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ABSTRACT OF THE DISSERTATION 

The Effects of Recreational Water Exposure on Human Skin: Toxin Penetration and Microbiome 

Alteration 

By 

Marisa Chattman Nielsen 

Doctor of Philosophy in Environmental Health Sciences 

 University of California, Irvine, 2020 

Professor Sunny Jiang, Chair 

Skin is the body’s first line of defense against the external environment and exposure to 

recreational water can compromise the skin’s protective functions. Recreational water often 

contains harmful algal blooms, cyanotoxins, pathogenic bacteria, antibiotics and antibiotic 

resistance genes.  This research investigated the following effects of recreational water exposure 

on human skin: cyanotoxin skin penetration potential, changes in the human skin microbiome 

and acquisition of exogenous antibiotic resistance genes (ARGs), antibiotic biosynthesis genes 

(ABSGs) and virulence factor genes (VFGs). 

Cyanotoxin penetration potential was investigated in an in-depth examination of the state 

of knowledge on cyanotoxins and their potential to cause negative health effects through dermal 

permeation. Epidemiological and toxicological studies of the health effects from algal toxin 

exposure are summarized to highlight the importance of better understanding of the effects on 

human skin. This research identified a disparity between the human health effects described in 



x 

epidemiology case studies and toxicological dermal exposure data, indicating potential dermal 

penetration. The penetrative abilities of specific cyanotoxins were predicted by their 

physiochemical properties indicating the potential for skin penetration. These predictions can be 

used to better evaluate human health risks. 

Another component of the skin’s protective role is the microbiome, which has been 

shown to provide immunity against exogenous bacterial colonization. This study explored the 

link between ocean water exposure and the human skin microbiome, and demonstrated that there 

are post-exposure alterations. Skin microbiome samples were collected from human participants’ 

calves before and after they swam in the ocean, and at 6 hours and 24 hours post-swim, and were 

analyzed using 16s rRNA gene and metagenomic sequencing. Beta diversity analysis revealed 

that the skin microbial communities on all participants before swimming were different from one 

another, but immediately after swimming, all participants’ microbial communities were tightly 

clustered, indicating that the communities were no longer different. Taxonomic analysis showed 

that ocean bacteria, including potential pathogens, replaced the native skin bacteria and remained 

on the skin for at least 24 hours post-swim. Metagenomic analysis and functional gene 

predictions showed that ARGs, ABSGs and VFGs present on the skin increased in diversity and 

abundance after participants swam in the ocean and persisted for at least 6 hours post-swim. This 

research provides insight into the relationship between human health, the skin microbiome and 

the environment. 
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INTRODUCTION 

  

 The skin is a complex organ responsible for protecting the body from physical, chemical 

and biological insults. Its extensive structure is organized into the epidermis (top layer) and the 

dermis (bottom layer),  which are separated by the basement membrane [1].  Hair follicles, 

sebaceous glands, sweat ducts and in some body sites apocrine glands, span the epidermal and 

dermal layers [2]. These layers and structures create a complex environment that not only serves 

as a protective barrier but also sustains a variety of commensal and pathogenic bacteria that can 

either help maintain skin health or contribute to disease [3]. The protective functions of the skin 

can be compromised by environmental exposures and this research focuses specifically on the 

dermal effects of recreational water exposure. 

Each year, approximately 41% of the U.S. population swim in oceans, lakes, rivers or 

streams (National Survey on Recreation and the Environment (NSRE) 2000–2002.). Even though 

exercise and water recreational activities have numerous health benefits such as improved 

aerobic fitness and cardiovascular health [5], recreational waters represent significant 

environmental exposures because they often contain pathogenic organisms which can be 

deposited onto the skin and toxins which may penetrate the skin. In addition, normal protective 

commensal bacteria are washed off, leaving the host susceptible to infection and intoxication. 

This research specifically focuses on several different effects of exposure: dermal penetration of 

algal toxins, alterations in the human skin microbiome, and acquisition of exogenous genes. 
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Algal toxins (Chapter 1) 

Harmful algal blooms (HAB) have increased in both frequency and severity worldwide as 

a result of climate change, population growth, and rapid urbanization [6,7]. Toxic algal blooms 

in marine environments pose a significant threat to human health through ingestion and 

recreational water exposure. When the water is rich with nutrients, and the environmental 

conditions are favorable, algae can flourish into toxic blooms [8,9]. Exposure, ingestion and 

inhalation of contaminated water can be dangerous to humans and animals. Many species of 

algae produce a variety of toxins that can have negative health effects on humans and marine 

animals including death upon ingestion, but skin exposure has not been well studied.  

In May 2019, United States Environmental Protection Agency (US EPA) issued 

recommendations for water quality criteria and swimming advisory values for two cyanotoxins 

based on the latest scientific information. However, the oral exposure route is the only route 

considered [10]. Chapter 1 contains an in-depth examination of the state of knowledge on 

cyanotoxins in recreational water and their potential to cause negative health effects through 

dermal exposure. The chapter examines human skin as an effective barrier for the prevention of 

cyanotoxin absorption and investigates the likelihood of negative health effects through skin 

penetration. Epidemiological studies of health effects from recreational exposure to algal blooms 

and toxins are summarized to highlight the importance of understanding the toxicological effects 

of dermal exposure. The ability of a specific cyanotoxin to penetrate human skin is inferred by 

its physiochemical properties according to transdermal drug studies on dermal diffusion rate. 

This chapter identifies a disparity between the human health effects described in HAB exposure 

case studies and the toxicological skin exposure data and investigates the skin penetration 

capabilities of algal toxins to better evaluate human health risks from HABs.  



3 
 

 

Microbiome changes (Chapter 2) 

Recreational waters are often contaminated by wastewater and storm-water runoff [11]. 

The presence of a variety of pathogens, such as: Salmonella spp., Shigella spp., Campylobacter 

spp., Vibrio spp., Staphylococcus aureus, intestinal parasites, viruses and other organisms in 

sewage and storm-water runoff can cause illness in humans that contact the water. In addition to 

sewage-associated pathogens, naturally occurring bacteria, such as Vibrio species and 

Mycobacterium species, are found in marine environments and can cause human disease [12,13].  

Exposure to these organisms can cause illnesses in those who spend time on beaches, rivers, 

lakes and oceans.  

Recent studies have shown that the human skin microbiome plays an important role in 

immune system function against localized and systemic diseases, and infection [14]. A healthy 

microbiome protects the host from colonization and infection by opportunistic and pathogenic 

microbes [14] and alterations in the microbiome can leave the host susceptible to infection 

[15][16]. While direct exposure to pathogens can cause infection, the role of the human 

microbiome in immunity and infectious disease development has become increasingly 

recognized. Characterizing the changes in the resident skin microbiota associated with 

recreational water exposure provides insight into the complex balance between healthy skin and 

skin infection.  

 

Antibiotic resistance and ARG and VFG acquisition (Chapter 3) 

The changes in the human microbiome, resulting from exposure to exogenous bacteria, 

are not limited to alterations in species diversity and abundance, but also include the acquisition 
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of genetic information. In order to understand the factors contributing to the distribution of 

ARGs and mitigate the risk of acquisition from the environment, current research is being 

devoted to investigation of environmental reservoirs of resistance genes such as soil samples 

[17–19], glaciers [20], animal agriculture, wastewater and oceans [21]. The ARGs and VFGs 

present on human skin have not been investigated despite the importance of understanding 

human skin infection and mitigating the risk of acquisition from the environment. 

This study specifically focuses on the diversity and abundance of ARGs and VFGs 

present on human skin and the changes in the genomic profile associated with ocean water 

exposure. We make comparative investigations using predicted profiles from 16s rRNA results 

and metagenomic sequencing data to help understand the role of marine environments in the 

distribution and incorporation of exogenous genes. 

 

Significance of the research 

This research elucidates the effects of recreational ocean water exposure on human skin 

and provides greater insight into how environmental exposures affect human health. This 

information can be used to help determine the roles that normal flora and skin barrier 

functionality serve in protecting our skin from invading pathogens. Current recreational water 

guidelines are dependent upon the risk of infection or intoxication after a single exposure and do 

not consider toxin penetration, microbiome perturbation or exogenous gene distribution. Dermal 

penetration of algal toxins, pathogen persistence on the skin, and acquisition of genes after 

recreational water exposure have not been previously investigated. This research provides further 

insight into the effects of environmental contaminants on human health and a better 
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understanding of the skin microbiome and overall protective functions of the skin in response 

recreational water exposure. 
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CHAPTER 1 

 

 Understanding the Risk of Cyanotoxin Skin Penetration during Recreational Water 

Exposure 
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Graphical Abstract 

 

 
 

 

 

Introduction 

As part of the U.S. Environmental Protection Agency (EPA)’s efforts to better protect 

Americans’ health during water recreation, the EPA issued new recommendations for water 

quality criteria and swimming advisory values for two cyanotoxins in May 2019. Based on the 

latest scientific information, EPA recommended 8 µg/L microcystins (MC) and 15 µg/L 

cylindrospermopsin as the maximum recreational water concentrations that are protective of 

public health. These recommendations are based on peer-reviewed and published science and are 

supposed to be protective of all age groups. However, the oral exposure route is the only route 

considered. The EPA acknowledged that dermal exposure occurs during swimming but 

commented that significant dermal absorption of MC and cylindrospermopsin is not expected 

due to the large size and charged nature of these molecules [10]. The EPA also estimated that 

exposure from inhalation is likely negligible compared to incidental ingestion while recreating. 
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The goal of this review is to examine the state of knowledge on cyanotoxins in recreational water 

and their potential to cause negative health effects through dermal exposure. The ecology of 

cyanobacteria blooms and potential mitigation strategies have been presented in previous 

reviews [6,10,22,23], and will not be replicated here. The main focus of this review is to examine 

human skin as the effective barrier in the prevention of cyanotoxin absorption and the likelihood 

of any negative health effects through dermal exposure during water recreation. Analyses of 

molecular size, charge and structure of diverse cyanotoxins are presented to estimate the 

penetration potential. Future research directions are suggested for achieving a quantitative risk 

assessment of dermal exposure to cyanotoxins during recreational water activities.  

 

Cyanobacteria blooms in recreational water 

 

Cyanobacteria are found in bodies of water all over the world.  When the water is rich 

with nutrients and the environmental conditions are favorable, the cyanobacteria can flourish into 

toxic algal blooms. The nutrient runoff associated with agriculture to sustain the growing 

population has been shown to facilitate the dominance of harmful cyanobacteria over existing 

microalgae assemblages in freshwater ecosystems [9]. In addition to nutrient availability, 

temperature, light intensity, pH and other environmental factors are known to influence algal 

blooms. These blooms have increased in both frequency and severity worldwide as a result of 

climate change, population growth, and rapid urbanization [7,24]. Cyanobacteria blooms in 

freshwater lakes pose a significant threat to human health through drinking and recreational 

water exposure.  

Many cyanobacteria are responsible for the production and release of toxins that are 

harmful to humans and ecosystems [25,26]. They occupy many different niches and can be found 

in all terrestrial and aquatic marine ecosystems [7,22]. The most common freshwater genera are 
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Anabaena, Nostoc, Oscillatoria, Planktothrix, and Microcystis, which produce a suite of 

biotoxins, including MC, nodularin, anatoxin, saxitoxin, and cylindrospermopsin [25,27–29]. 

The concentration of toxins is highest during warmer months, which coincides with the busiest 

times for recreational water activities. 

In 2007, the US EPA surveyed 1,161 lakes in the continental United States for the 

presence of 3 cyanotoxins: MC, cylindrospermopsin and saxitoxin (Fig 1.1A). Over the 6-month 

sample-collection period, MC (Fig 1.1B), cylindrospermopsin (Fig 1.1C), and saxitoxin (Fig 

1.1D) were detected in 32, 4.0, and 7.7% of samples, respectively. However, cyanobacteria that 

potentially produce cylindrospermopsin, MC, saxitoxin and anatoxin were detected in a much 

higher proportion of samples. They were present in 67, 95, 79 and 81% of the samples, 

respectively [28]. There are currently no available comprehensive surveillance data available for 

nodularin and anatoxin in US lakes. 
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Figure 1.1. Mean levels of cyanotoxins in US lakes by month. Graphs are compiled from EPA 

reported data collected in 2007 [28]. 

 

 

Common cyanotoxins 

 

 Microcystin 

 

 MC is the most common, arguably the most toxic cyanotoxin found worldwide, and has 

been reported in surface waters in all the states in the United States [30]. MC includes over 100 

structural congeners, which are formed by seven unique amino acids and classified as 

heptapeptides [31]. The names of structural congeners also reflect the amino acid composition. 

MC-LR has leucine (L) and arginine(R) attached to variable sites in the cyclic peptide. MC-LR 

(C49H74N10O12, molecular mass 995 g/mol) is by far the most common and the most studied [32]. 

MC-LR is often used as a surrogate for other congeners although they may differ significantly in 

toxicity and environmental persistence. 
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MC-LR has been identified as a potent hepatotoxin that inhibits the hepatocyte protein 

phosphatase 1 and 2A, leading to acute damage to the structure and function of liver cells, tumor 

formation, and liver cancer development in mammals [33,34]. MC-LR has also been shown to 

interact with mitochondria which results in dysfunction of the organelle, induction of reactive 

oxygen species (ROS) and cell apoptosis. MC activity leads to the differential expression/activity 

of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, 

proliferation and tumor promotion activity [35]. 

The primary investigation of MC toxicity has focused on drinking water exposure, 

although water recreation during bloom events and consumption of seafood (fish or shellfish) 

from freshwater environments have demonstrated high risks for intoxication. The chief pathway 

of MC entry into cells is through the bile acid carrier, which is found in liver cells and to a lesser 

extent, in intestinal epithelia [36]. Evidence for the permeability of other cell membranes to MC 

is controversial. However, Fitzgeorge et al. published evidence for disruption of nasal tissues by 

MC-LR [37]. The authors indicated the intranasal application in these experiments was as toxic 

as intraperitoneal injection, which is at least an order of magnitude greater than toxicity by oral 

uptake. There is limited data on the toxic effects of dermal MC exposure. 

 

Nodularin 

 

 The toxic effects of nodularin (C41H60N8O10, molecular mass 825 g/mol) have not been 

well studied. Nodularin has a similar chemical structure and assumed toxic mechanism to MC. 

Therefore, much of what we know about the toxicity of nodularin has been inferred from MC. 

There are 10 known variants, but nodularin-R is the most studied. Like MC, nodularin is a potent 

hepatotoxin with tumor promotion and carcinogenic effects [38]. Both nodularin and MC induce 
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inflammatory responses upon exposure but the specific cytokines induced differ between the 

toxins [39,40]. There is no data available on dermal toxic effects from exposure to nodularin. 

 

Anatoxin-a   

Different from the mechanism of toxicity of MC and nodularin, anatoxin-a is a potent 

neurotoxin that blocks pre and post-synaptic depolarization by efficiently competing with 

acetylcholine by binding to nicotinic receptors [41]. With a molecular mass of 165 g/mol, 

anatoxin-a (C10H15NO) can pass through the cell membrane of its producer [42] and therefore 

has the potential to pass through the cell membranes of those exposed. Although anatoxin-a 

causes suffocation due to respiratory failure, there have not been reports of human lethality from 

the toxin associated with recreational water use. Freshwater concentrations have measured as 

high as 1170 µg/L in the US [43]. The majority of research on anatoxin-a are in-vitro 

experimental studies on its mode of neurotoxic action [43]. The mechanisms of toxicity and 

penetration other than via the ingestion route have not been reported and there is no data 

available to evaluate the carcinogenicity or skin permeability of anatoxin-a in humans [43]. 

