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Today’s geophysicists work ever more closely with reser-
voir engineers and geologists due to the advent of geo-
physical techniques for reservoir surveillance.
Geophysicists have transcended their traditional task of
exploration in order to monitor reservoir performance.
They are thus called upon to understand the nature of fluid
flow within a reservoir and the relationship between reser-
voir/fluid properties and geophysical observations. It
would seem that the physics of fluid flow within a reser-
voir is, for the most part, unrelated to the phenomena tra-
ditionally studied by exploration geophysicists, such as
wave propagation within the earth. However, while the
physics of fluid flow and elastic-wave propagation are
distinct, many shared concepts are extremely useful in
reservoir characterization and performance analysis.

In this paper we show a common framework for treat-
ing both reservoir engineering and geophysical data, based
on asymptotic solutions of the governing differential equa-
tions. The asymptotic formulation leads to a practical and
efficient methodology, akin to geophysical tomography, for
reservoir characterization based on field production data.

Computational challenges in reservoir characterization.
Reservoir characterization is an inherently multidiscipli-
nary exercise. Building a high-resolution description of a
petroleum reservoir combines the skills of geoscientists and
engineers to merge the variety of data collected over its
producing life. Such data can be broadly classified as either
static or dynamic. Static data consist of time-invariant
information such as cores, well-logs, 3-D seismic, and geo-
logic interpretation. Dynamic data are time-varying quan-
tities related to fluid movement within the reservoir and
include such information as transient pressure observa-
tions, tracer data, multiphase production history, and time-
lapse seismic measurements. Reconciling static and
dynamic data from a reservoir is an important challenge
for the industry. It is essential that reservoir models con-
tain the small-scale property variations in well logs and
cores while reproducing the large-scale structure and con-
tinuity in seismic data. However, a reservoir model derived
from these static data usually results in fluid-flow predic-
tions that do not match the production history (dynamic
data). Because our ultimate objective is to predict future
oil and gas production, it is imperative that such models
adequately match all observed flow behavior. For this pur-
pose, a reservoir model constructed from static data typ-
ically needs to be conditioned to the dynamic data.

Conditioning reservoir models to dynamic data is
equivalent to solving an inverse problem. Such problems
are computationally intensive, generally requiring at least
an order of magnitude more calculation than needed for
forward modeling. By forward modeling we mean reser-
voir simulation—predicting production given the distrib-
ution of reservoir properties. Such predictions can be
accomplished using finite difference, finite element, or
streamline approaches. Depending on the sophistication

and assumptions, the calculations can be substantial. The
inverse problem, using production data to estimate reser-
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Figure 1. Streamline simulation: a stepwise illustra-
tion. Notice the flow channeling along the high-per-
meability streak as indicated by the time of flight and
saturation contours: (a) permeability field (md); (b)
streamlines; (c) time of flight (days); and (d) water sat-
uration distribution at 20 days.
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b)

c)

d)



voir properties, involves repeated reservoir simulation.
For example, stochastic approaches, such as simulated
annealing, require numerous simulation runs. Similarly,
many reservoir simulations are needed to compute sensi-
tivity coefficients required by gradient-based methods.
That is, for these iterative inversion methods, we must com-
pute the change in production at a well associated with
perturbations of each model parameter. Currently, there
are three main approaches for estimating sensitivities: per-
turbation methods, direct algorithms, and adjoint-state
methods. Each has distinct advantages and drawbacks, but
all require either extensive computation and/or significant
code development. At present all inverse methods for
reservoir characterization, stochastic as well as gradient-
based, are limited by computational considerations to 1000-
10 000 model parameters.

