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Abstract: 33 

Strong electron correlation can induce Mott insulating behavior and produce intriguing states of 34 

matter such as unconventional superconductivity and quantum spin liquids. Recent advances in 35 

van der Waals material synthesis enable the exploration of Mott systems in the two-dimensional 36 

limit. Here we report characterization of the local electronic properties of single- and few-layer 37 

1T-TaSe2 via spatial- and momentum-resolved spectroscopy involving scanning tunneling 38 

microscopy and angle-resolved photoemission. Our results indicate that electron correlation 39 

induces a robust Mott insulator state in single-layer 1T-TaSe2 that is accompanied by unusual 40 

orbital texture. Interlayer coupling weakens the insulating phase, as shown by reduction of the 41 

energy gap and quenching of the correlation-driven orbital texture in bilayer and trilayer 1T-42 

TaSe2. This establishes single-layer 1T-TaSe2 as a useful platform for investigating strong 43 

correlation physics in two dimensions. 44 

  45 
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 Two-dimensional (2D) Mott insulators emerge when the Coulomb interaction (U) exceeds 46 

the bandwidth (W) in partially-filled band systems that can be described by 2D Hubbard-like 47 

models1. Correlated electronic behavior in quasi-2D Mott insulators leads to collective quantum 48 

phenomena2,3 such as high-temperature superconductivity which is widely believed to arise 49 

through doping of Mott insulating copper-oxygen layers4,5. Certain stacked graphene systems 50 

have also recently been found to exhibit Mott-like insulating behavior and unconventional 51 

superconductivity upon gating6-9. Layered transition metal dichalcogenides (TMDs) offer another 52 

family of correlated quasi-2D materials, two examples being bulk 1T-TaS2 and the surface of 53 

bulk 1T-TaSe2 which have long been known to host unusual insulating phases in the star-of-54 

David charge density wave (CDW) state10-13. Although widely believed to be Mott 55 

insulators11,14,15, the insulating nature of these bulk systems is complicated by interlayer CDW 56 

stacking whose effects on the insulating phase remain controversial16. Interlayer hopping (which 57 

increases W) and interlayer dielectric screening (which decreases U) are expected to suppress 58 

Mott insulating behavior1,17,18, but orbital stacking has also been predicted to open a 59 

hybridization gap even in the absence of electron correlation16,19,20. 60 

 Atomically-thin 1T-TMDs offer an ideal platform to differentiate the contributions of 61 

electron correlation and interlayer effects in quasi-2D materials since single-layer systems can be 62 

fully characterized in the absence of interlayer coupling. Without interlayer coupling the reduced 63 

screening environment of a single-layer leads to increased Coulomb interaction and potentially 64 

enhanced correlation phenomena21-25. The effects of interlayer coupling can then be 65 

systematically determined by adding new layers to a material one at a time and mapping out the 66 

resulting stacking order and wavefunction properties. Previous studies on single-layer 1T-NbSe2 67 

and 1T-TaSe2 have found unusual insulating behavior26,27, but electronic wavefunction texture 68 
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and interlayer coupling effects were not examined. The nature of the insulating phase in these 69 

single-layer materials thus remains inconclusive. 70 

 Here we report a combined scanning tunneling microscopy/spectroscopy (STM/STS), angle-71 

resolved photoemission spectroscopy (ARPES), and theoretical study of the electronic structure 72 

of single-layer 1T-TaSe2. Our results show that in the absence of interlayer coupling single-layer 73 

1T-TaSe2 hosts a Mott-insulating ground state that exhibits a 109 ± 18 meV energy gap and 74 

unusual orbital texture. Bilayer and trilayer 1T-TaSe2 with shifted stacking order exhibit 75 

successively smaller energy gaps and show no signs of the unusual orbital texture seen in the 76 

single-layer limit. The single-layer band structure and density of states of 1T-TaSe2 are found to 77 

be consistent with DFT+U calculations, confirming its Mott insulator nature. The unusual single-78 

layer orbital texture, however, is not captured by DFT+U, but is consistent with the behavior 79 

expected for a weakly screened, strongly correlated 2D insulator. Reduction of the 1T-TaSe2 80 

bandgap and quenching of the unusual orbital texture by the addition of new layers shows that 81 

the effect of interlayer coupling on shifted-stacked 1T-TaSe2 is to weaken the Mott behavior. 82 