 

Saxitoxin 

 

 Saxitoxins (C10H17N7O4, molecular mass 299 g/mol) are part of a group of structurally 

related neurotoxins known as paralytic shellfish toxins. The most well studied saxitoxins are 

those produced by marine organisms known as dinoflagellates, but freshwater cyanobacteria 

produce them as well. They have been detected in freshwater bodies worldwide and 

concentrations have been measured as high as 193 µg/L in the U.S. [44]. These toxins are potent 

neurotoxins that act by blocking voltage gated sodium channels and therefore inhibiting the 

generation of action potentials [45]. While there have not been any reported human saxitoxin 
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poisonings due to recreational water exposure, many animal poisonings have been reported [46]. 

These toxins can persist in water for several months [46] and are so potent that they have been 

shown to inhibit proper neurite outgrowth at concentrations well below guideline levels [45]. To 

date there has been limited research on the reproductive, teratogenic, genotoxic or carcinogenic 

effects of paralytic shellfish toxins despite extended low dose exposure being a possibility 

[27,28]. Currently, there is no data available specific to skin exposure. 

 

 Cylindrospermopsin 

 

Previously, blooms associated with cylindrospermopsin were restricted to tropical 

climates, but have recently appeared in more temperate climates throughout the U.S. [23]. 

Cylindrospermopsin (C15H21N5O7S, molecular mass 415 g/mol) has been identified as a 

hepatotoxic, genotoxic, cytotoxic, developmentally toxic, and possibly carcinogenic substance 

[47–49].  Concentrations have been measured up to 800 µg/L in bodies of freshwater [50]. A 

limited passive diffusion through biological membranes has been observed and this is most likely 

because of the small molecule size [51]. Moderate skin irritation and sensitization has been 

associated with extracts from cylindrospermopsin producing cyanobacteria [52]. It is unclear 

whether these effects are from the toxin or other components of the cells. Other studies have 

shown that whole cell suspension elicits more skin irritation than purified cylindrospermopsin 

[53,54]. Drinking water contamination is common because cylindrospermopsin mainly exists in 

the dissolved form instead of the intracellular form [55]. Short term exposure to 

cylindrospermopsin in drinking water can lead to liver, kidney, gastrointestinal, thymus, and 

heart damage by interfering in several metabolic pathways including the inhibition of 

glutathione, protein synthesis, and cytochrome P450 [48,56–59]. Although the dissolved toxin 
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concentration can be reduced by dilution, mixing from wind, adsorption to the sediment and 

biodegradation, cylindrospermopsin can persist in the environment for longer than a month [60]. 

 

Unknown toxins 

 

While known toxins are an important environmental health concern, other cell 

components can also cause injury to the lungs, adrenals, intestines and skin, indicating unknown 

toxicology or toxins in the organisms. Sensitization to cyanobacteria through inhalation and oral 

exposure in humans has not been explored because of the potential for combined exotoxin and 

endotoxin adverse effects [54]. It is important to understand how mixtures of organisms and 

toxins affect humans and animals because toxic blooms vary in species, toxins and 

concentrations.  

 

Current recreational water exposure guidelines  

 

The recent release of the drinking water health advisory and the recreational ambient 

water criteria for MC and cylindrospermopsin by the US EPA have highlighted the progress 

towards human health protection from harmful algal blooms. However, the recreational ambient 

water criteria only address the risk associated with accidental water ingestion because less is 

known regarding health risks through dermal exposure during water recreation.  

Current recreational water guidelines differ for each state in the U.S. (Fig 1.2) and only 

include 2 specific cyanotoxins: MC and cylindrospermopsin (Table 1.2). For example, in 

California, the recreational water advisory level for MC is at a concentration 0.8 μg/L but other 

states have advisory levels at >20 μg/L. In comparison, most states do not have guidelines for 

individual toxins and tend to rely on warning swimmers only if there is a visible algal bloom, or 

specific density of algal cells regardless of toxin concentration. However, the link between toxin 
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concentration in water and visible algal bloom is not always straight forward. The only way to 

determine if an algal bloom is toxic, is to test for the toxins. 

These U.S. state advisories also differ when compared to The World Health 

Organization's recreational water guideline.  WHO guideline is based on the relative probability 

of acute effects to MC concentration (Table 1.1). None of the guidelines have included dermal 

exposure as a potential risk factor. However, an in-depth examination of skin as the barrier to 

cyanotoxin absorption is needed to rule out the negative health effects from recreational 

exposure. 

The limited skin exposure data indicates that these toxins can cause irritation and allergic 

reaction, but the mechanisms are not well understood. There have been many case reports 

regarding recreational water exposure to cyanobacterial toxins and their health effects. However, 

there is a disparity between the health effects described in epidemiological reports when 

compared to toxicology studies on dermal exposure to cyanobacteria and their toxins. This may 

be due to the absorption of the algal toxins through the skin during water recreation, causing 

systemic health consequences.  
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Table 1.1 EPA and WHO algal toxin guidelines. 

Toxin EPA Drinking 

water guidelines 

EPA Recreational 

water guidelines 

WHO Recreational water 

guidelines 

Microcystin 0.7 μg/L (infants and 

pre-school children)  

3 μg/L (school-aged 

children and adults

   

Currently in 

development. Several 

states have very 

different guidelines.  

<10 μg/L = Low risk 

10-20 μg/L = Moderate risk 

20-2,000  μg/L = High risk 

>2,000 μg/L = Very high risk 

Nodularin nd nd nd 

Anatoxin nd nd nd 

Saxitoxin nd nd nd 

Cylindrospermopsin 0.7 μg/L (Infants 

and Pre-school 

children)  

3 μg/L (School-aged 

children and Adults) 

Currently in 

development. Several 

states have very 

different guidelines.  

nd 
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Figure 1.2. Lowest Recreational Water Action Level for specific cyanotoxins by individual State 

in the U.S. based on EPA guidelines. 

 

Dermal exposure toxicology studies 

  Since the skin is the first barrier of defense against the outside environment, the function 

of skin cells and mucous membranes have direct effects on toxin penetration during recreation in 

water with algal blooms. The skin stratum corneum may be able to block toxins from entering 

the systemic circulation or metabolize them. Even so, the penetrative capabilities of cyanotoxins 

have not been studied among the limited toxicological investigation of the effects of cyanotoxins 

on skin cells. Skin cells are also challenged with high exposure levels during water recreation 
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because a large surface area is submersed for extended periods of time.  Such exposure time and 

level have not been accounted for in published toxicological experiments. 

Some cyanobacterial toxin experiments have been done with traditional cell culture, but 

these have primarily focused on the effect of MC on hepatocytes. To the best of our knowledge, 

only one study was published on the exposure of human keratinocytes to MC-LR. The authors 

investigated the effects on cell viability, migration and actin cytoskeleton organization after 

exposure to MC-LR at several concentrations and exposure times. Furthermore, they 

demonstrated that toxicity is dependent on both exposure time and concentration in a dose-

dependent manner and concluded that the observed effects could cause considerable health 

effects in humans [61]. 

 A study performed by Stewart et al., (2006a) assessed the dermal toxic effect of 

cylindrospermopsin using the Mouse Ear Swelling Test (MEST). They used 3 species of 

cyanobacteria in suspension (C. raciborskii, M. aeruginosa and A. circinalis) and purified 

cylindrospermopsin. The M. aeruginosa suspension had 13.6 mg/L MC-LR, the C. raciborskii 

had 73 mg/L of cylindrospermopsin and the A. circinalis had 6 mg/L of saxitoxin. They also 

prepared 100 μg/ml and 50 μg/ml solutions of purified cylindrospermopsin. The mice that were 

dosed with either M. aeruginosa or A. circinalis, had no skin reactions. All the mice that were 

dosed with C. raciborskii and purified cylindrospermopsin had skin reactions with various 

degrees of severity. This study demonstrated that there was a dermal effect on mice exposed to 

high concentrations of cylindrospermopsin and C. raciborskii cells [53]. These concentrations 

are unlikely to be encountered in nature and whether or not this is indicative of human response 

remains unclear. Further investigations, specifically involving dose-dependent responses and 

penetration potential on human skin is warranted. 
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Other studies attempted to use cyanobacterial extracts to assess a dose- response 

relationship. And while there appeared to be strong sensitization effects in some animal species, 

it did not seem to be related to the concentration of individual toxins, but more on other 

components of the cyanobacterial cells. Using intradermal injections of cyanobacterial cell 

extract, Torokne et al. (2001) demonstrated a significant dose dependent sensitization effect on 

guinea pigs but there was minimal to no effect seen in rabbits [52]. This response was not dose 

dependent on the concentration of MC but was dependent on the cell concentration. These 

animal models may be inappropriate for assessment of human dermal exposure effects.  

 Pilotto et al. (2004) performed two dermal exposure skin patch experiments on a total of 

114 volunteers [62] . In the first trial (64 volunteers), each volunteer was exposed to M. 

aeruginosa (non-toxic strain), A. circinalis (toxic) and N. spumigena (toxic) on separate skin 

patches. In the second trial (50 volunteers), each volunteer was exposed to M. aeruginosa (toxic 

strain), Apanocapsa incerta (non-toxic) and Cylindrospermopsis raciborskii (toxic). Each 

volunteer was exposed to three different cyanobacterial species at six cell concentrations per 

species with both whole and lysed (to release intracellular toxins and components) cell solution. 

20% to 24% of the volunteers had a skin reaction to at least one of the three species. When the 

volunteers that reacted to the non-toxic strains were removed from the analysis, 11%-15% of the 

volunteers had a significant skin reaction. Unfortunately, the study did not determine a dose-

response relationship nor was there a difference between whole and lysed cell application. 

A similar experiment was performed on 20 human volunteers using a series of 

cyanobacterial suspension skin patches [63]. These suspensions were comprised of whole, non-

lysed cells and only one individual developed a clinically detectable skin reaction [63]. In some 

cases, the cyanobacterial toxin existed mostly intracellularly, and would not have an effect if not 
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released from the cell. In addition, the cells were washed before being applied to the test 

subjects, so the extracellular toxin that might have existed in the suspension, was most likely 

washed away.  

Overall, the dermal exposure studies indicate that algal toxins cause mild to moderate 

skin irritation, but additional cytotoxic, carcinogenic and penetrative effects have not been 

thoroughly investigated. There is no dermal exposure literature on other algal toxins such as 

saxitoxin or anatoxin-a, most likely due to the neurotoxic nature of the compounds. However, the 

possibility that cyanobacterial toxins penetrate the skin and/or cause health effects that are not 

indicated by visible skin responses cannot be overlooked.  More research should be done in this 

area before concluding that the effects are mild, especially since the epidemiological data seems 

to indicate otherwise. 

     

Epidemiological studies 

 

The incidence of outbreaks associated with freshwater harmful algal blooms (FHAB) has 

increased over the last three decades. In the United States, there were three FHAB-associated 

outbreaks from 1978 to 2008 compared to 11 outbreaks from 2009 to 2010 reported to the 

Waterborne Disease Outbreak Surveillance System (WBDOSS) and the Harmful Algal Bloom-

Related Illness Surveillance System (HABISS) [64]. An outbreak must meet the following two 

criteria: 1) two or more people linked epidemiologically, and 2) the epidemiologic evidence must 

implicate recreational water as the probable source of illness [64]. The main source of human 

health effects data for cyanotoxins is from acute recreational exposure to cyanobacteria blooms. 

Symptoms include: headache, sore throat, vomiting and nausea, stomach pain, dry cough, 

diarrhea, blistering around the mouth, and pneumonia [65]. Rashes, eye, nose, mouth or throat 
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irritation, allergic reactions (including urticarial rash), malaise, and even respiratory failure, 

seizure and death are also reported [66]. These reported health endpoints could be related to 

other biological or biochemical mechanisms that are not yet understood since they are 

dramatically different from studies in mice and rats exposed to purified toxins, where liver and 

kidney toxicity are the frequent observed endpoints following acute oral exposure [67–69] and 

mild skin irritation following skin exposure. 

Deaths in domestic animals, livestock and waterfowl that were exposed to water 

containing cyanotoxins from cyanobacteria blooms have been reported [70]. The signs of 

toxicity have been mostly neurologic, with deaths resulting from respiratory paralysis [70]. In the 

majority of cases, the cause of illness or death was suspected to be due to ingestion of 

cyanobacterial toxins, but not always confirmed [70]. Absence of a visible bloom at the time 

symptoms occurred,  failure or delay in collection of appropriate specimens for analysis, and a 

lack of awareness of cyanobacteria toxins all contributed to the lack of certainty of the cause of 

illness and death, especially in animals [70]. Specific diagnoses are also hindered by the inability 

to detect and identify the various toxins produced by cyanobacteria in both the water and tissue 

samples [70]. Serum and blood analyses of algal toxins are difficult to perform because the 

toxins either breakdown quickly, are transformed, or rapidly accumulate within organs [71]. In 

addition, algal blooms may contain many different species of algae and many different and 

unknown mixtures of toxins. 

Heise (1949) described one of the earliest recorded cases of human recreational exposure 

to toxic algal blooms [72]. The man had recurring episodes of asthma, eye irritation and 

discharge, and swelling of his nasal passages after recreating in the same lake every summer 

[70]. The patient swam in other lakes without incident. Some of the bloom, that was shown to be 
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comprised of mainly cyanobacteria, was collected from the lake and inoculated onto the patient’s 

skin, initiating an immediate skin reaction [70]. In this case, the specific toxins present in the 

bloom were not identified. This research highlighted the need for additional cyanotoxin studies 

in the interest of public health. 

While adult humans and animals are at risk for intoxication from toxic algal species, 

children are especially sensitive because of their lower body weight, behavior in the water, and 

toxic effects on development [71]. In 1979, there was an outbreak involving 12 teenagers and 

one adult at a lake-shore community in Pennsylvania. Upon contact exposure to the water, these 

individuals developed gastrointestinal illness and hay-fever allergy like symptoms [73]. During 

the investigation, it was discovered that there was a high concentration of Anabaena spp. in the 

water. Because of the lapse in time between the outbreak and the investigation, it was never 

proven if the algal bloom was the cause of the outbreak [73]. 

In July, 2002 in Dane County, Wisconsin, 5 previously healthy teenage boys all became 

ill after swimming in a golf course pond with visible algal blooms [71]. All of the boys had some 

symptoms, but those who were submerged under water were most affected. One boy suffered a 

seizure and died of heart failure 48 hours after exposure [71]. After nearly a year of 

investigation, the coroner concluded that the most likely cause of death was from anatoxin-a 

[71]. 

Night swimming is riskier than day swimming because scums are not as visible at night 

and swimmers may not notice that the water looks visibly contaminated. In 2008, several teens 

went for a late night swim in Lake Mendota, WI [71]. After exposure, one of the teens developed 

severe joint pain, rash, headache, fatigue, and gastrointestinal distress. The specific algal species 
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and toxins involved was unclear, but it was suggested that the symptoms were  consistent  with 

MC poisoning [71].  