As outlined in this paper, an asymptotic approach leads
to an extremely efficient formalism for imaging reservoir
flow properties based on field production history. Using
this technique we can obtain higher resolution models of
reservoir properties of the order of 100 000 or more para-
meters. Asymptotic methods have proven effective in such
fields as optics, medical imaging, and seismology. The
most important observation is that the sensitivities needed
for solving the inverse or imaging problem result from one
or a very few forward runs. Thus, such algorithms are
orders of magnitude faster than current inversion schemes,
which may require hundreds, or even thousands, of reser-
voir simulations depending on the number of data points
and model parameters. Using the asymptotic formalism,
large-scale 3-D reservoir imaging problems may be solved
in hours rather than days or weeks. Another reason for pur-
suing the asymptotic formulation is the valuable insight
it offers when studying reservoir flow and transport. For
example, in applying asymptotic methods to study water
flooding, we find that an eikonal equation governs the
propagation of the multiphase front. Its analytical form

clearly indicates that particular combination of flow prop-
erties (saturation, pressure, porosity, permeability, relative
permeability) influencing the arrival time of the water
front arrival time. Such insight is essential for under-
standing the trade-offs and uncertainties inherent in using
production data to image reservoir flow properties.

Asymptotic solutions for flow and transport. The asymp-
totic approach is based on the assumption that two or
more spatial-temporal scales are at play in the propaga-
tion of a wave or a fluid interface. For example, when
water is injected into a producing horizon, it generally
forms a self-sharpening front. The front separates the
unswept reservoir rock from the water-flooded portion of
the reservoir. Length and time scales associated with the
transition from oil-saturated to water-flooded rock are typ-
ically much less than length and time scales over which
the background oil and water saturations change. We can
construct an asymptotic solution to the equations for mul-
tiphase flow in terms of the ratio of these length scales, as
we might do for a high-frequency seismic or electromag-
netic wave. For example, we can represent the saturation
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Figure 2. Three-dimensional streamline pattern.

Figure 3. Well configuration for the study area (sec-
tions 326 and 327) in NRU.

Figure 4. Comparison of observed (solid-line) and pre-
dicted (dashed line) water-cuts from NRU. The water-
cut predictions are based on a layered starting model.

Figure 5. Observed and calculated water breakthrough
times at wells before and after inversion. Note that for a
perfect match the points would lie along the diagonal
(i.e., calculated values would equal observed values).



associated with a two-phase front, in the form of a sum of
the background saturation variation and an infinite sum.
(See equation 1 of the Appendix for a complete descrip-
tion.)

In most cases we are only interested in the first one or
two terms of the summation. For example, the first term
in the expansion is related to the phase, or traveltime, of
the propagating front. The spatial variation of the phase
is governed by a scalar eikonal equation, in the same fash-
ion as a seismic wave. In solving the eikonal equation, we
derive a set of ray equations that define trajectories between
producing and injecting wells. For two-phase flow, the
trajectories describe the path taken by the two-phase front
in propagating from the injector to the producer. The trav-
eltime of the two-phase front is primarily influenced by
variations in properties along this path. As we shall soon
see, this fact is of great consequence in developing an effi-
cient algorithm for solving the inverse problem. By refor-
mulating the equations in traveltime coordinates, we can
derive an ordinary differential equation (the transport
equation) describing the evolution of the amplitude of the
two-phase front. Thus, we can compute the saturation evo-
lution by a series of one-dimensional calculations along
the trajectories. Again, the situation is analogous to seis-
mic ray methods.

Asymptotic solutions and efficient reservoir characteri-
zation. Using the asymptotic formalism, we can develop
a very cost-effective technique for history matching reser-
voir production data. In doing so we take advantage of
knowledge gleaned from fields such as medical imaging

and geophysical tomography. In particular, we can parti-
tion the production history matching problem into two sub-
problems: an arrival-time inversion and an amplitude
inversion. The benefits are identical to waveform inver-
sion in seismology: Amplitude matching is strongly non-
linear and its success very much depends on an adequate
starting model. Furthermore, seismic amplitudes are sig-
nificantly influenced by properties at the source and
receiver locations.