The single-layer limit of 1T-TaSe2 is thus unique in that strong correlation effects here are most 83 

pronounced, affecting both the energy gap and electron wavefunction symmetry. 84 

Electronic structure of single-layer 1T-TaSe2 in the CDW phase 85 

 Our experiments were carried out on 1T-TaSe2 thin films grown by molecular beam epitaxy 86 

on epitaxial bilayer-graphene-terminated (BLG) 6H-SiC(0001), as sketched in Fig. 1a. The 87 

crystal structure of 1T-TaSe2 consists of a layer of Ta atoms sandwiched between two layers of 88 

Se atoms in an octahedral coordination. Fig. 1b illustrates the hexagonal morphology of our 1T-89 

TaSe2 islands, indicating high epitaxial growth quality. A triangular CDW superlattice is 90 

observed on single-layer, bilayer, and trilayer 1T-TaSe2, as seen in Figs. 1b, c, and 91 
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Supplementary Fig. 1 where each bright spot corresponds to a star-of-David CDW supercell. 92 

Fourier analysis of STM images (Supplementary Fig. 2) together with low-energy electron 93 

diffraction patterns (Supplementary Fig. 3) confirm the formation of a √13	×	√13	 CDW in 94 

single-layer 1T-TaSe2, similar to the commensurate CDW phase of bulk 1T-TaSe2 at T < 473 K28 95 

(the atomic lattice and CDW superlattice are observed to have a relative rotation angle of 96 ~13.9°). Reflection high-energy electron diffraction patterns (Fig. 1e) and X-ray photoelectron 97 

spectroscopy (Fig. 1f) show the structural and chemical integrity of our single-layer 1T-TaSe2 98 

samples (1T and 1H islands do coexist in our samples due to the metastability of 1T-TaSe2 99 

(Supplementary Fig. 4)).  100 

 We experimentally determined the electronic structure of single-layer 1T-TaSe2 in the star-101 

of-David CDW phase using ARPES and STS. Figs. 2a and 2b show the ARPES spectra of 102 

single-layer 1T-TaSe2 for p- and s-polarized light, respectively, obtained at T = 12 K. At low 103 

binding energies the single-layer 1T-TaSe2 ARPES spectra show strongly diminished intensity at 104 

all observed momenta, indicating insulating behavior (some ARPES intensity from coexisting 105 

1H-TaSe2 islands can be seen crossing EF at k ≈ 0.5 Å-1 (white dashed lines)29). The CDW 106 

superlattice potential induces band folding into a smaller CDW Brillouin zone (Fig. 2b inset). 107 

One such band can be seen in the ARPES spectrum for p-polarized light (Fig. 2a) which shows a 108 

prominent flat band centered at E – EF ≈ -0.26 eV within the first CDW Brillouin zone (black 109 

dashed box). A more dispersive band can be resolved outside of the first CDW Brillouin zone 110 

boundary (vertical dashed lines labeled A and B mark this boundary). These features have no 111 

obvious photon-energy dependence (Supplementary Fig. 5) and are similar to bands observed by 112 

ARPES at the surface of bulk samples of 1T-TaS2
16,30 and 1T-TaSe2

12. For s-polarized light (Fig. 113 
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2b) the flat band is much less visible and a manifold of highly dispersive bands near the Γ-point 114 

dominates the spectrum. 115 

 Our STM dI/dV spectrum (Fig. 3a (black curve)) confirms the insulating nature of single-116 

layer 1T-TaSe2. The electronic local density of states (LDOS) reflected in dI/dV exhibits a 117 

pronounced valence band peak at V = -0.33 V (labeled V1) while dropping steeply at higher 118 

energy until reaching zero at V ≈ -0.05 V. The zero LDOS region bracketing the Fermi level 119 

yields an energy gap of magnitude 109 ± 18 meV (see Supplementary Fig. 6 for gap 120 

determination). The experimental LDOS does not rise again until a narrow conduction band peak 121 

is observed centered at V = 0.20 V (labeled C1) in the empty state regime. The LDOS drops to 122 

zero again above the C1 peak until higher-lying conduction band features are seen to rise at V > 123 

