e +
NX

i=1

⇠i .

Plugging in the expressions of �B
w, �

B
di↵ , �

B, and by

R2
i· =

NX

j=1

NX

l=1

RijRil 
1

2

NX

j=1

NX

l=1

�
R2

ij +R2
il

�
= N

NX

j=1

R2
ij  N2(N � 1)r2d ,

we have
Ri·

�B
w(N � 2)

- 1p
N

and

|b0| -
1p
N2r2d

, |bi| -
��R̄i· � r0

��
p
N(r21 � r20)

+
1p
N

.

Denote c0 = 1/
p
N2r2d and ci = |R̄i· � r0|/

p
N(r21 � r20) + 1/

p
N , for i 2 N . Next, we apply Theorem

A.8.1 to fW = W/
p
VarB(W ).

We now define some notations on the graph Gk. Let Gki be the set of edges with one endpoint vertex i,

Gi,2 be the set of edges with at least one endpoint in Gki. Besides, we use nodeGki to denote the vertex set

connecting by edges inGki excluding the vertex i and nodeGi,2 to denote the vertex set connecting by edges

in Gi,2 excluding the vertex i. For each edge e = (i, j) 2 Gk, we define Ae ⌘ Gki [Gkj , Be ⌘ Gi,2 [Gj,2

and Ce to be the set of edges that share at least one common vertex with an edge in Be.

Let J = Gk [N , Ke = Ae [ {e+, e�} for each edge e = (e+, e�) 2 Gk and Ki = Gki [ {i} for each

vertex i 2 N . These Ke’s, Ki’s obviously satisfy the assumptions in Theorem A.8.1 under the bootstrap

null distribution. Then, we define ⌘e’s, ⌘i’s as follows:

⌘e = ⇠e+ + ⇠e� +
X

e2Ae

⇠e, for each edge e 2 Gk, and

⌘i = ⇠i +
X

e2Gki

⇠e, for each node i 2 N .

By Theorem A.8.1, we have

sup
h2Lip(1)

��
Bh(fW )� Bh(Z)

��


r

2

⇡

1

VarB(W )
B

���
NX

i=1

�
⇠i⌘i � B(⇠i⌘i)

 
+
X

e2Gk

�
⇠e⌘e � B(⇠e⌘e)

 ���

+
1

Var
3
2
B(W )

⇣ NX

i=1

B

��⇠i⌘2i
��+

X

e2Gk

B

��⇠e⌘2e
��
⌘
.

(A.3)
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Our next goal is to find some conditions under which the right hand side (RHS) of inequality (A.3) can

go to zero. Since the limit of VarB(W ) is bounded above zero when a1, a2, a3 are not all zeros, the RHS

of inequality (A.3) goes to zero if the following three terms

(A1) B

���
PN

i=1

�
⇠i⌘i � B(⇠i⌘i)

�
+
P

e2Gk

�
⇠e⌘e � B(⇠e⌘e)

���� ,

(A2)
PN

i=1 B|⇠i⌘2i | ,

(A3)
P

e2Gk B|⇠e⌘2e |

go to zero. For (A1), we have

B

���
NX

i=1

�
⇠i⌘i � B(⇠i⌘i)

�
+
X

e2Gk
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 B

���
NX
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⇠i⌘i � B(⇠i⌘i)

 ���+ B

��
X

e2Gk

�
⇠e⌘e � B(⇠e⌘e)

���



vuut
NX

i=1

VarB
�
⇠i⌘i

�
+

i 6=jX

i,j
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⇠i⌘i, ⇠j⌘j

�

+

vuutX

e2Gk

VarB
�
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�
+

e 6=fX

e,f

CovB
�
⇠e⌘e, ⇠f⌘f

�

=

vuuut
NX

i=1

VarB
�
⇠i⌘i

�
+

NX

i=1

X

j2nodeGi,2

CovB
�
⇠i⌘i, ⇠j⌘j

�

+
sX

e2Gk

VarB(⇠e⌘e) +
X

e2Gk

X

f2Ce\{e}

CovB(⇠e⌘e, ⇠f⌘f ) .

The last equality holds as ⇠i⌘i and
�
⇠j⌘j

 
j /2nodeGi,2

are uncorrelated under the bootstrap null distribution,

and ⇠e⌘e and {⇠f⌘f}f /2Ce
are uncorrelated under the bootstrap null distribution. The covariance part of

the edges is a bit complicated to handle directly, so we decompose it into three parts as follows based on

the relationship of e and f :

X

e2Gk

X

f2Ce\{e}

CovB
�
⇠e⌘e, ⇠f⌘f

�
=
X

e2Gk

X

f2Ae\{e}

CovB
�
⇠e⌘e, ⇠f⌘f

�

+
X

e2Gk

X

f2Be\Ae

CovB
�
⇠e⌘e, ⇠f⌘f

�

+
X

e2Gk

X

f2Ce\Be

CovB
�
⇠e⌘e, ⇠f⌘f

�
.

With carefully examining these quantities, we can show the following inequalities (A.4)-(A.11). The

details of obtaining (A.4)-(A.11) are provided in Section A.8.1.

NX

i=1

VarB(⇠i⌘i) -
NX

i=1

c4i + c20

NX

i=1

c2i

NX

j=1

R2
ij . (A.4)
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X

e2Gk

VarB
�
⇠e⌘e

�
- c20

NX

i=1

c2i

NX

j=1

R2
ij + c30

NX

i=1

ci

NX

j=1

R3
ij + c40

NX

i=1

� NX

j=1

R2
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. (A.5)
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�
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+ c20

���
NX
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X
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bibj

NX
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RikRjk
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(A.6)
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(A.7)
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X

e2Gk
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f2Ce\Be

CovB(⇠e⌘e, ⇠f⌘f ) = 0 . (A.9)
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ci
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c2iRi· + c30
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NX

j=1

R2
ij . (A.11)

Based on facts that ci - 1 for all i’s, (A1), (A2) and (A3) go to zero as long as the following conditions

hold:
NX

i=1

c3i ! 0 , (A.12)

c20

NX

i=1

ci

NX

j=1

R2
ij ! 0 , (A.13)

c30

NX

i=1

NX

j=1

R3
ij ! 0 , (A.14)

c40

NX
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� NX
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R2
ij

�2 ! 0 , (A.15)
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c0
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c2iRi· ! 0 , (A.16)
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Next, we show that the conditions in Theorem 3.1 can ensure (A.12)-(A.23). For Condition (A.12), we

have
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so Condition (A.12) holds when
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,
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which goes to zero under the condition
PN

i=1(R̄i· � r0)3 = o(NrdVr) and r0 = o(rd). For Condition

(A.17), it is easy to see that

NX

i=1

X

j2nodeGki

c0c
2
i cjRij =

NX

i=1

X

j2nodeGki

c0cic
2
jRij .

Then by ci - 1, we have

NX

i=1

X
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c0c
2
i cjRij -

NX

i=1

X
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2
iRij = c0
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i=1
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NX

i=1

X
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c20cicjR
2
ij -

NX

i=1

X
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c20ciR
2
ij = c20

NX

i=1

ci

NX

j=1

R2
ij ,

where both the right hand sides go to zero from (A.13) and (A.16). For Condition (A.18), we have

c20

NX

i=1

X
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bibj

NX

l=1

RilRjl =
NX

l=1

X

i2nodeGkl

X
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\{i}

bibjRilRjl

=
NX

l=1

i 6=jX

i,j2nodeGkl

bibjRilRjl ,

which is the same as the condition (A.20). For Condition (A.19), it is easy to see that

NX

i=1

j 6=lX

j,l2nodeGki

RjiRilcj(Rjl +Ril) =
NX

i=1

j 6=lX
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RjiRilcl(Rji +Rjl) ,

which means that we only need to deal with the two parts c30
PN

i=1

Pj 6=l
j,l2nodeGki

RjiRilcj(Rjl +Ril) and

c30
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i=1
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2
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NX
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ij ,

and c30
PN

i=1 Ri·
PN

j=1 R
2
ij is bounded by (A.23). For Condition (A.20), first we have

bjbl =
⇣ a2 eRj·p

pqNVr
� 2a1(p� q)Rj·

�B
w(N � 2)

+
a3p
pqN

⌘⇣ a2 eRl·p
pqNVr

� 2a1(p� q)Rl·
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⌘

=
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⌘
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and
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
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2
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=
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2
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Then
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+
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2
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+
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rd

+
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,

which goes to zero when
���
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i=1

Pj 6=l
j,l2nodeGki

RjiRil
eRj· eRl·

��� = o(N3r2dVr) and r1 = o(rd). For Condition

(A.21), we have
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where the first term goes to zero when
PN

i=1

�PN
j=1 R

2
ij

�2
= o

�
N4r4d

�
and the second term is the same

as the condition (A.22). The condition (A.22) holds when
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NX

j=1

NX
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For Condition (A.23), we have

c30

NX

i=1

Ri·

NX

j=1

R2
ij  c30

vuut
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i=1

R2
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=
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2
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2
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�2
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,

which goes to zero when r1 = o(rd) and
PN

i=1

�PN
j=1 R

2
ij

�2 - N3r4d.