In 2011, the Kansas Department of Health and Environment received 25 reports of 

human illnesses associated recreational water activity in Milford Lake. Seven cases were 

confirmed to be due to the algal blooms, and 2 patients were hospitalized. The most common 

primary route of exposure was direct skin contact (all cases), followed by possible accidental 

ingestion (3 of 7 cases), and one case included possible inhalation [64]. Symptoms included: eye 

and upper respiratory tract irritation, sore throat, rash, gastrointestinal distress, cough, malaise, 

headache and fever. Both hospitalized cases occurred during periods of high cyanobacterial cell 

densities and MC toxin levels as confirmed by the water samples analyses (110 and 1600 μg/L 

maximum concentrations by ELISA) [64]. 

In Argentina, a young boy was jet skiing, ended up in a contaminated portion of the bay, 

and remained there, immersed in the water for 2 hours. Within a few hours after exposure, he 

developed nausea, vomiting, abdominal pain and muscle weakness. His condition worsened over 

the following 4 days and he was admitted to the hospital. He suffered from fever, respiratory 

distress, liver damage and pneumonia [74]  He had to be mechanically ventilated for 3 days, was 

in the intensive care unit for 8 days, and made a full recovery after 20 days [74]. The water had 

obvious visible blooms and a measured MC-LR concentration of 48.6 μg/L. This intoxication 

likely occurred through multiple exposure routes: dermal contact, accidental ingestion and 

inhalation.  

The effects of inhalation of algal toxins are complicated by the bioavailability of toxins, 

and presence of other cell components and debris in aerosols. In California, 81 people were 

exposed to aerosols from lakes contaminated with MC. MC was detected in the nasal swabs of 
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the individuals, but not in the plasma [75]. This was probably due to the difficulty detecting MC 

in the plasma and was influenced by the wide range of variability. Their findings indicated that 

recreational activities in contaminated water could generate aerosols that contain algal toxins. In 

addition to contaminated water, there is a necessity for further investigations with regards to 

dried scums that could be inhaled by humans and animals.   

 Algal blooms consist of a variety of cyanobacteria species and toxins. It can be difficult 

to attribute health effects to specific toxins when a mixture of toxins is present. The co-

occurrence of numerous cyanotoxins complicates the association between specific toxin and 

subsequent health effects. Furthermore, epidemiological and dermal exposure data is insufficient 

for many algal toxins. There have been severe health effects described in case studies (Table 1.2) 

and the effects of dermal exposure to HABs in recreational water needs to be investigated more 

thoroughly in order to create appropriate safety guidelines to protect the public. 

 

Table 1.2. Summary of human health effects described in case studies of exposure to 

contaminated recreational water.  

Toxin Human health effects from recreational exposure  

saxitoxin Fever, eye irritation, abdominal pains, and skin rash [76] 

 

anatoxin-a Seizure, heart failure, death [63,66,71] 

 

microcystin Joint pain, rash, gastrointestinal illness, pneumonia, fever, liver 

damage, sore throat, cough, headache, nausea vomiting [71,74] 

 

cylindrospermopsin No data specific to cylindrospermopsin. 

 

Nodularin 

 

Toxin(s) not identified 

No data specific to nodularin. 

 

Headache, sore throat, vomiting and nausea, stomach pain, dry 

cough, diarrhea, blistering around the mouth, pneumonia, 

rashes, eye, nose, mouth or throat irritation, allergic reactions, 

malaise, respiratory failure, seizure and death [64,70] 
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Permeation through the skin 

 

While the skin does provide a barrier against chemicals, toxins and microorganisms 

found in recreational water, it can be permeated. For example, transdermal drug relies on skin’s 

permeability to deliver effective dose. The skin is made up of three layers: the stratum corneum 

(SC), the epidermis and the dermis. In order for a molecule to gain entry to the bloodstream, it 

would need to pass through all three layers, however, the SC is considered the rate-determining 

layer for most chemicals [1]. Molecules can permeate this layer through 3 routes: 1) through or 

between the cells of the intact SC layer, 2) entry into the hair follicles through the space between 

the hair shaft and the follicular wall, and 3) entry into the sweat gland ducts [77].The intact SC 

layer is made up of mostly dead cells packed in a lipid matrix. Therefore, some lipophilic 

substances can pass with relative ease [78] while hydrophilic molecules can penetrate through 

sweat ducts and hair follicles [79]. Biphasic substances (soluble in water and lipids) have the 

greatest propensity for skin penetration [80]. Even though some compounds can be retained in 

the dermis, it is believed that once an exogenous substance has passed through the SC, further 

passage into the epidermis, dermis and capillaries is likely [77]. 

Closely related to the permeability of a specific toxin is the partition coefficient (P)  

between octanol and water (reported as Log P) of a given compound. Log P coefficients are used 

as a parameter for characterizing lipophilicity and can be predicted using computational 

algorithms such as XlogP3-AA. This algorithm predicts log P values of a query compound using 

a log P value of a similar reference compound as a starting point [81]. Log P values are 

predicated by an additive model using a multivariate linear regression [81]. Log P values around 

0 indicate that the compound is equally partitioned between lipid and aqueous phases. Low log P 
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values indicated that the compound is more hydrophilic, while high log P values indicate high 

lipophilicity. Transdermal drug research has demonstrated that an optimal log P value for best 

skin absorption is between -1.0 and 4.0 [82]. 

The molecular weight of a given compound can help predict skin permeation as well. 

Smaller molecules, less than 500 Daltons (Da), can penetrate the skin more easily than larger 

molecules [79,80]. This has been derived from studies that show that nearly all contact allergens 

and almost all topical and transdermal drugs are under 500 Da [79]. However, compounds with 

molecular weights of 800 Daltons can penetrate broken skin and compounds up to 1200 Daltons 

have been shown to penetrate mucous membranes [79]. Algal toxin studies have shown that 

contact irritation and skin reaction are common after skin exposure and it should be noted that in 

order for a compound to elicit an immune response, it has to penetrate the SC. This may indicate 

that algal toxins and other cell components can penetrate the SC. 

Skin permeation of algal toxins has not been well-characterized, but based on transdermal 

drug absorption research, certain molecular properties can be used to predict absorption (Fig1.3). 

It also important to note that these characteristics predict skin permeation as if the drug were 

applied to intact, healthy skin. Algal toxin contaminated recreational water is a unique exposure 

because most of the body is submersed in the water for extended periods of time. This gives the 

toxins more skin surface exposure for long durations, which could lead to increased absorption 

and toxic effects.  
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Figure 1.3. The plot of five cyanotoxins (MC-LR, nodularin, anatoxin-a, saxitoxin and 

cylindrospermopsin) according to their logP values and molecular mass for prediction of skin 

permeation. The likelihood for skin permeation decreases from darker shaded region (top left) to 

lighter shaded region (bottom right). Graph is based on data acquired from published literature 

[79,82]. 

 

As shown in Fig 1.3, based on the physiochemical characteristics, there should be some 

concern that all five toxins discussed in this review have the capability to be absorbed through 

the skin. Anatoxin-a has an ideal log P value and small molecular weight indicating that passive 

diffusion through intact skin is likely. MC and nodularin have larger molecular weights, which 

would make intact skin permeation more difficult, but they have ideal log P values. Saxitoxin 

and cylindrospermopsin are smaller molecules but their predicted log P values are outside the 

range indicated for optimal skin absorption. However, these toxins may be easily absorbed 

through mucus membranes and small breaks in the skin that remain in contact with water for 

extended periods of time during recreation. The values in Figure 1.3 represent the most well 

studied toxins but many of the known algal toxins have numerous congeners and variants that 
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may have different physiochemical properties. In addition, there are numerous lesser studied and 

unknown toxins that may be easily absorbed through the skin and/or may provide a synergistic 

effect on not only skin absorption, but systemic toxicity.  

 

Skin characteristics affecting permeation 

An intact SC layer is one of the most protective characteristics of human skin [77]. 

Damaged skin is more easily penetrated than intact, healthy skin [83]. The damaged skin 

contributes to water loss and increased permeation of exogenous substances through small breaks 

[77]. Many people exposed to contaminated water have suboptimal skin integrity due to cuts, 

irritation, psoriasis, eczema, and even dry skin. Nielsen et al. discovered that slightly damaged 

skin significantly increased the rate of chemical absorption, even with chemicals that normally 

have a low penetration rate on intact skin [78]. 

Skin hydration status influences transdermal absorption. As the skin is soaked in water, 

exposed to high humidity, and/or well moisturized, the cells in the SC begin to swell, enabling 

molecules to permeate more easily [80]. In fact, ethanol/water co-solvent has been used to 

increase the transdermal delivery of certain pharmaceuticals [84].  

Penetration varies with each body site. The biological factors influencing this variation 

are number of hair follicles, thickness of the SC, distance between capillaries and sebum 

composition [78]. A study by Feldman and Maibach (1967) assessed the absorption of 

hydrocortisone for different anatomic locations on human skin and showed that there is a large 

difference between body sites. Scrotal skin had the largest measured absorption which was a 42-

fold increase as compared to forearm skin. Plantar skin was the most resistant to hydrocortisone 

absorption as compared to the forearm. Back, scalp, axilla, forehead and jaw angle skin all 
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showed increasing rates of absorption, respectively, as compared to the forearm [85]. In addition, 

mucous membranes often come in contact with the water during recreational activities. This 

involves not only the incidental splash to the face and eyes, but the constant contact between 

genital mucosal epithelia and the water. When fully submersed in contaminated water, toxins 

have access to all body sites, increasingly the possibility of skin absorption.  

Age is an important characteristic when assessing skin penetration as substances more 

readily penetrate the skin of younger individuals [78]. Aging skin has a lower moisture content 

[86] which lessens transdermal absorption of molecules [80]. Children and young adults may be 

more likely to stay in the water longer and fully submerse their entire bodies. This could explain 

the increased algal toxin rate and severity that we see in young people in the epidemiological 

studies. 

Chemical penetration enhancers (CPEs) are commonly used in the pharmaceutical 

industry to help drugs penetrate the skin. Some components of sunblock, such as octyl salicylate 

are used as CPEs. People often apply sunblock during recreational water activities, and this may 

facilitate penetration of toxins present in the water. 

The studies of the effects of algal toxins on skin have not investigated the relationship 

between algal toxins and skin absorption. Most experiments have been performed with single 

toxins applied to intact skin of humans and animals. Animals have different skin matrices and 

absorption rates than humans [87]. Algal toxin studies performed on humans apply toxin only to 

one anatomic location, such as the forearm. These studies do not take into account the possibility 

of algal toxin skin permeation and reveal conservative results based on localized application of 

toxin to intact skin which do not adequately represent exposure to contaminated recreational 

water. 
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Summary and future directions 

Exposure to cyanobacterial cells and toxins in recreational water can cause severe health 

effects in humans and animals. Current data are limited regarding dose-response of human 

keratinocytes to MC and other algal toxins. The recommendations and guidelines regarding algal 

toxin skin exposure limits are mainly based on ingestion/intravenous exposure of animals. While 

this is helpful regarding those particular routes of exposure, the literature does not assess the 

effects of dermal exposure, including mucous membrane and eye exposure, and the possibility of 

skin absorption. For example, while MC have been well-studied, the mechanisms of cellular 

toxicity are not limited to the liver cells and may not only cause irritation/allergic reactions but 

may be cytotoxic and carcinogenic to skin cells. An ability to induce irritation and inflammation 

is a common property of tumor promoters, and the importance of irritation in tumor promotion is 

consistent with production of inflammatory cytokines [88]. Adequate and specific dose-

dependent studies are required for skin exposure risk-assessment and recreational water safety 

guidelines. 

 The results of the dermal exposure studies have concluded that there is a mild irritation 

effect, but this is very different from the outcomes observed in the epidemiological data. Many 

of these studies involve single toxins but there are often numerous toxins, some of which are 

undiscovered with unknown effects, in HABs. Of the known toxins, many of them have different 

mechanisms of action. Exposure could result in a synergistic or penetrative effect and could 

potentially be responsible for the deleterious health consequences we see in the epidemiological 

studies. The health impact involved with exposure to multiple toxins at one time is poorly 

characterized and cannot be underestimated. While accidental ingestion does play a role in 



31 
 

symptom presentation, that does not seem a likely explanation for some of the health effects seen 

in recreational exposure to HABs. Based on the discrepancies between dermal exposure studies 

and epidemiological evidence of severe toxicity, we have to wonder if prolonged submersion in 

contaminated water and subsequent large skin surface area contact with a wide variety and often 

unknown mixture of cyanobacterial cells and toxins is responsible for the disparity.   

Moreover, not only do the skin SC cells serve as a barrier, but the skin microbiome may 

be involved in metabolism of xenobiotics encountered in the environment. Numerous 

microbiome studies have determined that our resident flora metabolize various chemicals 

([89][90][91]. To the best of our knowledge, there are no studies investigating the role of the skin 

microbiome on xenobiotic metabolism, but one study has demonstrated that the skin microbiome 

was perturbed during recreational water exposure [92], so it is unclear if the metabolic potential 

of resident microbes is also affected.  This further justifies the need for studies assessing the 

toxic effects on human skin since the barrier functions may be compromised during recreational 

water exposure. 

 Future research should focus on assessing skin penetration and toxicity of single toxins, 

mixtures of toxins and cell components. The recent development and commercialization of 

human 3D tissue models presents new opportunities to expand cyanotoxin toxicity research. 

They have advantages beyond the humane and sociopolitical benefits. They are faster, cost-

effective, and yield more reliable and relevant results compared to the traditional assays and 2D 

in vitro systems. These human tissue models are more physiologically and metabolically relevant 

to humans than animal models. Their high reproducibility allows comparison of different 

cyanotoxins using the same testing protocols. Many commercial companies are now using 3D 

tissue models to test for the toxicity of compounds and have been accepted by regulatory 
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authorities (UN GHS) for evaluation of skin and eye irritation and damage. These models can be 

analyzed for additional endpoints such as total cell viability, oxidative stress, localized cytokine 

levels, and penetration of toxin. An advantage to using 3D cell models is the unique opportunity 

to analyze for skin penetration by the toxin, which cannot be easily assessed using traditional cell 

culture or animal models. 

Ideally, toxin measurements should be included in routine water quality monitoring in 

future toxic algal bloom outbreaks. This data should include comprehensive measurements of 

toxin and cyanobacterial species and concentration in order to potentially correlate individual 

toxins and mixtures of toxins to health effects. Most epidemiologic data that is currently 

available does not include information on specific toxin or cyanobacterial species. Currently, 

toxins are not routinely monitored in recreational water and are only assessed when there appears 

to be a visible algal bloom [93]. Traditional recreational water monitoring involves discrete 

sampling which is often an underestimation of toxin presence and fails to account for the 

temporal and spatial variability of toxins and cyanobacteria in the water [93]. There may be long 

term health effects associated with chronic low-level exposure. Therefore, we should be aware of 

toxin levels at all times, not just during toxic blooms. Newer technologies, such as Solid Phase 

Adsorption Toxin Tracking (SPATT) and remotely deployed biosensors are being implemented 

in order to passively and quickly assess toxin levels [93,94]. It is important to not only actively 

monitor HABs, but also to passively monitor water quality to measure algal toxin levels to help 

predict and possibly prevent HABs. 

There is a disparity between the human health effects described in HAB exposure case 

studies and the toxicological skin exposure data. The symptoms described in the case studies are 

more severe and include systemic effects such as fatigue, organ damage, paralysis, and even 



33 
 

death. It is difficult to discern whether or not skin exposure to algal toxins is completely 

responsible for these symptoms as incidental ingestion and inhalation of aerosols also contribute. 