Similar issues arise in the inversion of dynamic data.
For example, transient pressure amplitude measurements
can be strongly effected by well-bore storage. Thus, we start
by matching the arrival times of the dynamic data. For
example, tracer or water-cut breakthrough times or the time
associated with the peak slope of transient pressure obser-
vations. In inverting the arrival times, we make use of the
analytic sensitivities provided by the asymptotic formal-
ism. These quantities are similar to those used in seismic
tomography: the path length in each block of the reservoir
model divided by the square of the velocity. The velocity
follows from the particular form of the eikonal equation
and will depend on the type of dynamic data considered
(transient pressure, tracer, water-cut). We shall illustrate
this by several examples.

Upon successful arrival-time matching, we turn to the
more difficult amplitude inversion. However, we may use
the reservoir model produced by the arrival-time match
as our starting point. Again, we can make use of analytic
sensitivities provided by the asymptotic solution. It turns
out that, to the lowest order approximation, the amplitude
sensitivities are in a form much like those for traveltimes.
Thus, having defined the trajectories, we can compute the
amplitude sensitivities by evaluating simple analytical
expressions along these paths.

Let us briefly summarize the steps in our inversion
strategy. First, we conduct a reservoir simulation to com-
pute the spatial and temporal variation in reservoir pres-
sures, saturations, etc. Then, we solve the ray equations
numerically to define the trajectories. At this stage we
have all quantities necessary to conduct both traveltime
and amplitude inversions. We then solve the linearized sys-
tem of equations for the model parameter perturbations
and update the reservoir model. Because we solve the
inverse problem iteratively, we repeat this procedure until
convergence (until the data are matched).

Coupling asymptotic solutions and streamline simula-
tion. Asymptotic approaches in seismology have relied on
defining raypaths or trajectories associated with wave-
fronts. For fluid-flow modeling, such trajectories can often
be identified with streamlines, instantaneous flowpaths
locally tangential to the fluid velocity. Streamlines are per-
pendicular to a fluid front in a manner analogous to seis-
mic rays. Thus, it makes sense to couple the asymptotic
approach to streamline simulation. The basic steps involved
in streamline simulation are: (1) tracing streamlines based
upon a computed pressure field, typically derived numer-
ically using finite difference or finite element methods; (2)
computing particle traveltime or time of flight along
streamlines; (3) decoupling the transport equations (con-
centration and saturation equations) using a coordinate
transformation from physical space to the time of flight
coordinates following flow directions; (4) solving the result-
ing one-dimensional transport equations along the stream-
lines; and (5) updating the streamlines as necessary, to
account for mobility effects or changing field conditions
(Figure 1).
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Figure 6. Observed (solid-line) and predicted (dashed-
line) water-cut based on final estimates of porosity
and permeability.

Figure 7. Permeability field after water breakthrough
time match (logarithmic scale).



Notice the grouping of streamlines along the high-per-
meability streak and the flow channeling as indicated by
the time of flight and saturation contours. In particular, the
time of flight coordinate offers a natural and quantitative
way of flow visualization that provides a mechanism for
dynamic reservoir characterization. The computational
advantage of the streamline approach can be attributed to
the fact that streamlines need to be updated only infre-
quently and the transport equations along streamlines are
decoupled from the underlying grid, thus allowing for
faster solution. Furthermore, the self-similarity of the solu-
tion along streamlines may allow us to compute the solu-
tion only once and map it to the time of interest. The
disadvantages of streamline models are the difficulties in
incorporating complex physical processes and cross-
streamline mechanisms. In three-dimensions, the config-
uration of streamlines can become quite complicated for
realistic production scenarios. For example, in Figure 2 we
display the streamlines associated with production in the

North Robertson Unit described below.

