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MUTANT SCREEN REPORT

A Set of Diverse Genes Influence the Frequency of
White-Opaque Switching in Candida albicans
Lucas R. Brenes,*,1,2 Matthew B. Lohse,*,1 Nairi Hartooni,*,3 and Alexander D. Johnson*,†,4
*Department of Microbiology and Immunology, and †Department of Biochemistry and Biophysics, University of California,
San Francisco, CA 94158

ABSTRACT The fungal species Candida albicans is both a member of the human microbiome and a fungal
pathogen. C. albicans undergoes several different morphological transitions, including one called
white-opaque switching. Here, cells reversibly switch between two states, “white” and “opaque,” and each
state is heritable through many cell generations. Each cell type has a distinct cellular and colony morphology
and they differ in many other properties including mating, nutritional specialization, and interactions with the
innate immune system. Previous genetic screens to gain insight into white-opaque switching have focused on
certain classes of genes (for example transcriptional regulators or chromatin modifying enzymes). In this
paper, we examined 172 deletionmutants covering a broad range of cell functions. We identified 28 deletion
mutants with at least a fivefold effect on switching frequencies; these cover a wide variety of functions ranging
from membrane sensors to kinases to proteins of unknown function. In agreement with previous reports, we
found that components of the pheromone signaling cascade affect white-to-opaque switching; however, our
results suggest that the major effect of Cek1 on white-opaque switching occurs through the cell wall damage
response pathway. Most of the genes we identified have not been previously implicated in white-opaque
switching and serve as entry points to understand new aspects of this morphological transition.
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Candida albicans is an opportunistic fungal pathogen that is also a
member of the human microbiome. When the immune system is
compromised, C. albicans can cause systemic infections with fa-
tality rates exceeding 40% (Kennedy and Volz 1985; Wey et al. 1988;
Wenzel 1995; Calderone and Fonzi 2001; Kullberg and Oude Lashof
2002; Eggimann et al. 2003; Gudlaugsson et al. 2003; Pappas et al. 2004;
Achkar and Fries 2010; Kumamoto 2011; Kim and Sudbery 2011).
C. albicans is known for existing in several different morphological

states. One such system is white-opaque switching, where C. albicans
alternates between two cell types, named “white” and “opaque,” each
with a distinct cellular and colony morphology (Figure 1A) (Slutsky
et al. 1987; Soll et al. 1993; Johnson 2003; Pujol et al. 2004; Lohse and
Johnson 2009; Soll 2009; Morschhäuser 2010; Porman et al. 2011).
Roughly one-sixth of the transcriptome is differentially regulated
between these two cell types (Lan et al. 2002; Tuch et al. 2010), and
they also differ in metabolic preferences (Lan et al. 2002; Ene et al.
2016; Dalal et al. 2019), interactions with the innate immune system
(Kvaal et al. 1997, 1999; Geiger et al. 2004; Lohse and Johnson 2008;
Sasse et al. 2013; Takagi et al. 2019), responses to environmental cues
(Si et al. 2013; Sun et al. 2015), and capacity to mate (Miller and
Johnson 2002). The heritability of each cell type is a defining feature
of white-opaque switching; in the absence of external signals switch-
ing between the two cell types occurs approximately once every 104

cell divisions (Rikkerink et al. 1988; Bergen et al. 1990). Although rare
under most conditions, switching is a reversible process that occurs
without any chromosomal rearrangements or changes in genome
sequence.