However, it is imperative that we acknowledge the need for appropriate water quality monitoring 

and research designed to address the current knowledge gaps in order to prevent future 

outbreaks. We need to investigate the skin penetration capabilities of algal toxins and assess if 

toxin mixtures may synergistically compound toxicity and subsequent health effects. This data 

will help provide preliminary information for water quality management authorities to accurately 

and rapidly evaluate human health risks from harmful algal blooms. 
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CHAPTER 2 

 Alterations in the human skin microbiome after ocean water exposure 
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Abstract  

Skin is the body’s first line of defense against invading microorganisms.  The skin 

microbiome has been shown to provide immunity against exogenous bacterial colonization. 

Recreational water exposures may alter the skin microbiome and potentially induce skin 

infections. This study explored the link between ocean water exposures and the human skin 

microbiome. Skin microbiome samples were collected, using swabs, from human participants’ 

calves before and after they swam in the ocean, and at 6 hours and 24 hours post-swim. Genomic 

analysis showed that skin microbiomes were different among individuals before swimming. But 

after swimming, microbial communities were no longer different, which was demonstrated by a 

decrease in inter-sample diversity. Taxonomic analysis showed that ocean bacteria, including 

potential pathogens, replaced the native skin bacteria and remained on the skin for at least 24 

hours post-swim. This research provides insight into the relationship between the human skin 

microbiome and the environment. 

 

Introduction 

It is estimated that 41% of the U.S. population swim in oceans, lakes, rivers or streams 

each year (National Survey on Recreation and the Environment (NSRE) 2000–2002.). Even 

though exercise and recreational activities have numerous health benefits such as improved 

aerobic fitness and cardiovascular health [5],  poor water quality and reports of recreational 

water related illness (RWRI) can significantly impact the value of beaches. Exposure to these 

waters can cause negative health effects including: gastrointestinal and respiratory illness, ear 

infections, and skin rashes [95]. In fact, 16.3% of all ocean beachgoers reported a new health 

issue after going to the beach [95]. Similarly, windsurfers were 2.9 times more likely to get one 
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or more of the following symptoms after windsurfing in contaminated water: gastroenteritis, 

conjunctivitis, otitis and skin infection. The relative risk of the symptoms increased with reported 

numbers of times the windsurfers fell into the water [96]. Arnold et al., (2017) reported that 

surfers in San Diego, CA were three times more likely to get a skin infection during dry weather 

months and nearly five times more likely during wet weather months than those with no water 

exposure. Among various RWRI, skin irritation or infections are frequently reported by those 

that engage in recreational water activities but are less studied than gastrointestinal illnesses.  

  Recreational beach waters are often contaminated by wastewater and storm-water runoff 

[11]. The presence of a variety of pathogens, such as: Salmonella spp., Shigella spp., 

Campylobacter spp., Vibrio spp., Staphylococcus aureus, intestinal parasites, viruses and other 

organisms in sewage and storm-water runoff can cause illness in humans that contact the water. 

The 2009-2010 Waterborne Disease and Outbreak Surveillance System (the most recent report) 

reports 24 disease outbreaks associated with natural (untreated water including rivers, lakes, 

streams, oceans) recreational waters [97]. Southern California coastal regions are among the 

most urbanized in the world [11] and most of the rainfall occurs during the wet weather season 

(November to May) [98]. Human fecal contamination, which includes potentially pathogenic 

bacteria, of ocean water is significantly higher in the wet weather months due to the increase of 

storm-water run-off during rainfall events [98].  

Wastewater and storm-water runoff are not the only sources of potential pathogens in 

ocean water. Naturally occurring bacteria, such as Vibrio species and Mycobacterium species, 

are found in marine environments all over the world and can cause human disease [12,13].  

Environmental parameters (e.g. temperature, turbidity, salinity, sea level height and climate 

change) can contribute to the virulence and abundance of Vibrio species [12]. Several Vibrio 
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species such as Vibrio cholerae and Vibrio parahemolyticus are well known human pathogens. 

And Vibrio vulnificus is considered one of the most dangerous waterborne pathogens, causing 

severe wound infections and septicemia [99]. While predominately found in warm waters such as 

the U.S. Gulf Coast, these pathogenic Vibrio species have all been detected in the coastal waters 

of Southern California [100], and have been implicated in non-foodborne infections in all coastal 

regions of the U.S. and other parts of the world [101]. Furthermore, the extensive use of 

antibiotics has affected environmental bacteria, including Vibrio species, rendering them more 

resistant to antibiotics which makes treating these skin infections especially difficult [102]. 

Naturally occurring atypical Mycobacterium species, such as Mycobacterium marinum and 

Mycobacterium scrofulaceum, have been associated with skin infections directly related to 

aquatic exposure [13,103]. These organisms can cause self-limiting, slowly-healing ulcers as 

well as more invasive health effects (e.g. joint and bone infections) in up to 29% of the cases 

[104]. As the climate changes and ocean temperatures rise, Vibrio vulnificus and other organisms 

that prefer warmer temperatures may increase in abundance in locations that are not currently 

suitable [105]. This could result in increased water contamination and more frequent infections. 

Skin is the body’s first line of defense, both physically and immunologically, during 

exposure to contaminated water. Recent studies have shown that the human skin microbiome 

plays an important role in immune system function against localized and systemic diseases, and 

infection [14]. The human skin microbiome refers to the microorganisms that inhabit human 

skin. The microbial composition differs among individuals and skin sites but individuals are 

more similar to themselves than they are to others [106][107]. The topographical difference in 

microbial composition is associated with the skin types. For example, sebaceous sites (i.e. face, 

back), moist sites (i.e. axilla, groin, toe webs) and dry sites (i.e. forearm, buttocks, calf) all have 
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different microbial communities, even in the same individual [14]. Even though there is much 

variability among individuals and body sites, there is no significant temporal variation among 

individuals.  Most bacteria detected on normal human skin belong to the following phyla: 

Actinobacteria (51.8%), Firmicutes (24.4%), Proteobacteria (16.5%), and Bacteroidetes (6.3%) 

[106]. The dominant genera are also quite stable and include: Staphylococcus, Corynebacterium, 

Propionibacterium, Lactobacillus and Streptococcus [106,108]. 

A healthy microbiome protects the host from colonization and infection by opportunistic 

and pathogenic microbes [14]. Recent research has demonstrated that changes in the microbiome 

can leave the host susceptible to infection and influence disease states [15][16]. For example, 

Naik et al. (2015) showed that Staphylococcus epidermidis, a normal human commensal, 

activated skin-resident dendritic cells and specific T cells that helped protect the skin from 

invading pathogens [15]. Nakatsuji et al. (2017) demonstrated that human skin commensal 

bacteria produced antimicrobials to prevent S. aureus infection. They also showed that patients 

with cutaneous disorders were deficient in these protective organisms [16]. 

The skin microbiome not only protects hosts from pathogen colonization but also may 

modulate the pathogenesis of a variety of cutaneous disorders [109]. Alterations in the microbial 

communities on the skin have been linked to psoriasis, atopic dermatitis, acne and chronic 

wound infections [110–112]. Environmental factors that alter microbiome diversity [113] are 

often associated with disease conditions [111]. For example, Chang et al. showed a healthy 

microbiome differed significantly from the microbiome associated with psoriasis. Normal skin 

bacterial species, such as Staphylococcus epidermidis and Propionibacterium acnes, were less 

abundant but opportunistic pathogens like Staphylococcus aureus were more abundant in 

psoriatic patients than in healthy patients [114]. This was attributed to a decrease in 
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immunoregulatory bacteria such a S. epidermidis and P. acnes, that subsequently led to increased 

colonization by S. aureus [114]. Similar characteristics have been observed in patients with 

atopic dermatitis. Skin microbiome dysbiosis in the affected individuals results in decreased 

normal commensal bacteria and increased colonization by S. aureus [115].  

Much of the current research on the skin microbiome parallels that on the gut microbiome 

and human health. Alterations in the gut microbiome are not only physically associated with the 

gastrointestinal illnesses, like irritable bowel syndrome, inflammatory bowel disease and colon 

cancer, but also other diseases such as rheumatoid arthritis, obesity and Parkinson’s disease.  

This past research demonstrates that the effects of change in the normal microbiome may have a 

greater and more far reaching impact than previously thought [116]. While direct exposure to 

pathogens can cause infection, the role of the human microbiome in immunity and infectious 

disease development has become increasingly recognized. Characterizing the changes in the 

resident skin microbiota associated with recreational water exposure may provide insight into the 

complex and fragile balance between healthy skin and skin infection.  

High throughput sequencing technologies, like next-generation sequencing (NGS),  have 

revolutionized microbiome research.  NGS utilizes sequencing parallelization that results in 

millions of reads originating from specific amplified DNA sequences.  The 16S rRNA gene is 

highly conserved among bacteria, but also has numerous variable regions that facilitate bacterial 

identification. The taxonomic composition of the microbiome has proven to be an important 

feature for distinguishing healthy individuals from those with disease states in numerous studies 

[116].  

Understanding the changes of the skin microbiome during recreational water exposure 

and the role of the human microbiome against pathogen invasion and infection can offer new 
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strategies in protecting humans against RWRI. This research provides the foundation for the 

investigation of the potential link between alterations in the human skin microbiome and 

increased risk of infections. This research may aid in the revision of safety guidelines for 

exposure and the development of diagnostic and therapeutic tools that can help correct 

alterations in the skin microbiome for treatment or prevention of infections.  

 

Methods 

Sample collection  

This study was approved by the University of California, Irvine Institutional Review 

Board (IRB #2017-3751). Sample collection occurred in April 2018 at Huntington Dog Beach in 

Huntington Beach, CA. A large poster summarizing the study and asking for volunteers was 

displayed at the collection site. Interested participants inquired and were given a detailed study 

description if they met the participant criteria. Only those who were 18 years of age or older, 

could speak and read English, and could swim were allowed to enroll. Participants gave verbal 

consent to enroll in this study.  We obtained skin microbiome samples from nine participants 

including three males and six females, age ranges from 24-39, with no sunscreen application, 

infrequent exposure to the ocean and beach (once per month or less), no shower/bath in the past 

12 hours, no antibiotic usage in the past 6 months, and no active infections. No identifying 

information was collected from the participants; samples were assigned a number (1 through 9). 

Samples were collected from an 8cm x 8cm section of skin on the back of the participants’ calves 

using rayon-tipped swabs moistened in sterile saline. The calf was selected as the body site of 

interest because it has a large flat surface area and sustains constant water exposure while 

wading/swimming without requiring the participant to be completely submerged in the water. 
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Samples were collected before the individuals swam in the ocean. They were then instructed to 

swim or wade in the ocean for 10 minutes and the second set of samples was collected after they 

completely air-dried, which took approximately 20-30 minutes. The before and after samples 

were collected from the same calf but on different sections of the skin to ensure the sample 

collection taken before swimming did not remove bacteria from the section of skin swabbed after 

swimming. The before swimming samples were collected from the right side of the right calf and 

the after swimming samples were collected from the left side of the right calf after the area had 

air-dried.  

The participants were then instructed not to shower or to wash the leg area for 24 hours 

and were trained using the above-mentioned swabbing method to collect their own samples for 

the 6 hour and 24 hour post-swim collections. The 6 hour sample was collected from the right 

side of the left calf and the 24 hour sample was collected from the left side of the left calf.  

Participants were instructed to keep the samples on ice after collection and investigators met with 

participants to retrieve the samples; no samples were shipped to the laboratory. Ice packs and 

coolers were provided, if requested. All samples were received on ice and processed within 24 

hours of collection. An ocean water sample (75ml) from the swim site, at the time of sample 

collection, was collected and analyzed in the same manner as the experimental samples.  

 

DNA extraction, PCR amplification and 16s rRNA gene sequencing 

 All samples were kept on ice until centrifuged to concentrate bacteria. Cell pellets were 

frozen at -80°C within 24 hours of collection. DNA was extracted from the cell pellets, and a 

single-step 30 cycle PCR was performed for the 16S rRNA gene V4 variable region using PCR 

primers 515F/806R ( 515F: 5′-GTGCCAGCMGCCGCGGTAA-3′; and 806R: 5′-
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GGACTACVSGGGTATCTAAT-3′). PCR conditions were: 94°C for 3 minutes, followed by 28 

cycles of 94°C for 30 seconds, 53°C for 40 seconds and 72°C for 1 minute, after which a final 

elongation step at 72°C for 5 minutes. All samples underwent DNA extraction, PCR and analysis 

by NGS using the 16S rRNA gene V4 variable region on an Ion Torrent PGM at MR DNA 

Laboratory ( Shallowater, TX.).  

 

Analysis and interpretation of sequencing results 

Sequence data were analyzed using QIIME [118] at The University of California, Irvine. 

After importing the raw sequencing data, sequences were demultiplexed; primers, barcodes, 

short sequences, sequences with ambiguous base calls, and sequences with homopolymers 

exceeding 6 bp were removed using QIIME default settings. After initial quality control, each 

sample had between 6,320 and 167,432 DNA sequences, with an average of 97,048 sequences 

per sample and a total of 3,299,632 sequences in the data set. Chloroplast sequences were 

removed from the data. Sequences were filtered using a cut-off quality score of 25, clustered 

(using Uclust at 97% sequence similarity) into an open reference operational taxonomic unit 

(OTU) table and taxonomically classified (using Uclust consensus taxonomy assigner).  

Alpha and beta diversity analyses were created from the resulting OTU table with 

taxonomic assignments. The OTU alignment failures were removed. Simpson and Shannon 

indices were calculated in QIIME and the table outputs were uploaded into R Studio using R 

version 3.5.0 (R Studio Inc., Boston, MA) for boxplot generation and further statistical analyses. 

P values were calculated using the Wilcoxon Rank Sum Test in R Studio. 
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Results 

Skin microbiome diversity 

Alpha diversity: To investigate whether the skin microbiome changes after ocean water 

exposure, we first examined the alpha diversity (intra-sample diversity) metrics of the samples 

collected before swimming, after swimming, 6 hours post-swim and 24 hours post-swim. Results 

from all participants were pooled together by sample collection time. Community richness 

(chao1-abundance-based richness estimator and observed OTUs), evenness (Simpson index) and 

overall diversity (Shannon index) are shown in Figure 2.1a-2.1d and Table A.1. Overall, we 

observed statistically significant differences in microbial diversity before and after the subjects 

swam in the ocean (Figure 2.1c-2.1d). Microbial diversity was the highest immediately after 

swimming, followed by 6 hours post-swim and before swimming.  Samples collected 24 hour 

post-swim had the lowest diversity. Over time, the bacterial communities decreased in diversity 

as they trended towards baseline (before swimming). These results indicate that skin microbiome 

is altered by exposure to ocean water and changes are evident for at least 24 hours post-swim.  
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Figure 2.1. The bacterial community alpha diversity of skin microbiome samples before and after 

ocean swimming according to a) observed OTUs, b) Choa1 index c) Shannon index and d) 

Simpson index. 