Multiphase flow and the interpretation of water-cut mea-
surements. We now illustrate the utility of the asymptotic
approach by considering water-cut data from a producing
oil field. For the majority of oil fields, water-cut observa-
tions are the primary source of information related to mul-
tiphase flow within the reservoir. Water-cut simply refers
to the fraction of water in the fluid produced from a well.
Water-cut is routinely measured on a monthly basis in
most fields. In our interpretation of these data, we must
contend with the equations describing multiphase flow, a
set of nonlinear partial differential equations. We may
derive asymptotic solutions to these equations under the
assumption that the multiphase fronts are sharp in com-
parison to the background heterogeneity. If this assump-
tion is valid, the time needed for a front of injected water
to travel from the injector to a producer can be expressed
simply as an integral along the path followed by the water,
as determined by the pressure gradient and relative mobil-
ity—in turn controlled by the relative permeabilities and
viscosities of the oil-water system. (See equation 2 in the
Appendix). We observe that the arrival time of the two-
phase front is influenced by the ratio of porosity to per-
meability within the reservoir.  The asymptotic
methodology also allows us to derive analytic expressions
for amplitude sensitivities, relating perturbations in reser-
voir porosity and permeability to variations in water-cut
amplitudes as a function of time. Given the complete pro-
duction history of a reservoir, we may piece together a pic-
ture of the large-scale interwell heterogeneity.

Our initial application of the asymptotic approach was
to water-cut measurements from the North Robertson Unit
(NRU), a heterogeneous carbonate reservoir within the
Permian Basin of west Texas. As with the majority of such
reservoirs, there are a variety of production problems such
as lack of continuity, low water-flood sweep efficiency,
early water breakthrough, and water channeling. The non-
reservoir rock types are relatively impermeable and form
vertical barriers contributing to reservoir heterogeneity
and compartmentalization. Identification of the location
and distribution of these barriers is critical to the success
of secondary and tertiary recovery. The presence of frac-
tures contributes to the heterogeneity, further complicat-
ing the production response. Finally, available reservoir
performance data are limited, particularly for older wells.
Two sections of the NRU, 326 and 327, were selected for
detailed study (Figure 3). The reservoir model consists of
a 100 � 50 � 10 grid of cells. We allowed both permeability
and porosity to vary in each cell, resulting in a total of 100
000 model parameters. Altogether 42 wells (27 producers
and 15 injectors) from the study area were used to char-
acterize heterogeneity based on the water-cut response
from the producing wells. An initial model was constructed
using geostatistical methods, based on well-log data from
30 boreholes. Figure 4 compares the predicted water break-
through histories at the producing wells, based on the ini-
tial model, with the observed production histories. The
arrival-time matching was completed in 30 iterations. In
Figure 5 we compare observed breakthrough times with
predictions based on both our initial and final (arrival-time
inversion) models. Clearly, the breakthrough times pre-
dicted by the inversion result are now in complete agree-
ment with the field data. It took less than two hours of
computation on a PC to match these arrival times. An
additional evening of computation was required to match
the details of the water-cut amplitudes themselves (Figure

0000 THE LEADING EDGE OCTOBER 2001 OCTOBER 2001 THE LEADING EDGE 0000

Figure 9. Pressure drawdown derivatives at the observa-
tion wells during interference test Pump58. (a) Initial
match. (b) Final match. (c) Final permeability distribu-
tion.

Figure 8. Conoco Borehole Test Facility.



6). We found that the amplitude inversion primarily
changed the magnitude of the porosity and permeability
anomalies, but not the overall pattern. Figure 7 shows the
permeability variations, after incorporating the water
breakthrough responses. The permeability field derived
from this inversion is consistent with an earlier study. This

investigation, based on a conventional decline curve analy-
sis, found that section 326 had the best production char-
acteristics overall. This agrees with the generally higher
permeability we infer in this section.