Previous work identified a circuit with eight transcriptional
regulators connected by interlocking feedback loops that regulates
cell type switching and contributes to the stability of each cell type
(Sonneborn et al. 1999; Srikantha et al. 2000, 2006; Huang et al. 2006;
Zordan et al. 2006, 2007; Vinces and Kumamoto 2007;Wang et al. 2011;
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Hernday et al. 2013, 2016; Lohse et al. 2013; Lohse and Johnson 2016).
A more recent systematic screen found that roughly twenty percent of
transcriptional regulators tested (42 of 196) had at least fivefold effects on
switching rates in one or both directions, suggesting that white-opaque
switching is highly integrated with many aspects of C. albicans’ phys-
iology (Lohse et al. 2016). Given this result, it is not surprising that genes
from the cAMP/protein kinase A (Ramírez-Zavala et al. 2013; Ene et al.
2016; Cao et al. 2017; Ding et al. 2017), Hog1 osmotic/oxidative stress
(Liang et al. 2014; Deng and Lin 2018), and CEK1MAP kinase pathways
(Ramírez-Zavala et al. 2013; Deng and Lin 2018) have been shown to
affect switching rates. Likewise, several kinases (Ramírez-Zavala et al.
2013), GTPase associated proteins (Yang et al. 2018), chromatin
modifying enzymes (Srikantha et al. 2001; Hnisz et al. 2009; Stevenson
and Liu 2013), mediator subunits (Zhang et al. 2013), and DNA repair
enzymes (Alby and Bennett 2009) have also been linked to alterations
in switching rates.

Here, we report the construction of a deletion library of 172 diverse
genes in a switching competent background. We determined the
effects, if any, of these deletions on switching frequencies and found
that roughly one-sixth of genes affected switching at least fivefold
in one or both directions. We did not find any reliable predictors
(e.g., gene function or cell type expression patterns) for genes whose
deletion would affect switching rates. We did find, in agreement with
reports in the literature (Ramírez-Zavala et al. 2013; Deng and Lin
2018), that the Cek1 MAPK signaling cascade affects switching
rates; however, our results suggest that Cek1 may be activated by a
non-canonical pathway. Taken with previous observations, our
results indicate that the frequency of white-opaque switching (which
is dependent on the environment) is influenced by many inputs that
extend across a surprisingly diverse set of cell processes.

MATERIALS AND METHODS

Media and growth conditions
Unless otherwise noted, strains were grown on synthetic complete
defined media containing yeast nitrogen base with 0.5% ammonium
sulfate (6.7 g/L, BD #291940), amino acids (2 g/L), uridine (100mg/mL),
and 2% glucose (SCD+aa+Uri); plates also contained 2% agar. Recovery
from glycerol stocks and plating assays were conducted at 25�. Sec-
ondary attempts to obtain opaque cells for the seven deletion strains
that did not form opaque sectors during the initial switching assays
were conducted at 25� on plates where 2% N-acetylglucosamine

Figure 1 Identification of new genes that affect white-to-opaque or
opaque-to-white switching. (A) Images of typical white (left) and
opaque (right) C. albicans cells grown in liquid SCD+aa+Uri media at
25�C. Scale bar is 5mm, panel adapted from Lohse and Johnson 2016

(Lohse and Johnson 2016). (B-C) Volcano plots depicting the fold
change in (B) white-to-opaque or (C) opaque-to-white switching rates.
Vertical red lines indicate a fivefold change in switching rates. The
horizonal red lines indicate a = 0.05 (Welch’s t-test with Bonferroni
Correction for multiple comparisons, final thresholds of 2.91 · 1024 and
2.94 · 1024 respectively). The seven strains that did not switch from
white-to-opaque in this assay are indicated in blue in panel B, we have
set the switching frequency to 1 / (total number of colonies counted on
all of the plates for that strain) for these strains to aid in visualization. The
x-axes are plotted on a log2 scale, the y-axes are plotted on a log10
scale. (D) Comparison of normalized white-to-opaque and opaque-to-
white switching rates for 170 genes for which we could test switching in
both directions. A value of one represents switching at the wild type
rate, values less than one reflect reduced switching, and values greater
than one reflect increased switching. The five strains that did not
switch in the white-to-opaque assay are indicated in blue, we have set
the switching frequency to 1 / (total number of colonies counted on
all of the plates for that strain) for these strains to aid in visualization.
The x- and y-axes are plotted on a log2 scale.
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(GlcNAc, a monosaccharide glucose derivative that increases
white-to-opaque switching rates) was substituted for glucose.