 

 

Beta diversity: We further explored the effects of ocean water exposure on the skin microbiome 

using beta diversity metrics (inter-sample diversity). We generated a Weighted Unifrac Distance 

Matrix, which is a qualitative representation of the difference in communities using phylogenetic 

branches that are weighted by the relative abundances of sequences. Using this matrix, Principle 

Coordinate Analysis (PCoA) plots were created (Figure 2.2). Principle Coordinate 1 (PC1) 

represents 54.52% variation, Principle Coordinate 2 (PC2) 8.22% and Principle Coordinate 3 

(PC3) 6.84%. After ocean water exposure, we observed a distinct cluster indicating that even 
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though the alpha diversity (intra-sample diversity) was the highest, the samples from individual 

subjects were not distinctly different from one another. Each point on Figure 2.2 represents a 

sample from a human subject identified by the first number and followed by either B (before 

swimming), A (after swimming), 6 (6 hours post-swim) or 24 (24 hours post-swim). As time 

passed, the beta diversity measurements trended toward baseline (before swim) for each 

individual subject. As illustrated by the dash-lines in Figure 2.2a, the skin microbiome of 

subjects 1 and 2 slowly returned  to the microbiome signature of the skin before swimming and 

at different rates. Similar patterns were also observed for other subjects, but the dash-lines were 

not included on the graph to avoid overcrowding of the lines. It should be noted, participant 3 

and 4 did not have 6 hour or 24 hour samples collected, participant 8 and 9 did not have 6 hour 

samples collected and participant 6’s before sample was below the sampling depth of 25,000 

sequences for the analyses and was not included.  
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Figure 2.2  The bacterial community beta diversity of the skin microbiome before and after 

ocean swimming. Each point on the PCoA plot represents a skin microbiome sample where the 

first number indicates the human subject number. Beta diversity analysis was performed by 

weighted Unifrac PCoA where the 3 primary axes are shown a) PC1 vs PC2 and b) PC1 vs PC3. 

These coordinates represent 69.58% variation (PC1=54.52%, PC2=8.22%, and PC3=6.84%). 
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Taxonomy changes in the skin microbiome after exposure  

The predominating phyla (Figure 2.3a) on the skin changed after swimming when 

compared to before swimming. Actinobacteria decreased from 34% to 6.7%, Firmicutes 

decreased from 32.3% to 9.4%, Proteobacteria slightly decreased from 24.8% to 24% and 

Bacteroidetes increased from 7% to 41.8%. As time passed, the bacterial community 

composition trended towards baseline. In comparison, the ocean water sample was comprised of 

63% Proteobacteria, 17.2% Bacteroidetes, 8.4% Cyanobacteria, 7.4% Actinobacteria, 1.7% 

Verrucomicrobia and 0.7% Firmicutes.  

 A similar difference was seen at the familiae level (Figure 2.3b). Before swimming, the 

predominating familiae on the skin were Micrococcaceae (23.4%), Staphylococcaceae (17.7%), 

Corynebacteriaceae (6.7%), Streptococcaceae (5.4%) and Lactobacillaceae (3.4%). After 

swimming, the predominating familiae were Flavobacteriaceae (29.6%), Puniceicoccaceae 

(6.7%), Cryomorphaceae (5.9%), Rhodobacteraceae (4.2%) and Corynebacteriaceae (4%). At 

24 hours post-swim, Staphylococcaceae began to establish dominance at 13.5% and 

Corynebacteriaceae increased to 9.6%. These changes were even more obvious at the genus 

level (Figure 2.3c). Before swimming, the skin is inhabited by indigenous bacteria such as 

Staphylococcus, Streptococcus, and Corynebacteria, as expected [106]. After swimming, 

however, those organisms were significantly reduced, and ocean-borne bacteria predominated. 

Even though a significant amount of normal skin flora was washed off and subsequently replaced 

by marine bacteria, the data demonstrate that as time passed, indigenous flora began to re-

establish. 
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Figure 2.3. Microbial community composition of the skin microbiome by a) most abundant 

phyla, and b) most abundant familiae in each category collected before swimming (before), after 

swimming (after), 6 hours post-swim (6 hours) and 24 hours post-swim (24 hours). c) Most 

abundant genera in each category. 
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Changes in the skin microbiome of individual participants 

 Taxa alterations were also evident in individual subjects as time passed (Figure 2.4). The 

phyla and genus relative abundance was shown side by side for individuals 2, 5 and 7 to 

demonstrate that the individual participant results were similar to those seen in the pooled data 

shown in Figure 2.3. At the phyla level (Figure 2.4a), Firmicutes and Actinobacteria initially 

decreased in relative abundance after exposure to ocean water and slowly increased back to 

baseline levels.  Bacteroidetes increased after swimming and slowly decreased as time passed.  

The ocean water appeared to simultaneously wash off resident skin bacteria and deposit ocean-

borne bacteria onto the skin. This change may be dependent on the relative abundance of 

Proteobacteria (62.94%), Bacteroidetes (17.18%), Actinobacteria (7.45%) and Firmicutes 

(0.70%) present in the ocean water. These data are summarized for each individual participant 

(Table A.2). All of the participants acquired bacteria from the genus Vibrio after swimming 

(Figure 2.4b). This genus includes potential pathogens, although specific pathogenic species 

were not identified because organisms were only reported to the genus level. While this genus 

made up a very small percentage of total OTUs (0.37%) on the participants’ skin, it still 

demonstrated that Vibrio spp. were present on the skin after swimming in the ocean. In some 

participants, these organisms persisted for 6 hours, and in one participant (7), for 24 hours. It is 

also worth mentioning that the fraction of Vibrio spp. detected on human skin was more than 10 

times greater than the fraction of Vibrio spp. in the ocean water sample (only 0.032%), 

suggesting it has a specific affinity for attachment to human skin. Even though the human skin 

microbiome differed greatly between individuals, the effects of ocean water exposure on the skin 

microbiome were similar among individuals.  



50 
 

 

Figure 2.4. Changes in microbial composition before and after ocean exposure on individual 

human subjects. a) Changes at the phylum and genus levels. b) OTU counts representing 

members of the Vibrio genus detected in the samples. c) Bacteria that were detected on the skin 

only after swimming. 

 

 

Approximately 17.2% of all bacteria detected on human skin after swimming were likely 

ocean bacteria because they were found in the ocean water but were not detected on the 

participants before they entered the water (Figure 2.4c). These ocean bacteria persisted on the 

skin for at least 24 hours and decreased in concentration over time. The top 3 most abundant 

ocean bacterial genera that were detected in the after swimming samples are shown in Figure 
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2.4c and Table A.3. The most abundant of these were members of the family Pelagibacteraceae 

(unknown genus), Sediminicola spp., and Pseudoalteromonas spp. Again, Figure 2.4 data 

demonstrated that exogenous bacteria found on the skin after swimming, originated from the 

ocean, and persisted on the skin of individual human subjects for at least 24 hours.  

 

Discussion 

Linking skin microbiome change with skin health 

Skin is the primary barrier protecting us from the external environment. The microbiome 

is currently believed to be an integral part of our immune system because of the association 

between host and microbial factors and the downstream effects on immune cells [119,120]. A 

healthy microbiome, which is largely stable over time [121], has been shown to defend our 

bodies from invading pathogens and protect us from disease. Alterations in the skin microbiome 

have been associated with skin diseases [122]. Our data demonstrate for the first time that ocean 

water exposure can alter the diversity and composition of human skin microbiota. A portion of 

the native skin microbiota was replaced by ocean bacteria, which was reflected in the increase in 

diversity and detection of ocean-borne bacteria in post-swim skin microbiome samples. This 

conclusion was further confirmed by the observation that although most individuals had different 

microbiomes when compared to one another pre-swim, they all had similar compositions after 

swimming, as shown in the beta-diversity analyses. 

The dramatic changes in the skin microbiome from a normal indigenous microbiome 

signature to a completely different diversity signature after ocean water exposure signifies the 

importance of understanding the relationship between ocean exposure and skin health. Washing 

off native skin bacteria could weaken immunity against exogenous bacteria in the ocean. Ocean 
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bacteria, including Vibrio spp., are clearly evident on the skin after exposure although Vibrio is 

not the predominant bacterial genus in the ocean water. This result implies that skin has the 

ability to attract exogenous bacteria from recreational water. Vibrio vulnificus, a naturally 

occurring pathogen in marine water, can cause necrotizing wound infections that can result in 

sepsis and death [123]. Although it is not the intention of this study to expose participants to 

water of poor quality, the results of the study imply that microbial pathogens would attach to 

human skin if they were present in the water.  

Attachment and persistence of pathogens on the skin not only has implications for 

increased risk of skin infections, but harmful organisms found in recreational water of poor 

quality may infect humans through the fecal-oral route. It is possible that as pathogens persist on 

the skin, there is a chance for accidental transfer from the skin to the mouth, or even transfer to 

another individual. This could cause gastrointestinal illness not only at the beach, but in the 

hours or days post-exposure. This is especially dangerous for children and immunocompromised 

individuals whom are more susceptible to infection.  

 

Study Limitations 

There were several limitations in this study. The ‘before swimming samples’ were 

collected after most of the individuals had entered the beach area (with the exception of 

participant 1 and 2) but before they entered the water. In some cases, participants were walking 

and standing in the sand for 2 hours or more before samples were collected. Participants 1 and 2 

did not have ocean bacteria detected on the skin before they entered the water, but all the other 

participants did. We believe that aerosols produced by the waves and skin contact with the sand 

may deposit a small number of ocean-borne bacteria onto the skin. Ideally, all ‘before swimming 
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samples’ should have been collected before participants entered the beach area but the 

phenomenon that ocean bacteria may be acquired on the skin without entering the water should 

be investigated.  

The participant size in this study was small and conclusions from the study population 

may not apply to the general population. However, the microbiome sample size is sufficient for 

the study because even though only 9 participants were analyzed, 2-4 different time point 

samples were collected on each individual for a total of 34 samples. The samples averaged 

97,048 bacterial sequences per sample. This sample size is similar to numerous highly influential 

human skin microbiome studies published in recent years. For example, Grice et al. investigated 

the human skin microbiome in healthy individuals and used samples from only 10 human 

participants [106].  Another study assessing the temporal stability of the human skin microbiome 

used samples from 12 healthy human participants for genomic analysis [121]. Studies on the 

association between certain disease states and the skin microbiome have also utilized small 

participant numbers. A 2018 study investigating the difference in the skin microbiome of healthy 

individuals and those with atopic dermatitis was based on 10 diseased individuals compared to 8 

healthy individuals [122].  We had the opportunity to include additional participants but instead 

chose to adhere to strict study criteria designed to minimize confounding factors and additional 

variables.  

Medical history was not collected from the participants and sex differences were not 

assessed due to the small number of participants. Chronic skin disorders and other characteristics 

may influence how the human skin microbiome responds to environmental exposures. In order to 

account for these variables, each person served as their own control to assess the effects of ocean 

water exposure and minimize confounding factors. Additional studies are necessary to 
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understand how unique skin characteristics influence the effects of ocean water exposure on the 

human skin microbiome. 

Another potential limitation was the use of 16S rRNA gene hypervariable region 4 

sequencing for our study. V4 region was selected for the greatest coverage of bacteria with 

different niches due to the large number of environmental and human commensal bacteria 

present in our samples. However, V4 has limitations in detection of some human skin 

commensals, particularly Propionibacteria spp. 16S rRNA gene sequencing of the V4 region is 

likely to identify as many bacteria as possible and to elucidate the effects of ocean water on the 

skin microbiome with the expectation that metagenomic analysis would be a useful tool for 

future research.  

Lastly, this study only analyzed the skin microbiome on the calf. This body site was 

chosen because of its large, flat surface area and sustained water contact while wading. Different 

body sites are known to have different microbial community compositions. We anticipate these 

effects would be similar on other body sites and may even be accentuated in areas that have a 

lower abundance of commensals, have a higher abundance of more fastidious commensals, have 

the ability to trap water (inside the ears and nasal cavity), and/or maintain contact with the ocean 

sediment (toes).  

 

Future research 

There has been little research devoted to investigating the effects of environmental 

exposures on the skin microbiome. The microbiome can be altered in response to external 

substances, such as antibiotics and toxic chemicals, however, ocean water is unique in that it 

removes resident bacteria and simultaneously deposits foreign bacteria on the skin.  A large 
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portion of the population is exposed to ocean water; therefore, a better understanding of ocean 

exposure and skin microbiome may protect public health during water recreational activities. 

This is especially of concern with increasing water temperatures and pollutant runoffs and a 

higher concentration of pathogens in natural waters [105]. Future work to connect changes in the 

skin microbiome with a prospective epidemiological study in poor quality water (i.e. post-storm 

condition) may offer a direct link between changes in the microbiome and skin infections.  

Some participants encountered more drastic changes in the skin microbiome that 

persisted for a longer time as compared to the other participants. The physical characteristics of 

an individual’s skin, such as: skin type, hydration level, skin product usage, sun exposure, 

hygiene, etc., may affect the changes seen. Some participants have a less diverse skin 

microbiome before swimming (as measured by species richness) and would therefore appear to 

have a larger increase in diversity after swimming. Research by Wang et al. (2016) has shown 

that differences in the human skin microbiome may be governed by differences in available 

carbon sources on the skin. They demonstrated that increasing sucrose on the skin promoted the 

fermentative capabilities of S. epidermidis, but not P. acnes. When P. acnes and S. epidermidis 

were co-cultured in the presence of sucrose, P. acnes growth was diminished [124]. Individuals 

have different levels of available sugars which support the growth of different indigenous 

bacteria [124]. Such differences may also support the attachment and persistence of exogenous 

bacteria on the skin. The skin microbiome and its responses to environmental exposure may also 

differ by sex. There is an unexplained observation reported in the literature that males are more 

likely to acquire Vibrio vulnificus [125] and Aeromonas spp. infections [126] after water 

exposure. Future research in this area may shed new light on wound and other necrotizing 

infections and the differences in the skin microbiome of males and females after exposure.  
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Wastewater, storm-water, discharges from animal agriculture, aquaculture and hospitals 

all contribute to the release of antibiotics and antibiotic resistant bacteria into the environment. 

Antibiotic resistant organisms have been found in ocean water [127–129], which present 

additional risk to recreational bathers for acquiring antibiotic resistant infections [128,130]. 

Future metagenomic research is needed to elucidate the connection between recreational water 

exposure and acquisition of antibiotic resistance organisms on human skin. 

 Providing evidence that ocean water exposures under certain circumstances (e.g., 

geographic, seasonal, exposure frequency) may increase health risks, will allow public health 

organizations to generate appropriate mitigation recommendations to help reduce the occurrence 

of RWRI. Potential strategies for reducing skin related health risks from exposure to ocean water 

could include protective recommendations (e.g., showering immediately post-swim, exposure 

time limits based on age, immune status and other characteristics) and therapeutic interventions 

targeted at re-population of normal skin commensals.  Public and occupational health 

organizations will be better positioned to make recommendations that protect people while 

enabling them to continue to enjoy and work in marine environments.  
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CHAPTER 3 

 

Changes in the antibiotic resistant gene profile of the skin microbiome in response to ocean 

water exposure 
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Introduction 

 Human skin, the largest organ in the human body, provides protection from diverse 

environmental insults, including xenobiotics, pathogens, particles, radiation and many others. 

The skin microbiome also helps improve this protection, especially with regards to exposure to 

pathogenic organisms. The resident microflora on the skin interact with skin cells to develop 

immunity to prevent invasion and infection from pathogens [15]. Perturbation of the skin 

microbiome can leave the host with an increased risk of microbial infection [16,110–112]. Early 

work has shown that swimming in the ocean not only removes normal commensal bacteria from 

the skin, but at the same time, deposits exogenous organisms onto the skin [92].  