A.8.1 Proof of Inequalities (A.4)-(A.11)

A.8.1.1 Proof of (A.4)

For each node i, we have

VarB(⇠i⌘i) =VarB
⇣
⇠i
�
⇠i +

X

e2Gki

⇠e
�⌘
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⇣
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�⌘

= B

�
h(i)4

�
B
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Thus,
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A.8.1.2 Proof of (A.5)

For each edge e =
�
i, j
�
2 Gk, we have
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X
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Thus,
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A.8.1.3 Proof of (A.6)

We can further decompose (A.6) as
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X
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�
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For j 2 nodeGi which means node j connects to node i directly, we have
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Thus, we have
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which implies that
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As a result,
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A.8.1.4 Proof of (A.7)

For f 2 Ae\{e} which means e and f have one common node, let’s call e = (1, 2), f = (2, 3). We can

firstly write ⇠(1,2)⌘(1,2) and ⇠(2,3)⌘(2,3) as

⇠(1,2)⌘(1,2)

=b0h(1)h(2)
�
b1h(1) + b2h(2)

�
R12

+ b20h(1)h(2)R12

⇣
h(1)h(2)R12 + h(1)h(3)R13 + h(2)h(3)R23

⌘

+ b20h(1)
2h(2)R12

X

j2nodeGk1
\{2,3}

R1jh(j) + b20h(1)h(2)
2R12

X

j2nodeGk2
\{1,3}

R2jh(j) ,

70



⇠(2,3)⌘(2,3)

=b0h(2)h(3)
�
b2h(2) + b3h(3)

�
R23

+ b20h(2)h(3)R23

⇣
h(2)h(3)R23 + h(1)h(3)R13 + h(1)h(2)R12

⌘

+ b20h(2)
2h(3)R23

X

j2nodeGk2
\{1,3}

R2jh(j) + b20h(2)h(3)
2R23

X

j2nodeGk3
\{1,2}

R3jh(j) .

Note that

B

�
h(i)

�
= 0, B

�
h(i)2

�
= pq, B

�
h(i)3

�
= pq(q � p), B

�
h(i)4

�
= pq(p3 + q3) ,

we have

B

�
⇠(1,2)⌘(1,2)⇠(2,3)⌘(2,3)

�

=p3q3b20R12R23

⇣
b1b3 + (q � p)b0b1(R13 +R23) + 2(q � p)b0b2R13

+ (q � p)b0b3(R12 +R13) + (p3 + q3)b20R12R23

+ (q � p)2b20R13(2R12 +R13 + 2R23)

+ (p3 + q3)b20R12R23 + p4q4b20
� NX

j=1

R1jR3j �R12R32

�⌘

and

B

�
⇠(1,2)⌘(1,2)

�
B

�
⇠(2,3)⌘(2,3)

�
= p4q4b40R

2
12R

2
23 ,

which further implies that

CovB
�
⇠(1,2)⌘(1,2), ⇠(2,3)⌘(2,3)

�
� p3q3b20R12R23b1b3

- b20R12R23

⇣
|b0||b1|(R13 +R23) + |b0||b3|(R12 +R13) + |b0||b2|R13

+ b20R13(R12 +R13 +R23) + b20

NX

j=1

R1jR3j

⌘

- c30R12R23

⇣
c1(R13 +R23) + c3(R12 +R13) + c2R13

+ c0R13(R12 +R13 +R23) + c0

NX

j=1

R1jR3j

⌘
.

71



As a result,
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A.8.1.5 Proof of (A.8)

For f 2 Be\Ae which means f and e have no common nodes, let us call e = (1, 2) and f = (3, 4). We
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Then X
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s 6=i,j

RijRjlRlsRsi .

A.8.1.6 Proof of (A.9)

When f 2 Ce\Be, let us call e = (1, 2) and f = (3, 4). We can firstly write ⇠(1,2)⌘(1,2) and ⇠(3,4)⌘(3,4) as

⇠(1,2)⌘(1,2) =b0h(1)h(2)
�
b1h(1) + b2h(2)

�
R12 + b20h(1)

2h(2)2R2
12

+ b20h(1)
2h(2)R12

X

j2nodeGk1
\{2,3,4}

R1jh(j)

+ b20h(1)h(2)
2R12

X

j2nodeGk2
\{1,3,4}

R2jh(j) ,

⇠(3,4)⌘(3,4) =b0h(3)h(4)
�
b3h(3) + b4h(4)

�
R34 + b20h(3)

2h(4)2R2
34

+ b20h(3)
2h(4)R34

X

j2nodeGk3
\{1,2,4}

R3jh(j)

+ b20h(3)h(4)
2R34

X

j2nodeGk4
\{1,2,3}

R4jh(j) .

As a result, we have

B

�
⇠(1,2)⌘(1,2)⇠(3,4)⌘(3,4)

�
= p4q4b40R

2
12R

2
34 = B

�
⇠(1,2)⌘(1,2)

�
B

�
⇠(3,4)⌘(3,4)

�
,

which implies that
X

e2G

X

f2Ce\Be

CovB(⇠e⌘e, ⇠f⌘f ) = 0 .

A.8.1.7 Proof of (A.10)

B

�
|⇠i⌘2i |

�
= B

⇣
|bih(i)|

�
bih(i) + b0h(i)

X

j2nodeGki

Rijh(j)
�2⌘

= B

�
|bih(i)3|

�
B

�
bi + b0

X

j2nodeGki

Rijh(j)
�2

= |bi|pq(p2 + q2)(b2i + pqb20

NX

j=1

R2
ij) ,

which implies that

NX

i=1

B

�
|⇠i⌘2i |

�
=

NX

i=1

|bi|pq(p2 + q2)(b2i + pqb20

NX

j=1

R2
ij) -

NX

i=1

c3i + c20

NX

i=1

ci

NX

j=1

R2
ij .
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A.8.1.8 Proof of (A.11)

B

�
|⇠e|⌘2e

�

= B

⇣
|b0h(e+)h(e�)Re|

�
be+h(e
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Re�lh(l)
�2⌘

= B

⇣
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�
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�) + b0h(e
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NX
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�

+ 2p3q3(q � p)2|b0|3Re
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Re+jRe�j

- |b0|3R3
e + |b0|Re(b

2
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� NX
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R2
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NX
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R2
e�j

�
,

which shows that

X

e2Gk

B

�
|⇠e|⌘2e

�
-
X

e2Gk

⇣
|b0|3R3

e + |b0|Re(b
2
e+ + b2e�) + |b0|3Re

� NX

j=1

R2
e+j +

NX

j=1

R2
e�j

�⌘

=
NX
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NX

j=1
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|b0|3R3

ij + |b0|Rij(b
2
i + b2j ) + |b0|3Rij

NX

l=1
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R2

il +R2
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-
NX

i=1

NX

j=1

⇣
c30R

3
ij + c0Rij(c

2
i + c2j ) + c30Rij

NX

l=1

�
R2

il +R2
jl

�⌘

- c30

NX

i=1

NX
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R3
ij + c0

NX

i=1

c2iRi· + c30

NX
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Ri·

NX

j=1

R2
ij .

A.9 Additional numeric results

A.9.1 Corner cases in Theorem 2.2.2

We check the corner cases, (C1) and (C2), through some simple simulations. We generate datasets from

the standard multivariate multivariate Gaussian distribution with di↵erent sample size N ’s and dimension

d’s. For each dataset, we calculate the two ratios r21/r
2
0 and (N � 2)Vd/

�
2(N � 1)Vr

�
. The procedure is

repeated 1, 000 times for each combination of N 2 { 50, 100, 200 } and d 2 { 50, 1000 } using R constructed

by the graph-induced rank in the k-NNG and the overall rank in the k-MDP, respectively, where k is set

as 5, [N0.5] and [N0.8], respectively. Among these 18, 000 simulation runs, the smallest r21/r
2
0 value is

1.049 and the smallest (N � 2)Vd/
�
2(N � 1)Vr

�
value is 3.219. They are all larger than 1. The boxplots

of the two corner conditions under each combination of k, d and N are showed in Figure A.1.
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A.9.2 Results for m = 50, n = 100

Here we present the results for m = 50, n = 100 and d 2 {200, 500, 1000}. The results show the similar

pattern as those for m = n = 50 in Section 4.3.

A.9.3 Exploration on graphs

We generate i.i.d. samples of Xi ⇠ FX and Yi ⇠ FY , and set d = 500 and vary the sample sizes (m,n).

Three combinations of (FX , FY ) are considered. Figure A.2 shows how the power varies with � such that

k = [N�] and the nominal significance level is set as 0.05. We see that the optimal k varies for di↵erent

settings and it is reasonable to choose � = 0.65 for both the k-NNG and the k-MDP to achieve adequate

power. Besides, Rg-NN performs better than Ro-MDP.
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Figure A.1. Boxplots of the two corner conditions.
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Table A.1. Empirical sizes of the tests under the four settings when the nominal significance level

↵ = 0.01 and 0.05, respectively, for m = 50, n = 100 and d = 200, 500, 1000.