Strain selection and construction
Lists of strains, plasmids, and oligonucleotides used in this study
can be found in File S1. The deletion strains in this study were
selected to encompass a wide range of GO term annotations (based
on the data available at the Candida Genome Database (CGD,
www.candidagenome.org)). Annotations of interest included func-
tional groups (e.g., kinases, phosphatases, transporters, proteases) and
localization groups (e.g., cell wall and/or surface). Additional strains
were selected based on previous lists of genes that are differentially
regulated at least twofold between the two cell types (Tuch et al. 2010)
and/or whose transcript is transported in a She3-dependent manner
(Elson et al. 2009). In total, 157 existing deletion strains were selected
and fifteen new genes were selected for deletion. We note that this
library does not represent an unbiased set of genes as a majority of the
genes it contains were selected for study when the initial deletion
strains were constructed, and then again when the existing deletion
strains were selected for conversion. We also note three gaps in the
numbering of strains in this library (26, 48, 164), these correspond to
strains that were initially included in the library but later removed
(e.g., for being a putative transcriptional regulator).

The existing a/a deletion strains that comprise a majority of the
strains used in this study (157 of 172) were taken from two previously
reported deletion strain libraries (Elson et al. 2009; Noble et al. 2010).
Given the inability of a/a cells of the SC5314 background to switch
to the opaque cell type, we converted the existing a/a deletion strains
to the switching competent a/D or a/D cell types through the
random deletion of one copy of the MTL using the pJD1 construct
and previously reported protocols (Lin et al. 2013; Lohse et al. 2016).
Successful deletion of one copy of the MTL was confirmed by colony
PCR against both the a and a MTL loci. Whenever possible, an a/D
isolate was used (149 of 157 cases). Construction of the a/D wild
type strain matched to this background has been previously reported
(Hernday et al. 2013; Lohse et al. 2016); construction of the equivalent
a/D wild type strain using pJD1 followed the same approach.

Fourteen of the fifteen new deletion strains were constructed in
the SN152 (a/a his1 leu2 arg4) background using the HIS1 and LEU2
cassettes (Noble and Johnson 2005). Correct chromosomal integra-
tion, orientation of each marker, and loss of the ORF were verified by
colony PCR. The same random MTL deletion approach was used to
convert these strains, an a/D isolate was obtained for each strain.

Construction of the opy2 deletion strain utilized the SAT1marker-
based CRISPR protocol targeting Candida maltosa LEU2 described
by Nguyen and colleagues (Nguyen et al. 2017). We used a derivative
of the hemizygous LEU2 strain SN250 (itself a derivative of the afore-
mentioned SN152 a/a his1 leu2 arg4 strain with the C. dubliniensis
HIS1 and C. maltosa LEU2 gene deletion cassettes integrated at the
C. albicans LEU2 locus) (Noble and Johnson 2005) which was converted
to a/D by deleting the a copy of the MTL using pJD1 (Lin et al. 2013).
The 90bp-annealed donor DNA (dDNA) contained homology to the
regions directly upstream and downstream of the OPY2 ORF. Each
dDNA homology arm consisted of 44 bp and the two homology arms
were separated by a two base pair GG insert added to create a
potential gRNA site. Gene deletion was confirmed by colony PCR
reactions verifying the loss of the OPY2 ORF. After confirming gene
deletion, the Cas9 ORF-gRNA-SAT1 cassette was recycled by plating
on Leu/His/Arg dropout plates and selecting for recombination
events with an intact CmLEU2 ORF. We selected against both leu-
cine and histidine in order to avoid potential histidine auxotrophies

arising during the recombination process (both CmLEU2 and
CdHIS1 are present at the CaLEU2 locus in the SN250-derived
background).