 Antibiotic resistance genes (ARGs) are commonly found in diverse bacteria, including 

marine bacteria, and confer resistance to many different antibiotics through a wide range of 

mechanisms [131]. The ARGs can rapidly spread among microbial communities through 

horizontal gene transfer (HGT) such as conjugation, transformation and transduction. We 

hypothesize that the changes in the human microbiome, resulting from exposure to exogenous 

bacteria, are not limited to alterations in species diversity and abundance, but also may include 

the acquisition of genetic information. The bacteria that come in contact with our microbiome 

have the potential to transfer genetic information to our commensal flora. In fact, current 

research is recognizing that the human microbiome itself has become a reservoir of ARGs in 

response to the environment and antibiotic usage [18,132,133]. 

Recent studies have shown that ARGs are ubiquitous in the environment; they have been 

detected in soil samples [17–19], glaciers [20], animal agriculture, wastewater and oceans [21]. 

Some of these environments, for example, ocean waters, are influenced by human-driven 

contamination with antibiotics and exogenous ARG-harboring microorganisms. However, there 
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is also an ecological role of antibiotic biosynthesis in the environment, which slows the growth 

of competing organisms. Therefore, ARGs are also found in pristine environments with minimal 

anthropogenic impact. In fact, most of the ARGs acquired through HGT originated from 

environmental microbes [17]. ARGs have even been detected in ancient 30,000-year-old DNA 

from permafrost sediment, indicating that antibiotic resistance existed long before the clinical 

implementation of antibiotics [134].  

Even though antibiotic biosynthesis and ARG transfer are naturally occurring 

phenomena, human activity has exacerbated the prevalence of antibiotic resistant organisms. 

Wastewater has been known to contain residual antibiotics and antibiotics resistant organisms 

due to clinical and agricultural antibiotic usage and disposable [135]. Sewage discharge to 

oceans, not only facilitates the potential to transfer ARGs from sewage bacteria to marine 

bacteria, but also contaminates the ocean with the residual antibiotics and poses selective 

pressure to promote the survival of resistant ocean bacteria [136]. Antibiotics naturally produced 

by marine microorganisms may further select for resistant populations in the ocean [21].  

Therefore, ARGs have been associated with both marine and non-marine bacteria in the urban 

ocean [21].  

Ocean bacteria in general are non-pathogenic to humans, however a minor proportion of 

the marine bacteria, such as some Vibrio spp. and Mycobacterium spp., are opportunistic human 

pathogens. Vibrio vulnificus, an organism that is acquired solely from marine environments and 

known to cause severe disease in human, has gained widespread antibiotic resistance [137]. This 

demonstrates the importance for investigating the role of ocean swimming in the spread of 

antibiotic resistant organisms. 
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ARGs conferring resistance to several important sub-types of antibiotics were 

investigated in this study. These included: beta-lactams, glycopeptides, tetracyclines, 

fluoroquinolone-quinolone-florfenicol-chloramphenicol-amphenicol (FCA), aminoglycosides, 

and macrolide-lincosamide-streptogramin b (MLSb). These antibiotics are used to treat and 

prevent infections in both humans and animals and most of them have environmental origins. 

Beta-lactam antibiotics have been used to treat infections since the discovery of 

penicillin. They represent a significant majority of the world’s antibiotic usage (>65%) [138]. 

New classes of beta-lactam antibiotics have been developed to battle the constantly evolving 

resistant organisms. Each new class targets new resistance mechanisms and/or increases the 

spectrum of activity to incorporate additional bacterial species [139]. Bacterial production of 

beta-lactamases confers resistance to beta-lactam antibiotics; there are nearly 2800 known beta-

lactamases and new variants continue to arise [140]. These enzymes have been isolated in many 

remote geographical locations and have ancient environmental origins [140]. 

Glycopeptides are a class of antibiotics that are active against many gram-positive 

bacteria and are used to treat serious infections caused by antibiotic resistant organisms. In fact, 

they are often used as a last resort for disseminated Methicillin-Resistant Staphylococcus aureus 

(MRSA) infections [141]. Resistance to glycopeptides can often result in limited or no treatment 

options for patients with these infections. Vancomycin Resistant Staphylococcus aureus 

(VRSA), Vancomycin Intermediate (VISA) Staphylococcus aureus,  and Vancomycin Resistant 

Enterococcus (VRE) are important human pathogens that have gained resistance through 

acquisition of various Van genes [141]. Genes that confer glycopeptide resistance most likely 
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originated in glycopeptide-producing Actinomycetes since they need survival mechanisms to 

resist self-produced antibiotics [141]. 

Tetracyclines are a class of broad-spectrum antibiotics that are often used in human and 

animal medicine for treatment and prophylactic prevention of a variety of infections. This class 

includes naturally occurring antibiotics as well as semisynthetic formulations [142]. Aquaculture 

and agriculture contribute to tetracyclines in the environment because they are the most widely 

used antibiotic in food-producing animals [136]. And as a result, they have been detected in high 

concentrations in the environment, including marine water [143].  

A group of ARGs known as FCA resistance genes confer resistance to antibiotics within 

2 different sub-types: amphenicols and quinolones. Amphenicols are broad spectrum antibiotics 

with extensive inhibitory effects on both gram-negative and gram-positive bacteria [144]. This 

sub-type contains chloramphenicol (naturally occurring), florfenicol (synthetic) and other 

derivatives. Historically, chloramphenicol was widely used in animal agriculture, but due to the 

toxicity to humans, was banned from use in food-producing animals and is no longer used in 

human medicine except in very rare and life-threatening situations [144,145]. Quinolones and 

fluroquinolones are broad-spectrum antibiotics often prescribed due to their oral formulations 

and successful treatment outcomes [146]. However, overuse has significantly contributed to 

antibiotic resistance [146]. Quinolones are not produced by bacteria but instead are chemically 

synthesized; even so, bacteria have developed resistance.  

 Aminoglycosides are among some of the first antibiotics ever used in clinical medicine. 

Due to toxic side effects and the development of newer antibiotics, their usage had decreased 

over the years. However, in light of the current increase in antibiotic resistant organisms, they are 

being used mainly for resistant gram-negative bacterial infections [147]. Aminoglycosides have 
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natural origins as they are produced in some soil-dwelling bacterial species. Not only are these 

bacteria resistant to self-produced antibiotics, they have gained resistance mechanisms that 

protect them from competitive organisms and their antibiotics as well [147]. 

MLSb genes are grouped together because they are functionally related [148] and cross-

resistance due horizontal gene transfer both in the presence and absence of antibiotic pressure, is 

common[149]. Macrolides, lincosamides and streptogramin b include naturally-occurring and 

chemically modified antibiotics commonly used for gram-positive bacterial infections 

[148][150]. The relatively uncontrolled use in animal agriculture and prescribed administration 

in human and veterinary medicine has led to increased resistance in human and animal isolates 

and increased ARGs in the environment [149]. 

Organisms that produce antibiotics also contain ARGs as self-resistance mechanisms to 

protect themselves from the antibiotic produced [151]. Organisms that contain antibiotic 

biosynthesis genes (ABSGs) also contain genes that confer resistance to that specific antibiotic 

and are often clustered with ARGs [152]. Each biosynthesis gene cluster usually encodes for one 

or more ARGs able to protect the bacteria from the biosynthesized antibiotic [152,153].  

Virulence factor genes (VFGs) are genes that encode virulence factors that positively 

correlate to bacterial survival and can predict pathogenesis [154,155]. These include genes that 

encode for characteristics that help bacteria evade host defense mechanisms such as: adherence, 

colonization, immune evasion, secretion systems, cell invasion, iron uptake and toxin production 

[154,155]. Much like ARGs, VFGs are easily transferred between genera through HGT [156], 

and have been discovered in many natural environments [157]. 

Much research has been devoted to the investigation of environmental reservoirs of 

resistance genes, known as resistomes [20,133,135,158]. However, the human skin resistomes 
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have not been investigated despite the importance of understanding human skin infection and 

mitigating the risk of ARG acquisition from the environment. This present study focuses on the 

diversity and abundance of ARGs and VFGs present on human skin and the changes in the 

genomic profile associated with ocean water exposure. We make comparative investigations 

using predicted profiles from 16s rRNA gene results and metagenomic sequencing data to help 

understand the role of marine environments in the distribution and acquisition of ARGs. The 

results of the study shed light on the prevention and management of antibiotic resistant skin 

infections.  

 

 

Materials and Methods 

 

Sample collection 

 

This study was approved by the University of California, Irvine Institutional Review 

Board (IRB #2017-3751). Two separate sample collection events occurred in April 2018 and 

September 2018 in Huntington Beach, CA. The sample collection procedure was described in 

detailed in our previous paper [92]. In brief, a poster summarizing the study was displayed at the 

collection site and was used to recruit volunteers. Interested participants were given a detailed 

study description if they met the participant criteria. Only those who were 18 years of age or 

older, could speak and read English, and could swim were allowed to enroll. Verbal consents 

were collected from participants before registration.  Skin microbiome samples were obtained 

from twelve participants including four males and eight females, age ranges from 24-39, with no 

sunscreen application, infrequent exposure to the ocean and beach (once per month or less), no 

shower/bath in the past 12 hours, no antibiotic usage in the past 6 months, and no active 

infections. Microbiome samples were assigned a number (1 through 12) with no identifying 
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information from the participants. Rayon-tipped swabs moistened in sterile saline were used to 

swab the skin on the back of the participants’ calves before the individuals swam in the ocean. 

Participants were then instructed to swim or wade in the ocean for 10 minutes and the second set 

of samples was collected after they completely air-dried, which took approximately 20-30 

minutes. Samples were then taken at 6 hours and 24 hours post-swim on sections of the calf skin 

that was not previously swabbed using the same sampling procedure as previously described 

[92]. 

 

16S rRNA gene sequencing and analysis  

 All samples were kept on ice until vortexed to loosen the bacteria from swab, and then 

centrifuged to pellet the bacteria. Cell pellets were frozen at -80°C within 24 hours of collection. 

DNA was extracted from the cell pellets, and a single-step 30 cycle PCR was performed for the 

16S rRNA gene V4 variable region using PCR primers 515F/806R ( 515F: 5′-

GTGCCAGCMGCCGCGGTAA-3′; and 806R: 5′-GGACTACVSGGGTATCTAAT-3′). PCR 

conditions were: 94°C for 3 minutes, followed by 28 cycles of 94°C for 30 seconds, 53°C for 40 

seconds and 72°C for 1 minute, after which a final elongation step at 72°C for 5 minutes. All 

samples underwent DNA extraction, PCR and analysis by NGS using the 16S rRNA gene V4 

variable region on an Ion Torrent PGM at MRDNA/Molecular Research LP ( Shallowater, TX.).  

Sequence data were analyzed using QIIME [118] at The University of California, Irvine. 

Raw sequencing reads were demultiplexed; primers, barcodes, short sequences, sequences with 

ambiguous base calls, and sequences with homopolymers exceeding 6 bp were removed using 

QIIME default settings. After removing chloroplast sequences from the data, sequences were 

filtered using a cut-off quality score of 25, clustered (using Uclust at 97% sequence similarity) 
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into an open reference operational taxonomic unit (OTU) table and taxonomically classified 

(using Uclust consensus taxonomy assigner).  

PICRUSt was used to predict the functional profiles of the bacterial communities in 65 

samples with the following scripts: normalize_by_copy_number.py, predict_metagenomes.py, 

categorize_by_function.py and metagenome_contributions.py. The gene counts from PICRUSt, 

known as KOs (Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologs) [159–161], 

were compared with the KO database and previously published literature to ensure maximum 

detection of genes associated with antibiotic resistance [133,135,162] and virulence factors 

[163]. Weighted nearest sequenced taxon index (NSTI) scores for each sample were calculated to 

assess prediction accuracy using the predict_metagenomes.py with the -a option. In order to 

obtain OTU-specific gene counts for ARGs, we used the metagenome_contributions.py script 

with -l option for each KO of interest detected in the predicted metagenomes [135,164]. The 

current version of PICRUSt uses a KO database that does not include recently discovered ARGs 

and associated KOs. The antibiotics and their correspondence genes in KOs investigated in this 

study are summarized in supporting Table 3.1. The antibiotics of interest include vancomycin, 

tetracycline, FCA, beta-lactams, multidrug resistance, aminoglycosides, and MLSb, which 

correspond to 65 ARGs (Table 3.1) in KOs based on the 16s rRNA genes. Data were exported to 

R Studio (R Studio Inc., Boston, MA) and Excel for boxplot and heatmap generation and further 

statistical analyses. P values were calculated using the Welch’s T-Test in R Studio. Cytoscape 

version 3.7.2 was used for network analyses [165]. 
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Table 3.1 Antibiotics and their corresponding ARGs and KOs 

Antibiotic Gene (KO)  
vancomycin vanX (K08641); vanY (K07260); vraR (K07694); vraS (K07681)  

 

 
tetracycline tetA/tetG/H/J (K08151); tetK (K08168) 

 

 
FCA adeA/cmeA (K03585); catB3 (K00638); basR (K07771); qepA (K08167) 

 
beta-lactams acrA (K03585); ampC (K01467); ampG (K08218); blaI (K02171); blaR1 

(K02172); cfxA (K01624); ftsI (K03587); mecA (K02545); mecR1 (K02547); 

metallo-beta-lactamase family protein (K07576); mrcA (K05366); mrdA 

(K05515); nagZ (K01207); ompU (K08720); ompC (K09475); ompF (K09476); 

pbpA (K12552); pbp1b (K03693); pbp2A (K12555); pbp2B (K00687); pbp2X 

(K12556);  pbp3 (K12553); penA (K03587); tolC (K12340) 

 
multidrug emrE/qac/mmr/smr(K03297); MATE family (K03327); emrB(K03446); 

emrA(K03543); marC(K05595); mdtB(K07788); mdtC(K07789); mdtA(K07799); 

lmrP(K08152); blt(K08153); mdfA/cmr(K08160); mdtG(K08161); 

mdtH(K08162); mdtL(K08163); yebQ(K08169); norB/C(K08170); 

yitG/ymfD/yfmO(K08221); oprJ(K08721); ebrA(K11814); ebrB(K11815) 

 
aminoglycosides aacC1(K03395); aacC2(K00662); aacC4(K00663); aadA1(K00984); 

aadE(K05593); ybcL(K08164) 

 

MLSb ermC/A(K00561); ereA_B(K06880); mph(K06979); mef(K08217); 

macA(K13888) 

 

 

Metagenomic sequencing and data analysis 

 

 In addition to 16S rRNA gene analysis, two samples collected before the subject swam in 

the ocean (1B, 3B), and two samples after the subject swam in the ocean (1A and 3A) were 

sequenced using shotgun metagenomic analysis. Due to the low concentration of DNA, linear 

amplification was applied with REPLI-g Mini Kit (QIAGEN) to enhance the amount of DNA 

while limiting the addition of bias. Sequencing libraries were made with Nextera DNA Sample 

Preparation Kit (Illumina) according to manufacturer’s instructions. Paired-end sequencing was 

done using MiSeqc (Illumina) and 150 bp length reads were generated for each end at 

MRDNA/Molecular Research Laboratory ( Shallowater, TX.).  
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 FastQC (v0.11.7) was used to analyze the quality of the metagenomic reads. Optical 

duplicates were first removed with BBMap/clumpify.sh (v38.32, set as dedupe optical). Then the 

adapters and the potential contaminants indicated in fastQC report were removed, and the 8 

bases from the start of the reads were cut with trimmomatic (v0.35)[166]. After quality filtering, 

clean reads of two sub-Before samples and two sub-After samples were co-assembled into 

contigs separately using MEGAHIT (v1.1.1, set as --k-step 10)[167]. The N50 of the contigs are 

1607bp for before samples and 1913bp for after samples. 

