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Outcome class imbalance and rare events: An underappreciated 
complication for overdose risk prediction modeling

Abigail R. Cartus, MPH PhD1, Elizabeth A. Samuels, MD MPH MHS1,2, Magdalena Cerdá, 
DrPH3, Brandon D.L. Marshall, PhD1,*

1Department of Epidemiology, Brown University School of Public Health, Providence, Rhode 
Island

2Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, 
Rhode Island

3Division of Epidemiology, Department of Population Health, Center for Opioid Epidemiology and 
Policy, School of Medicine, New York University, New York

Abstract

Background and aims—Low outcome prevalence, often observed with opioid-related 

outcomes, poses an underappreciated challenge to accurate predictive modeling. Outcome class 

imbalance, where non-events (i.e., negative class observations) outnumber events (i.e., positive 

class observations) by a moderate to extreme degree, can distort measures of predictive accuracy 

in misleading ways and make the overall predictive accuracy and the discriminatory ability of a 

predictive model appear spuriously high. We conducted a simulation study to measure the impact 

of outcome class imbalance on predictive performance of a simple SuperLearner ensemble model 

and suggest strategies for reducing that impact.

Design, Setting, Participants—Using a Monte Carlo design with 250 repetitions, we trained 

and evaluated these models on four simulated data sets with 100,000 observations each: one with 

perfect balance between events and non-events, and three where non-events outnumbered events 

by an approximate factor of 10:1, 100:1, and 1000:1, respectively.

Measurements—We evaluated the performance of these models using a comprehensive suite of 

measures, including measures that are more appropriate for imbalanced data.

Findings—Increasing imbalance tended to spuriously improve overall accuracy (using a high 

threshold to classify events vs. non-events, overall accuracy improved from 0.45 with perfect 

balance to 0.99 with the most severe outcome class imbalance), but diminished predictive 

performance was evident using other metrics (corresponding positive predictive value decreased 

from 0.99 to 0.14).

Conclusion—Increasing reliance on algorithmic risk scores in consequential decision-making 

processes raises critical fairness and ethical concerns. This paper provides broad guidance for 
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analytic strategies that clinical investigators can use to remedy the impacts of outcome class 

imbalance on risk prediction tools.
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Opioid; overdose; risk prediction; machine learning; predictive modeling

Introduction

The overdose crisis in the United States has intensified during the COVID-19 pandemic 

owing to a variety of factors including pandemic-related disruptions, social isolation, and an 

increasingly toxic supply of illicit drugs.(1, 2) Overdose mortality was steadily increasing 

through 2019, with a record 92,000 deaths in 2020(3) and 53,000 in the first six months 

of 2021 alone.(4) Algorithmic modeling to predict or identify patients at high risk of 

overdose and other adverse drug-related (particularly opioid-related) outcomes has been 

increasingly used to direct overdose prevention interventions. Many investigators have 

used both conventional approaches (typically logistic regression) and more novel machine 

learning methods to predict risk of opioid-related harms, such as fatal and nonfatal overdose, 

opioid-related hospitalizations, incident opioid use disorder, and persistent opioid use using 

large datasets including those from prescription drug monitoring programs,(5–9) commercial 

claims and electronic health records,(10–17) Medicare,(18, 19) Medicaid,(20) the Veterans 

Administration,(21, 22) and other administrative claims.(23)

Despite this growing literature, there is an underappreciated (yet addressable) problem of 

“outcome class imbalance”(24–26) which is associated with risk prediction modeling of 

rare events. Outcome class imbalance is a function of outcome prevalence and occurs in 

scenarios where non-cases (members of the so-called “negative” or “majority” outcome 

class) outnumber cases (members of the positive or minority outcome class) by a moderate 

to extreme degree and can produce low predictive model accuracy. Outcome class imbalance 

thus corresponds to the familiar situation of low outcome prevalence. This is an issue for 

any type of rare event, including opioid-related adverse events, which tend to be quite 

rare, especially in the large data sets that make attractive candidates for risk prediction 

modeling. In one study in Washington, for example, even in a relatively high-risk population 

of Medicaid enrollees receiving an opioid prescription, the cumulative incidence of opioid-