White-opaque switching assays
Large scale screening of white-to-opaque and opaque-to-white switch-
ing rates followed the protocol previously used for screening the
transcription factor deletion library (Lohse et al. 2016), itself a
refinement of a previously published protocol (Miller and Johnson
2002; Zordan et al. 2007). In brief, strains were allowed to recover
from glycerol stocks for seven days on SCD+aa+Uri plates at 25�.
After seven days, five colonies per strain that lacked visible sectors
of the other cell type were resuspended in water and plated at a
concentration of approximately 100 colonies/plate on six SCD+aa+Uri
plates. Our experimental strategy was designed to monitor 600 colonies
per strain; in practice we averaged 507 colonies per strain for
white-to-opaque switching assays and 577 colonies per strain for
opaque-to-white switching assays. At least four technical replicates
of the wild type strain (24 plates in total) were included in each batch
of switching assays. These plates were incubated for seven days at
25� before scoring colony phenotypes. Three phenotypes were noted:
(1) the number of sectored colonies, (2) the number of fully switched
colonies, and (3) the total number of colonies. The switching fre-
quency was calculated as (1+2)/3. To account for any batch-to-batch
variance, the switching frequencies for each strain were normalized
to the average of the four wild type replicates from the same day. The
a/D wild type was used as the control for a/D strains and the a/D wild
type was used as the control for a/D strains. In the case of the seven
strains that did not form any opaque sectors in this assay (gpa2, hsl1,
kex2, opy2, sld1, ssn3, tus1), we have indicated the switching fre-
quency as less than 1 / (total number of colonies counted on all of the
plates for that strain) to aid in visualization. Unless otherwise noted,
we use a fivefold effect on switching rates as a threshold for inclusion
in subsequent analyses. Switching data for all 172 strains can be found
in File S2. File S2 also contains the absolute switching rates and
number of colonies counted for all deletion strains as well as the
mean, standard deviation, and range of absolute switching rates for
the wild type assays that were performed in parallel with each batch
of strains.

Switching assay statistical analysis
We used Welch’s t-test (two-tailed, unpaired, assuming unequal
variance) to compare the switching rates for the individual mutant
plates (usually six plates) to the switching rates for the individual
plates from the four wild type controls (usually 24 plates) from the same
day. We evaluated each mutant separately for the white-to-opaque and
opaque-to-white assays. In order to correct for the multiple comparisons
performed, the Bonferroni Correction with a = 0.05 was applied. All of
the comparisons for a given type of assay (e.g., all of the white-to-opaque
experiments) were pooled for the multiple comparisons correction step,
giving a number of hypotheses, m, of 172 for the white-to-opaque
switching assays and of 170 for the opaque-to-white switching assays
(for final thresholds of 2.91 · 1024 and 2.94 · 1024 respectively). At
these thresholds, 20 of 21 strains with decreased white-to-opaque
switching (including all seven strains that did not switch), eight of nine
strains with decreased opaque-to-white switching, and both strains with
increased opaque-to-white switching were significant. The pcl5 (de-
creased white-to-opaque switching), pkh2 and C3_00570C_A (increased
white-to-opaque switching), and spf1 (decreased opaque-to-white
switching) fivefold effects were not statistically significant after
the correction for multiple comparisons, although all four of these
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phenotypes would be considered significant if the less rigorous
Benjamini-Hochberg procedure was used instead. Statistical testing
of switching rates for all 172 strains can be found in File S2.

Data availability
Strains and plasmids are available upon request. Supplemental Files
have been uploaded to figshare. File S1 contains lists of strains,
plasmids, and oligonucleotides used in this study. File S2 contains
white-to-opaque and opaque-to-white switching frequencies for
the 172 strains tested in this study. File S3 contains Supplemental
Materials and Methods and Results relating to comparisons be-
tween white-to-opaque and opaque-to-white switching frequencies,
GO terms, and genes whose transcripts are differentially regulated
between cell types. File S4 contains data related to statistical testing
for overrepresentation of genes affecting white-to-opaque or opaque-
to-white switching in 42 GO-SLIM sets, She3 associated transcripts,
two- or fourfold cell type enrichment, and genes with fivefold switch-
ing effects in the opposite direction. Supplemental material available
at figshare: https://doi.org/10.25387/g3.12355049.