0.45 V (e.g., C2, C3). Aside from spatial variation in the relative peak heights, this gapped 124 

electronic structure is observed uniformly over the entire single-layer 1T-TaSe2 surface 125 

(Supplementary Fig. 7). No significant band-bending effects are observed for different tip-126 

sample separations (Supplementary Note 1 and Supplementary Figs. 8, 9). To test substrate 127 

effects we also grew single-layer 1T-TaSe2 on cleaved graphite (HOPG), which shows similar 128 

STM spectra compared to single-layer 1T-TaSe2/BLG (Supplementary Note 2 and 129 

Supplementary Fig. 10). This indicates that the small increase in screening provided by HOPG21 130 

(as shown by the slight downshift/upshift of empty-state/filled-state features in Supplementary 131 

Fig. 10) does not significantly change the 1T-TaSe2 behavior. We are so far unable to 132 

experimentally test the effect of reducing screening below the level provided by BLG. 133 

Experimental orbital texture of single-layer 1T-TaSe2   134 

 To gain additional insight into the insulating ground state of single-layer 1T-TaSe2, we 135 

performed dI/dV spatial mapping of its energy-dependent orbital texture at constant tip-sample 136 
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separation (Figs. 3b-h). dI/dV maps measured at negative biases all display a similar pattern 137 

where high-intensity LDOS is concentrated near the center of each star-of-David (Figs. 3b, c, 138 

and Supplementary Fig. 11). The experimental empty-state LDOS of single-layer 1T-TaSe2, 139 

however, exhibits a completely different orbital texture. This is most clearly seen in the dI/dV 140 

map taken at the lowest conduction band peak C1 (Fig. 3d) where the center of each CDW 141 

supercell is observed to be dark (i.e., no LDOS intensity). At this energy the LDOS exhibits an 142 

unusual, interlocked “flower” pattern (circled by yellow dashed lines) consisting of six well-143 

defined “petals” (i.e., bright spots) located around the outer rim of each star-of-David. This 144 

appearance is completely different from previous reports of conduction band LDOS in bulk 1T-145 

TaSe2 and 1T-TaS2
13,31 (which show LDOS concentrated in the star-of-David centers), and is 146 

clearly not due to defects since it follows the CDW periodicity. The 6-fold petal structure has a 147 

different symmetry than the 3-fold arrangement of top-layer Se atoms in the spaces between each 148 

star-of-David, but it shares the 6-fold symmetry of the Ta atom arrangement (Fig. 3a inset and 149 

Supplementary Fig. 12). Single-layer 1T-TaSe2/HOPG shows a similar dI/dV map with the 150 

dominant LDOS intensity located near the outer rim of the stars-of-David at the lowest 151 

conduction band peak (dI/dV maps at other energies also look similar, see Supplementary Fig. 10 152 

and Supplementary Note 2).  153 

 The dI/dV map of single-layer 1T-TaSe2/BLG obtained at a slightly higher bias of V = 0.6 V 154 

(C2) show LDOS that is related to the flower pattern in that it exhibits a nearly inverse flower 155 

(i.e., dark areas at C1 are bright at C2, see circled regions in Fig. 3e). At even higher energies the 156 

single-layer 1T-TaSe2 LDOS displays other intricate orbital textures. The map at 0.8 V (Fig. 3f), 157 

for example, shows quasi-triangular patterns with intensity distributed near the outermost Ta C-158 

atoms (labeled according to the convention shown in Fig. 1d). This evolves into trimer-like 159 
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features at 1.1 V (Fig. 3g), and a network of “rings” with intensity near Ta B-atoms at V = 1.2 V 160 

(Fig. 3h) (a complete set of constant-height dI/dV maps is shown in Supplementary Fig. 11). 161 