Setting I Setting II Setting III Setting IV

↵ = 0.01 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Rg-NN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Ro-MDP 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01

GET 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.01

CM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MT 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

BD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

GLP 0.01 0.01 0.01 0.03 0.04 0.03 0.06 0.06 0.07 0.02 0.01 0.02

HD 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00

MMD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

Setting I Setting II Setting III Setting IV

↵ = 0.05 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Rg-NN 0.04 0.04 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.04 0.04 0.03

Ro-MDP 0.04 0.06 0.05 0.05 0.06 0.06 0.05 0.06 0.05 0.06 0.05 0.05

GET 0.04 0.06 0.04 0.04 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04

CM 0.05 0.05 0.04 0.04 0.05 0.05 0.06 0.04 0.05 0.06 0.04 0.05

MT 0.05 0.06 0.06 0.05 0.06 0.04 0.06 0.06 0.05 0.05 0.05 0.05

BD 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.05 0.05 0.05 0.04 0.05

GLP 0.04 0.05 0.05 0.08 0.09 0.09 0.08 0.08 0.09 0.06 0.05 0.06

HD 0.04 0.05 0.04 0.05 0.04 0.05 0.03 0.03 0.04 0.03 0.02 0.02

MMD 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01
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Table A.2. Estimated power of the tests with ↵ = 0.05 under the multivariate Gaussian distribution

(Setting I) and the Gaussian mixture distribution (Setting II) for m = 50, n = 100 and d = 200, 500,

1000.

Setting I (a) Setting I (b) Setting I (c) Setting I (d)

Method 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Rg-NN 80 75 70 97 90 81 82 90 95 100 99 100

Ro-MDP 74 71 66 94 85 73 88 96 98 99 98 99

GET 73 67 61 92 82 71 77 87 92 97 96 96

CM 36 35 33 51 40 33 4 6 6 83 81 80

MT 100 100 99 8 6 7 5 5 5 17 17 18

BD 91 76 56 68 48 30 94 99 100 26 28 26

GLP 73 60 45 15 13 14 7 8 4 8 6 5

HD 6 6 5 6 7 5 72 88 93 8 9 7

MMD 99 94 58 100 99 60 0 0 0 1 0 0

Setting I (e) Setting II (a) Setting II (b) Setting II (c)

Method 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Rg-NN 100 100 100 74 92 99 83 83 83 92 87 81

Ro-MDP 100 100 99 52 68 78 34 36 36 83 86 89

GET 99 99 98 65 88 97 84 83 85 80 72 67

CM 88 88 86 20 30 33 6 5 5 78 80 80

MT 18 18 19 71 82 84 5 6 4 9 12 16

BD 37 35 33 56 69 89 52 42 41 9 12 17

GLP 9 10 4 10 8 8 8 9 9 9 10 9

HD 8 9 7 5 4 4 4 5 4 5 5 4

MMD 9 0 0 2 1 2 1 1 1 2 1 1
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Table A.3. Estimated power of the tests with ↵ = 0.05 under the multivariate log-normal distribution

(Setting III) for m = 50, n = 100 and d = 200, 500, 1000.

Setting III (a) Setting III (b) Setting III (c) Setting III (d)

Method 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Rg-NN 88 86 85 98 95 83 42 46 48 72 78 78

Ro-MDP 98 99 98 91 90 78 60 72 77 91 96 97

GET 84 82 78 93 83 61 40 42 44 69 73 74

CM 24 23 21 44 38 32 6 7 7 13 13 14

MT 99 99 98 13 21 39 22 26 22 84 83 79

BD 97 99 98 22 19 14 71 82 84 93 98 98

GLP 85 74 62 22 30 36 12 10 10 26 20 18

HD 35 46 49 5 5 4 19 28 31 29 44 50

MMD 96 87 62 100 100 77 32 16 3 76 60 35

Table A.4. Estimated power of the tests with ↵ = 0.05 under the multivariate t5 distribution (Setting

IV) for m = 50, n = 100 and d = 200, 500, 1000.

Setting IV (a) Setting IV (b) Setting IV (c) Setting IV (d)

Method 200 500 1000 200 500 1000 200 500 1000 200 500 1000

Rg-NN 91 81 72 93 80 66 87 69 56 95 85 75

Ro-MDP 81 78 69 85 76 62 100 99 99 95 95 94

GET 79 58 47 80 54 38 78 44 21 86 69 56

CM 33 29 25 36 31 22 89 88 86 62 64 59

MT 99 99 99 10 10 7 22 24 28 92 92 86

BD 8 5 6 6 4 6 77 76 81 8 5 6

GLP 67 54 44 7 10 9 53 51 50 66 49 39

HD 3 2 3 3 2 2 23 24 23 3 2 2

MMD 90 52 14 88 31 8 51 51 53 87 52 16
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Figure A.2. Estimated power of Rg-NN and Ro-MDP with k = [N�
] over 1000 repetitions un-

der each setting. The three settings are:
�
Nd(0d, Id), Nd(�11d, Id)

�
,
�
t3(0d, Id), t3(�21d, �3Id)

�
and�

Cauchyd(0d, Id),Cauchyd(�41d, Id)
�
where �1 =

20p
Nd

, �2 =
28p
Nd

, �3 = (1 +
25p
Nd

)
2
and �4 =

1.44p
Nd

.

Here �i’s are set to make these tests have moderate power.
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Appendix B

Appendix for Chapter 3

B.1 Proof of Theorem 3.3.1

To prove the statement (i), it is su�cient to show that for and fixed M 2 Z
+,

⇣
Zw

�
[nu1]

�
, . . . , Zw

�
[nuM ]

�
, Zdi↵

�
[nu1]

�
, . . . , Zdi↵

�
[nuM ]

�⌘

converges to a multivariate Gaussian distribution when n ! 1 for any 0 < u1 < u2 < . . . < uM < 1 and

Cov
�
Zw(u), Zdi↵(v)

�
= 0 for any 0 < u, v < 1 as n ! 1. To simplify the notations, denote tm = [num]

for m = 1, . . . ,M .

At first, let us recall the permutation distribution. Let ⇡(i) be the observed time of yi after per-

mutation. Then (⇡(1),⇡(2), . . . ,⇡(n)) is a permutation of 1, . . . , n. To obtain the permutation distri-

bution, we can do it in two steps: (1) For each i, ⇡̃(i) is sampled uniformly from 1 to n; (2) only those

(⇡̃(1), ⇡̃(2), . . . , ⇡̃(n)) such that each value in {1, . . . , n} is sampled once are retained. It is not hard to see

that each permutation has the same occurrence probability after these two steps. We call the distribution

resulting from only performing the first step the bootstrap distribution, and use B, B,VarB,CovB to de-

note the probability, expectation, variance, and covariance under the bootstrap distribution, respectively.

In this section, the corresponding quantities with the subscript B are used to denote the equivalences

under the bootstrap distribution. Let nB(t) =
Pn

i=1

�
⇡̃(i)  t

�
and XB(t) =

�
nB(t) � t

�
/�B(t) where

�B(t) is the standard deviation of nB(t) under the bootstrap null distribution.

By the independence of ⇡̃(i) under the bootstrap null distribution, we have

B

�
U1(t)

�
=

t2(n� 1)

n
r0 ; B

�
U2(t)

�
=

(n� t)2(n� 1)

n
r0 ,

VarB
�
U1(t)

�
=

2t2(n� t)2(n� 1)

n3
r2d +

4(n� t)t3(n� 1)2

n3
r21 ,

VarB
�
U2(t)

�
=

2t2(n� t)2(n� 1)

n3
r2d +

4(n� t)3t(n� 1)2

n3
r21 ,

CovB
�
U1(t), U2(t)

�
=

2t2(n� t)2(n� 1)

n3
r2d �

4(n� t)2t2(n� 1)2

n3
r21 ,
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which implies that

µB
w(t) = B

�
Uw(t)

�
=

n� 1

n(n� 2)

�
nt(n� t)� t2 � (n� t)2

�
r0 ,

µB
di↵(t) = B(Udi↵(t)

�
= (n� 1)(2t� n)r0 ,

and
�
�B
w(t)

�2
= VarB

�
Uw(t)

�
=

2(n� 1)t2(n� t)2

n3
r2d +

4(n� 1)2(n� t)t(2t� n)2

(n� 2)2n3
r21 ,

�
�B
di↵(t)

�2
= VarB

�
Udi↵(t)

�
=

4(n� 1)2(n� t)t

n
r21 ,

�
�B(t)

�2
= VarB

�
nB(t)

�
=

t(n� t)

n
.

By defining ZB
w(t) =

�
Uw(t)�µB

w(t)
�
/�B

w(t), Z
B
di↵(t) =

�
Udi↵(t)�µB

di↵(t)
�
/�B

di↵(t), we express
�
ZP
w(t), Z

P
di↵(t)

�

in the following way:

0

@ ZP
w(t)

ZP
di↵(t)

1

A =

0

@
�B
w(t)

�P
w(t) 0

0 �B
diff (t)

�P
diff (t)

1
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0

@ ZB
w(t)

ZB
di↵(t)

1

A+

0

@
µB
w(t)�µP

w(t)
�P
w(t)

µB
diff (t)�µP

diff (t)
�P
diff (t)

1
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=

0

@
�B
w(t)

�P
w(t) 0

0
q

n�1
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1

A

0

@ ZB
w(t)

p
TZB
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1
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0

@
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w(t)�µP

w(t)
�P
w(t)

µB
diff (t)�µP

diff (t)
�P
diff (t)

1

A ,

(B.1)

where T = r21/(r
2
1 � r20). To prove Theorem 3.1, we only need to prove the following two lemmas. The

proof of Lemma B.1.1 is in Appendix B.5 and of Lemma B.1.2 is in Appendix B.6.