Pressure inversion and diffusive tomography. Asymptotic
methods are also useful in the analysis of diffusive phe-
nomena, such as transient pressure response. A transient
pressure signal is generated when a well comes on line, or
is shutdown. This signal, typically a step-like change in
flow rate and pressure, varies more rapidly than does the
background pressure field. We can use this difference in
scale to construct an asymptotic series solution. The tra-
jectory, described by the ray equations, is the path taken
by the first-arriving pressure transient (equation 3 in the
Appendix). Traveltime to each point along the path is
determined by the ratio of the reservoir storage to the
hydraulic conductivity. Knowing this relationship, we can
perform transient pressure traveltime tomography. That
is, we can utilize concepts such as back-projection and
sparse matrix methods to construct an efficient algorithm
for mapping arrival time anomalies into lateral variations
of the ratio of reservoir storage to hydraulic conductivity.

We applied the tomographic pressure inversion algo-
rithm to measurements from two interference tests con-
ducted at the Conoco Borehole Test Facility in Kay County,
Oklahoma. Wells GW-1 through GW-5, which form a
skewed 5-spot (Figure 8), penetrate the Fort Riley
Formation, a fractured limestone. The formation is part of
the Lower Permian Chase Group that consists primarily
of limestones and shales. Average permeability of the Fort
Riley itself is about 1.2 mD. The interference tests involve
fluid withdrawal, at a constant rate of 2.3 liters/minute.
In the first test, water is extracted from well GW-5. In the
second test GW-2 is the producing well. During pumping,
the pressure responses are recorded in the surrounding
wells. One advantage of the asymptotic approach is that
it enables us to define “pressure fronts” and “arrival times”
associated with these pressure transients. In order to define
an arrival time, we work with the time derivative of pres-
sure rather than the pressure itself. The derivative is used
because the sources are step functions, rather than sharp
pulses. The pressure time differences for test Pump58
(pumping from GW-5) are shown in Figure 9. Note the great
variation in the arrival time of the peaks, with the nearby
well GW-3 showing much later arrival time than the more
distant GW-2. Our starting permeability model consists of
a homogeneous layer. Traveltime predictions, based on
this uniform initial model, are much larger than the
observed traveltimes (Figure 10a). After five iterations of
our tomographic algorithm, we have an excellent fit to the
observed traveltimes (Figure 10b). Using the arrival-time
inversion result as a starting point, we then fit the ampli-
tudes of the pressure responses. The inferred permeabil-
ity field is a dominant fracture in an east-northeast direction
to the north of well GW-3 (Figure 10c). Independent geo-
physical experiments verified both the existence and loca-
tion of the fracture with respect to well GW-3. Seismic
amplitude attenuation and single-well imaging indicated
a fracture or fracture zone to the north of GW-3. Final con-
firmation of the fracture came from a slant well, slightly
to the west of the central well GW-3. Core from the slant
well verified the location of the fracture zone (Figure 11).

Tracers and partitioning tracers. As we have seen, the
asymptotic methodology is applicable to routinely gath-
ered production data, such as water-cut observations. The
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Figure 10. Fracture zone characterization based on an
inversion of the Conoco transient pressure data: (a)
initial match; (b) final match; and (c) final permeabil-
ity distribution.

a)

b)

c)



technique is also extremely useful in the analysis of mea-
surements from more specialized experiments, such as
tracer tests and partitioning tracer tests. In these tests, a
small slug of an observable tracer is added to the injected

fluid. Produced fluids are then sampled at particular time
intervals and analyzed for the concentration of the injected
tracer. The arrival time and concentration history of the
tracer may be used to infer flow properties between wells
using an expression similar to that used previously for the
water-cut data (equation 4 in the Appendix).

Partitioning tracer experiments involve injection of two
tracers: one is “conservative” and does not react with in
situ pore fluids; the other tracer is “partitioning” that is,
partly soluble in the resident pore fluids and is, thus, char-
acterized by a delayed arrival time. The utility of the par-
titioning tracer test rests on the fact that the temporal or
“chromatographic” separation between the two tracer
responses at the producing wells is a measure of the aver-
age saturation of the resident pore fluid, integrated along
the flow path (equation 5 in the Appendix). Given adequate
data, we can infer the large-scale saturation distribution
in the interwell region. The inversion proceeds in two
steps. First, conservative tracer data (and any other avail-
able information) are used to constrain the large-scale per-
meability variation between the wells. Fixing this, we use
the partitioning tracer responses to infer saturation varia-
tions in the subsurface. If necessary, we iterate between
matching the conservative and partitioning tracer mea-
surements, consequently updating the permeability and
saturation variations.