 To help quantify the complex energy-dependent LDOS distribution of single-layer 1T-TaSe2, 162 

we cross-correlated our dI/dV maps with a reference map taken at the maximum of the valence 163 

band peak V1 (Fig. 3c), which exhibits LDOS dominated by inner Ta A- and B-atoms. The 164 

resulting cross-correlation values are color-coded in Fig. 3a and show that occupied states (-1V < 165 

V < 0 V) all have a strong, positive cross-correlation (blue) with the valence band map at V1 (i.e., 166 

the central Ta A- and B-atoms are bright at these energies and the C-atoms are darker). The 167 

empty-state cross-correlation, however, is very different. At C1 (where the flower pattern is 168 

observed) the LDOS map is strongly anti-correlated (red) with the valence band map since the 169 

LDOS here is dominated by Ta C-atoms. At slightly higher energy (C2) the cross-correlation 170 

flips to blue. This is due to the LDOS inversion that occurs at this energy (i.e., the inverse flower 171 

pattern) which creates intensity at the interior A- and B-atoms. At higher energy the cross-172 

correlation flips again to red and stays red over a fairly wide energy range (~0.4 eV) before 173 

flipping again to blue near C3.  174 

 175 

Energy gap reduction and quenching of unusual orbital texture in few-layer 1T-TaSe2 176 

 We examined the effect of interlayer coupling on 1T-TaSe2 by studying the evolution in 177 

electronic structure as 1T-TaSe2 is stacked layer by layer. We first determined the star-of-David 178 

CDW stacking order for bilayer and trilayer 1T-TaSe2. As seen in the STM images of Fig. 1b 179 

and Supplementary Fig. 1, the CDW stacking order follows the shifted triclinic structure 180 

whereby inner Ta “A-atoms” sit on top of outer Ta “C-atoms”, similar to stacking observed in 181 

bulk 1T-TaSe2
32. We observe that the energy gap for 1T-TaSe2 narrows significantly when 182 
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interlayer coupling is added, as seen in the STM dI/dV spectra for bilayer and trilayer 1T-TaSe2 183 

shown in Fig. 4a. The bilayer energy gap reduces to 21 ± 8 meV while trilayer 1T-TaSe2 shows a 184 

reduction in LDOS at EF that can be described as “semimetallic” but exhibits no true energy gap.   185 

 In addition to reducing the 1T-TaSe2 energy gap, bilayer and trilayer formation also quench 186 

the unusual orbital texture observed in the single-layer limit. As shown in the insets to Figs. 4b, c, 187 

dI/dV maps of the lowest conduction band in bilayer and trilayer 1T-TaSe2 show LDOS intensity 188 

concentrated near the center of each star-of-David, in stark contrast to the flower-like orbital 189 

texture observed in single-layer 1T-TaSe2 at C1. This difference can also be seen in the color-190 

coded cross-correlation values of bilayer and trilayer 1T-TaSe2 (Figs. 4b, c). Using the valence 191 

band LDOS shown in the insets as a reference (which is similar to the single-layer valence band 192 

LDOS of Fig. 3c), the bilayer and trilayer cross-correlation remain strongly positive (blue) 193 

throughout the lowest conduction band (thus emphasizing that the LDOS here is concentrated on 194 

the interior Ta A- and B-atoms). The distinctive flower pattern seen in single-layer 1T-TaSe2 at 195 

C1 (Fig. 3d) is never seen in bilayer or trilayer LDOS at any bias (Supplementary Figs. 13, 14).  196 

Theoretical electronic structure of single-layer 1T-TaSe2 via DFT+U simulations 197 

  There are two main physical questions that we seek to answer regarding our measurements 198 

of single- and few-layer 1T-TaSe2. First, what type of insulator is single-layer 1T-TaSe2? And, 199 

second, what is the effect of interlayer coupling on 1T-TaSe2 electronic behavior as new layers 200 

are added? To address these questions we first performed a conventional band structure 201 

calculation for freestanding single-layer 1T-TaSe2 using density functional theory (DFT). From 202 

an intuitive perspective, single-layer 1T-TaSe2 is expected to have metallic band structure since 203 

there are an odd number of Ta ions in the star-of-David unit cell (13) and each Ta4+ ion has only 204 

one d-electron (in principle substrate charge transfer could alter the electron counting and/or the 205 
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CDW behavior33, but in our case charge transfer effects from the graphene substrate are 206 