Lemma B.1.1. Under the conditions in Theorem, we have, for 0 < u1 < u2 < . . . < uM < 1, under the

bootstrap null distribution,

⇣
ZB
w (t1), . . . , Z

B
w (tM ),

p
T
�
ZB
di↵(t1)�

p
1� 1/TXB(t1)

�
, . . . ,

p
T
�
ZB
di↵(tM )�

p
1� 1/TXB(tM )

�
,

XB(t1), . . . , X
B(tM )

⌘

is multivariate normal and the covariance matrix of

�
XB(t1), . . . , X

B(tM )
�

is positive definite.

Lemma B.1.2. We have

�B
w(t)/�

P
w(t) ! cw;

�
µB
w(t)� µP

w(t)
�
/�P

w(t) ! 0;
�
µB
di↵(t)� µP

di↵(t)
�
/�P

di↵(t) ! 0

for any fixed t, where cw is a positive constant.
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By Lemma B.1.1, we have

⇣
ZB
w (t1), . . . , Z

B
w (tM ),

p
T
�
ZB
di↵(t1)�

p
1� 1/TXB(t1)

�
, . . . ,

p
T
�
ZB
di↵(tM )�

p
1� 1/TXB(tM )

�

| XB(t1), . . . , X
B(tM )

⌘

is multivariate normal under the bootstrap distribution. Besides,

�
ZB
w (t1), . . . , Z

B
w (tM ),

p
TZB

di↵(t1), . . . ,
p
TZB

di↵(tM ) | XB(t1) = 0, . . . XB(tM ) = 0
�

under the bootstrap distribution has the same distribution as

�
ZB
w (t1), . . . , Z

B
w (tM ),

p
TZB

di↵(t1), . . . ,
p
TZB

di↵(tM )
�

under the permutation distribution. Then with Lemma B.1.2 and the decomposition (B.1), we finish the

proof.

B.2 Proof of Theorem 3.3.2

We only show the detailed derivation of ⇢⇤di↵(u, v), and ⇢⇤w(u, v) can be derived similarly. Denote

⇢di↵(u, v) := Cov
�
Zdi↵([nu]), Zdi↵([nv])

�
, then

⇢⇤di↵(u, v) = lim
n!1

⇢di↵(u, v) .

Let s = [nu], t = [nv]. Without loss of generality, we assume u  v and thus s  t. Since

Cov
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Zdi↵(s), Zdi↵(t)

�

=
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U1(s)� U2(s)

��
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q
Var
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Var
�
U1(t)� U2(t)

� ,

where the expressions for
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U1(s) � U2(s)

�
,
�
U1(t) � U2(t)

�
, Var

�
U1(s) � U2(s)

�
, Var

�
U1(t) � U2(t)

�

follow easily from Section 3.2. So we only need to figure out

��
U1(s)� U2(s)

��
U1(t)� U2(t)

��
=
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U1(s)U1(t)

�
�

�
U1(s)U2(t)

�
�

�
U2(s)U1(t)

�
+

�
U2(s)U2(t)

�
.

Define t
i =

�
⇡(i)  t

�
, we can represent U1(t) and U2(t) under the permutation null distribution as

U1(t) =
tX

i=1

tX

j=1

Rij =
nX

i=1

nX

j=1

Rij
t
i

t
j

and

U2(t) =
nX

i=t+1

nX

j=t+1

Rij =
nX

i=1

nX

j=1

Rij(1� t
i)(1� t

j) .
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It is easy to see that for all di↵erent i, j, k, l, we have

�
s
i

s
j

t
i

t
j

�
=

s(s� 1)

n(n� 1)
:= a1(s) ,

�
s
i

s
j

t
i

t
l

�
=

s(s� 1)(t� 2)

n(n� 1)(n� 2)
:= a2(s, t) ,

�
s
i

s
j

t
k

t
l

�
=

s(s� 1)(t� 2)(t� 3)

n(n� 1)(n� 2)(n� 3)
:= a3(s, t) ,

�
s
i

s
j(1� t

i)(1� t
j)
�
=

s(s� 1)(n� t)(n� t� 1)

n(n� 1)(n� 2)(n� 3)
:= b1(s, t) ,

�
(1� s

i )(1� s
j)

t
i

t
j

�
=

(t� s)(t� s� 1)

n(n� 1)
:= c1(s, t) ,

�
(1� s

i )(1� s
j)

t
i

t
l

�
=

t� s)
�
(t� s� 1)(t� 2) + (n� t)(t� 1)

�

n(n� 1)(n� 2)
:= c2(s, t) ,

�
(1� s

i )(1� s
j)

t
k

t
l

�
=

(t� s)(t� s� 1)(n� s� 2)(n� s� 3)

n(n� 1)(n� 2)(n� 3)
+

s(s� 1)(n� s)(n� s� 1)

n(n� 1)(n� 2)(n� 3)
:= c3(s, t) ,

�
(1� s

i )(1� s
j)(1� t

i)(1� t
j)
�
=

(n� t)(n� t� 1)

n(n� 1)
:= d1(t) ,

�
(1� s

i )(1� s
j)(1� t

i)(1� t
l)
�
=

(n� t)(n� t� 1)(n� s� 2)

n(n� 1)(n� 2)
:= d2(s, t) ,

�
(1� s

i )(1� s
j)(1� t

k)(1� t
l)
�
=

(n� t)(n� t� 1)(n� s� 2)(n� s� 3)

n(n� 1)(n� 2)(n� 3)
:= d3(s, t) .

Then it is easy to obtain that

�
U1(s)U1(t)

�
=2

nX

i=1

nX

j=1

a1(s)R
2
ij + 4

nX

i=1

nX

j=1

nX

l=1,l 6=j

a2(s, t)RijRil

+
nX

i 6=j 6=k 6=l

a3(s, t)RijRkl

=2a1(s)n(n� 1)r2d + 4a2(s, t)
�
n(n� 1)2r21 � n(n� 1)r2d

�

+ a3(s, t)
�
n2(n� 1)2r20 � 4n(n� 1)2r21 + 2n(n� 1)r2d

�

=2
�
a1(s)� 2a2(s, t) + a3(s, t)

�
n(n� 1)r2d

+ 4
�
a2(s, t)� a3(s, t)

�
n(n� 1)2r21 + a3(s, t)n

2(n� 1)2r20 ,

�
U1(s)U2(t)

�
=b1(s, t)

�
n2(n� 1)2r20 � 4n(n� 1)2r21 + 2n(n� 1)r2d

�
,

�
U2(s)U1(t)

�
=2
�
c1(s)� 2c2(s, t) + c3(s, t)

�
n(n� 1)r2d

+ 4
�
c2(s, t)� c3(s, t)

�
n(n� 1)2r21 + a3(s, t)n

2(n� 1)2r20 ,

�
U2(s)U2(t)

�
=2
�
d1(s)� 2d2(s, t) + d3(s, t)

�
n(n� 1)r2d

+ 4
�
d2(s, t)� d3(s, t)

�
n(n� 1)2r21 + d3(s, t)n

2(n� 1)2r20 .
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As a result, we have

⇣�
U1(s)� U2(s)

��
U1(t)� U2(t)

�⌘
=

s(n� t)
�
n(n� 1)2r21 � n(n� 1)2r20

�

n(n� 1)

= s(n� t)(n� 1)(r21 � r20) ,

and hence,

Cov
�
Zdi↵(s), Zdi↵(t)

�
=

s(n� t)p
st(n� s)(n� t)

.

Then we have for u  v,

⇢⇤di↵(u, v) = lim
n!1

⇢di↵(u, v) =
u(1� v)p

u(1� u)v(1� v)
.

Similarly, for u � v, we have

⇢⇤di↵(u, v) =
v(1� u)p

v(1� v)u(1� u)
,

and the result in the proposition follows. Following the same routine, we can get

⇢⇤di↵(u, v) =
(u ^ v)(1� (u _ v))

(u _ v)(1� (u ^ v))
,

which finishes the proof.