related poisoning over five years was less than 0.5%.(27) Outcome class imbalance can 

distort some measures of predictive accuracy, in particular the overall accuracy measure, 

which is the total number of correct predictions or classifications made by the model 

divided by the total number of observations. If non-cases (negative or majority class) 

outnumber cases (positive or minority class) by a large or extreme degree, predictive models, 

whether regression or more complex machine learning models, can achieve excellent overall 

predictive accuracy by simply classifying most or all observations as non-events. For 

example, in a data set of 100 observations with 99 non-events and 1 outcome event, a risk 

prediction model could achieve an overall accuracy of 0.99 by classifying every observation 

as a non-event. Among other solutions we will discuss later, purposeful sampling may be 

employed to reduce the degree of imbalance.
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How much outcome class imbalance affects predictive accuracy depends on a number 

of factors, including the complexity and noisiness of the data used to develop the model.

(28) However, so-called “singular” or threshold-dependent assessment metrics of predictive 

performance, especially those that incorporate information about the distribution of positive 

and negative outcome classes relative to one another (like overall accuracy), may generally 

be expected to yield misleading results in imbalanced data sets. Threshold-free, curve-based 

metrics generally give a more comprehensive picture of predictive performance than a 

single threshold-specific accuracy measure. For example, receiver operating characteristics 

(ROC) curves visualize the tradeoff between true positives and false positives (sensitivity 

and 1-specificity) across the range of all possible cutoffs and thus give a more global 

picture of algorithm performance. However, ROC curves are also sensitive to outcome class 

distribution and may thus also mislead.(29) Therefore, designing risk prediction algorithms 

for opioid-related outcomes represents a scenario where imbalance is likely (at a minimum, 

not accounting for other data complexity issues) and where performance is most commonly 

evaluated using overall accuracy and ROC curve analysis.

Risk prediction for opioid-related harms is a growing area of substance use epidemiology, 

and risk scores are being used in clinical care in, as just one example, the form of the 

NarxCare score, an algorithmic risk score built into prescription drug monitoring program 

(PDMP) software interfaces offered by Appriss, Inc.(30) While the inputs, development, 

and performance of the NarxCare scores are proprietary, available reports indicate that their 

high discriminatory (ROC) performance is used as evidence of these scores’ accuracy and 

effectiveness(31) – evidence that has been called into question by more detailed analyses 

of the scores’ performance.(32) This performance accuracy may also be misleading if the 

NarxCare scores are tested, generated, or used in highly imbalanced data, such as the data 

from PDMP databases. We demonstrate below that the literature on risk prediction for 

opioid-related harms may paint a misleading picture as to the accuracy and clinical utility of 

these algorithms.

Here, we conducted a simulation study to illustrate the effects of outcome class imbalance 

on a wide range of performance metrics for two simple prediction models (logistic 

regression and random forest). We did not seek to generate “accurate” risk predictions. 

Rather, our objective was to illustrate the effects and potential pitfalls of outcome class 

imbalance in predictive modeling studies and to offer investigators some considerations for 

building, interpreting, and reporting on risk prediction models for opioid-related adverse 

events and other rare outcomes in clinical medicine and public health.

Methods

To inform design of the simulated data sets, we first reviewed outcome event rates in 

a convenience sample of published papers predicting opioid-related adverse effects. We 

selected 20 recent papers reporting on risk prediction models across a range of opioid-

related outcomes and using a variety of data sources (Table 1).(5–23, 33) Because our initial 

search strategy yielded relatively few papers, we selected papers reviewed in a Tseregounis 

et al. review of risk prediction analyses for opioid research and a selection of other papers 

identified from a PubMed search of “risk prediction” AND “opioid.”(34) We compiled 
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information including year of publication, prediction target/outcome, the data source used, 

the cumulative incidence of the outcome, prediction window, analytic approach, and the 

order of magnitude of the outcome class imbalance expressed as a ratio (e.g., 10:1 for a 

cumulative incidence of the outcome indicating that non-cases outnumbered cases in the 

data by an approximate factor of 10).