negligible (Supplementary Fig. 15 and Supplementary Note 3)). As expected, the DFT band 207 

structure of single-layer 1T-TaSe2 in the CDW phase calculated using the PBE exchange 208 

correlation functional shows a metallic half-filled band at EF (Supplementary Fig. 16). This 209 

theoretical result, however, strongly disagrees with our experimental data which shows 210 

insulating behavior for single-layer 1T-TaSe2 (Figs. 2, 3). An explanation for this significant 211 

discrepancy is that since the metallic band is so narrow (only ~20 meV wide) it is unstable to 212 

splitting into lower and upper Hubbard bands (LHB and UHB) due to a high on-site Coulomb 213 

energy (U) (i.e., the condition that causes Mott insulators to arise from otherwise metallic 214 

phases)1.  215 

 To test for Mott insulator formation in single-layer 1T-TaSe2 we modeled the effects of 216 

electron correlation by performing DFT+U simulations. We find that the DFT+U band structure 217 

for a ferromagnetic ground state with U = 2 eV reproduces most of our experimentally observed 218 

electronic structure for single-layer 1T-TaSe2 (the DFT+U results were sensitive to neither the 219 

magnetic ground state nor the structural optimization conditions, and our U value is consistent 220 

with previous simulations of related systems31,34,35 (see Supplementary Note 4 and 221 

Supplementary Figs. 17-21)). The DFT+U band structure was first compared to our ARPES data 222 

by unfolding it onto the Brillouin zone of an undistorted unit cell. As seen in Figs. 2c, d, and 223 

Supplementary Fig. 22, it reproduces the gapped electronic structure and shows good overall 224 

agreement with the ARPES spectra. In particular, DFT+U predicts that the LHB at -0.2 eV 225 

originates mainly from Ta ݀௭మ orbitals, consistent with the higher ARPES intensity under p-226 

polarized light (Fig. 2a)36. 227 
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 The DFT+U simulations were also consistent with much of our STS data as shown in Fig. 5 228 

which displays the simulated density-of-states spectrum and LDOS maps for single-layer 1T-229 

TaSe2. The theoretical density-of-states spectrum (Fig. 5a (black line)) reproduces the dI/dV 230 

spectrum (Fig. 3a) reasonably well in both the occupied and empty states. A LHB corresponding 231 

to the experimental V1 feature is seen, as well as an UHB corresponding to C1, along with higher 232 

energy features that correspond to the experimental C2 and C3 features. The orbital texture 233 

generated by the DFT+U calculations (Figs. 5b-h) also agree well with the experimental dI/dV 234 

maps in the valence band and upper conduction band regimes (i.e., the energies corresponding to 235 

filled states and levels above C2).  236 

 However, there are significant discrepancies between the experimental and theoretical 237 

LDOS maps in the low-energy conduction band region (0 < E ≲ 0.6 eV) where the unusual 238 

orbital texture is observed experimentally. This is most clearly seen by comparing the theoretical 239 

UHB LDOS map at 0.2 eV (Fig. 5d) with the experimental dI/dV map at V = 0.2 V (Fig. 3d) (i.e., 240 

the energy corresponding to C1). The calculated LDOS has high intensity in the central Ta A- 241 

and B-atom regions (similar to what is seen in the LHB) while the experiment shows the flower 242 

pattern (i.e., the experimental LDOS occupies the Ta C-atom region and is dark in the central 243 

area). There also exists significant disagreement at the next higher energy band feature (C2), as 244 

seen by comparison of Figs. 3e and 5e. Here the theoretical orbital texture (Fig. 5e) shows 245 

propeller-like structures with no central LDOS, while the experimental dI/dV map (Fig. 3e) 246 

shows an inverse of the C1 flower pattern which has LDOS in the interior region of the star-of-247 

David (a complete set of theoretical LDOS maps is shown in Supplementary Fig. 23). 248 

Unusual empty-state orbital texture at C1 and C2 249 
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  The good agreement between our DFT+U simulations and the majority of our ARPES 250 

and STM/STS data provides strong evidence that single-layer 1T-TaSe2 is a 2D Mott insulator. 251 