We have applied our asymptotic methodology to both
conservative and partitioning tracer data. Here, we focus
on recent results from a partitioning tracer experiment
conducted at Hill Air Force Base in Utah. This experiment
was associated with an environmental application, iden-
tifying the distribution of a nonaqueous-phase-liquid
(NAPL) in the subsurface. In this experiment, both con-
servative and partitioning tracers were introduced into
four injection wells and subsequent concentration histo-
ries recorded in 12 multilevel sampling wells and three
extraction wells (Figure 12). Tracer concentrations are sam-
pled at five depth intervals in each borehole, giving 3-D
coverage. In total there were 51 tracer responses in the sam-
pling and extraction wells. The initial fit to the reactive
tracer is shown in Figure 13. Using equation 5 in the
Appendix, we may infer both the ratio of porosity to per-
meability and the saturation distribution within the aquifer.
The complete arrival-time inversion for saturation took
only 94 s on a Pentium III PC. The resulting NAPL satu-
ration distribution is portrayed as a cutaway view in Figure
14. We infer an average NAPL saturation of about 6%,
with higher saturation toward the lower part of the test
cell. The spatial distribution of NAPL appears consistent
with soil core analysis, indicating higher NAPL saturation
clustered toward the lower portion of the cell. The final
fits to the observed arrival times are shown in Figure 13.
The improvement in fit is significant, and the predicted
traveltimes match the observed values quite well.

Model assessment. In contrast to geophysical data sets,
production data are often limited in both lateral and ver-
tical distribution. Obviously, the measurements are
restricted to wells. In some situations the produced fluids
from several wells are commingled, further reducing the
resolution provided by the data. Water-cut measurements
frequently average over the entire reservoir interval or
over many producing zones. This severely limits vertical
resolution of reservoir flow properties. By their nature, pro-
duction data average along the flow paths. As mentioned,
it is possible to combine geophysical and production data
to extend the “sampling” to interwell regions, but such
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Figure 11. Slant well core containing fracture zone.

Figure 12. Hill Airforce Base test cell diagram.

Figure 13. Observed and calculated concentration peak
arrival times at all sampling locations before and after
inversion for NAPL saturation.



work is still relatively uncommon. These factors highlight
the importance of conducting some form of model assess-
ment in conjunction with estimates of reservoir flow prop-
erties. Fortunately, the asymptotic approach lends itself to
efficient computation of model parameter resolution and
uncertainty. Specifically, the sensitivities are computed
along the trajectories, much like raypaths. The intersection
of these paths with the cells of the reservoir model result
in quite sparse sensitivity matrices, much like those of
seismic traveltime tomography. Thus, one may use sparse
matrix methods to construct resolution and covariance
estimates. Sparse matrix methods allow us to reduce the
storage requirements and the corresponding number of
floating point operations necessary to conduct a model
assessment.

As an example, consider the resolution associated with
our saturation estimates obtained for the Hill Air Force Base
tracer tests. Using sparse matrix techniques, we may com-
pute resolution estimates without conducting a matrix
inversion or a formal singular-value-decomposition (SVD).
Rather, there are iterative algorithms that enable us to con-
struct a partial SVD. In the case of the Hill experiments,
Figure 15 shows the resolution of saturation estimates

based on the partitioning tracer data. Higher resolution is
observed along those flow paths encountering multilevel
samplers, where sensitivities are larger. At locations where
the resolution is close to zero, between the rows of sam-
plers, it is not possible to estimate the saturation variations
reliably.