Next, we used a Monte Carlo design to simulate 250 replications of four data sets with 

100,000 observations each. For each degree of outcome class imbalance (1:1, 10:1, 100:1, 

1000:1), we thus simulated 250 datasets with N = 100,000. We simulated the data from 

a logistic regression model to approximate the outcome of fatal overdose (in which it is 

not possible for the same subject to have multiple outcome events). The 1:1 data set had 

perfect balance (cases and non-cases accounted for 50% of the data each) and was included 

to serve as a reference to compare against model performance in the more imbalanced 

data sets. Furthermore, in each data set, we simulated 20 covariates (10 binary and 10 

continuous covariates) with coefficients of a similar magnitude to what can be found in the 

opioid-related risk prediction literature (coefficients ranging from 0.70 to 3.5).(34) Visual 

inspection of the probability curves of the continuous covariates indicated a broadly linear 

trend and as such, more complex functional forms (e.g., splines or polynomials) were not 

considered.

Each replication of each data set (in each of the four categories of outcome class imbalance) 

were prepared for modeling by first being split into training (N = 80,000) and test (N = 

20,00) sets (using package caret(35)) while ensuring a similar outcome prevalence in both 

sets. We then trained a SuperLearner ensemble algorithm with ten-fold cross-validation on 

each training set. We used SuperLearner to “stack” three basic algorithms: the simple mean, 

a generalized linear model, and penalized linear regression. It is possible that the penalized 

regression base learner may have chosen different covariate mixes in different simulation 

runs. Other base learners for SuperLearner are available; due to limited computing resources 

and time and due to the illustrative nature of this analysis we chose very simple models, but 

others can be explored for other applications.

We used the parameters from each model built on the training set to generate predictions 

from the corresponding test set. From each model, we thus generated a vector of predicted 

risk scores (continuous probabilities between 0 and 1). We visualized the distribution of risk 

scores for each model as frequency histograms. We also generated both receiver operating 

characteristic (ROC) and precision-recall curves (similar to ROC curves, but showing the 

positive predictive value or precision versus the sensitivity or recall across all possible 

thresholds) for each model across each degree of outcome class balance.

In order to generate measures of predictive accuracy based on the predicted and true binary 

classifications arranged into a 2×2 table (also called a confusion matrix), it was necessary to 

choose thresholds of the risk score distribution to classify the predicted risk scores as cases 

or non-cases. We chose three thresholds for the primary analysis: the 50th, 75th, and the 

99th percentile of each risk score distribution. Any observations with a predicted risk score 

greater than the 50th, 75th, or 99th percentile of the risk score distribution was classified as 

a case, while the rest were classified as non-cases. Using these predicted classifications, we 
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constructed confusion matrices (2×2 tables of predicted vs. true binary classifications) to 

derive several measures of predictive accuracy. The measures we calculated were sensitivity 

(probability that a true case is classified as a predicted case), specificity (probability that 

a true non-case is classified as a predicted non-case), positive predictive value (probability 

that a predicted case is a true case), negative predictive value (probability that a predicted 

non-case is a true non-case), and overall accuracy (the total number of correct classifications 

divided by the total number of observations).We also used these classifications to calculate 

Brier scores to assess model calibration. The Brier score is the mean squared difference 

between the actual outcome of a single observation and the predicted probability of 

the outcome assigned to that observation.(36) Higher Brier scores thus indicate poorer 

calibration and lower Brier scores indicate better calibration.

We also visualized the confusion matrices (2×2 tables of true and predicted classifications) 

from one replication to clarify the distribution of false positives and false negatives and 

illustrate how changing the classification threshold affects their distribution.

We referenced extensions to the CONSORT and STROBE guidelines for simulation studies 

to guide the presentation of the methods and results included here.(37)

Results

We first reviewed outcome prevalence in 20 recent papers that developed risk prediction 

models for opioid-related harms (e.g., fatal opioid overdose, Table 1).(5–23, 33) In these 

papers, non-cases outnumbered cases by a factor of at least 100 unless a deliberate strategy 

was used to over-sample outcome events; of the 20 papers we chose, 4 (20%) used sampling 

which reduced the degree of outcome class imbalance. The most common data sources for 

risk model development were administrative/claims data (10 papers) and prescription drug 

monitoring program data (6 papers) and most of the prediction windows were 1–2 years.