B.3 The third moment

Theorem B.3.1. We have

�
U3
w(t)

�
= q3t

�
U3
1 (t)

�
+ p3t

�
U3
2 (t)

�

+ 3qtpt
⇣
qt
�
U2
1 (t)U2(t)

�
+ pt

�
U1(t)U

2
2 (t)

�⌘

�
U3
di↵(t)

�
=

�
U3
1 (t)

�
� 3

�
U2
1 (t)U2(t)

�
+ 3

�
U1(t)U

2
2 (t)

�
�

�
U3
2 (t)

�
(B.2)
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where pt = t/n and qt = 1� pt and

�
U3
1 (t)

�
=4p1(t)S1 + 24p2(t)(S2 � S1) + 8p2(t)S3 + 6p3(t)(S4 � 4S2 + 2S1)

+ 8p3(t)(S5 � 3S2 + 2S1) + 24p3(t)(S6 � S3 � 2S2 + S1)

+ 12p4(t)(S7 � 4S6 � 2S5 � S4 + 2S3 + 10S2 � 4S1)

+ p5(t)(S8 � 12S7 + 24S6 + 16S5 + 6S4 � 8S3 � 48S2 + 16S1) ,
�
U3
2 (t)

�
=4p1(n� t)S1 + 24p2(n� t)(S2 � S1) + 8p2(n� t)S3

+ 6p3(n� t)(S4 � 4S2 + 2S1)

+ 8p3(n� t)(S5 � 3S2 + 2S1) + 24p3(n� t)(S6 � S3 � 2S2 + S1)

+ 12p4(n� t)(S7 � 4S6 � 2S5 � S4 + 2S3 + 10S2 � 4S1)

+ p5(n� t)(S8 � 12S7 + 24S6 + 16S5 + 6S4 � 8S3 � 48S2 + 16S1) ,
�
U2
1 (t)U2(t)

�
=2p6(t)(S4 � 4S2 + 2S1)

+ 4p7(t)(S7 � 4S6 � 2S5 � S4 + 2S3 + 10S2 � 4S1)

+ p8(t)(S8 � 12S7 + 24S6 + 16S5 + 6S4 � 8S3 � 48S2 + 16S1) ,
�
U1(t)U

2
2 (t)

�
=2p6(n� t)(S4 � 4S2 + 2S1)

+ 4p7(n� t)(S7 � 4S6 � 2S5 � S4 + 2S3 + 10S2 � 4S1)

+ p8(n� t)(S8 � 12S7 + 24S6 + 16S5 + 6S4 � 8S3 � 48S2 + 16S1) ,

and S1 =
Pn

i=1

Pn
j=1 R

3
ij, S2 =

Pn
i=1

Pn
j=1

Pn
k=1 R

2
ijRik,

S3 =
nX

i=1

nX

j=1

nX

k=1

RijRjkRki ,

S4 =
nX

i=1

nX

j=1

nX

k=1

nX

l=1

R2
ijRkl = n2(n� 1)2r0r

2
d ,

S5 =
nX

i=1

nX

j=1

nX

k=1

nX

l=1

RijRikRil =
nX

i=1

R3
i·

S6 =
nX

i=1

nX

j=1

nX

k=1

nX

l=1

RijRjkRkl =
nX

j=1

nX

k=1

RjkRj·Rk·

S7 =
nX

i=1

nX

j=1

nX

k=1

nX

u=1

nX

v=1

RijRjkRuv =
nX

i=1

R2
i·R·· ,

S8 =
nX

i=1

nX

j=1

nX

k=1

nX

l=1

nX

u=1

nX

v=1

RijRklRuv =
�
n(n� 1)r0

�3
,

pj(t) =
jY

i=0

t� j

n� j
, j = 1, . . . , 5 ,

p5+j(t) =
(n� t)(n� t� 1)

(n� j � 1)(n� j � 2)

jY

i=0

t� j

n� j
, j = 1, 2, 3 .
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Proof. The expression (B.2) is obtained by basic calculation. We now derive
�
U3
1 (t)

�
,

�
U3
2 (t)

�
,

�
U2
1 (t)U

1
2 (t)

�
and

�
U1
1 (t)U

2
2 (t)

�
. First, we have

�
U3
1 (t)

�
=

� nX

i=1

nX

j=1

nX

k=1

nX

l=1

nX

u=1

nX

v=1

RijRklRuv
t
i

t
j

t
k

t
l

t
u

t
v

�

=
nX

i=1

nX

j=1

nX

k=1

nX

l=1

nX

u=1

nX

v=1

RijRklRuv

�
t
i =

t
j =

t
k = t

l =
t
u = t

v = 1
�
.

There are in total eight di↵erent configurations for the three index pairs (i, j), (k, l), (u, v). The probability
�

t
i =

t
j = t

k = t
l =

t
u = t

v = 1
�
depends only on the number of unique indices. We consider the

eight configurations and their associated summations separately:

1. The three pairs are the same: 4p1(t)S1;

2. Two pairs are the same and share one index with the third pair: 24p2(t)(S2 � S1);

3. The three pairs form a triangle: 8p2(t)S3;

4. Two pairs are the same and do not share any index with the third pair: 6p3(t)(S4 � 4S2 + 2S1);

5. The three pairs share one index, and neither of them share the other index (star-shaped): 8p3(t)(S5�

3S2 + 2S1);

6. One pair share one index with another pair and share the other index with the third pair. No index

sharing between the second and the third index (linear chain): 24p3(t)(S6 � S3 � 2S2 + S1);

7. Two pairs share one index, and share no index with the third pair: 12p4(t)(S7 � 4S6 � 2S5 � S4 +

2S3 + 10S2 � 4S1);

8. No pair shares any node: p5(t)(S8 � 12S7 + 24S6 + 16S5 + 6S4 � 8S3 � 48S2 + 16S1).

By adding these terms together, we obtain
�
U3
1 (t)

�
, and

�
U3
2 (t)

�
can be obtained similarly. Then, we

have �
U2
1 (t)U2(t)

�

=
� nX

i=1

nX

j=1

nX

k=1

nX

l=1

nX

u=1

nX

v=1

RijRklRuv
t
i

t
j

t
k

t
l(1� t

u)(1� t
v)
�

=
nX

i=1

nX

j=1

nX

k=1

nX

l=1

nX

u=1

nX

v=1

RijRklRuv

�
t
i =

t
j =

t
k = t

l = 1, t
u = t

v = 0
�
.

There are three di↵erent configurations for
�

t
i =

t
j = t

k = t
l = 1, t

u = t
v = 0

�
6= 0, as illustrated

by Figure, where the pair (u, v) must not have any overlap with the first two pairs (i, j) and (k, l). We

consider the three configurations and their associated summations separately:

1. The first two pairs are the same: 2p6(t)(S4 � 4S22S1);

2. The first two pairs share one index: 4p7(t)(S7 � 4S6 � 2S5 � S4 + 2S3 + 10S2 � 4S1);
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3. The first two pairs share no index: p8(t)(S8 � 12S7 + 24S6 + 16S5 + 6S4 � 8S3 � 48S2 + 16S1);

By adding these terms together, we obtain
�
U2
1 (t)U2(t)

�
, and

�
U1(t)U2

2 (t)
�
can be obtained similarly.

B.4 Proof of Theorem 3.3.3

Here we only show the consistency of TR for the change-point alternative. The consistency for the changed

interval alternative and the consistency of MR follow similarly. Let f0 and f1 be the density function of

F0 and F1, respectively. For 0 < � < 1, define

�j(�) = lim
n!1

Uj(�n)�E
�
Uj(�n)

�

n
for j = 1, 2 .

If the k-MST or the k-NNG is used, following the approach of Henze and Penrose [1999] or Schilling

[1986], we have

�1(�) =
k(k + 1)

2

Z
�2f2

0 (z)

!f0(z) + (1� !)f1(z)
dz � k(k + 1)

2

=
k(k + 1)�2

2

Z
f2
0 (z)�

�
!f0(z) + (1� !)f1(z)

��
(2� !)f0(x) + (! � 1)f1(x)

�

!f0(z) + (1� !)f1(z)
dz

=
k(k + 1)�2(1� !)2

2

Z �
f0(z)� f1(z)

�2

!f0(z) + (1� !)f1(z)
dz � 0

�2(�) =
k(k + 1)

2

Z �
(! � �)f0(z) + (1� !)f1(z)

�2

!f0(z) + (1� !)f1(z)
dz � k(k + 1)

2
(1� �)2 = �1(�)

for 0 < �  ! and

�1(�) =
k(k + 1)

2

Z �
!f0(z) + (� � !)f1(z)

�2

!f0(z) + (1� !)f1(z)
dz � k(k + 1)

2
�2

=
k(k + 1)(1� �)2!2

2

Z �
f0(z)� f1(z)

�2

!f0(z) + (1� !)f1(z)
dz � 0

�2(�) =
k(k + 1)

2

Z
(1� !)2f2

1 (z)

!f0(z) + (1� !)f1(z)
dz � k(k + 1)

2
(1� �)2 = �1(�)

for ! < � < 1. Following Theorem 3.3 of Zhou and Chen [2021], we can show that

T (�) =
a�(1� �)

�
�1(�)��2(�)

�2
+ 2b

�
(1� �)�1(�) + ��2(�))2

4�2(1� �)2

=
b
�
(1� �)�1(�) + ��2(�))2

2�2(1� �)2
=

b�2
1(�)

2�2(1� �)2
,

where

a = lim
n!1

1

n(r21 � r20)
> 0 ,

b = lim
n!1

n

(n� 2)(r2d � r20)� 2(n� 1)(r21 � r20)
>

1

k(k + 1)(2k + 1)
> 0 .
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Then, it is easy to see that

T (�)  T (!) =
b

2

⇣k(k + 1)!(1� !)

2

Z �
f0(z)� f1(z)

�2

!f0(z) + (1� !)f1(z)
dz
⌘2

(B.3)

and the maximum value is attained if and only if � = !. We observe that

{|!̂ � !| > ✏} ⇢
n

sup
|u�!|>✏

�TR([un])

n
� TR([!n])

n

�
� 0
o

and

sup
|u�!|>✏

�TR([un])

n
� TR([!n])

n

�
=

sup
|u�!|>✏

TR([un])

n
� sup

|u�!|>✏
T (u)�

⇣TR([!n])

n
� T (!)