RESULTS

Construction of an 174 member white-opaque switching
competent gene deletion library
We previously reported the creation of an 196 member transcrip-
tional regulator deletion library in which a/a mating type strains,
which do not undergo white-opaque switching in the SC5314 back-
ground due to repression of Wor1 by the a1-a2 heterodimer, were
converted to the a/D mating type (Lohse et al. 2016). Here, we used
the same approach to convert 172 a/a deletion strains, a mixture of
157 existing deletion strains taken from two published libraries (Elson
et al. 2009; Noble et al. 2010) and 15 newly created deletion strains,
into the switching competent a/D or a/D backgrounds. In brief, we
used a MTL locus deletion cassette to randomly delete either the a
or the a mating type locus; whenever possible, we chose a/D strains
rather than a/D strains for this screen. The deletion strains for
conversion were selected based on criteria including gene localization
or function (e.g., cell wall proteins, kinases, phosphatases), differential
transcriptional expression between white and opaque cell types, and
association with specific groups of genes and/or pathways (“guilt by
association,” e.g., She3 mRNA transport targets, CEK1 signaling
pathway). As such, we note that this library does not represent an
unbiased set of genes; however, it does cover a wide range of gene
types rather than a specific class of genes, an emphasis of previous
screens (Hnisz et al. 2009; Ramírez-Zavala et al. 2013; Zhang et al.
2013; Lohse et al. 2016; Yang et al. 2018). A list of the 172 gene
deletions strains can be found in File S1.

Identification of 31 genes affecting
white-opaque switching
We screened the 172 member switching capable gene deletion library
for effects on white-to-opaque switching rates using an established
plate based assay. In brief, we determined the fraction of colonies with
one or more sectors and normalized this to the switching rate of
the wild type control strain on the same day. We found that 23 gene
deletions had at least fivefold effects on white-to-opaque switching
relative to the wild type control (21 decreased switching, two in-
creased switching; 13% of genes tested) (Figure 1B, Table 1, File S2).
All but three of these results (decreased switching by pcl5, increased
switching by pkh2 and C3_00570C_A) met standard significance
thresholds (Welch’s t-test with Bonferroni Correction for multiple

comparisons, a = 0.05). Seven of the 21 reduced-switching gene
deletions were severe (gpa2, hsl1, kex2, opy2, sld1, ssn3, tus1): no
opaque sectors were observed across multiple plates, meaning that
switching, if it occurred at all, must be extremely rare. When these
seven strains were grown on media containing N-acetylglucosamine
(GlcNAc, a monosaccharide glucose derivative that dramatically
increases white-to-opaque switching rates), five of the seven pro-
duced opaque sectors indicating that these genes are not absolutely
necessary for switching to or existing in the opaque state. We also
note that the opaque versions of these five strains, once isolated, were
stable on media with glucose as the carbon source suggesting that
these genes did not affect maintenance of the opaque cell type. We did
not observe any opaque sectors for the remaining two deletion strains,
hsl1 and ssn3 (both kinases), under any conditions we tested. We
do not know why deletion of these genes prevents white-to-opaque
switching; however, both deletions increase filamentation (Wightman
et al. 2004; Umeyama et al. 2005; Lu et al. 2019) and, given the many
links between white-opaque switching and filamentation (Lohse et al.
2016), perhaps the increased tendency for filamentation competes
with white-to-opaque switching. Alternatively, the genes may be
required to maintain the opaque state.