Each simulated data set had 100,000 observations but a different number of “cases” 

approximately corresponding to outcome class balance ratios of 1:1, 10:1, 100:1, and 

1000:1, respectively. Histograms of the risk scores generated by each model illustrated the 

impact of outcome class imbalance (Figure 1). When the ratio of non-cases to cases was 

1:1, the risk scores were distributed approximately evenly between 0 and 1; as the imbalance 

ratio increases, the risk scores become increasingly clustered close to 0, with a long right 

tail. This suggests that risk scores tend to be closer to zero when imbalance is more severe. 

These histograms represent results from just one of the 250 simulation runs (the 100th); 

some variability in the exact frequencies across simulation runs is to be expected, but the 

general trend is the same.

As the degree of outcome class imbalance increased, ROC and precision-recall performance 

changed in opposite directions (Figure 1). In general, the ROC curves exhibited consistent 

good performance as outcome class imbalance became more severe, though there was more 

variability across simulation runs at higher levels of imbalance. However, area under the 

precision-recall curve was markedly reduced even with the lowest degree of outcome class 

imbalance (10:1) and progressively worsened as the degree of imbalance increased.
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When using risk score cutoffs to classify each observation in the test set as a case or 

non-case, Brier scores assessing model calibration decreased as the degree of imbalance 

increased, indicating that calibration improved, likely spuriously, with more severe outcome 

class imbalance. Changing degrees of outcome class imbalance and changing risk score 

cutoffs yielded patterns in the performance metrics. Across each risk score cutoff (50th, 

75th, and 99th percentiles of the risk score distribution), increasing outcome class imbalance 

corresponded to increased sensitivity and negative predictive value and decreased specificity 

and positive predictive value (except at the 99th percentile threshold, where specificity is 

constant and high across all levels of outcome class imbalance). At the 50th percentile 

threshold, sensitivity and negative predictive value were higher overall (across all degrees of 

outcome class imbalance) and positive predictive value and specificity were lower overall. 

At the 50th percentile risk score cutoff, overall accuracy decreased with increasing outcome 

class imbalance; at the 75th percentile risk score cutoff, overall accuracy did not change in 

a consistent direction, and at the 99th percentiles cutoff, overall accuracy actually increased 

with more severe outcome class imbalance (Table 1).

Confusion matrices from one simulation run show the distribution of true and false 

positive and negative classifications across degrees of outcome class imbalance and risk 

score thresholds (Table 2). Across all risk score thresholds, increasing outcome class 

imbalance resulted in a decreased number of true positive and false negative classifications 

and an increased number of false positive and true negative classifications. The absolute 

number of classifications in each quadrant varied according to the risk score threshold, 

regardless of degree of imbalance; because of the lower threshold, many more false positive 

classifications were observed at the 50th percentile cutoff while many more true negative 

classifications were observed at the 99th percentile cutoff. For example, as a percentage 

of the training set of 20,000 observations with perfectly balanced data, the proportion of 

false positives at the 50th, 75th, and 99th percentile classification thresholds was 0.75%, 

0.02%, and 0%, respectively, while the number of false negatives was 14.75%, 39.01%, and 

63.00%, respectively. When non-cases outnumbered cases by a factor of 10:1, the proportion 

of false positives at the same increasing thresholds was 18.71%, 1.92%, and 0.01%, while 

the corresponding proportion of false negatives was 0.33%, 8.55%, and 30.64%. With the 

most severe outcome class imbalance (1000:1), the proportion of false positives was 46.79%, 

21.86%, and 0.42% and the proportion of false negatives was 0.005%, 0.08%, and 2.64% 

across the same increasing classification thresholds. As with the risk score histograms in 

Figure 1, these confusion matrices represent results from one simulation run (the 100th); 

exact proportions will vary across runs but the general trend is consistent.

In a setting where a risk prediction algorithm is used to guide clinical decision making, this 

could result in a situation where the high apparent predictive accuracy of a risk scoring 

algorithm (e.g., for fatal overdose) represents the increasing number of true negatives 

correctly classified by the algorithm. This could pose a problem especially where high risk 

score cutoffs are used, for example, to identify patients in the 99th percentile or higher of 

predicted risk scores. The high overall accuracy observed in this scenario could correspond 

to the algorithm’s excellent performance at predicting true negatives and a relatively small 

number of false positives; while the performance would technically be accurate, this would 
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not be informative as to an individual patient’s risk of adverse outcomes based on their risk 

score.