⌘
+
⇣

sup
|u�!|>✏

T (u)� T (!)
⌘
.

At first, we have

sup
|u�!|>✏

T (u)� T (!) < 0

by (B.3). Besides,

lim
n!1

TR([!n])

n
= T (!)

by Theorem 3.3 of Zhou and Chen [2021]. Finally,

sup
|u�!|>✏

TR([un])

n
� sup

|u�!|>✏
T (u)  sup

|u�!|>✏

���
TR([un])

n
� T (u)

��� P! 0

by Assumption 3.17. As a result,

�
|!̂ � !| > ✏

�


�
sup

|u�!|>✏

�TR([un])

n
� TR([!n])

n

�
� 0
�
! 0 ,

which proves the consistency of the detected change-point. We then study the p-value. Let p̂(·) be the

estimated p-value of maxn0tn1 TR(t) > b defined by (3.5). By Assumption 3.17 and the continuous

mapping theorem, we have
TR([!̂n])

n
P! T (!) .

Then for any ✏ > 0, we have

�
|TR([!̂n])� nT (!)| > n✏) ! 0 ,
�
p̂(TR([!̂n])) < p̂(n(T (!)� ✏))

�
! 1 .

Since n(T (!) � ✏) & n and by (3.5) we have p̂(b) = O(b exp(�b/2)), then p̂(n(T (!) � ✏))
P! 0, which

implies that
�
p̂(TR([!̂n])) < ↵) ! 1 as n ! 1

for any significance level 0 < ↵ < 1. We then finish the proof.
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B.5 Proof of Lemma B.1.1

To prove Lemma B.1.1, we only need to show that

W ⌘
MX

m=1

⇣
amZB

w (tm) + bm
p
T
�
ZB
di↵(tm)�

p
1� 1/TXB(tm)

�
+ cmXB(tm)

⌘

=
MX

m=1

⇣
amZB

w (tm) + bm
p
TZB

di↵(tm) +
�
cm � bm

p
T � 1

�
XB(tm)

⌘ (B.4)

is normal for any fixed am, bm, and cm for the non-degenerating case that

lim
n!1

VarB(W ) > 0

We prove the Gaussianity of W by Stein’s method using the following Theorem.

Theorem B.5.1 (Stein’s Method, Chen et al. [2010], Theorem 4.13). Let
�
⇠i, i 2 J

 
be a random field

with mean zero, W =
P

i2J ⇠i and Var(W ) = 1, for each i 2 J there exits Ki ⇢ J such that ⇠i and ⇠KC
i

are independent, then

sup
h2Lip(1)

��Eh(W )�Eh(Z)
�� 

r
2

⇡
E

���
X

i2J

�
⇠i⌘i �E(⇠i⌘i)

 ���+
X

i2J
E
��⇠i⌘2i

��

where ⌘i =
P

j2Ki
⇠j and Z is the standard normal random variable.

By definition, the similarity graph can also be represented by

Gk ⌘
�
V = N , E = {(i, j) : Rij > 0, i, j 2 N

�
,

where N = {1, . . . , n} and we denote Gk as G for notional simplicity. To simplify notations, we let

pm = tm/n and qm = 1� pm, then we reorganize W in the following way:

W =
MX

m=1

am
⇣

n�tm�1
n�2

�
U1(tm)� p2mn(n� 1)r0

�
+ tm�1

n�2

�
U2(tm)� q2mn(n� 1)r0

�⌘

�B
w(tm)

+
MX

m=1

bm
p
T
�
U1(tm)� U2(tm)� (p2m � q2m)n(n� 1)r0

�

�B
di↵(tm)

+
MX

m=1

(cm � bm
p
T � 1)

�
nB(tm)� tm

�

�B(tm)

=
MX

m=1

X

e2G

2Ream
�B
w(tm)

n

n� 2

� �
⇡̃(e+)  tm

�
� pm

�� �
⇡̃(e�)  tm

�
� pm

�

�
MX

m=1

X

e2G

2Ream
�B
w(tm)

�
⇡̃(e+)  tm, ⇡̃(e�)  tm

�
+

�
⇡̃(e+) > tm, ⇡̃(e�) > tm

�
� p2m � q2m

n� 2

+
MX

m=1

X

e2G

2Rebm
p
T

�B
di↵(tm)

� �
⇡̃(e+)  tm

�
+

�
⇡̃(e�)  tm

�
� 2pm

�

+
MX

m=1

nX

i=1

(cm � bm
p
T � 1)

� �
⇡̃(i)  tm

�
� pm

�

�B(tm)
.
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Define a function h(m, i) : {1, . . . ,M} ⇥ N ! R such that h(m, i) =
�
⇡̃(i)  tm

�
� pm, for m 2

{1, . . . ,M}, i 2 N . Then,

⇣ �
⇡̃(e+)  tm

�
� pm

⌘⇣ �
⇡̃(e�)  tm

�
� pm

⌘
= h(m, e+)h(m, e�) ,

�
⇡̃(e+)  tm, ⇡̃(e�)  tm

�
+

�
⇡̃(e+) > tm, ⇡̃(e�) > tm

�
� p2m � q2m

= 2h(m, e+)h(m, e�) + (pm � qm)
�
h(m, e+) + h(m, e�)

�
,

�
⇡̃(e+)  tm

�
+

�
⇡̃(e�)  tm

�
� 2pm = h(m, e+) + h(m, e�) .

Thus, W can be expressed as

W =
MX

m=1

X

e2G

2Re

⇣amh(m, e+)h(m, e�)

�B
w(tm)

+
� bm

p
T

�B
di↵(t)

� am(pm � qm)

�B
w(tm)(n� 2)

��
h(m, e+) + h(m, e�)

�⌘

+
MX

m=1

nX

i=1

(cm � bm
p
T � 1)h(m, i)

�B(tm)

=
MX

m=1

X

e2G

2Ream
�B
w(tm)

h(m, e+)h(m, e�)

+
MX

m=1

� bm
p
T

�B
di↵(tm)

� am(pm � qm)

�B
w(tm)(n� 2)

� nX

i=1

2Ri·h(m, i)

+
MX

m=1

mX

i=1

(cm � bm
p
T � 1)h(m, i)

�B(tm)

=
MX

m=1

X

e2G

2Ream
�B
w

h(m, e+)h(m, e�)

+
MX

m=1

nX

i=1

⇣ bmp
pmqmn(r21 � r20)

� Ri·
n� 1

� r0
�
� 2am(pm � qm)Ri·

�B
w(tm)(m� 2)

+
cmp

pmqmn

⌘
h(m, i) .

Let

fm =
2am

�B
w(tm)

, fm,i =
bm
�
R̄i· � r0

�
p
pmqmn(r21 � r20)

� 2am(pm � qm)Ri·
�B
w(tm)(n� 2)

+
cmp

pmqmn

⇠m,e = fmReh(m, e+)h(m, e�) , ⇠m,i = fm,ih(m, i) for i 2 N .

and ⇠e =
MX

m=1

⇠m,e , ⇠i =
MX

m=1

⇠m,i.

So

W =
MX

m=1

X

e2G

⇠m,e +
MX

m=1

nX

i=1

⇠m,i =
X

e2G

⇠e +
nX

i=1

⇠i .

Plugging in the expressions of �B
w(tm), �B

di↵(tm), �B(tm), and by

R2
i· =

nX

j=1

nX

k=1

RijRik  1

2

nX

j=1

nX

k=1

�
R2

ij +R2
ik

�
= n

nX

j=1

R2
ij  n2(n� 1)r2d ,

we have
Ri·

�B
w(tm)(n� 2)

- 1p
n
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and

|fm| - 1p
n2r2d

, |fm,i| -
��R̄i· � r0

��
p
n(r21 � r20)

+
1p
n
.

Denote g0 = 1p
n2r2d

and gi =

��R̄i·�r0

��
p

n(r21�r20)
+ 1p

n
, for i 2 N . Next, we apply Theorem B.5.1 to fW =

W/
p
VarB(W ). Let Gi be the set of edges with one endpoint vertex i, Gi,2 be the set of edges with at

least one endpoint in Gi. Besides, we use nodeGi to denote the vertex set connecting by edges in Gi

excluding the vertex i and nodeGi,2 to denote the vertex set connecting by edges in Gi,2 excluding the

vertex i. For each edge e = (i, j) 2 G, we define Ae = Gi [Gj , Be = [l2nodeAe
Gl and Ce = [l2nodeBe

Gl.

Let J = G [ N , Ke = Ae [ {e+, e�} for each edge e = (e+, e�) 2 G and Ki = Gi [ {i} for each node

i 2 N . These Ke’s, Ki’s obviously satisfy the assumptions in Theorem B.5.1 under the bootstrap null

distribution. Then, we define ⌘e’s, ⌘i’s as follows:

⌘e =
MX

m=1

�
⇠m,e+ + ⇠m,e� +

X

e2Ae

⇠m,e

�
= ⇠e+ + ⇠e� +

X

e2Ae

⇠e, for each edge e 2 G, and

⌘i =
MX

m=1

�
⇠m,i +

X

e2Gi

⇠m,e

�
= ⇠i +

X

e2Gi

⇠e, for each node i 2 N .