However, the failure of the simulations to reproduce the unusual conduction band orbital texture 252 

at C1/C2 implies that additional electron-electron interactions occur in single-layer 1T-TaSe2 that 253 

are not captured by DFT+U. Electrons injected from the STM tip into single-layer 1T-TaSe2 at 254 

the C1/C2 energies experience additional correlation effects originating from their Coulomb 255 

interaction with electrons already present in the occupied electron states. Such behavior is 256 

expected to arise due to the LHB charge distribution (Fig. 3c) which creates a spatially-varying 257 

Coulomb repulsion landscape, Ũ(r), felt preferentially by electrons injected into UHB states 258 

since they share a common orbital. Ũ(r) can be estimated by treating the LHB as a Gaussian 259 

charge distribution within each star-of-David cluster and by calculating the resulting interaction 260 

energy (Supplementary Note 5). This leads to a Coulomb landscape (Supplementary Fig. 24) that 261 

is strongly repulsive to UHB electrons at the center of each star-of-David (where the LHB charge 262 

density is large) and that has minima at precisely the locations of the six-fold C1 flower petals 263 

(where the LHB charge density is small). Given the composite nature of the UHB orbital (which 264 

has contributions from 13 Ta atoms over the CDW cell) the unusual orbital texture at C1/C2 can 265 

thus be understood as a redistribution of the UHB spectral density at the center of each star-of-266 

David up to higher energy in response to enhanced Coulomb interactions that arise from reduced 267 

screening in 2D. The remaining state density of the composite UHB stays in the Ũ(r) minima 268 

regions and gives rise to the peripheral six-fold C1 flower petals. This picture is corroborated by 269 

our observation that on the more strongly screened graphite substrate the LDOS distribution at 270 

C1 of single-layer 1T-TaSe2 appears to be more smeared out around the outer rim of the star-of-271 

David cells, consistent with a less corrugated Ũ(r) landscape (Supplementary Fig. 10 and 272 
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Supplementary Note 2). Future theoretical treatments considering dynamical interactions could 273 

potentially provide more insight into this unusual strong correlation phenomenon. 274 

 The effect of interlayer coupling on the shifted-stacked 1T-TaSe2 electronic structure is to 275 

weaken the Mott insulator phase, both in view of the observed energy gap reduction with 276 

increased layer number as well as its effect on orbital texture. The bilayer and trilayer orbital 277 

textures, for example, show no signs of the correlation-induced spectral density shift seen in the 278 

single-layer material at C1/C2. Such weakening of the Mott behavior likely arises from an 279 

increase in the effective inter-star-of-David hopping parameter (t) of the bilayer and trilayer due 280 

to interlayer coupling, as well as a reduction in Coulomb interactions due to increased electronic 281 

delocalization and screening.  282 

Outlook 283 

 We have shown that single-layer 1T-TaSe2 is a strongly correlated 2D Mott insulator 284 

characterized by unusual orbital texture. Interlayer coupling weakens the Mott behavior, 285 

consistent with the evolution of 1T-TaSe2 into a metal as its thickness is increased layer-by-layer. 286 

The Mott insulator phase seen in single-layer 1T-TaSe2 thus offers a highly-tunable 2D platform 287 

for future exploration of metal-insulator transitions1 where the Coulomb interaction might be 288 

further modified by substrate screening21,37, the bandwidth by pressure38, or the carrier density by 289 

electrostatic gating6,8. 290 
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Methods 329 

Sample growth and ARPES measurements 330 

Single-layer 1T-TaSe2 films were grown on epitaxial bilayer graphene terminated 6H-SiC(0001) 331 

and cleaved HOPG substrates in a molecular beam epitaxy chamber operating at ultrahigh 332 

vacuum (UHV, base pressure 2×10-10 Torr) at the HERS endstation of Beamline 10.0.1, 333 

Advanced Light Source, Lawrence Berkeley National Laboratory. High purity Ta (99.9%) and 334 

Se (99.999%) were evaporated from an electron-beam evaporator and a standard Knudsen cell, 335 

respectively, with a Ta:Se flux ratio set between 1:10 and 1:20 and a substrate temperature of 336 