 ARGs were determined by mapping the reads to comprehensive non-redundant databases 

or corresponding gene sets. Comprehensive Antibiotic Resistance Database (CARD) protein 

homolog model version 3.0.0 was used for ARGs [168]. Bowtie2 [170] mapping was done with 

options -D 20 -R 3 -N 1 -L 20 -i S,1,0.50 and was used to map reads to the CARD 

database.  GenomeCoverageBed tool in Bedtools [171] was used to count number of reads 

mapping to the gene, length of reads and length of gene. The coverage of a gene was normalized 

with the coverage of 16s rRNA gene.  

 

Results 

Change in diversity and abundance of organisms on the skin after ocean water exposure 

The results of 16S rRNA gene analysis showed that several bacterial phyla predominated 

the skin microbiome at all timepoints regardless of ocean water exposure. They are Bacteroides, 

Proteobacteria, Firmicutes, and Actinobacteria (Fig. 3.1). However, their relative abundances 

were different before and after swimming. For example, Bacteroidetes had a higher relative 

abundance in the after swimming samples as compared to the before samples, while Firmicutes 

and Actinobacteria had a higher abundance in the before samples. The after samples also 
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contained more organisms from several phyla seen in the ocean water samples, including 

Verrucomicrobia, Cyanobacteria and several others associated only with marine environments. 

Ocean water was predominated by Proteobacteria, followed by Bacteroidetes with a lower 

abundance of Firmicutes and Actinobacteria and also contained several phyla that were not 

detected in the other samples. At 6 hours post-swim, the samples contained more Bacteroidetes, 

Verrucomicrobia, and Cyanobacteria, and less Firmicutes and Actinobacteria than the before 

samples. At 24 hours post-swim, the microbiomes appeared to trend toward baseline due to the 

further reduction in Bacteroidetes and increase in Firmicutes and Actinobacteria.  These results 

are similar to previous research that has characterized the change of the human skin microbiome 

in response to ocean water exposure [92]. 
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Figure 3.1. Network analysis showing the relationship among bacterial phyla and ocean water 

exposure in human skin microbiome samples. The relationships between bacterial phyla and the 

human skin microbiome samples at various time points (before swimming, after swimming, 6 

hours and 24 hours post-swim). The strength of the relationship is indicated by the thickness and 

darkness of the line connecting sample categories to phyla. 

 

ARGs acquired from the ocean are present on the skin after ocean water exposure 

 

PICRUSt analyses showed that ARG counts increased significantly after swimming in 

the ocean (Fig. 3.2) for both the total number of ARGs and all three sub-groups of ARGs. These 

changes were statistically significant comparing before and after ocean exposure with the 

following p-values: 0.005476 for total ARGs, 0.001458 for beta-lactam, 0.02183 for multidrug 

and 0.03212 for vancomycin resistance genes, respectively. At 6 hours, the median ARG counts 

for each class remain slightly increased, while the range between individual samples increased as 

well indicated by the wider range of 25 and 75 quartile values. At 24 hours, the ARG counts 
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appear to return to pre-swim levels. For comparison, the ocean water at the time of the skin 

microbiome sampling contained a much higher number of ARG counts (Fig 3.2). The median 

values for total and each sub-group of ARGs at each sampling point were summarized in Table 

3.2.   

 

 

 

 

Figure 3.2. Sub-types of predicted ARGs before and after ocean water exposure.  Changes in the 

number of total ARGS (a), multidrug resistance genes (b), beta-lactam resistance genes (c), and 

vancomycin resistance genes (d) at the following collection times: before, after, 6 hours and 24 

hours post-swim.  
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Table 3.2. Median values for ARG count in each sub-type 

ARGs Before After 6 hours 24 hours Ocean 

beta-lactam 136,289 233,239 165,709 120,904 311,089 

multidrug 56,751 79,000 71,020 47,084 123,153 

vancomycin 11,419 20,848 14,809 11,326 26,553 

Total 245,705 382,637 393,533 207,799 518,107 

 

Seven sub-types of ARGs that pose important challenges in public health management 

were investigated further in the samples collected at each timepoint (Fig 3.3).  Overall, there was 

an increase in total ARGs by 70.6% from before to after swimming, and over a 300% increase 

from before to 6 hours post-swim. Beta-lactam resistance genes were the most abundant ARGs 

in all of the samples, accounting for nearly 55% of the total ARGs detected (Fig 3.3). In all of the 

sub-types investigated, with the exception of tetracycline, there was a large increase in gene 

count in the 6 hour group. ARGs returned to pre-swim levels after 24 hours, although 

comparatively slightly higher in all sub-types except for MLSb and tetracycline.  In fact, total 

MLSb was the only sub-type that decreased in number immediately after swimming. MLSb 

genes are mainly associated with Streptococcus spp, and according to previous research, these 

organisms dramatically decrease in abundance within the skin microbiome after swimming in the 

ocean [92].    
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sub-type gene before after 6 hr 24 hr ocean total 

beta-lactams 

mrcA  1.250 2.196 2.692 1.312 2.828 10.278 

cfxA  0.642 1.082 1.911 0.706 1.658 5.999 

nagZ  0.568 0.577 1.062 0.512 1.050 3.769 

ftsI  0.531 0.998 1.512 0.508 1.672 5.220 

penA  0.531 0.998 1.512 0.508 1.672 5.220 

ampC  0.482 1.064 1.594 0.693 1.018 4.850 

acrA  0.417 1.005 1.864 0.566 0.678 4.529 

PBPs  0.403 0.195 0.595 0.603 0.004 1.801 

mrdA  0.328 1.030 1.330 0.362 1.604 4.654 

tolC  0.323 0.803 1.184 0.320 1.214 3.845 

ampG  0.205 0.259 0.787 0.229 0.400 1.880 
metallo-beta-
lactamase 0.191 0.577 0.404 0.185 0.289 1.647 

mecR1  0.009 0.007 0.010 0.005 0.000 0.031 

mecA  0.007 0.002 0.010 0.011 0.000 0.029 

blaR1  0.002 0.003 0.003 0.002 0.000 0.010 

blaI  0.002 0.000 0.003 0.001 0.000 0.006 

ompU,C,F  0.024 0.077 0.590 0.006 0.521 1.218 

Total beta-lactams 5.913 10.874 17.062 6.531 14.608 54.988 

vancomycin 

vanY 0.355 0.453 0.514 0.353 0.620 2.294 

vraS 0.098 0.031 0.142 0.090 0.002 0.362 

vraR 0.101 0.032 0.143 0.089 0.002 0.367 

vanX 0.092 0.442 0.468 0.120 0.624 1.746 

Total vancomycin 0.646 0.958 1.267 0.652 1.247 4.769 

multidrug 

emrE/qac/mmr/smr 0.362 0.380 0.654 0.253 1.283 2.933 

MATE family 0.491 1.131 1.853 0.478 2.394 6.347 

emrB 0.280 0.284 0.929 0.293 0.236 2.022 

emrA 0.382 0.357 1.306 0.428 0.259 2.732 

marC 0.390 1.285 1.262 0.401 1.451 4.790 

mdtB 0.060 0.037 0.553 0.090 0.006 0.746 

mdtC 0.069 0.082 0.584 0.075 0.065 0.875 

mdtA 0.118 0.109 0.605 0.119 0.075 1.025 

lmrP 0.003 0.004 0.009 0.010 0.000 0.027 

blt 0.119 0.066 0.209 0.112 0.003 0.509 

mdfA/cmr 0.010 0.006 0.295 0.020 0.001 0.331 

mdtG 0.044 0.048 0.682 0.034 0.001 0.809 

mdtH 0.001 0.001 0.313 0.001 0.000 0.316 
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mdtL 0.001 0.001 0.284 0.001 0.001 0.287 

yebQ 0.068 0.016 0.451 0.060 0.002 0.597 

norB/C 0.192 0.058 0.565 0.163 0.005 0.984 

yitG/ymfD/yfmO 0.008 0.016 0.034 0.014 0.000 0.072 

oprJ 0.005 0.002 0.025 0.009 0.000 0.043 

ebrA 0.000 0.002 0.000 0.000 0.000 0.003 

ebrB 0.000 0.002 0.000 0.000 0.000 0.003 

Total multidrug 2.603 3.890 10.616 2.561 5.783 25.453 

tetracycline 

tetA/G/H/J 0.201 0.257 0.219 0.185 0.636 1.498 

tetK 0.000 0.001 0.000 0.000 0.000 0.002 

Total tetracycline 0.201 0.258 0.220 0.186 0.636 1.500 

FCA 

catB3 0.117 0.232 1.287 0.099 0.623 2.357 

adeA/cmeA  0.439 1.005 1.089 0.566 0.678 3.777 

basR 0.003 0.003 0.366 0.006 0.000 0.378 

qepA 0.238 0.133 0.417 0.196 0.023 1.007 

Total FCA 0.797 1.372 3.160 0.866 1.324 7.519 

aminoglycosides 

aacC2 0.033 0.171 0.209 0.045 0.010 0.468 

aacC4 0.039 0.022 0.117 0.037 0.009 0.224 

aadA1 0.103 0.037 0.145 0.083 0.002 0.370 

aacC1 0.002 0.002 0.002 0.000 0.000 0.007 

aadE 0.046 0.030 0.063 0.091 0.003 0.233 

ybcL 0.027 0.018 0.083 0.026 0.001 0.154 

Total aminoglycosides 0.249 0.280 0.620 0.282 0.025 1.456 

MLSb 

ermC/A 0.094 0.031 0.138 0.079 0.002 0.344 

ereA_B 0.001 0.002 0.005 0.001 0.000 0.009 

mph 0.430 0.420 0.525 0.362 0.863 2.601 

mef 0.056 0.052 0.158 0.096 0.003 0.364 

macA 0.090 0.051 0.722 0.105 0.029 0.997 

Total MLSb 0.671 0.556 1.548 0.644 0.897 4.315 

 Total ARGs 11.080 18.188 34.492 11.722 24.519 100 

 

Figure 3.3. Heatmap of ARGs, categorized by antibiotic sub-type, present on human skin before 

and after ocean water exposure. The numbers represent the percentages of the total ARGs 

detected in all samples.  

 

 

 

 



74 
 

 

The analysis of four antibiotic biosynthesis gene (ABSG) sub-types showed that ocean 

water contains many organisms that harbor ABSG and they are deposited onto human skin 

during swimming (Fig. 3.4). The median ABSG count increased after swimming as compared to 

before in all four antibiotic groups investigated (Table 3.3). The highest ABSG counts on the 

skin were found in the samples collected after swimming, and the lowest were found in the 

samples collected at 24 hours post swim. Ocean water had a median value of two to four times 

higher for each sub-type of ABSG.  
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Figure 3.4. Predicted antibiotic biosynthesis gene count. The number of antibiotic biosynthesis 

genes present on the skin and associated with ocean water are shown for the following antibiotic 

classes: penicillin and cephalosporins (a), vancomycin (b), novobiocin (c) and streptomycin (d). 

 

 

 

 

Table 3.3. Median values for ABSG count in each sub-type 

ABSG sub-type Before After 6 hours 24 hours Ocean 

penicillin and cephalosporin 16,440 37,618 22,488 19,056 48,768 

vancomycin 19,304 40,278 19,497 15,190 54,274 

novobiocin 55,810 93,900 57,496 36,813 163,832 

streptomycin 116,194 199,325 124,219 100,659 342,360 
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There were 897 predicted KO’s detected in the samples and each KO corresponds to a 

specific gene(s) associated with virulence factors. In Figure 3.5, the top 20 most abundant KOs at 

each time point (28 KOs) are presented along with the total percentage of all VFG KOs present 

at each time point (Fig 3.5). The selected KOs account for 26.41% of the total VFGs. Of which, 

the most abundant KO in the samples encodes a sigma-70 factor in the extra-cytoplasmic 

function (ECF) family. These factors regulate many functions involved in response to stimulus 

from the environment in which the sigma factor is released, binds to RNA polymerase and 

promotes gene transcription [172]. Many of the other abundant KO’s are associated with 

transport systems which help transport substrates across cell membranes and modulate bacterial 

survival [173]. The most abundant KO’s increased by 52% after swimming, and by 208% at 6 

hours post-swim. Similarly, total VFGs increased after swimming by 52%, and by 242% at 6 

hours post-swim. At 24 hours post swim VFGs counts were slightly less than they were before 

swimming. The ocean water samples contained over 2 times as many VFGs than the human skin 

microbiome collected before swimming. This demonstrated that ocean water may be a natural 

reservoir of VFGs as well as ARGs. 
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KO before  after  6 hr 24 hr ocean  total Description 

K03088 0.29 0.78 0.78 0.29 0.58 2.72 RNA polymerase sigma-70 factor, ECF subfamily 

K02014 0.17 0.35 0.70 0.22 0.27 1.71 iron complex outer membrane receptor protein 

K02004 0.16 0.30 0.30 0.18 0.28 1.21 putative ABC transport system protein 

K00059 0.17 0.26 0.35 0.15 0.39 1.32 3-oxoacyl-[acyl-carrier protein] reductase  

K06147 0.18 0.25 0.28 0.19 0.48 1.38 ATP-binding cassette, subfamily B, bacterial 

K02003 0.16 0.24 0.26 0.17 0.26 1.09 putative ABC transport system protein 

K02529 0.12 0.22 0.33 0.12 0.35 1.14 LacI family transcriptional regulator 

K03559 0.06 0.20 0.21 0.07 0.18 0.72 biopolymer transport protein ExbD 

K03561 0.04 0.20 0.19 0.06 0.12 0.61 biopolymer transport protein ExbB 

K01990 0.14 0.20 0.24 0.15 0.13 0.86 ABC-2 type transport system protein 

K01992 0.12 0.16 0.19 0.14 0.11 0.72 ABC-2 type transport system permease protein 

K03406 0.13 0.16 0.43 0.11 0.22 1.06 methyl-accepting chemotaxis protein 

K01784 0.09 0.16 0.17 0.09 0.22 0.71 UDP-glucose 4-epimerase  

K02032 0.15 0.15 0.26 0.11 0.39 1.06 peptide/nickel transport system protein 

K01915 0.10 0.15 0.19 0.08 0.29 0.80 glutamine synthetase  

K07497 0.06 0.14 0.13 0.06 0.29 0.68 putative transposase 

K02015 0.17 0.14 0.37 0.15 0.17 1.00 iron complex transport system protein 

K03496 0.09 0.13 0.14 0.08 0.20 0.63 chromosome partitioning protein 

K01704 0.08 0.13 0.14 0.08 0.27 0.70 3-isopropylmalate/(R)-2-methylmalate dehydratase  

K02016 0.14 0.13 0.29 0.13 0.13 0.82 iron complex transport system protein 

K02027 0.13 0.11 0.11 0.08 0.38 0.82 sugar transport system protein 

K02026 0.13 0.12 0.12 0.09 0.41 0.87 multiple sugar transport system protein 

K02025 0.13 0.12 0.13 0.09 0.39 0.85 multiple sugar transport system protein 

K02013 0.11 0.11 0.24 0.11 0.16 0.73 iron complex transport system protein  

K02483 0.09 0.06 0.12 0.07 0.12 0.46 two-component system response regulator 

K00257 0.09 0.12 0.16 0.09 0.20 0.66 acyl-ACP dehydrogenase 

K06148 0.08 0.07 0.18 0.07 0.08 0.48 ATP-binding cassette, subfamily C, bacterial 

K02078 0.06 0.12 0.17 0.06 0.16 0.58 acyl carrier protein 

Total  3.45 5.26 7.19 3.27 7.24 26.41  
Total 
VFGs 12.36 18.84 29.97 11.63 27.19    

Figure 3.5. Heatmap of VFG KO’s present on human skin before and after ocean water exposure. 