By Theorem B.5.1, we have

sup
h2Lip(1)

��
Bh(fW )� Bh(Z)

��


r

2

⇡

1

VarB(W )
B

���
nX

i=1

�
⇠i⌘i � B(⇠i⌘i)

 
+
X

e2G

�
⇠e⌘e � B(⇠e⌘e)

 ���

+
1

Var
3
2
B(W )

⇣ nX

i=1

B

��⇠i⌘2i
��+

X

e2G

B

��⇠e⌘2e
��
⌘
.

(B.5)

Our next goal is to find some conditions under which the RHS of inequality (B.5) can go to zero. Since

we only consider the non-degenerated case such that the limit of VarB(W ) is bounded above zero, the

RHS of inequality (B.5) goes to zero if the following three terms

(A1) B

���
Pn

i=1

�
⇠i⌘i � B

�
⇠i⌘i

� 
+
P

e2G

�
⇠e⌘e � B

�
⇠e⌘e

� ��� ,

(A2)
Pn

i=1 B

��⇠i⌘2i
�� ,

(A3)
P

e2G B

��⇠e⌘2e
��
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go to zero. For (A1), we have

B

���
nX

i=1

�
⇠i⌘i � B(⇠i⌘i)

 
+
X

e2G

�
⇠e⌘e � B(⇠e⌘e)

 ���

 B

���
nX

i=1

�
⇠i⌘i � B(⇠i⌘i)

 ���+ B

��
X

e2G

{⇠e⌘e � B(⇠e⌘e)}
��



vuut
nX

i=1

VarB
�
⇠i⌘i

�
+

i 6=jX

i,j

CovB
�
⇠i⌘i, ⇠j⌘j

�
+

vuutX

e2G

VarB
�
⇠e⌘e

�
+

e 6=fX

e,f

CovB
�
⇠e⌘e, ⇠f⌘f

�

=

vuut
nX

i=1

VarB
�
⇠i⌘i

�
+

nX

i=1

X

j2nodeGi,2

CovB
�
⇠i⌘i, ⇠j⌘j

�

+
sX

e2G

VarB(⇠e⌘e) +
X

e2G

X

f2Ce\{e}

CovB(⇠e⌘e, ⇠f⌘f ) .

The last equality holds as ⇠i⌘i and
�
⇠j⌘j

 
j /2nodeGi,2

are uncorrelated under the bootstrap null distribution,

and ⇠e⌘e and {⇠f⌘f}f /2Ce
are uncorrelated under the bootstrap null distribution. The covariance part of

edges is a bit complicated to handle directly, so we decompose it into three parts as follows based on the

relationship of e and f .

X

e2G

X

f2Ce\{e}

CovB
�
⇠e⌘e, ⇠f⌘f

�
=
X

e2G

X

f2Ae\{e}

CovB
�
⇠e⌘e, ⇠f⌘f

�

+
X

e2G

X

f2Be\Ae

CovB
�
⇠e⌘e, ⇠f⌘f

�

+
X

e2G

X

f2Ce\Be

CovB
�
⇠e⌘e, ⇠f⌘f

�
.

With carefully examining these quantities, we can show the following inequalities (B.6)-(B.13). The

details of obtaining (B.6)-(B.13) are provided in Section B.7.

nX

i=1

VarB(⇠i⌘i) -
nX

i=1

g4i + g20

nX

i=1

g2i

nX

j=1

R2
ij . (B.6)

X

e2G

VarB
�
⇠e⌘e

�
- g20

nX

i=1

g2i

nX

j=1

R2
ij + g30

nX

i=1

gi

nX

j=1

R3
ij + g40

nX

i=1

� nX

j=1

R2
ij

�2
. (B.7)

nX

i=1

X

j2nodeGi,2

CovB
�
⇠i⌘i, ⇠j⌘j

�
-

nX

i=1

X

j2nodeGi

�
g0gigjRij(gi + gj) + g20gigjR

2
ij

�

+ g20 max
s,m=1,...,M

���
nX

i=1

X

j2nodeGi,2

fm,ifs,j

nX

k=1

RikRjk

��� .
(B.8)
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X

e2G

X

f2Ae\{e}

CovB(⇠e⌘e, ⇠f⌘f )

- g30

nX

i=1

j 6=kX

j,k2nodeGi

RjiRik

⇣
gj
�
Rjk +Rik

�
+ gk

�
Rji +Rjk

�
+ giRjk

�
(j, k) 2 G

�⌘

+ g40

nX

i=1

j 6=kX

j,k2nodeGi

RjiRik

⇣ �
(j, k) 2 G

�
Rjk

�
Rji +Rjk +Rik

�
+

nX

l=1

RjlRkl

⌘

+ g20 max
m,s=1,...,M

���
nX

i=1

j 6=kX

j,k2nodeGi

RjiRikfm,jfs,k
��� .

(B.9)

X

e2G

X

f2Be\Ae

CovB(⇠e⌘e, ⇠f⌘f )g
4
0

nX

i=1

nX

j=1

nX

k 6=i,j

nX

l 6=i,j

RijRkl

�
RikRjl +RilRjk

�
. (B.10)

X

e2G

X

f2Ce\Be

CovB(⇠e⌘e, ⇠f⌘f ) = 0 . (B.11)

nX

i=1

B

�
|⇠i⌘2i |

�
-

nX

i=1

g3i + g20

nX

i=1

gi

nX

j=1

R2
ij . (B.12)

X

e2G

B

�
|⇠e|⌘2e

�
- g30

nX

i=1

nX

j=1

R3
ij + g0

nX

i=1

g2iRi· + g30

nX

i=1

Ri·

nX

j=1

R2
ij . (B.13)

Then by the proof of Theorem 4 of Zhou and Chen [2021], (A1), (A2) and (A3) going to zero as long as

Conditions (3.1)-(3.6) hold.

B.6 Proof of Lemma B.1.2

Since r2d � r21 � r20 by Cauchy–Schwarz inequality, we have

�
�P
w(t)

�2 ⇣ n2(r2d + r20) ⇣ n2r2d ,
�
�B
w(t)

�2 ⇣ n2r2d ,
�
�P
di↵(t)

�2 ⇣ n3(r21 � r20) ,
�
�B
di↵(t)

�2 ⇣ n3r21 .

Since µB
di↵(t)� µP

di↵(t) = 0 and µB
w(t)� µP

w(t) = npmqmr0 ⇣ nr0, by Condition (3.1), we have

µB
w(t)� µP

w(t)

�P
w(t)

⇣ r0/rd - r1/rd ! 0 .

B.7 Proof of Inequalities (B.6) - (B.13)

Assume that m  s  l, then we have

h(m, i)h(s, i) =

8
>>><

>>>:

qmqs with probability pm ,

�pmqs with probability ps � pm ,

pmps with probability qs ,
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h(m, i)h(s, i)h(l, i) =

8
>>>>>><

>>>>>>:

qmqsql with probability pm ,

�pmqsql with probability ps � pm ,

pmpsql with probability pl � ps ,

�pmpspl with probability qs ,

which implies that B

�
h(m, i)h(s, i)

�
= pmqs and

B

�
h(m, i)2h(s, i)2

�
= pmq2mq2s + (ps � pm)p2mq2s + qsp

2
mp2s ,

B

�
h(m, i)h(s, i)h(l, i)

�
= pmqs(qmql � pmpl) + pmql

�
ps(pl � ps)� qs(ps � pm)

�
.

Without loss of generality, in the following sections when the indices m, s, l or m1,m2, s1, s2 appear, we

will always assume that m  s  l and m1  m2  s1  s2.

B.7.1 Proof of (B.6)

For each node i, we have

VarB(⇠i⌘i) = VarB
� MX

m=1

⇠m,i

MX

s=1

⌘s,i
�
 M4 max

m,s=1,...,M
VarB

�
⇠m,i⌘s,i

�
,

and

VarB
�
⇠m,i⌘s,i

�
= VarB

⇣
⇠m,i

�
⇠s,i +

X

e2Gi

⇠s,e
�⌘

= VarB
⇣
h(m, i)h(s, i)fm,i

�
fs,i + fs

X

j2nodeGi

Rijh(s, j)
�⌘

= B

�
h(m, i)2h(s, i)2

�
B

⇣
f2
m,i

�
fs,i + fs

X

j2nodeGi

Rijh(s, j)
�2⌘

�
⇣

B

�
h(m, i)h(s, i)fm,ifs,i

�⌘2

=
�
pmq2mq2s + (ps � pm)p2mq2s + qsp

2
mp2s

�
f2
m,i

⇥ B

⇣
f2
s,i + 2fs,ifs

X

j2nodeGi

Rijh(s, j) + f2
s

� X

j2nodeGi

Rijh(s, j)
�2⌘� f2

m,if
2
s,ip

2
mq2s

= pmqs(pmp2s + q2mqs + pspmqs � p2mqs � pmqs)b
4
i

+ pspmq2s(pmp2s + q2mqs + pspmqs � p2mqs)f
2
m,if

2
s

X

j2nodeGi

R2
ij .