660 °C. A higher substrate temperature (compared with our previous 1H-TaSe2 growth at 550 337 

°C29) was used to facilitate the growth of the metastable 1T phase of TaSe2. The growth process 338 

was monitored by reflection high-energy electron diffraction. After growth, the films were 339 
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transferred in-situ into the analysis chamber (base pressure 3×10-11 Torr) for ARPES and core-340 

level spectra measurements. The ARPES system was equipped with a Scienta R4000 electron 341 

analyzer. The photon energy was set at 51 eV (unless specified otherwise) with energy and 342 

angular resolution of 12 meV and 0.1°, respectively. p- and s-polarized light were used, as 343 

described elsewhere (ref. 39). Before taking the films out of vacuum for STM/STS measurements, 344 

Se capping layers with ~10 nm thickness were deposited onto the samples for protection. These 345 

were later removed by UHV annealing at ~200 °C for 3 hours. 346 

STM/STS measurements 347 

STM/STS measurements were performed using a commercial CreaTec STM/AFM system at T = 348 

5 K under UHV conditions. To avoid tip artifacts, STM tips were calibrated on a Au(111) 349 

surface by measuring its herringbone surface reconstruction and Shockley surface state before all 350 

STM/STS measurements. Both W and Pt-Ir STM tips were used and yielded similar results. STS 351 

dI/dV spectra were obtained using standard lock-in techniques with a small bias modulation at 352 

401 Hz. The constant-height mode (i.e., feedback loop open) was used for collecting all dI/dV 353 

conductance maps. Before obtaining each set of maps the STM tip was parked near the sample 354 

surface for at least 8 hours to minimize piezoelectric drift effects. 355 

Electronic structure calculations 356 

First-principles calculations of single-layer 1T-TaSe2 were performed using density functional 357 

theory (DFT) as implemented in the Quantum ESPRESSO package40. The onsite Hubbard 358 

interaction was added through the simplified rotationally invariant approach using the same U 359 

value for each Ta atom41,42. A slab model with 16 Å vacuum layer was adopted to avoid 360 

interactions between periodic images. We employed optimized norm-conserving Vanderbilt 361 

pseudopotentials (ONCVPSP) including Ta 5s and 5p semicore states (with a plane-wave energy 362 
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cutoff of 90 Ry)43-45 as well as the Perdew-Burke-Ernzerhof (PBE) exchange-correlation 363 

functional46 in the generalized gradient approximation (GGA). The structure was fully relaxed at 364 

the DFT-PBE level until the force on each atom was less than 0.02 eV/Å (unless specified 365 

otherwise). The resulting relaxed single-layer 1T-TaSe2 in the √13 × √13 CDW phase has a 366 

lattice constant of a = 12.63 Å. Spin-orbit coupling was not taken into account in our calculations 367 

since it has a negligible influence on the band structure given the inversion symmetry of this 368 

system. The unfolding of the band structure from the CDW supercell to the undistorted unit cell 369 

was calculated using the BandUP code47,48 with band energies and wavefunctions obtained from 370 

the Quantum ESPRESSO package. 371 

 372 
  373 
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Fig. 1. Structure of single-layer 1T-TaSe2 in the star-of-David CDW phase. a, Top and side 480 

view sketches of single-layer 1T-TaSe2, including substrate. Clusters of 13 Ta atoms in star-of-481 

David CDW supercells are outlined, as well as the CDW unit cell. b, Large-scale STM 482 

topograph of a typical 1T-TaSe2 island shows monolayer and bilayer regions (Vb = -0.5 V, It = 10 483 

pA, T = 5 K). c, A close-up STM image of single-layer 1T-TaSe2. Each bright spot corresponds 484 

to a star-of-David supercell (Vb = -0.17 V, It = 3 nA, T = 5 K). Black and orange parallelograms 485 

mark CDW and atomic unit cells, respectively. d, Labels for Ta atoms in the star-of-David CDW 486 

supercell depend on radial distance from center. e, Reflection high-energy electron diffraction 487 

pattern of a submonolayer 1T-TaSe2 film. f, X-ray photoelectron spectroscopy shows 488 

characteristic peaks of Ta and Se core levels for a submonolayer 1T-TaSe2 film.  489 