Conclusions. Reservoir models continue to grow in size
and sophistication and multimillion-block models are now
commonplace. Supporting geophysical observations, such
as time-lapse 3-D seismic data, provide large volumes of
information that can constrain fluid-front propagation in
the reservoir. To effectively integrate diverse sources of
information into high-resolution reservoir descriptions,
we need flexible and efficient schemes for reservoir mod-
eling and characterization. Asymptotic solutions for flow
and transport offer advantages over conventional history
matching and data integration. First, there is the added flex-
ibility provided by explicit expressions for traveltimes and
amplitudes. Thus, we can formulate two-step inversions
in which we first match arrival times and then match the
history data themselves. The arrival-time expressions can
be very helpful in integrating time-lapse seismic data. That
is, we can directly relate time-lapse images of a multi-
phase front to reservoir porosity and permeability. By
implementing the asymptotic methodology in a stream-
line simulator, we obtain the efficiency necessary for han-
dling large reservoir models. In particular, trajectory
methods rely on one-dimensional paths through the reser-
voir model. Therefore, we only require storage and com-
putations for those cells intersected by a particular
trajectory. For this reason, the methods scale quite well with
the size of the reservoir model. Though our initial appli-
cations involved tens to hundreds of thousands of model
parameters, million-cell models are certainly within our
reach. The semianalytic sensitivities provided by the
asymptotic formulation mean that we can conduct one
inversion step based on a single reservoir simulation. This
is a very significant step toward making dynamic data inte-
gration a routine part of reservoir characterization.

Suggested reading. “Streamline simulation: A technology
update” by Datta-Gupta (SPE Distinguished Author Series,
Journal of Petroleum Technology, 2000). “Streamlines, ray trac-
ing and production tomography: Generalization to com-
pressible flow” by Datta-Gupta et al. (Petroleum Geoscience,
2001). “Resolution and uncertainty in hydrologic characteri-
zation” by Vasco et al. (Water Resources Research, 1997).
“Asymptotic solutions for solute transport: A formalism for
tracer tomography” by Vasco and Datta-Gupta (Water
Resources Research, 1999). “Estimation of reservoir properties
using transient pressure data: An asymptotic approach” by
Vasco et al. (Water Resources Research, 2000). “Asymptotics, sat-
uration fronts, and high resolution reservoir characterization”
by Vasco and Datta-Gupta (Transport in Porous Media, 2001).
LE
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Figure 14. NAPL saturation distribution estimated
from partitioning tracer data for the Hill case.

Figure 15. Resolution associated with saturation esti-
mates for the third layer of the Hill model.



Appendix: Equations and Formal Presentation

Equation 1: We can represent the saturation, S(x,t), asso-
ciated with a two-phase front, in the form of an infinite
sum

where S0(x,t) is the background saturation variation and
Sn(x,t) are functions which represent successively more
rapidly varying components of the saturation distribu-
tion.

Equation 2: The time needed for a front of injected water
to travel from the injector to a producer can be expressed
simply as an integral or summation along the trajectory Σ

where n(r) is the porosity along the trajectory and k(r) is
the permeability. The pressure gradient is denoted by �P
and ( represents the total relative mobility given by the rel-
ative permeabilities and viscosities of the oil-water system.

Equation 3:  The square root of the travel time from the
source or injection well to an observation well, T(x), is
given by a line integral along this trajectory,

In this expression Σ is the trajectory from the source to the
observation point and ∆(r) is the ratio of reservoir storage
Θ to the hydraulic conductivity k,

which is a function of distance r along the flow path.

Equation 4: The arrival time and concentration history of
the tracer may be used to infer flow properties between
wells. In particular, the arrival time of the tracer is given
by an integral along the flow path Σ,

This expression for traveltime is similar to the relationship
for water-cut data. For single-phase tracer flow we can
neglect relative permeability effects, as contained in the
term λ.

Equation 5: The specific equation for the traveltime of the
partitioning tracer is

where Sw denotes the water saturation, S0 represents the
oil saturation, and K0 is the known partitioning coefficient
that defines the relative solubility of the tracer in the
injected and resident fluid.
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