Thus,
nX

i=1

VarB(⇠i⌘i) -
nX

i=1

g4i + g20

nX

i=1

g2i

nX

j=1

R2
ij .
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B.7.2 Proof of (B.7)

For each edge e =
�
i, j
�
2 G, we have

⇠m,e⌘s,e =fmRijh(m, i)h(m, j)
�
fs,ih(s, i) + fs,jh(s, j)

�
+ fmfsR

2
ijh(m, i)h(s, i)h(m, j)h(s, j)

+ fmfsRijh(m, i)h(s, i)h(m, j)
X

k2nodeGi\{j}

Rikh(s, k)

+ fmfsRijh(m, i)h(m, j)h(s, j)
X

k2nodeGj \{i}

Rkjh(s, k) .

Then we have B

�
⇠m,e⌘s,e

�
= fmfsR2

ijp
2
mq2s and

B

�
⇠m,e⌘s,e

�2 � f2
mf2

sR
4
ijp

4
mq4s  f2

mR2
ij(f

2
s,i + f2

s,j) + f2
mfs(|fs,i|+ |fs,j)R3

ij

+ f2
mf2

sR
2
ij

⇣ X

k2nodeGi\{j}

R2
ik +

X

k2nodeGj \{i}

R2
kj

⌘

- g20R
2
ij(g

2
i + g2j ) + c30(ci + cj)R

3
ij

+ g40R
2
ij

⇣ X

k2nodeGi

R2
ik +

X

k2nodeGj

R2
kj

⌘
.

Thus, X

e2G

VarB
�
⇠e⌘e

�

X

e2G

M4 max
m,s=1,...,M

VarB
�
⇠m,e⌘s,e

�

-
nX

i=1

nX

j=1

⇣
g20R

2
ij(g

2
i + g2j ) + g30(gi + gj)R

3
ij + g40R

2
ij

� X

k2nodeGi

R2
ik +

X

k2nodeGj

R2
kj

�⌘

-
nX

i=1

nX

j=1

⇣
g20R

2
ij(g

2
i + g2j ) + g30(gi + gj)R

3
ij + g40R

2
ij

� nX

k=1

R2
ik +

nX

k=1

R2
kj

�⌘

- g20

nX

i=1

g2i

nX

j=1

R2
ij + g30

NX

i=1

gi

nX

j=1

R3
ij + g40

nX

i=1

⇣ nX

j=1

R2
ij

⌘2
.

B.7.3 Proof of (B.8)

We can further decompose (B.8) as

nX

i=1

X

j2nodeGi,2\{i}

CovB
�
⇠i⌘i, ⇠j⌘j

�

=
nX

i=1

X

j2nodeGi\{i}

CovB
�
⇠i⌘i, ⇠j⌘j

�
+

nX

i=1

X

j2nodeGi,2\nodeGi

CovB
�
⇠i⌘i, ⇠j⌘j

�
.
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For j 2 nodeGi which means node j connects to node i directly, we have

B

�
⇠m1,i⌘m2,i⇠s1,j⌘s2,j

�

= B

⇣
h(m1, i)h(m2, i)h(s1, j)h(s2, j)fm1,ifs1,j

⇥
�
fm2,i + fm2

X

k12nodeGi

Rik1h(m2, k1)
��
fs2,j + fs2

X

k22nodeGj

Rjk2h(s2, k2)
�⌘

= B

⇣
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⇥
�
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��
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�⌘

+ B

⇣
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⇥
� X
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Rik1h(m2, k1)
�� X

k22nodeGj \{i}

Rjk2h(s2, k2)
�⌘

and

B

�
⇠m1,i⌘m2,i

�
B

�
⇠s1,j⌘s2,j

�
= (fm1,ifm2,ipm1qm2)(fs1,ifs2,ips1qs2) .

Combining with B

�
h(m, i)h(s, i)h(l, i)

�
= pmqs(qmql�pmpl)+pmql

�
ps(pl�ps)� qs(ps�pm)

�
, we have

���CovB
�
⇠m1,i⌘m2,i, ⇠s1,j⌘s2,j

�
� pm1qm2ps1qs2pm1qs2fm2fs2fm1,ifs1,j

nX

k=1

RikRjk

���

 g0gigjRij(gi + gj) + g20gigjR
2
ij .

For j 2 nodeGi,2\nodeGi , which means node j does not connect to node i directly, we have

B
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�
= B
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⇥
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��
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which implies that
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As a result,
NX
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X

j2nodeGi,2

CovB
�
⇠m1,i⌘m2,i, ⇠s1,j⌘s2,j

�

-
nX

i=1

X

j2nodeGi\{i}

�
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=
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-
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���
nX

i=1

X

j2nodeGi,2

fm,ifs,j

nX

k=1

RikRjk

���

.

B.7.4 Proof of (B.9)

For f 2 Ae\{e} which means e and f have one common node, let’s call e = (1, 2), f = (2, 3). We can

firstly write ⇠m1,(1,2)⌘m2,(1,2) and ⇠s1,(2,3)⌘s2,(2,3) as

⇠m1,(1,2)⌘m2,(1,2)

= fm1h(m1, 1)h(m1, 2)
�
fm2,1h(m2, 1) + fm2,2h(m2, 2)

�
R12

+ fm1fm2h(m2, 1)h(m2, 2)R12

⇥
⇣
h(m2, 1)h(m2, 2)R12 + h(m2, 1)h(m2, 3)R13

�
(1, 3) 2 G

�
+ h(m2, 2)h(m2, 3)R23

⌘

+ fm1fm2h(m1, 1)h(m2, 1)h(m1, 2)R12

X

j2nodeG1\{2,3}

R1jh(m2, j)

+ fm1fm2h(m1, 1)h(m2, 2)R12

X

j2nodeG2\{1,3}

R2jh(m2, j) ,
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⇠s1,(2,3)⌘s2,(2,3)

= fs1h(s1, 2)h(s1, 3)
�
fs2,2h(s1, 2) + fs2,3h(s2, 3)

�
R23

+ fs1fs2h(s1, 2)h(s1, 3)R23

⇥
⇣
h(s2, 2)h(s2, 3)R23 + h(s2, 1)h(s2, 3)R13

�
(1, 3) 2 G

�
+ h(s2, 1)h(s2, 2)R12

⌘

+ fs1fs2h(s1, 2)h(s2, 2)h(s1, 3)R23

X

j2nodeG2\{1,3}

R2jh(s2, j)

+ fs1fs2h(s1, 2)h(s1, 3)h(s2, 3)R23

X

j2nodeG3\{1,2}

R3jh(s2, j) .

We then have

B

�
⇠m1,(1,2)⌘m2,(1,2)

�
B

�
⇠s1,(2,3)⌘s2,(2,3)

�

= pm1pm2ps1ps1qm1qm2qs1qs1fm1fm2fs1fs2R
2
12R

2
23 ,

and

CovB
�
⇠m1,(1,2)⌘m2,(1,2), ⇠s1,(2,3)⌘s2,(2,3)

�
� pm1qm2pm2qs1ps1qs2fm1fs1fm2,1fs2,3R12R23

- g30R12R23

⇣
g1
�
R13 +R23

�
+ g3

�
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�
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+ g0
�
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�
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nX

j=1

R1jR3j

⌘
.

As a result,

X

e2G

X

f2Ae\{e}

CovB(⇠e⌘e, ⇠f⌘f ) =
nX

i=1

j 6=kX

j,k2nodeGi
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�
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=
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�
+ giRjk

�
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�⌘

+ g40

nX
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�
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nX
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���
nX
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��� .
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B.7.5 Proof of (B.10)

For f 2 Be\Ae which means f and e have no common nodes, let’s call e = (1, 2) and f = (3, 4). We can

firstly write ⇠m1,(1,2)⌘m2,(1,2) and ⇠s1,(3,4)⌘s2,(3,4) as

⇠m1,(1,2)⌘m2,(1,2) = fm1h(m1, 1)h(m1, 2)
�
fm2,1h(m2, 1) + fm2,2h(m2, 2)

�
R12

+ fm1fm2h(m1, 1)h(m2, 1)h(m1, 2)h(m2, 2)R
2
12
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⇣
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�
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�
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⇣
h(m2, 2)h(m2, 3)R23

�
(2, 3) 2 G

�
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X
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�
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2
34

+ fs1fs2h(s1, 3)h(s1, 4)R34

⇣
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As a result, we have
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Then X
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B.7.6 Proof of (B.11)

When f 2 Ce\Be, let’s call e = (1, 2) and f = (3, 4). We can firstly write ⇠m1,(1,2)⌘m2,(1,2) and

⇠s1,(3,4)⌘s2,(3,4) as

⇠m1,(1,2)⌘m2,(1,2) = fm1h(m1, 1)h(m1, 2)
�
fm2,1h(m2, 1) + fm2,2h(m2, 2)

�
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2
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X
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X
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�
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�
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X
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As a result, we have
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,

which implies that
X

e2G

X

f2Ce\Be

CovB(⇠e⌘e, ⇠f⌘f ) = 0 .

B.7.7 Proof of (B.12)
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B.7.8 Proof of (B.13)
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tection tests for multivariate data using rank statistics. Journal de la Société Française de Statistique,
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