  490 
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Fig. 2. ARPES and DFT+U band structure of single-layer 1T-TaSe2. ARPES spectra of 491 

single-layer 1T-TaSe2 acquired with a,  p- and b, s-polarized light at T = 12 K along the Γ-K’ 492 

and Γ-M’ directions defined in the undistorted (i.e., no CDW) unit cell Brillouin zone (yellow 493 

hexagon in Fig. 2b inset). ARPES spectra have little intensity at low binding energies except for 494 

coexisting 1H-TaSe2 bands that cross EF at k ≈ 0.5 Å-1 (white dashed lines). A strong flat band is 495 

seen under p-polarized light in the first CDW Brillouin zone (black dashed box in a). The full 496 

CDW Brillouin zone is sketched in the inset of b (black hexagon). c, DFT+U band structure (U = 497 

2 eV) of single-layer 1T-TaSe2 unfolded onto the undistorted unit cell Brillouin zone compared 498 

to ARPES spectrum under p-polarized light (from a). d, Same DFT+U band structure as in c 499 

compared to ARPES spectrum under s-polarized light (from b).   500 

 501 

  502 
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Fig. 3. Experimental energy-resolved unusual orbital texture of single-layer 1T-TaSe2. a, 503 

STS dI/dV spectrum of single-layer 1T-TaSe2 shows a full energy gap bracketed by two STS 504 

peaks labeled V1 and C1 (f = 401 Hz, It = 50 pA, VRMS = 20 mV). Color shows cross-correlation 505 

of dI/dV maps at different energies with the reference map shown in c. Inset shows how the 506 

unusual orbital texture in d compares to atomic site locations (the 6-fold petal structure is shaded 507 

gray in the inset). b-h, Constant-height dI/dV conductance maps of the same area for different 508 

bias voltages show energy-dependent orbital texture (f = 401 Hz, VRMS = 20 mV). The same star-509 

of-David CDW supercell is outlined in each map (orange line). Yellow dashed circles in d, e 510 

highlight the unusual LDOS patterns at C1 and C2 and their relative spatial inversion. 511 
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 512 
Fig. 4. Energy gap reduction and quenching of unusual orbital texture in few-layer 1T-513 

TaSe2. a, STS dI/dV spectra for single-layer, bilayer, and trilayer 1T-TaSe2 show how interlayer 514 

coupling reduces the energy gap with an increasing number of layers. Spectra are shifted 515 

vertically for viewing (horizontal dashed lines mark dI/dV = 0, f = 401 Hz, VRMS = 2 mV). dI/dV 516 

maps of the valence and conduction band LDOS as well as larger energy-scale dI/dV spectra of 517 

b, bilayer, c, trilayer 1T-TaSe2 (f = 401 Hz, VRMS = 20 mV). Spatial cross-correlation values are 518 

shown color-coded with references taken near the LDOS maximum of the valence band for 519 

bilayer and trilayer 1T-TaSe2. In contrast to single-layer 1T-TaSe2, the lowest conduction band 520 

for both bilayer or trilayer show no unusual orbital texture, thus resulting in positive cross-521 

correlation values (blue), indicating that LDOS is concentrated on the interior Ta A- and B- 522 

atoms. 523 

  524 
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 525 
Fig. 5. Theoretical orbital texture of single-layer 1T-TaSe2 from DFT+U simulations. a, 526 

Theoretical density of states of single-layer 1T-TaSe2 from DFT+U simulations (U = 2 eV). 527 

Color shows cross-correlation of LDOS maps at different energies with respect to the reference 528 

map in c (-0.2 eV). b-h, Theoretical LDOS maps of single-layer 1T-TaSe2 from DFT+U 529 

simulations (U = 2 eV). The same star-of-David supercell is outlined in each map (orange line). 530 

Yellow dashed circles in d, e highlight two star-of-David clusters which show very different 531 

theoretical conduction band orbital texture compared to experimental C1 and C2 features in Figs. 532 

3d, e. 533 
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