Discussion

The results of our simulation study illustrated the impact of progressively more pronounced 

outcome class imbalance on the performance of two predictive models. As expected, 

the impacts of outcome class imbalance were particularly evident in decreased positive 

predictive value and reduced areas under the precision-recall curves, and paradoxically also 

evident in increased overall accuracy, area under the ROC curve, and calibration. Overall 

accuracy in particular is sensitive to more than just the class distribution. Though in general, 

overall accuracy will improve with increasing outcome class imbalance, this may not be 

the case if a lower classification threshold is chosen—this will result in false positives 

(incorrect positive classifications) that drive the overall accuracy back down. We summarize 

recommendations for researchers conducting risk prediction analyses and for readers tasked 

with interpreting the results of these studies below.

First, we have demonstrated that threshold-free curve analyses are generally more 

informative than singular measures; of these, our results confirm that precision-recall plots 

are more informative than ROC curves in the presence of imbalanced data.(38) In general, 

we observed consistently high area under the ROC curve as the degree of outcome class 

imbalance increased and even greatly improved overall accuracy (which corresponds to area 

under the ROC curve) in a high-imbalance context when a higher risk score threshold for 

classification is used, which can be highly misleading. By contrast, the precision-recall 

curves registered the impact of outcome class imbalance even at the lowest degree of 

imbalance (10:1). This is because ROC curves are not sensitive to class distribution, 

whereas the precision-recall curve shows the relationship between positive predictive value 

and sensitivity across all possible thresholds and thus incorporates information about the 

outcome prevalence (the area under the precision-recall curve depends on the baseline 

outcome prevalence).(38) We also demonstrated that choice of classification threshold can 

affect the performance of a predictive model and change how the impact of outcome 

class imbalance is registered in the predictive performance. With a lower (in our case, 

less appropriate) classification threshold, each model generated more false positives, which 

translated into less implausibly high overall accuracy values but substantially damaged the 

positive predictive value. Unlike singular assessment metrics, curve-based analyses do not 

depend on setting a classification threshold and can be used to identify an optimal threshold 

(e.g., one that maximizes both sensitivity and 1-specificity, or both sensitivity and positive 

predictive value). In sum, we recommend that risk prediction studies report the results of 

threshold-free curve analyses, and further recommend precision-recall curves in addition to 

or instead of ROC curves in the context of imbalanced data.

Second, researchers should consider analytic strategies to handle outcome class imbalance. 

While the most appropriate analytic strategy depends on the research question, objectives, 

and performance measures of most interest, sampling and cost-sensitive learning approaches 

represent two possible analytic approaches to handling outcome class imbalance. A fuller 

explication of analytic approaches to outcome class imbalance for predictive modeling may 
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be found elsewhere(28, 39); here, we present some cursory considerations and definitions to 

aid researchers who are interested in exploring further.

Sampling approaches to outcome class imbalance vary in complexity but share the same 

fundamental idea: sampling or resampling an imbalanced data set to achieve more balance. 

At the simplest end are “naïve” sampling approaches: random undersampling (discarding 

non-outcome or majority class observations to achieve balance) and random oversampling 

(duplicating outcome or minority class events to achieve balance). These simple approaches 

do have drawbacks; undersampling discards information and may not be feasible (for 

example, in a data set with few outcome events), while oversampling duplicates existing 

observations and can thus lead to overfitting. On the other hand, these techniques are 

accessible and easy to implement; they may be combined to achieve a satisfactorily 

balanced data set, and many extensions and refinements are available.(40–46) Importantly, 

because sampling distorts the marginal outcome prevalence, investigators who choose a 

sampling approach will need to calculate sampling weights and apply them to computation 

of performance measures. If weighting is not feasible, sensitivity and specificity of an 

algorithm built on sampled data should not be reported, as these metrics depend on the 

marginal outcome prevalence and lose their meaning if the analytic data have been sampled 

to achieve a particular outcome prevalence.