We next identified deletion mutants that affected switching in the
other direction, namely opaque-to-white switching. Of the 170 strains
tested (we could not assess the hsl1 and ssn3 strains since they do not
form opaque cells), eleven had fivefold or greater effects on opaque-
to-white switching (nine decreased switching, two increased switch-
ing; 6% of genes tested) (Figure 1C, Table 1, File S2). All but one of
these results (decreased switching by spf1) were significant by stan-
dard statistical criteria (Welch’s t-test with Bonferroni Correction for
multiple comparisons, a = 0.05). Unlike the white-to-opaque results,
none of these mutants completely blocked opaque-to-white switch-
ing. Between the two screens, eighteen percent of the genes tested
(31 of 172) had a fivefold or greater effect on switching in at least one
direction. To the best of our knowledge, only three of these 31 genes
(CEK1, GPA2, PHO15 (PHO13)) had previously been reported to
affect white-opaque switching (Hnisz et al. 2009; Ramírez-Zavala
et al. 2013; Ene et al. 2016; Deng and Lin 2018).

Forward and backward switching rates are not linked
As was also observed in the transcriptional regulator screen, the
effects of gene deletions on white-to-opaque and opaque-to-white
switching are largely independent of each other: only three gene
deletions (ccn1, nmd5, pcl5) had fivefold effects on both white-to-
opaque and opaque-to-white switching (Figure 1D, Table 1, File S2).
Given that a majority of genes affected switching in only one di-
rection, it appears that the mechanisms and inputs for determining
the frequencies of forward and reverse switching are largely inde-
pendent of each other. Furthermore, we note that the three deletions
with bidirectional effects decreased switching rates in both directions
rather than having opposite effects. A mutation that simply desta-
bilized the opaque cell would be predicted to decrease white-to-
opaque switching and increase opaque-to-white switching. We do
note that one of our deletion mutants did have this property: the cek1
deletion reduces white-to-opaque switching eleven-fold and increases
opaque-to-white switching 4.9-fold narrowlymissing our fivefold thresh-
old. This suggests that, rather than breaking switching in both directions
like the ccn1, nmd5, and pcl5 deletions, CEK1 is important for both the
establishment and themaintenance of the opaque cell type. However, the
apparent scarcity of such mutants, coupled with the large number of
mutants with effects in only one direction, suggests that forward and
reverse switching frequencies have largely independent inputs.
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Gene function or expression patterns do not reliably
predict white-opaque switching effects
Although our library of deletion mutants was biased toward genes we
felt might impact white-opaque switching, the results indicate that
no single criteria reliably predicts a priori whether a gene might affect
white-opaque switching rates. In particular, differential mRNA
expression in either white or opaque cells was not an accurate predictor,
nor were intracellular location, GO term analysis, or even guilt by
association (Files S3 and S4).

Sho1, Msb2, and Opy2 activate Cek1 through a
non-canonical route
Although most of the genes identified in this screen had not been
previously implicated in white-opaque switching, several did coincide
with previous reports. Activation of the Cek1 mitogen-activated
protein kinase (MAPK) pathway, either through overexpression of
an active form of the upstream kinase Ste11 or the downstream target
of the pathway (the transcriptional regulator Cph1), has been re-
ported to increase white-to-opaque switching rates (Ramírez-Zavala
et al. 2013). To further explore this connection, our screen included
deletions of three kinases known to act upstream of Cek1 (Cst20,
Ste11, Hst7), the pheromone receptors Ste2 (for a factor) and Ste3

(for a factor), a component of the associated trimeric G-protein
receptor (Cag1), and three proteins previously shown to activate
the Cek1 pathway in response to cell wall damage (Msb2, Opy2,
Sho1(Ssu81)) (Román et al. 2005, 2009; Herrero de Dios et al. 2013;
Noble et al. 2017).