The numbers represent the percentages of the total VFGs detected in all samples.  

 

 

 

Occurrence, abundance and diversity of ARGs using metagenomic sequencing 

 

Based on the calculated Shannon Weiner Index, ARGs diversity increased from 1.68 

before ocean swim to 2.08 after swim (Fig 3.6a). Similarly, ARG sub-types increased from 10 to 

22 in the before and after samples respectively.  The total normalized abundance of ARGs in the 

before and after samples was 0.32% and 0.67% respectively (Fig 3.6b). Sulfonamide resistance 
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genes were unique to the before samples, whereas the unique sub-types seen in the after samples 

were: phenicol, peptide, ansamycin, lincosamides, fusidane, streptogramin, fosfomycin, 

nucleoside, aminocoumarin, triclosan, pleuromutilin, oxazolidinone, mupirocin as shown in the 

heatmap of Fig. 3.6c. Among all the detected sub-types, 9 of them were shared by both the 

before and the after samples (Fig. 3.6c). The dominant ARG sub-types in the before samples 

were aminoglycoside (0.09%), macrolide-lincosamide-streptogramin B resistance (MLSB) 

(0.08%), and diaminopyrimidine (0.08%). In the after samples, the dominant sub-type was beta-

lactam (.2874%), followed by aminoglycoside (.0734%) and multidrug (.0866%)(Fig. 3.6d). 

After ocean water exposure, the normalized abundances of macrolide, multidrug, tetracycline, 

beta-lactam, glycopeptide, fluoroquinolone were two to 14 times higher than the before samples.  

 For comparison, the abundance of predicted ARGs from the PICRUSt analysis are 

plotted side by side (Fig 3.6d-e). Similar to the metagenomic results, gene counts (before to 

after) of total ARGs increased by 64%, beta-lactam by 84%, multidrug by 49%,  vancomycin by 

48%, tetracycline by 28%, FCA by 72%, and aminoglycosides by 12%. For MLSb ARGs, there 

was a decrease of 17%.   
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Figure 3.6. Occurrence, abundance and diversity of ARGs. Results from metagenomic 

sequencing comparing ARGs present in human skin microbiome before and after swimming in 

the ocean: ARG diversity (a), ARG abundance (b), heatmap comparison of abundance of ARGs 

where blue is “not detected” and intensity of red color indicates increased abundance (c), and 

abundance of ARG sub-types (d). For comparison, results from the predicted ARG profiles 

(PICRUSt) are shown in (e). 
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Discussion  

Study Contribution and Future Research 

This is the first known study to investigate the acquisition of ARGs and ABSGs onto 

human skin after ocean water exposure. Previous studies have shown the presence of antibiotics 

and ARGs in marine environments and have acknowledged the potential risk of transmission but 

have not demonstrated deposition or persistence on the skin after exposure [17,129,174,175]. 

This study reveals that the human skin acquired exogenous ARGs from ocean water and these 

genes persisted for at least 6 hours post-swim, which  may increase the risk of developing 

antibiotic resistant infections.  

It is well-known that horizontal gene transfer (HGT) spreads antibiotic resistance from 

the environment, yet the dynamics of this process have not been well-characterized [176]. 

Previous research has shown that ARGs can be acquired through HGT from exposure to 

antibiotic resistant bacteria in animals and agricultural environments [177,178]. This 

phenomenon has been well-studied in hospital environments and clinical settings as well [179–

181]. While HGT has been shown to occur more often in closely related organisms [182], 

research suggests that transfer does occur in unrelated organisms including prokaryote to 

eukaryote transfer [183]. More research is needed to quantify the distribution and acquisition of 

ARGs through HGT from the natural environment.  

Our previous research has shown that exogenous bacteria remain on human skin for at 

least 24 hours post swim [92]. This study has shown that foreign ARGs, most likely contained in 

the genomes of exogenous bacteria, increase on human skin after swimming in the ocean. During 

this time frame, HGT of ARGs to resident organisms may not occur, although this was not 

addressed by this study. However, the 6 hour time points demonstrated an increase in ARGs for 
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most of the sub-types and the human skin harbored a significant amount of ocean bacteria, while 

at the same time normal skin commensals were beginning to predominate once again [92]. This 

may be one of the reasons for the increase in ARGs seen in most of the sub-types at 6 hours post-

swim and may give the bacteria opportunity to exchange genetic information. 

Another important aspect of the results indicates that ARGs are not necessarily only 

associated with polluted water; they are naturally prevalent in waters that are open for public 

recreation. Since almost all ARGs have a proven environmental origin, even though they are 

influenced by anthropogenic factors, it is difficult to tell whether these results would change 

depending on the water quality. Presumably, more contaminated marine environments would 

contain more antibiotics and ARGs since wastewater treatment plants and storm water run-off 

are known reservoirs [135,184,185]. Although metagenomic sequencing was not performed on 

the ocean water in this study, the ARGs detected on the skin after swimming and the PICRUSt 

predicted ARGs in the ocean water samples paralleled results from previous studies on 

antibiotics and ARGs present in marine environments [174,186]. 

 

Comparing results: PICRUSt vs metagenomic sequencing.  

There was an overall increase in ARGs in the human skin microbiome after swimming 

which was evident in the results from both methods: predictions based on PICRUSt and 

metagenomic sequencing. Moreover, both methods also revealed similarities in the changes in 

the sub-types of ARGs present on the skin. One minor difference was found for sulfonamide 

resistance genes. These decreased in the after samples according to metagenomic analysis; 

however, this was not specifically addressed in the PICRUSt predictions.  
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Even though additional metagenomic sequencing may have strengthened the study 

results, PICRUSt is a proven and valid approach to predictive gene profiling [135,187]. In the 

absence of resources for metagenomic sequencing capability, PICRUSt is a powerful tool for  

investigating microbial ecology.  In fact, PICRUSt may have underestimated the abundance and 

diversity of ARGs on the skin demonstrating a conservative prediction of the true changes seen 

in the metagenomic sequencing results. For example, beta-lactam genes post-swim nearly 

doubled according to PICRUSt but increased about 7 fold according to the metagenomic data. 

This study shows strong evidence indicating that there was a significant change in ARGs present 

on the human skin before and after swimming in the ocean based on both the PICRUSt and 

metagenomic sequencing methodologies. 

 

Study limitations 

Even though a total of 65 samples were analyzed in this study, this only included samples 

collected from 12 individuals. Due to strict exclusion criteria designed to limit confounding 

factors and other variables, some individuals were rejected from participation in the study. 

Therefore, conclusions from the study population may not apply to the general population. 

However, several highly impactful human skin microbiome studies have utilized small sample 

numbers [106,121,122]. In our study, each participant served as their own control which allowed 

for a more accurate analysis of the changes after swimming. This helped to control for individual 

characteristics which may have influenced the baseline skin microbiome and demonstrated that 

regardless of the initial ARG profile, ARGs increased in all participants after swimming. 

This study only analyzed the microbiome on the calf because this site is large, flat and 

easily sampled. This site maintained contact with the water without requiring participants to 
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submerse themselves. Since body sites vary considerably in their microbial community 

compositions, more ARGs may be detected on body sites that have the ability to trap water 

(inside the ears and nasal cavity), and/or maintain contact with the ocean sediment (toes). In 

addition, since HGT is more likely to occur in closely related organisms, the potential for ARG 

acquisition on body sites with different microbial composition was not addressed in this study 

but warrants further investigation. 

 

Summary  

The environment is a reservoir of ARGs both naturally occurring and anthropogenically 

selected. It is well-documented that environmental exposures have the capacity to alter the 

human microbiome [92,188][189][190]. Wastewater, storm-water, hospitals, aquaculture and 

animal agriculture discharge, contribute to an increase in antibiotics and antibiotic resistant 

bacteria present in the environment. This presents additional risk for the acquisition of antibiotic 

resistant infections to those exposed to recreational water [128,130]. Our study demonstrated that 

exposure to ocean water deposited exogenous ARGs onto our skin and that these changes were 

detectable for 24 hours post-swim. While it appeared that ARGs gene counts returned to a 

baseline level, more research is needed to determine if commensals incorporate these exogenous 

ARGs and the rate of occurrence. Antibiotic resistance in the clinical setting and the occurrence 

of ARGs in the environment is increasing. It is imperative that we elucidate the role of 

environmental resistomes in the distribution of ARGs into the human microbiome if we are to 

continue using antibiotics to treat infectious diseases. 
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CONCLUSIONS 

 

Climate change, population growth, rapid urbanization, and contaminated water run-off 

all contribute to the quality of natural waters. Toxic algal blooms pose a significant threat to 

human health and an increase in pathogenic bacteria, antibiotics and antibiotic resistant bacteria 

present in the environment increases the risk for acquisition of antibiotic resistant infections to 

those exposed to recreational water [128,130].  

The disparity between the human health effects described in epidemiology case studies 

and toxicological dermal exposure data may be explained by skin penetration of algal toxins. 

Based on the physiochemical properties of the toxins and transdermal drug research models, it 

was predicted that algal toxins may have the potential to penetrate human skin. Since 

recreational water exposure often involves total body submersion and mucous membrane 

exposure for extended periods of time, this risk cannot be overlooked.  

Alterations of the human skin microbiome have been linked to skin diseases but the 

impact of recreational ocean water exposure on the human skin microbiome has not been 

previously studied. This research provides information towards an understanding of the 

relationship between recreational water exposure, the skin microbiome, and potential skin 

infection. Ocean water exposure removed normal resident bacteria from human skin, which have 

been shown to modulate the immune system and provide protection against invading pathogens. 

Therefore, the removal of these symbiotic organisms could leave the host susceptible to 

infection. Ocean water exposure simultaneously deposited ocean-borne bacteria onto the skin, 

including potential pathogens that could cause infection. While the normal skin microflora re-

established dominance as time elapsed post-exposure, exogenous bacteria was present on the 

skin for at least 24 hours after swimming.  
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Additionally, this research demonstrated that exposure to ocean water deposited 

exogenous genes onto our skin and that these changes were detectable for at least 6 hours post-

swim. While it appeared that gene counts returned to a baseline level, more research is needed to 

determine if commensals incorporate these exogenous genes into their genomes. Antibiotic 

resistance in the clinical setting and the occurrence of ARGs in the environment are increasing. 

While it appears that the microbiome returns to baseline over time, more research is necessary to 

determine if genomic changes persist. Once ARGs are incorporated into the microbiome, the 

risks associated with increased antibiotic resistance may be long-lasting. We need to minimize 

the distribution of ARGs into the human microbiome if we are to continue using antibiotics to 

treat infectious diseases. 

It is imperative that we continue to investigate the effects of recreational water exposure 

on human health. Cyanotoxin exposure may not be limited to the oral route as we demonstrated 

the potential for dermal penetration. Increased infection risk may result from incorporation of 

ARGs and changes in diversity and abundance of bacterial communities in the skin microbiome, 

and these changes may be long-term. This research demonstrated the importance of the skin’s 

protective functions during recreational water exposure and highlighted that significant changes 

occurred and persisted post-exposure.  
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APPENDIX A. Supplemental material from Chapter 2 

Table A.1. Summary of alpha diversity metrics. 

Sample Participant Time 

Avg Observed 

OTUs  

Avg Chao 

1 

Shannon 

Index 

Simpson 

Index 

1B 1 before 1177.6 2310.00 6.297 0.961 

1A 1 after 1495.9 3053.40 7.495 0.976 

16 1 6 hours 1208.3 2725.21 7.253 0.978 

124 1 24 hours 778.3 1083.32 5.660 0.955 

2B 2 before 841 1318.36 4.953 0.856 

2A 2 after 1352.7 2973.41 7.672 0.988 

26 2 6 hours 486.7 736.47 5.188 0.953 

224 2 24 hours 849.4 1342.93 5.539 0.940 

3B 3 before 1172.1 2276.01 5.648 0.856 

3A 3 after 1543.1 3489.04 7.792 0.983 

4B 4 before 1120.6 1625.54 7.232 0.982 

4A 4 after 1288.6 2686.58 7.355 0.976 

5B 5 before 1120.9 2089.82 6.384 0.942 

5A 5 after 1943 3488.35 8.038 0.983 

56 5 6 hours 943.9 1955.86 6.515 0.975 

524 5 24 hours 811.2 1510.60 5.372 0.934 

6B 6 before N/A N/A 4.486 0.835 

6A 6 after 2000.3 3681.70 8.003 0.981 

66 6 6 hours 776.6 1429.66 5.349 0.928 

624 6 24 hours 803.1 1448.33 5.617 0.936 

7B 7 before 285.2 491.58 2.094 0.472 

7A 7 after 1319.4 2695.97 7.382 0.982 

76 7 6 hours 1394.7 2856.87 7.387 0.977 

724 7 24 hours 1380.1 2705.80 6.975 0.966 

8B 8 before 697.6 1286.40 5.412 0.956 

8A 8 after 1182.7 2417.94 7.429 0.983 

824 8 24 hours 850.9 1408.42 5.600 0.943 

9B 9 before 765.1 1294.85 5.456 0.934 

9A 9 after 997.8 1956.09 5.973 0.948 

924 9 24 hours 351.5 510.80 3.897 0.888 

Ocean  N/A N/A 1292.3 2352.78 7.096 0.978 
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Table A.2. The most abundant phyla expressed as the percentage of the total OTUs for 

each sample. 

 Firmicutes Proteobacteria Actinobacteria Bacteroidetes 

1B 53.60% 20.27% 18.49% 7.41% 

1A 7.23% 17.31% 4.41% 51.83% 

16 13.85% 16.94% 4.69% 47.89% 

124 18.41% 38.51% 16.11% 15.15% 

2B 48.29% 22.76% 25.05% 1.76% 

2A 8.61% 34.49% 2.83% 39.98% 

26 15.94% 47.88% 16.36% 13.11% 

224 31.12% 31.28% 24.05% 1.14% 

5B 43.88% 23.23% 16.23% 13.36% 

5A 3.52% 22.55% 4.46% 49.81% 

56 8.67% 16.82% 14.33% 44.29% 

524 13.38% 27.96% 24.58% 33.71% 

Ocean  0.70% 62.94% 7.45% 17.18% 
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Table A.3. Bacteria detected in ocean water and after swimming samples but not detected 

on the before samples. Expressed as the percentage of total OTUs. 

OTU Identification (genus) Before (%) Ocean 

Water 

(%) 

After 

(%) 

6 hours 

(%) 

24 hours 

(%) 

Pelagibacteraceae (unknown genus) 

 

0.000000 4.309240 0.284843 0.081181 0.004716 

 

Sediminicola 

0.000000 2.718191 0.111975 0.033661 0.000214 

Pseudoalteromonas 0.000000 2.053771 0.075160 0.000000 0.008360 
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