In contrast to sampling approaches, which alter the data set, cost-sensitive learning 

approaches(47) allow investigators to impose higher “costs” for misclassifying certain (e.g., 

positive class) observations. By default, predictive algorithms assume that false-positive 

and false-negative classifications have equal costs. However, this may not be true, and 

the cost of misclassifying a patient as high- or low-risk for future overdose or another 

adverse outcome has clinical (in addition to mathematical) relevance. In opioid-related 

risk prediction modeling, the clinical costs of misclassification are dynamic and context-

specific; a false negative may be more clinically costly if it leads to opioid prescribing 

which may increase overdose risk, either in dosage, duration, or medication combinations. 

A false positive may be more clinically costly if the “high risk” designation creates a 

barrier to accessing needed medications for individuals with complex medical conditions. 

Cost-sensitive learning approaches can incorporate these differential costs into the model to, 

for example, penalize false positives more than false negatives, according to the objectives of 

the research.

Finally, whatever analytic approach is taken, we recommend examining and reporting a 

comprehensive suite of performance metrics. Precision-recall plots are not difficult to 

generate with available statistical software, and investigators may choose to present the 

F1 score (the harmonic mean of positive predictive value and sensitivity) in addition to 

or instead of overall accuracy. It is important to evaluate the calibration of a predictive 

model (how well the predicted outcomes accord with the observed outcomes) in addition 

to the discrimination (how well the model is able to distinguish cases from non-cases).

(29, 34) However, it is noteworthy that per our results, the Brier score evaluating model 

calibration improves with increasing outcome class imbalance, suggesting that calibration 

results may also be misleading in the context of imbalanced data. To ensure a comprehensive 

understanding of the performance of a given predictive model, we recommend evaluating 
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the metrics reported in Table 2 (at minimum) and at least one curve-based metric (ROC, 

precision-recall, or cost curves).

In summary, increasing reliance on algorithmic risk scores in consequential decision-making 

processes in medicine and other fields (e.g., pretrial detention, child protective services 

investigations, and more) raises critical fairness and ethical concerns.(48, 49) Algorithmic 

patient-level risk scores for adverse outcomes like opioid overdose or misuse are integrated 

into many prescription drug monitoring program software products (PDMPs are now 

operating in every US state except Missouri).(50) These risk scores are proprietary (and 

opaque) but may nevertheless be used in consequential prescribing decisions. For example, 

opioid dose tapering (such as might be an intuitive approach for a patient with a high risk 

score)(32, 50) is associated with increased risk of overdose.(51) Outcome class imbalance 

adds another layer of analytic complexity to the already challenging task of predictive 

modeling for opioid-related risks, and investigators should be alert to the presence and 

impact of outcome class imbalance in their data to avoid building a predictive model with 

misleading, inaccurate performance. Future research in this area should be particularly 

attentive to the potential for differential impacts of outcome class imbalance across 

subgroups (e.g., racial/ethnic or socioeconomic groups). With the high-stakes consequences 

and real impact on people’s lives that algorithmic risk scores can have, researchers have 

a responsibility to build and evaluate accurate predictive models in a comprehensive and 

transparent way.
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Figure 1. 
Histograms of risk scores, receiver operating characteristic (ROC), and precision-recall 

curves for all models.a

a Top row: histograms of predicted risk scores. Middle row: receiver operating 

characteristics (ROC) curves. Bottom row: precision-recall curves. Within each row, the 

degree of imbalance increases from left to right: 1:1 for the leftmost column, 10:1, 100:1, 

and 1000:1 for the rightmost column. In the bottom row, the outcome prevalence of each 

simulation run is shown as a horizontal blue line. Abbreviations: AUC: area under the curve; 

PRC: area under the precision-recall curve.
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Figure 2. 
Confusion matrices showing accuracy of predicted classifications.a

a Each confusion matrix shows the frequency of observations in each quadrant. Concordant 

quadrants (where the predictions are correct) are shaded in blue, while discordant quadrants 

(where predictions are incorrect) are shaded in coral. Quadrants are shaded by frequency 

such that those with more observations are shaded darker. Clockwise from the top left 

quadrant: true positives, false negatives, true negatives, false positives.
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