Consistent with previous reports (Ramírez-Zavala et al. 2013;
Deng and Lin 2018), we found that the cek1 deletion (but not the
cek2 deletion) reduced white-to-opaque switching approximately ten-
fold. However, deletion of the upstream MAP kinases of the MAPK
pathway (Cst20, Ste11, Hst7), pheromone receptors (Ste2, Ste3), or
trimeric G-protein receptor components (Cag1) had much smaller
effects (at most threefold) on white-to-opaque switching. Deletion of
Msb2, Opy2, and Sho1, on the other hand, resulted in six- to sixteen-
fold reductions in white-to-opaque switching, similar in magnitude to
the effect of the cek1 deletion. Although it has been assumed that the
signals from Cst20, Ste11, and Hst7 activate Cek1 for white-opaque
switching though the MAPK kinase pathway, our results show that
the signaling components of the cell wall damage pathway have more
pronounced effects (Figure 2). These observations suggest that the
major effects of Cek1 on white-opaque switching occur through
the cell wall damage response pathway rather than the pheromone
response pathway. Consistent with this idea, deletion of CPH1, a

n■ Table 1 List of deletion strains with at least fivefold effects on white-to-opaque and/or opaque-to-white switching rates

Gene Name

Normalized
White-to-Opaque

Frequency
White-to-Opaque

P-value

Normalized
Opaque-to-White

Frequency
Opaque-to-White

P-value

C1_14200W_A C1_14200W_A 0.047 1.62E-06 0.918 8.43E-01
C3_00570C_A C3_00570C_A 8.935 5.34E-04� 0.700 2.18E-01
C4_02720C_A C4_02720C_A 0.165 5.55E-05 0.947 6.76E-01
CR_06450W_A CR_06450W_A 0.148 2.63E-10 0.511 6.35E-04
C5_01680C_A CCN1 0.119 4.75E-09 0.100 8.52E-08
C4_06480C_A CEK1 0.089 3.13E-11 4.898 3.94E-06
C5_04130C_A CHT2 3.005 1.15E-02 0.195 1.97E-05
C6_01070C_A CIP1 2.695 4.75E-02 0.174 1.70E-04
C1_01270W_A CTA9 0.077 4.78E-11 0.745 1.25E-01
C2_04050C_A DCK1 0.104 6.33E-05 1.028 9.26E-01
C4_03470C_A ECE1 0.345 7.54E-04 0.186 1.48E-08
C3_02240C_A GPA2 , 0.114 2.14E-08 0.557 2.44E-03
C5_02840C_A HSL1 , 0.047 1.15E-08 NA NA
C4_03570W_A HWP1 0.957 7.46E-01 0.173 3.91E-05
C2_09130C_A IFF6 0.969 9.44E-01 0.136 6.49E-05
C1_08990C_A KEX2 , 0.061 7.64E-07 2.700 5.75E-03
C2_01780W_A MSB2 0.061 4.27E-07 1.147 1.82E-01
C4_00540C_A NMD5 0.123 3.63E-06 0.063 8.88E-08
C1_08310W_A OPY2 , 0.179 1.18E-04 0.929 3.53E-01
C5_05190W_A PCL5 0.122 3.55E-04� 0.090 2.76E-06
C5_02720W_A PEP12 0.663 2.20E-01 5.200 4.09E-06
C1_07230W_A PHO15 0.905 7.41E-01 6.718 6.26E-05
C1_12410C_A PKH2 6.675 4.31E-04� 0.930 6.72E-01
CR_02040W_A PRK1 0.173 2.20E-04 0.261 1.58E-04
C1_09260C_A PTC1 0.093 6.68E-07 1.520 1.75E-01
C1_09140C_A SSU81 0.091 1.52E-07 0.700 5.45E-01
C1_04380W_A SIT4 0.047 7.06E-06 2.223 1.40E-02
C3_02680C_A SLD1 , 0.111 7.64E-07 2.371 1.21E-03
C2_06540C_A SPF1 0.721 3.23E-01 0.166 1.74E-03�

C2_04260W_A SSN3 , 0.110 2.14E-08 NA NA
C1_04480C_A TUS1 , 0.022 3.74E-13 0.928 7.95E-01

Switching frequencies are normalized to the average of four wild type switching assays performed on the same day.When no switching events were detected for a strain,
the switching frequency is indicated as less than one divided by the number of colonies counted. Statistical significance is indicated (usingWelch’s t-test with Bonferroni
Correction for multiple comparisons, with a = 0.05, giving final thresholds of 2.91 x 1024 for white-to-opaque switching and 2.94 x 1024 for opaque-to-white switching).
Genes with fivefold effects that did not meet these thresholds are indicated with an � after the relevant p-value. Absolute switching rates for each strain as well as wild
type switching rates can be found in File S2.
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downstream effector of the pheromone response pathway, has only
minimal effect (approximately twofold down) on white-to-opaque
switching (Lohse et al. 2016).

DISCUSSION
Based on several criteria, including expression patterns, “guilt by
association,” and hunches, we created a library of 172 C. albicans
deletion strains (in a white-opaque switching background) and scored
them for effects on white-to-opaque and on opaque-to-white switch-
ing rates. Although these deletion mutants do not reflect a random,
unbiased selection, they do cover a more diverse set of genes than has
been examined to date for white-opaque switching. We found that
(1) roughly one-sixth of gene deletions had at least a fivefold effect on
switching in either the forward or reverse direction, (2) the majority
of the effects were uni-directional with very few deletions affecting
switching in both directions, (3) decreases in switching rates were
considerably more common than increases, and (4) no single criteria
(e.g., GO terms, “guilt by association,” or differential gene expression
between white and opaque cells) had significant predictive value
for genes whose deletion would affect switching rates. The fact that
eighteen percent of genes tested affected white-opaque switching,
coupled with the diversity of these genes, underscores the degree
to which white-opaque switching is connected to many aspects of

C. albicans’ cellular physiology. Consistent with this idea, 21%
(42 of 196) of transcriptional regulator deletions had effects of similar
magnitude (Lohse et al. 2016). The results of this and previous screens
for deletion mutants and overexpression constructs that affect white-
opaque switching rates suggest caution in concluding that a gene
whose deletion causes a subtle increase or decrease in switching
frequency is part of the core switching apparatus itself. Rather, the
large number and variety of gene deletions that have these effects (but
still allow cells to switch) likely affect inputs to the switch rather than
the core switch itself.

Despite the aforementioned difficulty in predicting genes af-
fecting white-opaque switching a priori, we note one instance of
successful “guilt by association” where a gene with a known effect
on switching, in this case Cek1, resulted in identification of additional
genes (in this case SHO1, MSB2, and OPY2) with similar white-
opaque switching phenotypes. Although genes in the canonical
MAPK pathway were predicted to affect white-opaque switching
to the same magnitude as Cek1, they did not and we note that our
screen was useful in testing these predictions. Thus, although we were
not particularly successful in predicting genes that affected white-
opaque switching, the gene set we chose was useful in eliminating
genes as well as identifying new genes that could serve as entry points
for understanding other signals affecting white-opaque switching.
Along this line, we note the interesting case of the white-enriched
membrane protein C4_02720C_A and the opaque-enriched cell wall
GPI-anchored protein Iff6, both of whose deletions decrease switch-
ing away from the cell type in which they are preferentially expressed;
in other words, there are cell type regulated genes whose expression
appears to decrease the stability of that cell type.

In conclusion, it is perhaps surprising that so many genes affect
the frequency of white-opaque switching in C. albicans. This situation
may arise, in part, because switching frequency is a delicate phenotype,
but one that can be accurately quantified. For example, compared to the
number of genes that affect switching rates, very few genes are essential
for the switch itself. However, we do know that although switching
itself is all-or-none, the frequency of switching can range continuously
over several hundred-fold, depending on the environment (Dalal et al.
2019). The large number of genes identified thus far suggest that many
different inputs determine the ultimate switching frequency of a given
cell, yet we are far from understanding how this signal integration is
performed and how results are transmitted to the switching apparatus.
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